Pharmacogenetics of advanced colorectal cancer treatment Pander, J. # Citation Pander, J. (2011, June 29). *Pharmacogenetics of advanced colorectal cancer treatment*. Retrieved from https://hdl.handle.net/1887/17746 Version: Corrected Publisher's Version License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/17746 **Note:** To cite this publication please use the final published version (if applicable). # Pharmacogenetics of EGFR and VEGF inhibition Jan Pander • Hans Gelderblom • Henk-Jan Guchelaar Drug Discovery Today 2007 Dec;12(23-24):1054-60 #### **Abstract** Even though treatment of several types of solid tumours has improved in the past few years with the introduction of the monoclonal antibodies against epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), response rates to these targeted therapies are modest. Pharmacogenetic factors have the potential to select patients with higher chance of response to agents that target these pathways. This review provides an overview over germ-line variations in genes that are potentially involved in the pharmacodynamics of the monoclonal antibodies cetuximab, panitumumab and bevacizumab, and which may underlie variable anti-tumour response. The treatment of solid tumours has changed in the past five years with the introduction of monoclonal antibody (MAb) drugs targeting growth factor pathways that are critical for tumour growth and invasiveness. The epidermal growth factor receptor (EGFR) targeting MAbs cetuximab and panitumumab and the vascular endothelial growth factor (VEGF) targeting MAb bevacizumab are approved for the treatment of metastasized colorectal cancer (mCRC). Cetuximab and bevacizumab are also approved for the treatment of advanced squamous cell carcinoma of the head and neck (SCCHN) and advanced non-squamous, non-small cell lung cancer (NSCLC) respectively. These MAbs are commonly administered in combination with first-line chemotherapy, whereas monotherapy is also applied in subsequent lines of therapy. Despite overall improving cancer treatment, the addition of these MAbs to chemotherapy increases response rates by only 10-20%¹⁻³ and adverse events such as moderate to severe rash for the EGFR inhibitors and gastro-intestinal perforations and hypertension for bevacizumab are relatively common.¹⁻³ Moreover, the introduction of these MAbs has almost doubled cost of treatment.⁴ Therefore, selection of patients for treatment based on predictive factors for response, survival and/or toxicity could improve treatment success as well as cost-effectiveness. Pharmacogenetics is aimed at understanding and predicting an individual's drug response based upon genetic variation. Whereas somatic mutations occur only in the affected organ or disease locus (tumour) and result in a different genetic composition of a tumour compared with other tissues in the body, germ-line polymorphisms have an ancestral origin and are heritable. In this review, we give an overview of heritable genetic factors that might predict drug induced anti-tumour response and toxicity of EGFR and VEGF targeting MAbs, based upon candidate genes for these pathways. Also, we give an overview of pharmacogenetic studies with drugs that target these pathways. # Epidermal growth factor (EGF) pathway Cetuximab is a chimeric mouse/human $\lg G_1$ type MAb, whereas panitumumab is a fully human $\lg G_2$ type MAb. Both MAbs bind specifically to the extracellular domain of the EGFR and are competitive inhibititors of the natural ligands EGF and transforming growth factor- α (TGF α). The small G protein k-ras, the protein kinase b-raf, and phosphoinositide 3-kinase (encoded by *KRAS*, *BRAF* and *PIK3CA* respectively) play a central role as intracellular mediators of EGFR signalling⁵, ultimately leading to induced transcription of several factors including interleukin-8 (IL8), VEGF and cyclin D1 (CD1, coded by *CCND1*). Cyclooxygenase-2 (COX2, encoded by *PTGS2*) is an upstream mediator of EGFR activity, presumably through the effect of prostaglandin E₂ (see Figure 1). **Figure 1** Simplified overview of the EGF and VEGF pathways Abbreviations: ARNT: aryl hydrocarbon receptor nuclear translocator; braf: protein kinase b-raf; CD1: cyclin D1; COX2: cyclooxygenase 2; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; HIF1 α : hypoxia inducible factor 1 α ; HIF1 α -OH: hydroxylated hypoxia inducible factor 1 α ; IL8: interleukin 8; IL8RA: interleukin 8 receptor A; KDR: kinase domain receptor; kras: small G protein k-ras; PGE $_2$: prostaglandin E $_2$? PI3K/Akt: phosphoinositide 3-kinase/akt protein kinase; TGF α : transforming growth factor α ; VEGF: vascular endothelial growth factor; VHL: von Hippel-Landau tumor suppressor Heritable genetic variants in genes in the EGF pathway will be discussed below (see Table 1). ### **Epidermal Growth Factor Receptor (EGFR)** The first intron of the *EGFR* gene has an important regulatory function and contains a heritable polymorphic microsatellite sequence of 9 to 23 CA repeats. Most common alleles are the 16-repeat allele in Caucasians and Afro-Americans, and the 20-repeat in Asians. ^{6,7} There is good to complete (93-100%) similarity of this polymorphism between normal and tumour tissue ⁸⁻¹⁰, which is reassuring since the *EGFR* gene is highly sensitive to somatic alteration through loss of heterozygosity, mutations or copy number EGFR pathway polymorphisms in genes that code for enzymes involved in the Overview of Table | Enzyme (gene) Polymorphism | Phenotype | Function | Ref | Pharmacogenetic association | Ref | |----------------------------|---|---|-----------|---|--| | -191C>A | | higher EGFR | 7,13 | | | | -216G>T | | higher EGFR | 7,13 | gefitinib (NSCLC): carriage of -216T allele → longer PFS | 15 | | (CA) ₉₋₂₃ | | higher EGFR for lower
amount of CA-repeats | 10,11 | gefitinib (NSCLC): low amount of CA-repeats → higher response and TTP and PFS | 9,15 | | 1808G>A | Arg497Lys | unknown | | monotherapy cetuximab (mCRC): heterozygotes $oldsymbol{\Rightarrow}$ longer PFS | 8 | | 61A>G | | higher EGF | 16,17 | monotherapy cetuximab (mCRC): simultaneous carriage of 61A and <i>CCND1</i> 870G allele → longer OS monotherapy cetuximab (mCRC): 61GG homozygotes → longer PFS | 18,28 | | -765G>C | | lower COX2 | 19,20 | monotherapy cetuximab (mCRC):-765CC homozygotes
→ longer PFS | 8 | | -251T>A | | higher IL8 | 25 | | | | 2607G>C | Ser276Thr | unknown | | | | | 870G>A | | higher CD1 | 27 | monotherapy cetuximab (mCRC): carriage of 870G allele
→ longer OS | 28 | | | -191C>A -191C>A -216G>T (CA) ₉₋₂₃ 1808G>A 1808G>A -251T>A 2607G>C 870G>A | | Arg497Lys | higher EGFR higher EGFR higher EGFR for lower amount of CA-repeats Arg497Lys unknown higher EGF lower COX2 higher IL8 Ser276Thr unknown higher CD1 | higher EGFR 7.13 higher EGFR 7.13 higher EGFR 67.19 Arg497Lys unknown higher EGF 19.20 lower COX2 19.20 higher IL8 25 Ser 276Thr unknown higher CD1 27 | alterations. A higher number of CA-repeats is associated with decreased expression of EGFR on both mRNA and protein level *in vitro*^{10,11}, but this association was not consistently found *in vivo*.^{9,12} Two single nucleotide polymorphisms (SNPs; see glossary box) in the promoter (-216G>T and -191C>A) are both associated with increased expression of EGFR. A nonsynonymous SNP (1808G>A) in the extracellular domain of EGFR results in lower binding-affinity of EGF and TGF- α and attenuated growth response to these growth factors in vitro. 4 #### Glossary box - SNP (Single Nucleotide Polymorphism): a change of a single base of germ-line DNA, as compared with wild-type, which occurs in ≥1% of the population. Because any individual carries two alleles, the SNP can be present in both alleles (homozygote), on only one allele (heterozygote) or not at all (wild-type). - CNP (Copy Number Polymorphism): in contrast to a SNP, a CNP encompasses ≥1000 base pairs or more. Regarding heritability and population frequency, the definitions are the same. - Mutation: a change in DNA that occurs either very infrequently (≤1% in the population), or only in an affected organ. In the latter case, the mutation is not inherited. - Haplotype Block: SNPs are naturally inherited in neighboring clusters, which are called haplotype blocks. - ADCC (antibody dependent cell-mediated cytotoxicity): the recognition by natural killer cells of the Fc region of an antibody after binding to the antigen, followed by killing of the antigen presenting cell. - Prognostic factor: a marker for prognosis of a disease, not related to treatment - Predictive factor: a marker for response to a certain treatment Recently, two pharmacogenetic studies were published on the sensitivity of NSCLC patients to the EGFR tyrosine kinase inhibitor (TKI) gefitinib. These studies are important examples of the utility of pharmacogenetics for EGFR inhibitors. Han et al. reported an increased response and time to progression (TTP) for patients with \leq 37 CA-repeats in Korean NSCLC patients, regardless of the presence of somatic mutations. Similarly, NSCLC patients of predominantly Caucasian origin, who were homozygous for two short CA-repeat alleles (defined as ≤16 CA-repeats per allele) had better progression free survival (PFS) compared with carriers of at least one allele with >17 CA-repeats. Also, patients who carried the -216T allele had longer PFS. Patients who were homozygous for the short CA-repeat allele and simultaneously carrier of the -216T allele, had improved PFS and overall survival (OS).¹⁵ In line with these findings, Amador et al. reported higher sensitivity to another EGFR inhibiting TKI, erlotinib, in cell lines with \leq 35 CA-repeats compared with cell lines with >35 repeats. Also, the authors found increased incidence of skin toxicity in gefitinib treated CRC patients with \leq 35 CA-repeats.¹⁰ #### **Upstream regulators of EGFR** A SNP in the 5'-UTR of the EGF gene (61A>G) has been associated with higher EGF protein expression *in vitro*¹⁶ and *in vivo*.¹⁷ The 61GG genotype was associated with increased PFS in mCRC patients who were treated with cetuximab monotherapy.¹⁸ A functional SNP in the promoter region of the PTGS2 gene (-765G>C) has been associated with lower promoter activity *in vitro*¹⁹ and with lower expression of the PTGS2 gene product, COX2 *in vivo*.²⁰ Illustrative of its function is the strong association with decreased risk of myocardial infarction and stroke for the -765C allele.²¹ Recently, an association for increased PFS for the -765CC genotype was reported in mCRC patients treated with single agent cetuximab.¹⁸ ### Downstream signalling The presence of somatic mutations in *KRAS*, but not in *BRAF* and *PIK3CA*, has been associated with decreased effect of cetuximab in CRC patients^{22,23}, though not unequivocally.²⁴ However, no reports are available on heritable polymorphisms in these genes. A SNP in the 5'-UTR of the *IL8* gene (-251T>A) has been associated with increased IL8 production.²⁵ The IL8 receptor alpha, IL8RA (encoded by the gene *CXCR1*) contains a nonsynonymous SNP in exon 2 (2607G>C)²⁶, whose function remains unclear. A SNP in the *CCND1* gene (870G>A) has been associated with higher expression of CD1.²⁷ Zhang et al. investigated whether there was an association for the polymorphisms in the *CCND1* (870A>G), *PTGS2* (-765G>C), *EGF* (61A>G), *EGFR* (1808G>A and CA-repeats), *IL8* (-251T>A) and *VEGF* (+936C>T) genes with the effect of cetuximab given as a single agent in advanced CRC patients.²⁸ Homozygotes for the *CCND1* 870A allele had a shorter OS compared with carriers of the 870G allele.²⁸ In combined analysis, patients who carried both a *CCND1* 870G allele and an *EGF* 61A allele had longer OS, whereas the other polymorphisms were not associated with survival.²⁸ These results, though valuable, need to be interpreted with care, as this was an exploratory study. The fact that seven different polymorphisms were analyzed in a small population raises the probability of false positive associations. However, together with the other association studies of the EGF pathway, these findings provide an important starting point for adequately powered confirmation studies. #### Vascular endothelial growth factor (VEGF) pathway Bevacizumab is a humanized IgG_1 type MAb directed against soluble VEGF, one of the key moderators in angiogenesis, which is thought to be important for tumour growth and invasiveness.²⁹ VEGF exerts its pro-angiogenic effect via VEGF receptor-2, a tyrosine kinase receptor that is also referred to as kinase insert domain receptor (KDR). Transcription of VEGF is regulated by hypoxia inducible factor-1 α (HIF1 α) (see Figure 1). To date, five functional SNPs in the 5' and 3' regions of the $\it VEGF$ gene have been described (Table 2). $^{30-32}$ The variant alleles of the -1154G>A and +936C>T SNPs are associated with lower VEGF production $^{32-35}$, whereas the variant allele of the -460C>T SNP results in increased promoter activity. 36 There is less agreement on the functionality of the -2578C>A and +405G>C SNPs, as both increased as decreased VEGF production have been reported. 31,34,35,37 It must be noted though that the above mentioned SNPs are inherited in clusters in so called haplotype blocks (see glossary box).^{31,35,36,38-41} It is likely that only one SNP is truly functional with regard to VEGF expression, whereas the others are merely proxies for this one. This truly causal SNP, however, has so far not been identified. There are several nonsynonymous SNPs in the coding region of the *KDR* gene (see: http://www.ncbi.nlm.nih.gov/projects/SNP). Nonetheless, only functionality of a CA-repeat polymorphism in intron 2 of the *KDR* gene (+4422(AC)₁₁₋₁₄) has been determined. The 11-repeat polymorphism results in higher promoter activity *in vitro*.⁴² Even though the 11- and 12-repeat alleles were most common in the Japanese population, the allele frequencies in other populations are unknown. The nonsynonymous SNP 1772C>T in the gene encoding HIF1a (*HIF1A*) has been associated with increased expression of HIF1a.⁴³⁻⁴⁵ The enzyme coded by the variant allele is also less sensitive to hydroxylation dependent degradation⁴⁶, which results in further increased protein levels. Another nonsynonymous SNP (1790G>A) in the *HIF1A* gene has also been associated with increased HIF1a expression.⁴³ As these SNPs result in increased abundance of the HIF1 α protein, it is expected that the SNPs ultimately result in increased VEGF expression (see Figure 1). The relationship **Table 2** Overview of polymorphisms in genes that code for enzymes involved in the VEGF pathway | Enzyme (gene) | Polymorphism | Phenotype | Function | Ref | |---------------|----------------------------|-----------|---|----------| | VEGF (VEGF) | -2578C>A | | lower or higher VEGF | 34,35 | | | -1154G>A | | lower VEGF | 34,35 | | | -460C>T | | increased promoter activity | 36 | | | +405G>C | | lower or higher VEGF | 31,34,37 | | | +936C>T | | lower VEGF | 32,33 | | KDR (KDR) | +4422(AC) ₁₁₋₁₄ | | 11 CA repeats higher promoter activity than 12 CA repeats | 42 | | HIF1a (HIF1A) | 1772C>T | Pro582Ser | higher HIF1α | 43-46 | | | 1790G>A | Ala588Thr | higher HIF1α | 43 | between the *HIF1A* SNPs and VEGF mRNA levels has been demonstrated, whereas no relationship with VEGF protein expression was found.^{45,47} ARNT is most commonly described as a subunit of aryl hydrocarbon receptor (AHR), which induces transcription of the cytochrome P450 isozyme CYP1A1 in response to exogenous stimuli such as cyclic aromatic hydrocarbons from cigarette smoke. As part of a dimer with HIF1a, ARNT induces VEGF transcription. Genetic variation of the ARNT gene may therefore be of importance for VEGF production. However, to date no functional polymorphisms in the *ARNT* gene have been described. Up to now, no pharmacogenetic studies have been published for agents that target the VEGF pathway. The publication of these studies is eagerly awaited, as they will provide a foundation for further, hypothesis testing research for this pathway. #### Polymorphisms for MAbs in general The plasma half-life of MAbs is generally relatively long: the half life of bevacizumab (20 days) is similar to that of endogenous lgG_1 , whereas the half life of cetuximab and panitumumab is 70-100 hours and 7.5 days respectively. The shorter half life of the latter MAbs can in part be explained by internalization and degradation of the receptor-MAb complex after binding. It is postulated that antibodies of the lgG type, such as bevacizumab, are protected from degradation by the neonatal Fc receptor (FcRn, coded by FCGRT).⁴⁸ Sachs et al. recently described a variable number of tandem repeats (VNTR) within the promoter of the *FCGRT* gene consisting of five different alleles with one to five repeats (VNTR 1-5).⁴⁹ The allele frequencies of VNTR2 and VNTR3 were 0.075 and 0.92 respectively in Caucasians. The VNTR3 allele was associated with higher FcRn expression both *in vitro* and *in vivo*. Also, binding of IgG was higher among VNTR3 homozygotes compared with VNTR2/VNTR3 heterozygotes.⁴⁹ Possibly, individuals carrying the VNTR3 allele have prolonged plasma half-life of bevacizumab, and even increased response. Cetuximab is a competitive inhibitor of EGFR, which results in decreased utilization of this pathway. As cetuximab is of the IgG_1 type, it is likely that antibody dependent cell-mediated cytotoxicity (ADCC) also plays a role in its mechanism of action. The Fc region of the antibody can be recognized by Fc γ -receptors on cytotoxic immune effector cells such as natural killer cells and macrophages. Two activating Fc γ -receptors are CD16A and CD32A (encoded by respectively FCGR3A and FCGR2A) are polymorphic (see table 3). A SNP in the *FCGR3A* gene (559T>G; Phe158Val) has been studied since the early 1990's. IgG_1 binding is higher for the 158Val allele, which results in increased activation of ADCC but not in altered expression. IgG_1 Also, the affinity of the IgG_1 -type MAb against CD20 expressing B cells, rituximab, was highest for the 158Val allele. IgG_1 It is therefore not surprising that response and PFS to rituximab in follicular lymphoma was higher for homozygotes of the 158Val allele, compared with carriers of the 158Phe allele. IgG_1 MAb against TNF IgG_1 infliximab, in Crohn's disease, but increased biological response (decrease in C-reactive protein) was associated with the 158Val allele. Even though the function of a SNP in the *FCGR2A* gene (535A>G; His131Arg) with regard to IgG_1 has not been established, an association with worse response and PFS to rituximab in follicular lymphoma was found.⁵⁴ However, this association was not confirmed by another study.⁵³ Very recently, Zhang et al. showed that mCRC patients treated with cetuximab monotherapy, who were homozygous for either the *FCGR2A* 131Arg or *FCGR3A* 158Val allele had shorter PFS and decreased response.⁵⁷ The reason for this result, which for *FCGR3A* is opposite to what would be expected, is not known. A possible explanation is that copy number polymorphism (CNP) (see next paragraph) at the locus of *FCGR3A* plays a role. This, however, has not been investigated. It is also probable that this finding is a false positive discovery, since not only these two genotypes have been investigated, but also seven others in a previous analysis of the data.²⁸ Even though ADCC does not play a role for bevacizumab, it is likely that its effect is modified by similar mechanisms. of action of IgG type in genes that code for enzymes involved in the mechanism f polymorphisms in I antibodies of Ial Overview of monoclonal Table 3 | Enzyme (gene) | Enzyme (gene) Polymorphism Phenotype Function | Phenotype | Function | Ref | Ref Pharmacogenetic association | Ref | |--------------------------|---|-----------|--------------------------------------|-------|--|-------| | FcRn (<i>FCGRT</i>) | VNTR1-5 | | VNTR3 higher FcRn than
VNTR2 | 64 | | | | FcyR2A (FCGR2A) | 535A>C | His131Arg | unknown | | rituximab (lymphoma): carriage of 131Arg allele → lower response and PFS cetuximab (mCRC): 131Arg homozygote → lower response and PFS | 54,57 | | FcyR3A (<i>FCGR3A</i>) | 559T>G | Phe158Val | higher affinity for lgG ₁ | 50,51 | rituximab (lymphoma): carriage of 158Phe allele → lower response and PFS infliximab (mCrohn): 158Val allele → increased biological response cetuximab (mCRC): 158Val homozygote → lower response and PFS | 23-57 | # Copy number polymorphisms An interesting novel field of pharmacogenetic research includes heritable variation of copy number of DNA segments of 1 kb or larger of the genome.⁵⁸ Analogous to the definition of a SNP, a CNP is a structural variant that occurs at a frequency of >1% in the population. Since the first whole genome array studies of this phenomenon were published in 2004^{59,60}, an open-access online database has been developed in which structural variations of the human genome are assembled^{60,61} (see: http://projects. tcag.ca/variation). Several studies have demonstrated that increased intratumoral EGFR copy number in advanced CRC patients is associated with effectiveness of cetuximab. ^{22,24,62} However, is must be noted that this is a somatic phenomenon, which is probably involved in the aetiology of the tumour. In the Database of Genomic Variants, there are no CNPs on the EGFR locus. Also, no CNPs are reported at the loci that cover the *TGFA*, *IL8*, *CXCR1*, *BRAF*, *KRAS*, *PIK3CA*, *PTGS2*, *VEGF*, *KDR*, *HIF1A* or *ARNT* genes. There is an infrequent CNP in the *EGF* gene (one reference to loss of the locus in 36 subjects), but CNPs on the locus that covers the *CCND1* gene occurs in 6 of 95 subjects. Also, the locus that contains the *FCGRT* gene shows heritable loss at a frequency of approximately 0.26. There is also considerable CNP covering the *FCGR2A* and *FCGR3A* genes, with equal amount of gain and loss of this locus. Illustrative of the influence of copy number variation was recently published, showing that copy number variation of the *FCGR2A* and *FCGR3A* containing region (that also contains the *FCGR3B* gene encoding CD16B) was associated with susceptibility to systemic autoimmune diseases. ⁶³ #### Discussion It is accepted that germ-line polymorphisms (both SNPs and CNPs) have the potential to predict outcome of therapy. Predicting outcome of therapy with cetuximab, panitumumab and bevacizumab is especially warranted, as response rates are moderate, with possible serious adverse events, at high financial cost. In this review, we give an overview of studies on polymorphisms in candidate genes in the EGF and VEGF pathways. To date, only few small studies have shown an association of genetic polymorphisms in genes of the EGF pathway with response to EGFR targeting therapies (see Table 1), whereas studies for the VEGF pathway are thus far lacking. However, these studies do not provide sufficient evidence to routinely genotype patients before applying these therapies. The associations need to be confirmed in one or more sufficiently powered prospective studies first. A requirement for these studies is the presence of a control group without the treatment of interest. Only then a distinction between predictive and prognostic factors (see glossary box) can be established. This latter point is of great importance, because numerous studies have shown an association of polymorphisms within genes in the EGF and VEGF pathways with the risk and progression of several types of cancer.⁶⁴ Based upon these considerations and available studies, the predictive value of FCGR2A, FCGR3A, EGF and CCND1 genotyping should be investigated prospectively for cetuximab in cases and controls. For bevacizumab and panitumumab, hypothesis generating association studies, based upon the candidate genes in this review, are required for further research. In any pharmacogenetic association study, confounders must be carefully corrected for, in order to find independent predictive factors. Factors that need to be taken into account are gender and race, as these can impact on the response to therapy. Moreover, allele frequencies are usually different among populations. Also, care should be taken to reduce the chance of false positive associations when testing multiple genotypes. This can be accomplished by adjusting the level of significance based upon the number of genotypes tested, for example with the Bonferroni correction. Interestingly, there appears to be major interplay between these two pathways. For example, higher intratumoral VEGF levels were associated with resistance to single agent cetuximab in mCRC patients.⁶⁵ Moreover, the combination of cetuximab and irinotecan in mCRC patients reduced circulating VEGF levels, and of these patients with the most prominent decrease of VEGF responded better as indicated by TTP and OS compared with patients who showed only a modest reduction in VEGF levels.⁶⁶ Therefore, it makes sense to look at multiple SNPs and CNPs within both pathways simultaneously. Finally, true usefulness of a predictive marker can only be assessed with the application of a validated predictive test in a prospective setting. The test should allocate different treatment options for patients with the genotype of interest, and solid endpoints should be investigated. In conclusion, pharmacogenetics (including germ-line SNPs and CNPs) of EGFR and VEGF inhibitors will most likely find its way to daily clinical practice, provided that the above suggestions for future research have been met. Chapter 2 #### References - Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 2005;23:8646-54. - 2. Hurwitz H, Fehrenbacher L, Novotny W, *et al.* Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-42. - 3. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542-50. - 4. Garrison L, Cassidy J, Saleh M, *et al.* Cost comparison of XELOX compared to FOLFOX4 with or without bevacizumab (bev) in metastatic colorectal cancer. J Clin Oncol 2007;25:Abstr. 4074. - Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7:169-81. - 6. Liu W, Innocenti F, Chen P, *et al.* Interethnic difference in the allelic distribution of human epidermal growth factor receptor intron 1 polymorphism. Clin Cancer Res 2003;9:1009-12. - Gregorc V, Cusatis G, Spreafico A, et al. Association of germline mutations in EGFR and ABCG2 with gefitinib response in patients with non-small cell lung cancer (NSCLC). J Clin Oncol 2005;23:Abstr. 3022. - 8. Etienne-Grimaldi MC, Pereira S, Magne N, *et al.* Analysis of the dinucleotide repeat polymorphism in the epidermal growth factor receptor (EGFR) gene in head and neck cancer patients. Ann Oncol 2005;16:934-41 - 9. Han SW, Jeon YK, Lee KH, *et al.* Intron 1 CA dinucleotide repeat polymorphism and mutations of epidermal growth factor receptor and gefitinib responsiveness in non-small-cell lung cancer. Pharmacogenet Genomics 2007;17:313-9. - 10. Amador ML, Oppenheimer D, Perea S, et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res 2004;64:9139-43. - 11. Gebhardt F, Zanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 1999;274:13176-80. - 12. McKay JA, Murray LJ, Curran S, *et al.* Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur J Cancer 2002;38:2258-64. - 13. Liu W, Innocenti F, Wu MH, et al. A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Res 2005;65:46-53. - 14. Moriai T, Kobrin MS, Hope C, Speck L, Korc M. A variant epidermal growth factor receptor exhibits altered type alpha transforming growth factor binding and transmembrane signaling. Proc Natl Acad Sci U S A 1994;91:10217-21. - 15. Liu G, Gurubhagavatula S, Zhou W, et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J 2008;8:129-38. - 16. Shahbazi M, Pravica V, Nasreen N, *et al.* Association between functional polymorphism in EGF gene and malignant melanoma. Lancet 2002;359:397-401. - 17. Bhowmick DA, Zhuang Z, Wait SD, Weil RJ. A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease. Cancer Res 2004;64:1220-3. - 18. Nagashima F, Zhang W, Gordon M, et al. EGFR, Cox-2, and EGF polymorphisms associated with progression-free survival of EGFR-expressing metastatic colorectal cancer patients treated with single agent cetuximab (IMCL-0144). J Clin Oncol 2007;25:Abstr. 4129. - Papafili A, Hill MR, Brull DJ, et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 2002;22:1631-6. - 20. Brosens LA, lacobuzio-Donahue CA, Keller JJ, et al. Increased cyclooxygenase-2 expression in duodenal compared with colonic tissues in familial adenomatous polyposis and relationship to the -765G -> C COX-2 polymorphism. Clin Cancer Res 2005;11:4090-6. - 21. Cipollone F, Toniato E, Martinotti S, et al. A polymorphism in the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction and stroke. JAMA 2004;291:2221-8. - 22. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006;66:3992-5. - 23. Di Fiore F, Blanchard F, Charbonnier F, *et al.* Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer 2007;96:1166-9. - Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005;6:279-86. - 25. Hull J, Thomson A, Kwiatkowski D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 2000;55:1023-7. - 26. Renzoni E, Lympany P, Sestini P, et al. Distribution of novel polymorphisms of the interleukin-8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis. Arthritis Rheum 2000;43:1633-40. - 27. Izzo JG, Wu TT, Wu X, *et al.* Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol 2007:25:698-707. - 28. Zhang W, Gordon M, Press OA, *et al.* Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics 2006;16:475-83. - 29. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005;438:967-74. - 30. Brogan IJ, Khan N, Isaac K, *et al.* Novel polymorphisms in the promoter and 5' UTR regions of the human vascular endothelial growth factor gene. Hum Immunol 1999;60:1245-9. - 31. Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 2000;12:1232-5. - 32. Renner W, Kotschan S, Hoffmann C, Obermayer-Pietsch B, Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J Vasc Res 2000;37:443-8. - 33. Krippl P, Langsenlehner U, Renner W, et al. A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer 2003;106: 468-71. - 34. Koukourakis MI, Papazoglou D, Giatromanolaki A, et al. VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer 2004;46:293-8. - 35. Shahbazi M, Fryer AA, Pravica V, et al. Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J Am Soc Nephrol 2002;13:260-4. - 36. Stevens A, Soden J, Brenchley PE, Ralph S, Ray DW. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 2003;63:812-6. - 37. Awata T, Inoue K, Kurihara S, *et al.* A common polymorphism in the 5'-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 2002;51:1635-9. - 38. Howell WM, Bateman AC, Turner SJ, Collins A, Theaker JM. Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumour development in cutaneous malignant melanoma. Genes Immun 2002;3:229-32. Pharmacogenetics of EGFR and VEGF inhibition Chapter 2 - 39. Jin Q, Hemminki K, Enquist K, et al. Vascular endothelial growth factor polymorphisms in relation to breast cancer development and prognosis. Clin Cancer Res 2005;11:3647-53. - 40. Lee SJ, Lee SY, Jeon HS, *et al.* Vascular endothelial growth factor gene polymorphisms and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2005;14:571-5. - 41. Lu H, Shu XO, Cui Y, et al. Association of genetic polymorphisms in the VEGF gene with breast cancer survival. Cancer Res 2005;65:5015-9. - 42. Kariyazono H, Ohno T, Khajoee V, et al. Association of vascular endothelial growth factor (VEGF) and VEGF receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res 2004;56:953-9. - 43. Tanimoto K, Yoshiga K, Eguchi H, *et al.* Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 2003;24:1779-83. - 44. Yamada N, Horikawa Y, Oda N, *et al.* Genetic variation in the hypoxia-inducible factor-1alpha gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab 2005;90:5841-7. - 45. Koukourakis MI, Papazoglou D, Giatromanolaki A, *et al.* C2028T polymorphism in exon 12 and dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene define HIF-1alpha protein expression in non-small cell lung cancer. Lung Cancer 2006;53:257-62. - 46. Fu XS, Choi E, Bubley GJ, Balk SP. Identification of hypoxia-inducible factor-1alpha (HIF-1alpha) polymorphism as a mutation in prostate cancer that prevents normoxia-induced degradation. Prostate 2005;63:215-21. - 47. Kuwai T, Kitadai Y, Tanaka S, *et al.* Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer 2003;105:176-81. - 48. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 1996;93:5512-6. - 49. Sachs UJ, Socher I, Braeunlich CG, et al. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology 2006:119:83-9 - 50. Koene HR, Kleijer M, Algra J, et al. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997;90:1109-14. - 51. Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997;100:1059-70. - 52. Dall'Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 2004:64:4664-9. - 53. Cartron G, Dacheux L, Salles G, *et al.* Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002;99:754-8. - 54. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003;21:3940-7. - 55. Louis E, El Ghoul Z, Vermeire S, et al. Association between polymorphism in IgG Fc receptor Illa coding gene and biological response to infliximab in Crohn's disease. Aliment Pharmacol Ther 2004;19:511-9. - Louis EJ, Watier HE, Schreiber S, et al. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn's disease: a subanalysis of the ACCENT I study. Pharmacogenet Genomics 2006;16:911-4. - 57. Zhang W, Gordon M, Schultheis AM, *et al.* FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007;25:3712-8. - 58. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7:85-97. - Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science 2004;305:525-8. - 60. Iafrate AJ, Feuk L, Rivera MN, *et al.* Detection of large-scale variation in the human genome. Nat Genet 2004:36:949-51. - 61. Zhang J, Feuk L, Duggan GE, Khaja R, Scherer SW. Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet Genome Res 2006:115:205-14 - 62. Lenz HJ, Van Cutsem E, Khambata-Ford S, *et al.* Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 2006;24:4914-21. - 63. Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 2007;39:721-3. - 64. Hirsch FR. EGFR: a prognostic and/or a predictive marker? J Thorac Oncol 2006;1:395-7. - 65. Vallbohmer D, Zhang W, Gordon M, et al. Molecular determinants of cetuximab efficacy. J Clin Oncol 2005;23:3536-44. - 66. Vincenzi B, Santini D, Russo A, et al. Circulating VEGF reduction, response and outcome in advanced colorectal cancer patients treated with cetuximab plus irinotecan. Pharmacogenomics 2007;8:319-27.