
Proximity effects in superconducting spin-valve structures
Flokstra, M.G.

Citation
Flokstra, M. G. (2010, February 17). Proximity effects in superconducting
spin-valve structures. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/14751
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14751
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14751


Chapter 7

Critical voltage of a mesoscopic

superconductor

This chapter was in a slightly different form published as ”Critical Voltage of a Meso-
scopic Superconductor, Phys. Rev. Lett. 96, 147002 (2006)”, with R. S. Keizer and M.
Flokstra as equally contributing first authors.
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Figure 7.2: An electron excitation in a normal metal created by (a) radiation (of
energy hω) and (b) a potential difference eV (from a connecting reservoir). The ex-
citation in (a) is symmetric in terms of electrons and holes and contributes to the
energy mode. The excitation in (b) is antisymmetric and contributes to the charge
mode. The insets in both graphs show how these two modes occupy states in the
excitation energy spectrum Ek of the superconductor. Here, Ek =

√
Δ2 + ε2

k where
Δ is the gap energy and εk the energy of the single electron state with wave vector k.

symmetry is in terms of electrons versus holes. In a normal metal, an electron
that is excited above the Fermi level at energy ε leaves a hole below the Fermi
level at energy −ε. This contributes to the energy mode, and common sources
for such symmetric excitations are temperature and radiation (see Fig. 7.2a).
The charge mode is asymmetric in electrons and holes. It counts the number
of excess electrons or holes in the system. Such asymmetric excitations are
created by electrical potential differences (see Fig. 7.2b). The energy mode
and charge mode each have a different spatial and spectral form. The decom-
position of the typical result shown in Fig. 7.1b into the energy mode and
charge mode is shown in Fig. 7.3. The exchange of electrons between the
normal metal (reservoir) and the superconducting wire is for sub-gap energies
controlled by the Andreev reflection process. The question we thus address is
how fL and fT enter/behave in the superconductor, and how that changes its
transport properties. In particular, we investigate how the breakdown of the
superconducting state occurs.

The transport and spectral properties of dirty superconducting systems
(�e � ξ0, with �e the elastic mean free path and ξ0 the superconducting
phase coherence length) are described by the quasiclassical Green functions
obeying the Usadel equation [19]. For out of equilibrium systems we use the
Keldysh technique in Nambu (particle-hole) space, neglecting spin dependent
interactions and assuming conventional superconductivity. Furthermore, we
ignore inelastic scattering in the wire and use the time independent formalism.
We assume this to be an acceptable simplification at temperatures far below
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Figure 7.3: Decomposition of the quasiparticle distribution function f(x, ε) as shown
in Fig. 7.1b into the energy mode fL and charge mode fT .

the critical temperature Tc, and for large enough wire cross section. In this
way the role of thermally activated and respectively quantum phase slips is
ruled out [80, 81].

7.1.1 Usadel equation using Keldysh technique

The Keldysh technique is based upon a special ordering of the Green functions,
and the main result is that the Green functions are split into three parts. The
retarded

(
ǦR

)
and advanced

(
ǦA

)
parts describe the propagation of particles

(electrons and holes) in respectively positive and negative time direction, while
the Keldysh

(
ǦK

)
part describes the non-equilibrium part of the system. As

long as a system is in equilibrium (i.e the quasiparticles are distributed like
a Fermi-Dirac distribution with an effective temperature), it is fully charac-
terized by the retarded Green functions, and we can calculate the density of
states, electrical current, etc. with the knowledge of the retarded Green func-
tions alone. This changes when the system is driven out of equilibrium, for
then we also need to know which energy states are accessible. In other words,
we need to know the non-equilibrium distribution function of the quasiparti-
cles. In that case we need to solve the Keldysh Green functions, for which in
turn we need both the retarded and advanced Green functions. The latter is
actually only necessary when the time symmetry of the system is broken, for
example, due to magnetic fields. Otherwise, it follows straightforwardly from
the retarded Green functions. Each of these three parts are Nambu⊗spin
space matrices (for their elements see Eq. 2.9 - 2.10), and can be collected
together into the Keldysh space effectively creating a matrix Green function
of dimension 8×8. This new matrix Green function then replaces the matrix
Green function in the Usadel equation, and the remaining Nambu⊗spin space
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matrices of the Usadel equation are projected onto the 2×2 unity matrix 1̂
in Keldysh space. However, in the absence of spin dependent interactions the
spin space effectively drops out of the equation and the retarded, advanced,
and Keldysh matrix Green function reduce to 2×2 matrices in Nambu space
(denoted by a hat). The time independent Usadel equation for an s-wave su-
perconductor (see Eq. 2.20) using the Keldysh technique then takes the form:

�D∇ (
Ǧ∇Ǧ

)
= −i

[
Ȟ, Ǧ

]
(7.2)

where D is the diffusion constant and ∇ is the spatial derivative [82]. Fur-
thermore, the spin-flip part vanished because we ignore spin-flip processes in
the wire. The elements of Ǧ and Ȟ are 2×2 matrices in Nambu space:

Ǧ =

(
ĜR ĜK

0 ĜA

)
, Ȟ =

(
Ĥ 0

0 Ĥ

)
with Ĥ =

(
ε −Δ

Δ∗ −ε

)
(7.3)

where the chosen gauge is such that the pair potential Δ is in equilibrium a
real quantity, Δ = Δ∗. Inserting these Keldysh space matrices into the Usadel
equation results in three equation:

�D∇(ĜR∇ĜR) = −i
[
Ĥ, ĜR

]
�D∇(ĜA∇ĜA) = −i

[
Ĥ, ĜA

]
�D∇(ĜR∇ĜK + ĜK∇ĜA) = −i

[
Ĥ, ĜK

] (7.4)

The first two equations are the retarded and advanced part of the Usadel
equation. The third equation is the kinetic part of the Usadel equation, de-
scribing the non-equilibrium. The retarded, advanced and Keldysh matrix
Green functions are connected to each other by the normalization condition
for the matrix Green function in the Keldysh space: Ǧ2 = 1̌. Apart from this
condition, there is also a direct connection between the retarded and advanced
matrix Green function, which differ only in the time direction of the propaga-
tion of the particles. In the absence of time symmetry breaking, the two are
related through:

ĜA = −τ3

(
ĜR

)†
τ3 (7.5)

and thus finding the retarded Green functions is sufficient to know the ad-
vanced Green functions as well. From the normalization condition for Ǧ one
obtains ĜRĜR = ĜAĜA = 1̂ and ĜRĜK + ĜKĜA = 0̂. These two conditions
make that ĜK can be parameterized as:

ĜK = ĜRf̂ − f̂ ĜA (7.6)



114 Chapter 7. Critical voltage of a mesoscopic superconductor

It was shown by Schmid and Schön [83], and Larkin and Ovchinnikov [84]
that f̂ can be chosen as the diagonal generalized distribution number matrix
of the quasiparticles in Nambu space: f̂ = fL (x, ε) τ0+fT (x, ε) τ3, with fL the
symmetric part (energy mode) and fT the antisymmetric part (charge mode)
of the quasiparticle distribution function. The full distribution function is
retained by: 2f (x, ε) = 1 − fL (x, ε) − fT (x, ε). For a bulk superconductor
in equilibrium, this distribution function equals the Fermi-Dirac distribution:
f (x, ε) = fFD (x, ε)

7.1.2 Working out the equations

The retarded matrix Green function in terms of the position and energy depen-
dent normal g (ε, x) and anomalous Fi (ε, x) Green functions is (see Eq. 2.21):

ĜR =

(
g(ε, x) F1(ε, x)

F2(ε, x) −g(ε, x)

)
(7.7)

where it was used that g = −g, which one obtains from the normaliza-
tion condition ĜRĜR = 1̂. The normalization condition also leads to g2 +
F1F2 = 1. Substituting all this in the retarded part of the Usadel equation:
�D∇(ĜR∇ĜR) = −i

[
Ĥ, ĜR

]
, we find the retarded Usadel equations:

�D
[
g∇2F1 − F1∇2g

]
= −2iΔg − 2iεF1

�D
[
F1∇2F2 − F2∇2F1

]
= 2iΔF2 + 2iΔ∗F1

(7.8)

The second equation is essential when calculating the non-equilibrium prop-
erties of superconductors. Its left-hand-side is proportional to the divergence
of the spectral (energy-dependent) supercurrent, which is (compared to the
equilibrium case) no longer a conserved quantity.

Using the general relation between the advanced matrix Green function

and the retarded matrix Green function: ĜR = −τ3

(
ĜA

)†
τ3, the Keldysh

matrix Green function ĜK can be written entirely in terms of g, F1, F2, fL

and fT :

ĜK =

(
(g + g†)f+ F1f− − F †

2f+

F2f+ − F †
1f− −(g + g†)f−

)
(7.9)

where f± = fL ± fT . Working out the kinetic part of the Usadel equation:
�D∇(ĜR∇ĜK + ĜK∇ĜA) = −i

(
Ĥ, ĜK

)
we find (combining the diagonal
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components) the kinetic equations describing the non-equilibrium part:

�D∇jenergy = 0
�D∇jcharge = 2RLfL + 2RT fT

(7.10)

The various elements in Eq. 7.10 are given by:

jenergy = ΠL∇fL + ΠX∇fT + jεfT

jcharge = ΠT∇fT − ΠX∇fL + jεfL

ΠL = 1
4

(
2 + 2 |g|2 − |F1|2 − |F2|2

)
ΠT = 1

4

(
2 + 2 |g|2 + |F1|2 + |F2|2

)
ΠX = 1

4

(
|F1|2 − |F2|2

)
jε = 1

2�{F1∇F2 − F2∇F1}
RL = −1

2�
{

ΔF2 + ΔF †
1

}
RT = −1

2�
{

ΔF2 − ΔF †
1

}

(7.11)

Equations 7.10 are two coupled diffusion equations for fL and fT , describing
the divergences in the spectral energy current and the spectral charge current.
The total charge current is given by J = 1

2eρ

∫
jchargedε with ρ the resistivity.

The terms ΠL and ΠT can be related to an effective diffusion constant for the
energy and charge mode respectively and ΠX as a ”cross-diffusion” between
them. jε is the spectral supercurrent and RL and RT describe the ”leakage”
of spectral current to different energies, where the total leakage-current ∝∫

(RLfL + RT fT ) dε is zero. In the small signal limit the terms ΠX , jε and
RL are small and can in many cases be neglected (linear approach), effectively
decoupling fL and fT . In this work, we go beyond this limit. The Usadel
equation is supplemented by a self-consistency relation:

Ĥ(1,2) =
N0Veff

4

∫
�ωD

−�ωD

ĜK
(1,2)dε (7.12)

Here, N0 is the normal density of states around the Fermi energy, Veff the
effective attractive interaction and the integral limits are set by the Debye
energy �ωD. The resulting equation for Δ becomes:

Δ = −1
4
N0Veff

∫
�ωD

−�ωD

(
(F1 − F †

2 )fL − (F1 + F †
2 )fT

)
dε. (7.13)



116 Chapter 7. Critical voltage of a mesoscopic superconductor

To calculate spectral and transport properties, one needs to know the self-
consistent solution of Δ. In most practical cases, this has to be done numeri-
cally. A convenient solution scheme is to first find the Green functions of the
system by solving the retarded equations for a certain Δ, next to determine
the quasiparticle distribution functions by solving the kinetic equations and
then calculate a new Δ using the self-consistency relation. This process has
to be repeated until Δ converges. As a starting value for Δ we use the BCS
form at zero temperature. A typical solution employs a grid of in the order
of 104 energies, 102 spatial coordinates, and 103 iterations of Δ. The stabil-
ity of the solution scheme was tested extensively by inserting different initial
values. At all the applied voltages self-consistent steady state solutions are
found. To simplify the calculations a parameterization is used that automati-
cally fulfills the normalization condition. It is convenient to take g = cosh(θ),
F1 = sinh(θ)eiχ and F2 = − sinh(θ)e−iχ, where θ and χ are position and energy
dependent (complex) variables. At the interfaces between the superconducting
wire and the normal metallic reservoirs we use the following boundary condi-
tions: θ = ∇χ = 0 (retarded equation) and fL,T = 1

2(tanh ε+eV
2kBT ± tanh ε−eV

2kBT )
(kinetic equation), where the latter are the usual reservoir distribution func-
tions.

7.1.3 Simulation on the NSN system

The transport properties of the NSN system (see Inset Fig. 7.4) can now be
calculated with the equations described above. In a previous analysis a finite
differential conductance was found at zero bias employing a linear response
calculation [85]. With the approach introduced here, the full current-voltage
relation can be obtained. The result at several temperatures is displayed in
Fig. 7.4, with the voltage normalized to Δ0(= Δbulk,T=0) and the current
density normalized to the critical current density Jc ≈ 0.75 Δ0

ξ0ρe [86], with
ξ0 =

√
�D/Δ0. At T = 0 we observe a linear resistance at low voltages

caused by the decay of fT (Fig. 7.3b), and a critical point (voltage) above
which the resistance is equal to the normal state resistance. At higher tem-
peratures (T = 0.5 Tc, 0.75 Tc) a linear approach would only give an adequate
approximation in a limited voltage range. We will argue below that the super-
conductor switches to the normal state by fL which is controlled by the voltage
and cannot be interpreted as a critical current. In Fig. 7.5 the electrostatic po-
tential φ =

∫ ∞
0 fT�{g}dε along the wire is shown at zero temperature prior to

(eV/Δ0 = 0.013,0.646) and immediately after (eV/Δ0 = 0.651) the transition.
The potential can be seen to drop to zero over a distance of the order of the
coherence length due to the normal- to supercurrent conversion. This mecha-
nism also gives rise to the finite zero bias resistance. The profile hardly changes
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Figure 7.4: The calculated current(J)-voltage(V ) relation of a superconducting wire
of length L = 8.5ξ0 between normal metallic reservoirs (see inset) at several temper-
atures, and for a wire of length 17ξ0 at T = 0. Jc is the critical current density, and
Δ0 the bulk gap energy.

over the full range of voltages, until the critical value is reached, after which
the electrostatic potential drops in a linear fashion, indicating the system is in
the normal state. The minimal changes emphasize the limited influence of fT

on the superconducting state (i.e. on Δ). The current density at which the

φ
 /

 V

x / ξ0

eV/Δ0 = 0.651 (N state)
eV/Δ0 = 0.646 (S state)
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-1

0

1
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Figure 7.5: The normalized electrostatic potential φ as a function of position x along
the superconducting wire for bias voltages prior to and immediately after the transi-
tion (at T = 0).

superconductor switches to the normal state (for T = 0) is much smaller than
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the critical current density in an infinitely long wire (J/Jc = 1). This excludes
the depairing mechanism as the (main) cause of the transition. Moreover, it is
acceptable to ignore the occurrence of phase slip centers [87], which are time-
dependent solutions that are energetically favorable when J ≈ Jc. Neither is
the transition triggered at the weaker superconducting edges as indicated by
the shape of the electrostatic potential profile in Fig. 7.5.

7.1.4 Simulation on the non-local system

The parameter that determines whether or not the superconducting state exist
is Δ, as follows from Eq. 7.13. The integral in this self-consistency equation
sums all pair states (either occupied by a Cooper pair, or empty). Fi gives the
Cooper pair density-of-states and fL and fT determine which of those states
are doubly occupied or doubly empty and which are singly occupied (broken)
due to the presence of quasiparticles. In equilibrium at T = 0, a switch to the
normal state can only be caused by reaching a critical phase gradient, entering
Δ via Fi. In the presence of quasiparticles, Δ (and thus potentially the state
of the system) is also influenced by the distribution functions. It was noticed
above that the charge mode fT has a very limited influence on Δ. The effect
of the energy mode fL is examined below.

By a small modification of our system to a T-shaped geometry as shown
in Fig. 7.6, we can in a direct way disentangle the effects of fL and fT on
Δ. This setup can be thought of as the connection of the superconducting
wire to the center of a normal wire. In the middle of such a wire fT is equal
to zero, but fL is not. The result for the pair potential at the edge of the
superconducting wire as a function of the voltage of the reservoirs is shown
in Fig. 7.6. Although there is no net current flowing through the supercon-
ductor, at a certain voltage the pair potential collapses. The voltage that is
necessary to trigger this transition to the normal state is very close to the
transition in Fig. 7.4 (where we used the two terminal setup). Apparently the
influence of fL is important, since it can cause the superconductor to switch
to the normal state irrespective of the value of the supercurrent. Clearly the
influence of fL on the state of the superconductor is larger than the influence
of the supercurrent on this same quantity.

The quantity that defines the possible states of the system is the free en-
ergy. Evidently the superconductor compares two states for the minimization
of this free energy: the first state is the superconducting state in which the
free energy remains constant as a function of voltage (and independent of the
shape of fL provided this shape does not change for energies larger than the
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voltages. The breakdown voltage is at eV/Δ0 = 0.707. The wire length is 4.25 ξ0

gap). The second possible state is the normal state. At zero temperature, in
the absence of a bias voltage, the difference in free energy between the two
states is the condensation energy of the superconductor. When the voltage
is increased (but still eV < Δ), the free energy of the superconducting state
remains constant while the free energy of the normal state decreases since in
that case electrons occupy higher energy states due to the applied voltage.
To illustrate the effect, we calculate explicitly the (internal) energy differ-
ence between the superconducting state (ES) and normal state (EN) at zero
temperature for both a bulk superconductor (analytically) and the T-shaped
structure (numerically) as a function of voltage (which appears in fL) and
Δ. From the analytical calculation for the bulk, following Bardeen [88], we
find that fL changes the energy in such a way that at eV = 1

2

√
2Δ0 the su-

perconductor undergoes a first order phase transition. For the voltage range
1
2Δ0 < eV < Δ0 the state of the system has two solutions (two minima). The
energy difference for the bulk superconductor is shown in Fig. 7.7. Numerical
results for the energy of the T-shaped geometry are shown as well (both as
function of position and as function of voltage). For long wires, the numerical
results approach the analytical (bulk) calculation. This indicates that the ef-
fect of the bias voltage can indeed be related to the existence of a first order
phase transition at zero temperature.

In conclusion, we have studied the role of the energy mode fL of the quasi-

Hysteretic behavior due to the first order transition is also present in the numerical
calculation, for clarity in Fig. 7.4 and 7.6 only the upsweeps are displayed.
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particle distribution on the properties of a superconducting nanowire. We
employ a numerical simulation of the Usadel equation in full-response and
find a non-thermal distribution for fL (caused by an applied bias voltage)
which drives a first order transition from the superconducting state to the
normal state irrespective of the current. A direct calculation on the internal
energy of a bulk superconductor confirms that the voltage indeed causes the
phase transition. In general, the significant role played by fL found in these
superconducting nanowires stresses the importance of treating fL and fT on
equal footing.


