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Abstract

Background
Pharmacogenetic markers related to drug metabolism and mechanisms of action 
could help to better select patients with metastatic colorectal cancer (mCRC) for 
treatment. Genetic interaction analysis is used as a rational tool to study the 
contribution of polygenic variation in relation to drug response. 
Patients and methods
A selection of 17 polymorphisms in genes encoding drug targets, pathway molecules 
and detoxification enzymes was analyzed in 279 previously untreated mCRC patients 
treated with capecitabine, oxaliplatin and bevacizumab (CAPOX-B). Multifactor 
dimensionality reduction analysis was used to identify a genetic interaction profile for 
progression-free survival (PFS). 
Results
Median PFS was 10.9 (95%CI, 9.4 to 12.4) months. A genetic interaction profile consisting 
of the TYMS enhancer region and VEGF +405G>C polymorphisms was significantly 
associated with PFS. Median PFS was 13.3 (95%CI, 11.4 to 15.3) and 9.7 (95%CI, 7.6 to 
11.8) months for the beneficial and unfavorable genetic profiles, respectively, 
corresponding to a hazards ratio for PFS of 1.58 (95%CI, 1.14 to 2.19). None of the 
studied polymorphisms were individually associated with PFS. 
Conclusions
Our results support a genetic interaction between the TYMS enhancer region and 
VEGF +405G>C polymorphisms as a predictor of the efficacy of CAPOX-B in mCRC 
patients.

Introduction

The combination of a fluoropyrimidine, such as 5-fluorouracil (5-FU) or capecitabine, 
oxaliplatin and the vascular endothelial growth factor (VEGF) blocking antibody 
bevacizumab (CAPOX-B) is a frequently used standard first-line treatment strategy for 
metastatic colorectal cancer (mCRC).1,2 However, since not all patients respond to this 
regimen, better criteria to select patients for this treatment are warranted. For this 
purpose, pharmacogenetic studies have been carried out with germline poly-
morphisms in genes that encode metabolic enzymes and drug targets (Table 1). 
However, the findings from these studies are not consistent.3 As a result, none of these 
polymorphisms are currently used in general practice to identify patients with an 
increased chance of response. 
An explanation for these results could be that current analytical methods ignore or 
underestimate the complexity underlying drug response. Drug response involves 
many different proteins, such as therapeutic targets, molecules in the signaling 
pathway, metabolic enzymes or drug transporters. It may therefore be likely that the 
impact of polymorphisms in the corresponding genes exert their influence only in 
the presence of other polymorphisms. This concept is known as non-linear interaction, 
or epistasis.4 Studying the interaction between polymorphisms could therefore 
provide more reliable information compared with separate analyses of associations 
between individual polymorphisms and response.5 The resulting information can be 
transformed into genetic profiles that may have a prognostic and/or predictive value 
for mCRC patients. 
The multifactor dimensionality reduction (MDR) methodology has been developed 
to study non-linear patterns of interactions between genetic profiles and drug 
response.6 In this study, we applied genetic interaction analysis using the MDR method 
to evaluate interaction between candidate polymorphisms in relation to the efficacy 
of CAPOX-B as first-line treatment in mCRC patients. 

Materials and methods

Study population
Blood samples were collected from 279 of 368 previously untreated mCRC patients 
who were treated with CAPOX-B in the control arm of the multicenter prospective 
randomized phase III CAIRO2 study of the Dutch Colorectal Cancer Group (DCCG).1 
Capecitabine 1000 mg/m2 (increased to 1250 mg/m2 from cycle 7) was administered 
orally twice daily on days 1 to 14 of each 3-week treatment cycle. Oxaliplatin 130 mg/
m2 (maximum of six cycles) and bevacizumab 7.5 mg/kg were administered i.v. on  
day 1 of each treatment cycle. Treatment was continued until disease progression, 
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death or unacceptable toxicity, whichever occurred first. Patient eligibility criteria and 
further details of the study have been previously described.1 The collection of a 
peripheral blood sample for pharmacogenetic research was pre-specified in the study 
protocol and required additional written informed consent. The protocol was 
approved by the local institutional review boards of all participating centers.
Patients in the experimental cetuximab-containing study arm of the CAIRO2 study were 
not included in this pharmacogenetic study since the addition of cetuximab resulted in  
a decreased progression-free survival (PFS), the primary endpoint of the study.1 

Genotyping
The studied genetic polymorphisms are shown in Table 1. These polymorphisms were 
selected primarily on the basis of the pharmacokinetics and pharmacodynamics of 
capecitabine, oxaliplatin and bevacizumab and on the known functional effects at 
the protein level.7 Moreover, these polymorphisms have been included in previous 
pharmacogenetic association studies of 5-FU, capecitabine or oxaliplatin in mCRC.8-29 
Since results of only two pharmacogenetic studies for bevacizumab have been 
reported30,31, polymorphisms in VEGF and its receptor (kinase domain receptor, KDR) 
were selected.32 Germline DNA was isolated from peripheral white blood cells by the 
standard manual salting-out method. Genotyping was carried out on a Biomark 
system (Fluidigm, South San Francisco, CA, USA) according to the protocol provided 
by the manufacturer using pre-designed TaqMan assays (Applied Biosystems, Foster 
City, CA, USA). 
The polymorphisms in the thymidylate synthase enhancer region (TSER) in the 
promoter of the TYMS gene (two or three 28-bp repeats including the C>G 
polymorphism in the third repeat; TYMS-TSER) were analyzed by direct sequencing. 
The genotype was expressed as non-carriage of the 3G-allele (2/2, 2/3C and 3C/3C 
genotypes) versus carriage of the 3G-allele (2/3G, 3C/3G and 3G/3G), since the 3G 
allele results in increased TYMS activity.33,34 The 6-bp insertion/deletion (TYMS +/-6bp) 
polymorphism in the 3’ untranslated region was determined using fragment analysis. 
Each assay was conducted with 10% duplicates, with water as negative control. The 
overall call rate was 0.948 (0.803 to 0.989) and none of the polymorphisms significantly 
deviated Hardy-Weinberg equilibrium (P>0.01). 

Statistical analysis
Genotypes that are individually associated with drug response will usually end up in 
the best genetic profile in the genetic interaction analysis without providing 
substantial information gain. Therefore, the association between each individual 
polymorphism (treated as an ordinal variable, representing an additive model) and 
PFS as dependent variable was tested using a Cox proportional hazards model 
including serum LDH, age and gender as covariates. Polymorphisms significantly 
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The genotype combination with the highest accuracy in the validation sample was 
recoded into a genetic profile predictive for PFS. This genetic profile was subsequently 
used for all 279 patients in the CAIRO2 study from whom a blood sample was available, 
including the patients from the intermediate PFS group, to estimate survival curves 
using the Kaplan-Meier method. The difference in PFS from the beneficial genetic 
profile versus the unfavorable genetic profile was estimated using the log-rank test.  
A Cox proportional hazards model including the genetic profile, age, gender, prior 
adjuvant chemotherapy (yes versus no), number of affected organs (1 versus >1), serum 
LDH and any polymorphisms that were individually associated with PFS was used to 
compute the adjusted hazards ratio (HR) and 95% confidence interval (95%CI). Given 
the exploratory nature of this study, no adjustment for multiple testing was carried out, 
and a P value of <0.05 was considered significant. The Kaplan-Meier and Cox proportional 
hazards analyses were carried out using SPSS version 17.0 (SPSS, Chicago, IL, USA).

Results

At the time of analysis, the primary end point of PFS was reached in 225 of 279 eligible 
patients (80.6%). Median PFS was 10.9 months (95%CI, 9.4 to 12.4 months). Two patients 
were censored in the shortest quartile, and were excluded from the genetic interaction 
analysis, since the actual PFS of these patients was unknown. Censored events in the 
longest quartile were not excluded, since PFS for these patients was at least longer 
than the 75% quartile cut-off point. The shortest and longest quartiles for PFS were 
below 6.7 and above 15.5 months, respectively, each consisting of 70 patients. 
None of the genetic polymorphisms were individually associated with PFS in the Cox 
proportional hazards analysis (Table 2). Therefore, all polymorphisms were included in 
the genetic interaction analysis with PFS. 
The combination of the TYMS-TSER and VEGF +405G>C had the highest accuracy of 
0.650 (P=0.027, 1000-fold permutation testing; 0.624 after exclusion of missing data), 
meaning that 65% of the patients were correctly classified according to the genetic 
profile (Figure 1a). The distribution of patients in the shortest and longest PFS quartiles 
for the combination of TYMS-TSER and VEGF +405G>C genotypes is shown in Figure 
1b. All other combinations of two, three and four polymorphisms each resulted in 
lower accuracies in the genetic interaction analysis, and were therefore not considered 
for further evaluation. 
When all 246 patients with complete genotype data were used, 137 and 109 patients 
were in the beneficial and unfavorable profiles for PFS, respectively. In Figure 2, the 
frequency distribution of the genetic profile across the four quartiles for PFS is shown. 
Interestingly, the frequency of the unfavorable profile decreases for every quartile, 
even for the two middle quartiles (P<0.001, χ2 test for trend). 

associated with PFS (P<0.05) were excluded from the subsequent interaction analysis, 
but would be introduced in the final multivariate analysis (see below). Also, haplotypes 
disturb the selection of the best genetic profile because of over fitting the data due 
to the number of possible haplotype combinations and were therefore also not used 
in the interaction analysis. No haplotype was individually associated with PFS in our 
study (data not shown). 
To study interaction between the polymorphisms in relation to response, the MDR 
software was used (version 2.0 beta 6; available on http://sourceforge.net/projects/
mdr/).6 The software requires a complete dataset with no missing data. Therefore, 
missing data for polymorphisms with ≤5% missing data were imputed by genotypes 
based upon the genotype frequency of the polymorphism, taking the distribution of 
other polymorphisms in the same gene into account. Missing data for polymorphisms 
with >5% missing data (TYMS-TSER, TYMS +/-6bp, VEGF -1154G>A and VEGF +936C>T) 
were considered a separate ‘missing genotype group’ in the genetic interaction 
analysis. If the genetic interaction analysis resulted in a combination consisting of a 
genotype with a ‘missing genotype group’, the procedure was repeated without this 
group and results were compared with the initial results.
Our study is designed to identify a subgroup of patients with increased PFS. The 
median PFS in our study population was 10.9 months. However, it is assumed that  
the patients with beneficial genetic profiles have a PFS much longer than the median, 
whereas patients with unfavorable genetic profiles have PFS much shorter than the 
median. We therefore included patients in the shortest and longest quartiles for  
PFS in the genetic interaction analysis, in order to increase discriminating power.35-37 
The entire cohort was used in the final analysis of the genetic profile (see below). 
Sensitivity analysis showed that when the patients with censored data before the 75% 
quartile cut-off point were included in the longest quartile, or when tertiles were 
used instead of quartiles, results remained unchanged (data not shown), indicating 
that our choices regarding censoring and enrichment do not influence the results of 
the study.  
In the genetic interaction analysis, the ratio between patients in the shortest quartile 
to patients in the longest quartile for each genotype combination is evaluated. 
Combinations with more patients in shortest quartile than in the longest quartile are 
considered high chance of short PFS, and vice versa. This procedure was carried out 
across 10-fold cross-validation samples to avoid over fitting, and was repeated for all 
possible combinations of two up to four polymorphisms. The genotype combination 
with the highest accuracy (fraction of correctly classified patients) in the validation 
sample was considered the combination that best predicts PFS, and was selected for 
further analysis. A P-value for the statistical significance of the accuracy was obtained 
using 1000-fold permutation testing (software available on https://sourceforge.net/
projects/mdr/files/mdrpt/). 
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The PFS curves for the genetic profile for all patients are shown in Figure 3. The median 
PFS was 13.3 (95%CI, 11.4 to 15.3) and 9.7 (95%CI, 7.6 to 11.8) months for the beneficial 
and unfavorable profiles, respectively (P<0.001, log-rank test). 
In the multivariate Cox proportional hazards model including age, gender, prior 
adjuvant chemotherapy, number of affected organs and serum LDH, the HR for the 
genetic profile for PFS was 1.58 (95%CI, 1.14 to 2.19; P=0.006).  

Pharmacogenetic interaction analysis of the efficacy of CAPOX-B
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Table 2   �Individual associations of polymorphisms with progression free survival in 
mCRC patients treated with capecitabine, oxaliplatin and bevacizumab as 
first-line therapy 

Polymorphism allelic HR* 95% CI P

MTHFR 677C>T 1.00 0.81-1.23 0.991

MTHFR 1298A>C 0.91 0.74-1.13 0.393

TYMS 1494 +/- 6bp 1.10 0.87-1.40 0.410

TYMS VNTR 2/3C/3G 1.02 0.77-1.36 0.884

ERCC1 496C>T 1.12 0.92-1.37 0.243

ERCC2 499C>A 1.15 0.94-1.40 0.185

ERCC2 2251A>C 1.00 0.82-1.21 0.968

ERCC2 965G>A 0.80 0.63-1.01 0.058

XRCC1 1301G>A 0.98 0.81-1.18 0.811

GSTP1 313A>G 0.98 0.81-1.19 0.837

KDR 1719A>T 1.08 0.88-1.33 0.465

KDR -604T>C 1.03 0.86-1.24 0.738

VEGF -1154G>A 1.09 0.90-1.33 0.381

VEGF 405G>C 0.97 0.81-1.18 0.785

VEGF 936C>T 0.98 0.74-1.29 0.889

VEGF -2578C>A 1.03 0.86-1.23 0.763

VEGF -460C>T 1.00 0.84-1.20 0.990

* Hazard ratios (HR), 95% confidence intervals (95%CI) and P-values were calculated for each polymorphism 
using a Cox proportional hazards model with age, gender and serum LDH as covariates.
Abbreviations: ERCC1, excision repair cross-complementing group 1; ERCC2, excision repair cross-complementing 
group 2; GSTP1, glutathione s-transferase pi 1; KDR, kinase domain receptor (=vascular endothelial growth factor 
receptor 2); MTHFR, methylene tetrahydrofolate reductase; TYMS, thymidylate synthase; VEGF, vascular endothelial 
growth factor A; VNTR, variable number of tandem repeats; XRCC1, X-ray cross-complementing group 1.

Figure 1   �Genetic interaction profile for CAPOX-B 

A: Algorithm based upon the results of the genetic interaction analysis to translate the genotype-
combinations of the TYMS-TSER and VEGF +405G>C polymorphisms into a risk factor – or genetic profile – 
for PFS. B: Distribution of patients in the short (white bars) and long PFS quartiles (black bars) across the 
different genotype combinations of TYMS-TSER and VEGF +405G>C. Combinations with more patients  
in the short quartile are shaded white (unfavorable profile), whereas combinations with more patients in 
the long quartile are shaded grey (beneficial profile).
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the TYMS-TSER polymorphism and the VEGF +405G>C polymorphisms are dependent 
of each other in their impact on PFS. 
VEGF is the natural ligand for the VEGF receptor, through which it induces angiogenesis. 
Bevacizumab neutralizes VEGF, resulting in decreased tumor angiogenesis, which in 
turn affects intratumoral hypoxia, nutrition status and/or disposition of concurrent 
chemotherapy.39 The functional consequence of the VEGF +405G>C polymorphism 
remains to be elucidated. One in vitro study reported increased VEGF release by li-
popolysaccharide-stimulated peripheral monoclonal blood cells with the VEGF 
+405G-allele40, but another study showed that VEGF serum levels were highest for 
healthy volunteers with the VEGF +405CC genotype.41 The fluorodeoxyuridine 
monophosphate (FdUMP) metabolite of capecitabine inhibits the TYMS enzyme, and 
thereby induces DNA damage.42 Previous in vitro experiments indicated that the 
TYMS-TSER 3G allele results in higher expression of TYMS.33,34 The finding by Marcuello 

Discussion

We showed that a genetic interaction profile consisting of the VEGF +405G>C and 
TYMS-TSER polymorphisms correlates with PFS in mCRC patients treated with CAPOX-B. 
This approach provides a novel way to use pharmacogenetic variation to individualize 
treatment since individual polymorphisms were not associated with PFS. 

To exclude profound individual associations with PFS that could interfere with the 
genetic interaction analysis, we first tested for associations of the individual 
polymorphisms with PFS. No significant associations were detected, analogous to the 
absence of associations for other individual molecular markers in mCRC.38 
The genetic interaction analysis takes the complexity of interacting polymorphisms in 
genes encoding drug targets, metabolic enzymes and detoxification enzymes into 
account. Our study shows that – in mCRC patients treated with first-line CAPOX-B – 
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Figure 2   �Distribution of the genetic profile across the four PFS quartiles  

The frequency of the unfavorable profile decreases for each quartile for PFS (P<0.001, χ2 test for trend). 
* Patients who were censored before the fourth quartile were included in the third quartile.

Figure 3   �Kaplan Meier curves for the genetic profile for all mCRC patients treated 
with capecitabine, oxaliplatin and bevacizumab as first-line treatment  

137 and 109 patients were in the unfavorable and beneficial profile groups, respectively. The median PFS 
was 13.3 (95%CI, 11.4 to 15.3) and 9.7 (95%CI, 7.6 to 11.8) months for the beneficial and unfavorable profiles, 
respectively (P<0.001, log rank test).
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