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Summary

Disappointing results from replicating pharmacogenetic association studies have 
prompted the search for novel statistical techniques to analyze the data, while taking 
into account the biological complexity underlying drug response. Two of these 
techniques – multifactor dimensionality reduction and classification and regression 
tree – will probably be applied in increasing numbers of future pharmacogenetic 
studies. In this article, we describe the concepts underlying both techniques and 
illustrate their application in a recent pharmacogenetic study. 

Pharmacogenetic studies aim at predicting drug response. These studies commonly 
test associations between single candidate genetic polymorphisms and the efficacy 
or toxicity of drugs. Often, genetic polymorphisms in genes that have a putative 
impact on the function of the corresponding protein are selected. For their part, these 
proteins are assumed to have an impact on drug response, being enzymes involved 
in the pharmacokinetics or pharmacodynamic targets of the drug of interest. Each 
polymorphism is then separately associated with drug efficacy or toxicity. 
Unfortunately, initial results from these candidate gene approach studies are often 
not replicated in subsequent studies.1 This is clearly illustrated in large pharmacoge-
netic studies across different diseases.2-4 Even when a study is successfully replicated, 
the effect of a polymorphism on drug response is often lower than initially described.5 
This is one of the reasons that only a handful of pharmacogenetic markers are actually 
useful to individualize treatment in clinical practice.6 
An explanation for the disappointing results could be that the classic candidate gene 
approach does not take into account the full complexity underlying drug response. 
Drug response is likely to be influenced simultaneously by different biochemical 
components, such as pharmacokinetic enzymes and molecular targets within a 
biochemical pathway. Furthermore, it is recognized that the interplay between these 
different molecular components is extensive and complex. From a biological point of 
view, it seems therefore not only appropriate to study polymorphisms in candidate 
genes collectively – the so called candidate pathway approach7 – but also to assess 
the interaction between the polymorphic genes. This interaction means that the 
impact attributed to one genetic polymorphism depends on one or more others.8  
In some cases, haplotype analysis can reveal relevant but simple interactions between 
polymorphisms, such as combined analysis of CYP3A4 and CYP3A5 variation for 
docetaxel pharmacokinetics.9 However, for genes that are located on different 
chromosomes, haplotype analysis is usually not possible. 
Genetic interaction studies have already been published investigating susceptibility 
to several complex diseases; thus, the concept itself not new.10-15 However, the 
application of this concept in pharmacogenetic studies is scarce.16-18 
Since results from the candidate gene approach have been disappointing 2-4, and 
because the biologic rationale supports studying gene-gene interactions, we 
anticipate that novel techniques for analysis will be applied to pharmacogenetic 
studies in the near future. 
To determine which interactions are most important for drug response, statistical 
techniques must be used. The most widely used technique in genetics is (logistic) 
regression analysis with interaction. The advantage of this technique is its availability 
in common statistical packages, and that covariate adjustments can be made in the 
same analysis. However, assumptions on the genetic model must be made beforehand, 
which may not be accurate in complex interaction analysis. Moreover, (logistic) 
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– dimensions – is reduced into a straightforward high-/low-risk factor. From all the 
possible combinations of genotypes, the MDR method presents the combination – or 
genetic classifier – that predicts drug response or toxicity the best.
The MDR method selects the best genetic classifier based upon accuracy – or lowest 
classification error. Genotypes that are individually associated with drug response 
contribute to a higher accuracy, and will therefore usually end up in the best genetic 
classifier, while it is uncertain whether they provide substantial information gain. 
However, it is possible that a polymorphism with a main effect also contributes 
substantially to the interaction model. Therefore, excluding polymorphisms could be 
disadvantageous. Currently, the MDR software is being updated, so that it is possible 
to adjust for main effects of individual polymorphisms. However, as the method of 
covariate adjustment has not proved its value, we excluded individually associated 
polymorphisms from the MDR analysis. Furthermore, haplotypes disturb the selection 
of the best genetic classifier because of over-fitting due to the increased number of 
genotype groups based upon haplotype combinations. Therefore, preferably only 
single nucleotide polymorphisms should be included in the analysis. In the example 
of our previous sunitinib analysis, polymorphisms in NR1I3 (7738A>C and 7837T>G), 
VEGFR (-92G>A and 1718T>A), CYP1A1 (2455A>G) and FLT3 (738T>C) had to be excluded 
from the analysis because of their individual associations. Next, every possible 
combination of genotypes is evaluated, and the software computes how well the 
best genetic classifier predicts drug response. The analysis is performed across tenfold 
cross-validation samples to correct for over-fitting, and the combination with the 
highest accuracy in the cross-validation is considered the best genetic classifier. In our 
example, the combination containing three polymorphisms, NR1I3 5719C>T, ABCB1 
3435C>T and CYP1A2 -163A>C, showed the highest accuracy of 61.8% (P=.008 obtained 
by permutation 23,102) which means that the average classification error in the prediction 
sets from cross-validation is 38.2%. Other combinations of polymorphisms resulted in 
lower accuracies. The distribution of patients with and without leukopenia across the 
three polymorphisms is shown in figure 1A. The interaction dendrogram for this 
genetic classifier is shown in figure 1B. The orange and red lines indicate a synergistic 
interaction between the polymorphisms. The short red lines between the ABCB1 and 
NR1I3 polymorphisms indicate that the interaction between these polymorphisms is 
the strongest in this model. 
The results can be used to create a genetic classifier of response. This classifier can 
then be used in regular statistical analysis to compute an odds ratio (OR), and to 
perform a multivariate analysis. In the sunitinib example, the multivariate logistic 
regression analysis was performed including age, gender, WHO performance status, 
the genetic classifier, and the polymorphisms that were individually associated with 
leukopenia. The genetic classifier obtained by MDR has a corrected OR of 4.06 (95% 
confidence interval (CI), 1.99 to 8.31), whereas only the polymorphisms in CYP1A1 and 

regression analysis is of only limited application with increasing numbers of 
polymorphisms, as the number of possible interactions increases substantially with 
increasing numbers of polymorphisms. For instance, the total number of possible 
two-, three- and four-way interactions for ten polymorphisms is 375, whereas it is 
more than 4,000,000 for 100 polymorphisms. This illustrates the complexity of the 
interaction analysis, and has lead to the application and development of more 
advanced techniques for interaction analysis. 
These techniques rely on algorithms that reduce the number of dimensions – that is, 
possible combinations of polymorphisms – in order to establish a genetic classifier to 
predict drug response. An important aspect of these genetic classifiers is that the 
combination of different polymorphisms results in information gain (the 1+1=3 
principle). This concept of synergy illustrates the impact of interaction most intuitively, 
but it must be noted that other types of interaction exist, as reviewed by Perez-Perez 
et al.19 
Two of these advanced techniques will be described: ‘multifactor dimensionality 
reduction’ (MDR) 20,101 and ‘classification and regression tree’ (CART) analysis, for their 
application in pharmacogenetics. Since these methods use different and unique 
approaches, we have no explicit preference. To illustrate the application of both 
techniques, genetic classifiers were created to predict the incidence of leukopenia 
(grade 0 versus grade ≥1 according to the National Cancer Institute Common Toxicity 
Criteria) in patients treated with single-agent sunitinib, using data from a candidate 
gene analysis for sunitinib induced toxicity.21 In this cohort of 198 Dutch patients 
(predominantly with metastatic renal cell carcinoma and gastrointestinal stromal 
tumors) who were assessable for leukopenia, 31 polymorphisms were analyzed in 12 
genes that encode enzymes in the pharmacokinetic and pharmacodynamic pathways 
of sunitinib. Genotyping was performed on the BiomarkTM 48.48 Dynamic Array 
(Fluidigm, San Francisco, CA, USA) using Taqman® assays (Applied Biosystems, 
Nieuwekerk aan den IJssel, the Netherlands) according to the manufacturer’s protocol 
as previously described.21 There are more than 36,000 possible two-, three- and 
four-way interactions possible for these 31 polymorphisms, emphasizing the 
complexity of the problem and the need for advanced statistical techniques. 

Multifactor dimensionality reduction

The theoretical application of the MDR analysis software to pharmacogenetic studies 
has previously been reviewed by Ritchie et al.22 The essence of the MDR analysis is 
that all possible combinations of genotypes are evaluated to predict drug response. 
Each combination of genotypes contains a ratio of responders to non-responders, 
which is used to classify patients. In this way, the complexity of genotype combinations 
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these two methods, besides the fact that every possible interaction could not be 
assessed using logistic regression.  
When the polymorphisms with a main effect were also included in the MDR analysis, 
all top models contained at least either the NR1I3 7738A>C or FLT3 738T>C poly-
morphism. 

Classification and regression tree  

The essence of the CART analysis is that patients are divided into groups with a unique 
genotype combination that predicts drug response. During the CART analysis, patients 
are subdivided successively, in such a way that a so-called ‘classification tree’ is grown. 
Each subgroup is split by the most discriminating polymorphism, which could be a 
different polymorphism for each subgroup. This procedure is continued until the 
pre-specified maximum tree depth is reached, or when each subgroup reaches a 
pre-specified minimum number of patients. Each terminal subgroup of the tree 
contains a ratio of responders to non-responders, which can be used to classify 
patients. Since each subgroup can be split by a different polymorphism, interaction 
can be detected, meaning that the influence of each polymorphism depends on the 
polymorphisms that split the subgroup in a previous level of the tree. 
For the CART analysis, polymorphisms that are associated individually with drug 
response can be included, as well as haplotypes. In the sunitinib example, all 
polymorphisms and haplotypes were included as previously reported.21 The maximum 
tree depth was set to three levels, and no subgroup was allowed to contain less than 
25 patients. Each subgroup was split based upon the highest χ2 value. In figure 2, the 
classification tree is shown. The tree contained the polymorphism in FLT3 (738T>C, 
step 1), the haplotype in NR1I3 (step 2) and the polymorphism in RET (2251G>A,  
step 3). Each terminal group of the tree can be seen as a unique combination of 
genotypes – a genetic classifier. As in the MDR analysis, the genetic classifier was used 
in a regular statistical analysis to compute the OR. In a logistic regression analysis 
including WHO performance status, age and gender, the OR for the genetic classifier 
was 3.36 (95%CI, 1.84 to 6.15). 
When a logistic regression analysis was performed with the three-way interaction 
between the FLT3 738T>C and RET 2251G>A polymorphisms and the NR1I3 haplotype, 
the interaction term was not significantly associated with leukopenia, again 
emphasizing the fundamental difference between these two methods.

FLT3 remained statistically significant (P=.043 and P=.010, respectively) in the 
multivariate analysis. 
When a logistic regression analysis was performed with the three-way interaction 
between the NR1I3 5719C>T, ABCB1 3435C>T and CYP1A2 -163A>C polymorphisms,  
the interaction term was not significantly associated with leukopenia. Each poly - 
morphism was included as an ordinal factor, whereas the MDR method did not rely  
on this a priori assumption. This underlines the fundamental difference between  
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Figure 1    Multifactor dimensionality reduction analysis of sunitinib induced 
leukopenia 

(A) The genetic classifier consisting of polymorphisms in CYP1A2, NR1I3 and ABCB1 resulted in the highest 
accuracy of 61.8% in the cross-validation sample. For each genotype combination, the number of patients 
with and without leukopenia is shown. Combinations with low chance of leukopenia are shaded light grey, 
whereas combinations with high chance of leukopenia are shaded dark grey. Since in the total group of 
patients, 59.1% experienced leukopenia, a combination is considered to give a high chance of leukopenia 
when the percentage of patients experiencing leukopenia exceeds 59.1%. (B) Interaction dendrogram for 
the polymorphisms included in the genetic classifier obtained by multifactor dimensionality reduction. 
There was synergistic interaction, with the strongest interaction between the ABCB1 and NR1I3 polymorphisms. 
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Interpretation and validation of the genetic classifier

Both MDR and CART analyses result in genetic classifiers that are associated with drug 
efficacy or toxicity. Since these methods rely on different ways to create this genetic 
classifier, they result in different classifiers that do not necessarily contain the same 
polymorphisms. In the MDR analysis, a genetic classifier is created in addition to 
polymorphisms that were individually associated with drug response, so that the 
genetic contribution to drug response is further explored. In the CART analysis, the 
genetic contribution to drug response is analyzed taking into account that a 
polymorphism may only have impact on drug response under the condition that 
another polymorphism is present. The similarity between the methods is that 
combinations of genotypes are investigated, rather than individual polymorphisms. 
This is more plausible from a biological point of view, because drug response is a 
complex trait and involves many proteins. Importantly, the CART and MDR methods 
detect statistical interaction, and the models do not necessarily contain polymorphisms 
in genes encoding enzymes that interact biologically. The interpretation of the 
genetic classifiers from a biological point of view is therefore not straightforward. The 
genetic classifiers contain polymorphisms that only exert their influence under the 
condition that other polymorphisms are present. In the MDR analysis of our sunitinib 
example, three polymorphisms in metabolic enzymes were included in the genetic 
classifier. From a biological point, it is likely that metabolic routes compete, and that 
the effect of one polymorphism on the metabolic capacity can be altered by others. 
When interpreting the genetic classifier obtained by CART in our sunitinib example, it 
appears that genetic variation in the metabolic enzyme NR1I3 is only relevant for 
carriers of the FLT3 738C-allele and not for carriers of the FLT3 738TT genotype, possibly 
because the latter are more sensitive to sunitinib-induced leukopenia regardless of 
the plasma levels of sunitinib.  
Critical choices have to be made before these techniques can be applied, such as the 
number and selection of patients, the selected polymorphisms and the settings of 
the software. Importantly, when large numbers of polymorphisms are included in the 
interaction analysis, the number of possible interactions becomes enormous. In the 
current era of whole-genome profiling of more than a million polymorphisms, 
intelligent filtering of polymorphisms must be performed before interaction analysis, 
due to the computational requirement of such analysis.24 Furthermore, both MDR and 
CART may result in genetic classifiers that predict drug response in the original 
patients better than in new patients because of potential over-fitting. The ORs for the 
genetic classifiers in our examples are therefore likely to be biased, and the true OR 
has to be obtained in an independent validation cohort. For these genetic classifiers 
to be applied in clinical practice, the genetic classifier should therefore be confirmed 
in independent cohorts.25 Before the effort of external validation is undertaken, 

The 1 + 1 = 3 principle

7

Chapter 7

Figure 2    Classification and regression tree analysis of sunitinib-induced leukopenia 

Each branch of the tree is divided by the polymorphism or haplotype with the highest χ2 value. Terminal 
groups are shaded light grey or dark grey for relatively low and high risk of sunitinib-induced leukopenia, 
respectively. Since 59.1% of the patients experienced leukopenia (grade 1 or higher), a genetic classifier is 
considered high chance of leukopenia when the percentage of patients experiencing leukopenia exceeds 
59.1%. 
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Executive summary

Background
•	 	Recent pharmacogenetic association studies on frequently studied polymorphisms 

failed to replicate initial findings.
•	 	Drug response is a complex phenomenon, and involves many different 

biochemical components, such as pharmacokinetic enzymes and molecular 
targets within a biochemical pathway.

•	 	Traditional statistical analytical methods, such as (logistic) regression, are not 
suitable for detecting complex gene-gene interactions. 

Multifactor dimensionality reduction and classification and regression tree
•	 	Statistical analysis testing for gene-gene interactions can be performed using 

multifactor dimensionality reduction (MDR) or classification and regression tree 
(CART) analysis.

•	 	The MDR and CART techniques have been applied successfully to identify genetic 
classifiers of sunitinib-induced toxicity.

Interpretation and validation of the results
•	 	The MDR and CART techniques both result in genetic classifiers that predict drug 

response.
•	 	These genetic classifiers must be validated in new patients before they can be 

used to individualize treatment.
Conclusion and future perspective
•	 	The MDR and CART methods are more rational approaches to individualizing 

drug treatment when compared with traditional methods. 

internal validation can be performed to correct for over-fitting using for instance 
cross-validation. 

Conclusion

Statistical techniques to analyze high-order interactions between polymorphisms, 
such as the MDR and CART techniques, create genetic classifiers that predict drug 
response. They have the major advantage over classic pharmacogenetic association 
studies that the complexity underlying drug response is studied and may therefore 
be more likely to be successfully replicated. When validated, these genetic classifiers 
can provide a novel and more rational approach to individualizing drug treatment. 

Future perspective

We believe that complex interaction between polymorphisms will increasingly be 
studied in the near future, since the results from traditional pharmacogenetic 
association studies have been disappointing. The MDR and CART methods will 
probably be the most widely used, as they are widely available and relatively easy to 
apply. However, for the resulting genetic classifiers to reach the clinic, thorough 
validation must be performed using independent patient populations. Only when 
validation has been successful can the genetic classifiers be used to guide 
individualized therapy. 
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