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12 Chapter 2. Theoretical concepts

2.1 Fundamentals of superconductivity

2.1.1 Foundation of the microscopical description

The work of Cooper [11] (1956) shows that if the interaction between electrons
leads to a net attraction between two electrons close to the Fermi surface, then
bound states can be formed located below the Fermi surface. The density of
these bound states strongly depends on the total momentum K of the pair,
being at a maximum where K = 0 and rapidly going to zero for non-zero K.
It was therefore suggested that the elementary excitations of the pair were
most likely to correspond to the splitting of the pair rather than to increasing
the kinetic energy of the pair (since its density falls of so quickly with increas-
ing K). Such net attractive interaction between electrons can occur when
the attractive phonon interaction dominates the Coulomb repulsion. Where
the latter mechanism is just the direct repulsion between two particles of the
same charge, the first mechanism is an indirect interaction. The negatively
charged electron slightly deforms the surrounding lattice by pulling on the
positively charged atoms and while the electron moves around, it leaves a trail
(or wave) of such deformations (or phonons). As this is an area with slightly
increased positive charge, it attracts new electrons. Effectively, by this mech-
anism electrons attract each other mediated by phonons. In the works of
Bardeen, Cooper and Schrieffer [12, 13] (BCS theory, 1957) and of Bogoliubov
[14] (1958) a systematic theory of superconductivity has been erected on this
principle of attraction. It was shown that the ground state of such a system
of interacting Fermi particles is located below the normal state with a filled
Fermi sphere and, in consequence, it is separated from the excited states by
an energy gap with a magnitude of the order of the coupling energy of an
individual pair. Furthermore, the net attraction between electrons takes place
inside an energy shell of order kBTc around the Fermi surface, with Tc the
superconducting transition temperature. For the elemental superconductors,
like Aluminum (Al), Mercury (Hg), Niobium (Nb), Tin (Sn) and Lead (Pb),
this coupling ranges up to about 1 meV, with a corresponding Tc up to about
10 K. An essential feature of the BCS theory is that all the Cooper pairs must
behave in exactly the same way, which makes that they can be described by a
single wave function. According to BCS theory: ”The pairs should be chosen
so that transitions between them are possible, i.e. they all have the same total
momentum”. As a best choice for the ground state pairing they took pairs
with zero total momentum and opposite spin. The latter because exchange
terms enhance the repulsive interaction for parallel spins. The Cooper pairs
are located at the Fermi energy which is separated by an energy gap Δ from
the quasiparticle states. The total gap between the (occupied) quasiparticle
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spectrum below EF and the (unoccupied) quasiparticle spectrum above EF

is 2Δ ≈ 3.5kBTc. This approximation is valid in the weak coupling limit,
which means superconductors for which N0V < 0.3 where N0 is the normal
density of states at the Fermi energy and V the attractive interaction. Most
classical superconductors belong to this limit (Al has a bulk Tc of 1.2 K with
Δ ∼ 180 μeV) but for example Pb with a bulk Tc of 7.2 K and Δ ∼ 1.3 meV
does not. The left panel of Fig. 2.1 shows the pairing of states in k-space, for
both a filled pair state (|k| > kF ) and an empty pair state |k| < kF . The
elementary excitations are broken paired states, which means that one of the
two states of the paired state is occupied and one is empty. If |k| < kF the
excitation is hole-like in its behavior, while for |k| > kF it is electron-like. The
k-space represents only kinetic energy and thus the (potential) energy lower-
ing of the paired states due to condensation is not ”included”. The paired
states assemble in the condensate which is at the Fermi energy EF while the
excitations (broken states) occupy single electron states in the quasiparticle
spectrum (right panel of Fig. 2.1, with EF = 0). Electron-like excitation have
E > EF and hole-like excitations have E < EF . The Cooper pairs can be bro-
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Figure 2.1: Pairing of states in k-space (left panel) and quasiparticle spectrum
(right panel) for a BCS superconductor. The light/dark shaded areas represent
empty/occupied states, the black/white dots represent electron/hole excitations and
the wiggled lines represents the paired states. Left panel: The Fermi wave vector kF

is much larger then the shell δk around kF where the pairing takes place (for clarity
kz is taken zero). Right panel: The density of states NS is normalized to the normal
state density of states N0, the energy E is normalized to the gap energy Δ, and the
Fermi energy EF is set to zero.
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ken into excited states by temperature, but also by mechanisms that change
the pairing itself. The Cooper pairs in a conventional bulk superconductor
(s-wave, spin-singlet = BCS superconductor) consist of two electrons with op-
posite spin and momentum close to Fermi momentum. The Fermi spheres to
which the two particles (k, ↑) and (−k, ↓) belong are identical, say symmet-
rical. Whenever this symmetry is lifted the Cooper pair starts to experience
a pair breaking force, weakening the superconducting state. Two types of
symmetry breaking effects are recognized. The orbital effect is related to a
shift between the Fermi spheres, which happens if the one acquires a net mo-
mentum with respect to the other. The paramagnetic effect is related to a
change in the size between the Fermi spheres, which translates to an exchange
energy between the two spin states. The orbital effect is responsible for the
limitation of the supercurrent density and magnetic flux expulsion. In terms
of momentum p the two electrons of the Cooper pair are (p, ↑) and (−p, ↓),
but in the presence of an electromagnetic field described by the vector po-
tential A, the potential (or field) momentum eA/c needs to be added to the
kinetic momentum mv, with c the velocity of light. For the Cooper pair this
results in (p + eA/c, ↑) and (−p + eA/c, ↓), which gives a total momentum
of 2eA/c. The exerted Lorentz force is directed in opposite directions for
the two electrons, trying to break the Cooper pair. Whenever the associated
energy of the pair momentum exceeds the condensation energy, the Cooper
pair is no longer a stable ground state. A transition from the superconducting
state to the normal state by the orbital effect is essentially due to the kinetic
energy of the pairs becoming larger than the condensation energy, while by
the paramagnetic effect it is if the exchange energy becomes larger then the
condensation energy.

The BCS Hamiltonian that describes superconductivity is valid for a su-
perconductor in equilibrium at zero temperature in the absence of any interac-
tions other than the attractive interaction that causes the formation of Cooper
pairs. Using the creation and annihilation operators (c†kσ and ckσ) for Bloch
states specified by wave vector k and spin σ, it can be expressed as:

HBCS =
∑
kσ

εknkσ +
∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑ (2.1)

where nkσ = c†kσckσ is the single-particle number operator (which counts the
number of particles in a specific state), εk = �

2k2/ (2m) is the correspond-
ing (kinetic) energy with m the electron mass, measured with respect to the

momentum p, velocity v and wave vector k are related by p = mv = �k
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Fermi energy, and Vkk′ is the attractive interaction. The first term appear-
ing in the Hamiltonian is the standard kinetic energy term, while the second
term describes the scattering of a Cooper pair from state (k′ ↑,−k′ ↓) to state
(k ↑,−k ↓) under the influence of the attractive interaction. In the BCS model,
the attractive interaction is taken constant, Vkk′ = V , for energies up to a cer-
tain cut-off energy (the Debye energy), otherwise it is zero. The Hamiltonian
is accompanied by a self-consistency relation for the energy gap:

1
V

=
1
2

∑
k

1√
Δ2 + ε2k

(2.2)

Solving the Hamiltonian for a certain potential V gives the eigenstates and
eigenenergies of the superconductor. By inserting these into the self-consistency
equation, the chosen potential V should be regained if the chosen value was
correct. These two equations (Eq. 2.1, 2.2) form the basis for the modern
description of superconductivity, which is written in the language of Green
functions.

2.1.2 Bogoliubov-de Gennes equation

The BCS theory is written in (standard) single particle creation and annihila-
tion operators for Bloch states specified by wave vector k and spin σ. However,
the elementary excitations of the superconductor are no longer the single par-
ticle states which we have for a normal metal, instead they are broken Cooper
pair states. This makes the usage of the standard single particle creation and
annihilation operators very cumbersome (for finite temperatures). A mathe-
matical formulation based on the BCS theory was developed by Bogoliubov
where he introduced the concept of coherent mixtures of particles and holes to
describe a superconductor at finite temperatures. These mixed particle-hole
excited states are known as Bogoliubons. The introduction of operators for
these Bogoliubons has been generalized and evolved into what is now known
as the Bogoliubov-deGennes (BdG) equation [15]. In this description, the
standard momentum operators (k-space) have been replaced by field oper-
ators (real-space), which have the advantage that they are able to describe
systems in which k is no longer a good quantum number and thus the eigen-
functions are no longer plane waves (dirty systems for example). The solutions
(eigenfunctions) are given by an electron-like part, ψe (r), and a hole-like part,
ψh (r), which have to be solved in a self-consistent manner fulfilling the gap
equation. The Bogoliubov-deGennes equation can be expressed as:(

H0 Δ (r)

Δ (r)∗ −H∗
0

) (
ψe (r)

ψh (r)

)
= E

(
ψe (r)

ψh (r)

)
(2.3)
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The Hamiltonian H0 contains the kinetic energy term plus all interactions
other than Δ (like the crystal potential and impurity potential). The ∗ sym-
bol denoted the complex conjugate. Clearly, the coupling between electron
and hole states exists for nonzero Δ only. One of the many applications of the
BdG equations is the model of Blonder-Tinkham-Klapwijk [16] (BTK, 1982),
which solves the BdG equations for an N/S interface with arbitrary interface
barrier potential. They consider all possible reflection/transmission processes
at the interface (normal reflection, Andreev reflection, normal transmission,
branch-crossing transmission) and calculate the energy dependent transport
probabilities, which allows for the calculation of current (I) - voltage (V) char-
acteristics. While the BTK model seems the ”end of the story” for N/S inter-
faces, in 1991 it was shown [17] that it breaks down when transport is domi-
nated by impurity scattering. Strictly speaking, BTK remains correct but its
validity becomes limited to the interface itself (which remains ballistic) and
so looses is functionality for determining transport properties. So, although
potentially the BdG model can deal with impurities, in real systems it is often
still of not much use. This is because the positions (and therefore the poten-
tial) of the impurities are generally unknown, making it a serious difficulty
to add the effects of scattering processes near the interface. This shifted the
attention towards the usage of quasiclassical Green functions, which by then
was already solidly formulated for about 20 years. The theoretical framework
exhibits a higher complexity of mathematical concepts, but its functionality
is more powerful. Currently, this framework is the modern way to describe
superconductivity.

2.1.3 Green functions and the Gor’kov equation

A large amount of theoretical work has been done in describing superconduc-
tivity using quantum field theory, which had proved to be a very powerful and
effective tool for microscopic theories of solid state systems (for a thorough
description see for example [18, 19]). Green functions contain the information
of the transport probabilities of single particles. They describe how particles
propagate through the system influenced by all kind of interactions. Once the
Green functions of a system are known, all single-particle properties of the
system are known (for example, the density of states and electrical current)
The single-particle normal Green function is defined by:

Gαβ

(
x, x′) = −i

〈
Tt

(
ψα (x) ψ†

β

(
x′))〉

st
(2.4)

with x = (r, t) and ψ†
α (x) and ψα (x) are the time dependent electron cre-

ation and annihilation (Heisenberg) operators respectively, satisfying the usual
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commutation rules for Fermi statistics. The Green function is a statistical
average over all possible paths from x′ to x, denoted by 〈...〉st and Tt is the
time-ordering operator which orders the operators logically in time, giving
a minus sign for each permutation. Effectively, the normal Green function
Gαβ (x, x′) describes the movement of a particle from x′ to x, or more pre-
cise, the probability amplitude for a particle to move coherently from x′ to
x, where β and α are the initial and final spin direction of the particle (the
particle being an electron if t > t′ and a hole if t < t′). Note that the normal
Green function depends on the standard electron operators and not on the
quasiparticle operators introduced by Bogoliubov (to describe single-particle
motion). The normal Green function is complemented by a Green function
that describes the opposite movement:

Gαβ

(
x, x′) = −i

〈
Tt

(
ψ†

α (x) ψβ

(
x′))〉

st
(2.5)

and they are related through Gαβ (x, x′)∗ = −Gαβ (x, x′), where ∗ denotes the
complex conjugate. In addition to the normal Green functions which describes
coherent motion of single-particles (using single-particle electron states), a sec-
ond type of Green function is needed to deal with the Cooper pairs, which oc-
cupy the paired states. These so-called anomalous Green functions are defined
by:

Fαβ (x, x′) = −i 〈Tt (ψα (x) ψβ (x′))〉st
Fαβ (x, x′) = −i

〈
Tt

(
ψ†

α (x) ψ†
β (x′)

)〉
st

(2.6)

and satisfy Fαβ (x, x′)∗ = −Fαβ (x, x′). Clearly, Fαβ (x, x′) annihilates a
Cooper pair (empties a Cooper pair state) and Fαβ (x, x′) creating one (fills a
Cooper pair state). Just as for the normal Green function, the transport na-
ture is visible again as the highest probability to create(annihilate) a Cooper
pair is at, or very near the position where the first(remaining) electron has
coherently travelled to during the time interval from t′ to t. Fig. 2.2 shows a
graphical representation of the normal and anomalous Green function. Next to
these real time Green functions, the imaginary time Matsubara Green function
is often encountered in literature within the field of superconductivity. The
Matsubara Green function is valid for systems in equilibrium (i.e. no potential
differences) and has the advantage that at finite temperatures the ordering of
the electron operators is still unambiguously defined. For the real-time Green
functions special time ordering rules (Keldysh technique) are necessary (adding

{
ψα (x) , ψ†

β (x′)
}

= δ (x − x′) δαβ and {ψα (x) , ψβ (x′)} =
{

ψ†
α (x) , ψ†

β (x′)
}

= 0.
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superconductor

ψα(r',t') ψα(r,t)

Fα (x,x')

ψα(r,t)ψα(r',t')

Gα (x,x')

Figure 2.2: (Left) A spin up electron is added to the superconductor (location r′,
time t′) and at time t > t′ the probability to find that electron at location r is
probed (where the electron could have taken any possible path from r′ to r). This
represents the normal Green function G↑↑ (x, x′). (Right) The spin up electron of
a Cooper pair is taken out of the superconductor (location r′, time t′) and at time
t > t′ the probability to find the remaining electron of the Cooper pair is probed.
This represents the anomalous Green function F↓↑ (x, x′).

to the mathematical complexity), but it is applicable to non-equilibrium sys-
tems as well. The anomalous Green functions describe the superconducting
correlations and are related to the order parameter Δ of the superconductor.
This order parameter is a measure for the strength of the superconducting
energy gap and uses the same symbol. For an s-wave superconductor we have:

Δαβ (x) = −λFαβ (x, x)

Δαβ (x) = −λFαβ (x, x)
(2.7)

where λ is the attractive interaction (λ < 0). Using the anti-commutation
rules one can obtain: Δαα (x) = −Δαα (x) and Δαα (x) = −Δαα (x). As a
consequence, the order parameter (for an s-wave superconductor) has to be
zero for equal spin directions. Only the pairing of electrons/states with oppo-
site spin directions contribute to the superconducting order parameter, which
is a fundamental assumption within the BCS theory.

The Green functions can be conveniently written/ordered into 2×2 matri-
ces in spin space, where the elements contain all possible spin combinations.
The set of matrices that span the spin space are the Pauli spin matrices given
by:

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.8)
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where σ0 is the unity matrix in spin space and σiσi = σ0. For the normal
Green function and the order parameter we write:

Ĝ (x, x′) =

(
G↑↑ (x, x′) G↑↓ (x, x′)

G↓↑ (x, x′) G↓↓ (x, x′)

)
, Δ̂ (x) =

(
0 Δ↑↓ (x)

Δ↓↑ (x) 0

)
(2.9)

Similar definitions hold for Ĝ (x, x′), F̂ (x, x′), F̂ (x, x′) and Δ̂ (x). These
(2×2) matrix Green functions can be further collected/ordered into a single
(4×4) matrix Green function in the Nambu⊗spin space, with ⊗ the tensor
product. In the Nambu space (particle-hole space) the Green functions are
ordered based on the different combinations of electron/hole operators (ψ†

creates an electron, ψ creates a hole). The elementary matrices of the Nambu
space are identical to the ones that span the spin space, but now are denoted
by τ0, τ1, τ2 and τ3. The matrix Green functions Ĝ, Ĝ, F̂ and F̂ each consist
of a different combination of the two types of electron operators. The matrix
Green function and matrix order parameter in Nambu⊗spin space are written
as:

Ǧ
(
x, x′) =

⎛
⎝ Ĝ (x, x′) F̂ (x, x′)

F̂ (x, x′) Ĝ (x, x′)

⎞
⎠ , Δ̌ (x) =

(
0 Δ̂ (x)

Δ̂ (x) 0

)
(2.10)

For stationary systems the Green functions no longer depend on the explicit
time coordinates, but rather on the time difference between the two operations:
Ǧ (x, x′) → Ǧ (r, r′, t − t′). By making a Fourier transform over the time
difference the energy dependent Green functions are obtained:

Ǧ
(
r, r′, ε

)
=

∫
e−iε(t−t′)/�Ǧ

(
r, r′, t, t′

)
d(t − t′) (2.11)

with ε the energy of the single-particle (state). When using the imaginary
time Matsubara Green functions this works out a bit different. The Matsubara
Green functions are defined at the finite time interval: − �

kBT < τ − τ ′ < �

kBT ,
and as a result, the Fourier transformed Green functions are non-zero only for
a discrete set of frequencies: �ωn = (2n+1)πkBT , where ωn are the Matsubara
frequencies. This series of frequencies continues up to the cut-off frequency
ωD, which is the Debye frequency. Just as within the BCS model where the
Debye energy limits the range over which the attractive interaction is non-zero.

Gor’kov rewrote the original BCS Hamiltonian (Eq. 2.1) into an equation
for the Green functions of the system [20]. In matrix form this equation takes
a similar form as the BdG equations (Eq. 2.3) with the main difference that
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the eigenstate functions of BdG are replaced by the Green functions of the
system. Using the τi and σi matrices, the stationary Gor’kov equation can be
expressed as:

(−ε (σ0 ⊗ τ3) + H (r) (σ0 ⊗ τ0) − Δ̌ (r)
)
Ǧ (r, r′, ε) = �δ (r − r′) (σ0 ⊗ τ0) (2.12)

with δ (x) the Dirac delta function and H (r) = − �
2

2m

(
∂r + q

i�A
)2 + qϕ is the

Hamiltonian of a particle (of mass m and charge q) in an electromagnetic
field (with vector potential A and scalar potential ϕ). Furthermore, qϕ =
EF − μ is the energy difference between the Fermi energy and the chemical
potential, and ∂r ≡ ∂/∂r. With this new set of equations, Gor’kov showed
[21] that the famous phenomenological Ginzburg-Landau theory [22] can be
microscopically derived from the BCS theory for temperatures close to the
transition temperature. This is a solid proof for the ”correctness” of the
phenomenological Ginzburg-Landau model.

2.1.4 Quasiclassical approximation: Usadel equation

Cooper pairs are non-local objects and much larger (size is of order ξs) than
the Fermi wavelength λF . Therefore, their transport properties (or Green
functions) do not vary strongly on the scale of λF . This is the key to the qua-
siclassical approximation which greatly reduces the complexity of the Gor’kov
equations. The approximation is based on the observation that the Green
functions entering the Gor’kov equations contain (in most cases) fast oscilla-
tions on the scale of λF due to self-interference effects (like weak localization).
These fast oscillations are all redundant information when interested in su-
perconductivity, which only feels the average of such oscillations. The main
idea of the quasiclassical approximation is that the relative coordinate of the
Green functions ρ = r − r′ is responsible for the fast oscillations, while the
center-of-mass coordinate R = (r + r′) /2, is responsible for the slow oscilla-
tions. Therefore, to lose the redundant information, one could average out
the relative coordinate. A convenient way to do this is by first applying a
Wigner transformation: r → R + ρ/2 and r′ → R − ρ/2, which is an ex-
act transformation to go from coordinates (r, r′) to (R, ρ′). Next to make a
Fourier transform over the relative coordinate (to separate the fast and slow
oscillations in the obtained spectrum) resulting in the relative momentum p,
and finally to integrate over the magnitude of the momentum. The precise
definition of the quasiclassical Green functions, defined through the Gor’kov
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Green functions, reads:

ǧ (R, p̂, ε) =
i

π

∫
dξp

∫
d(r − r′)Ǧ

(
r, r′, ε

)
e−ip·(r−r′)/� (2.13)

where p̂ = p/p is the unit vector in the direction of momentum (p is the
momentum magnitude) and ξp is the kinetic energy variable which is connected
to the momentum: ξp = vF (p − pF ), where pF = mvF is the Fermi momentum
and vF the Fermi velocity. Application of this quasiclassical approximation on
the Gor’kov equation (Eq. 2.12) leads to the Eilenberger equation [23], which
in the absence of electromagnetic fields is written as:

−i�vF∂Rǧ − [
ε (σ0 ⊗ τ3) + Δ̌, ǧ

]
=

[
Σ̌, ǧ

]
(2.14)

where the commutator of two elements [a, b] = ab − ba, and we used that
vF p̂ = vF . Furthermore, ǧ (R, p̂, ε) and Δ̌ (R) are the quasiclassical variants
of Eq. 2.10 and the right-hand-side of the Eilenberger equation adds the effect
of self-energies (see below). The Eilenberger equation is called quasiclassi-
cal since it describes the system using a mixture of classical and quantum
mechanics. It uses the quantum mechanical field operators to find the prob-
ability amplitudes (the Green functions) of the motion of classical particles
with velocity vF and direction p̂.

The presented form of the Gor’kov equation (Eq. 2.12) does not contain any
interaction term other than the attractive interaction responsible for supercon-
ductivity. Taking Δ = 0 (or T > Tc) makes it a normal metal and one could
say the Green functions are now all of ”non-interacting” types. In general, the
Green functions are complemented by something called self-energy, usually de-
noted by Σ. Loosely speaking, the self-energy dresses up the non-interacting
Green function by adding the effects of other interactions, such as electron-
electron interactions, electron-phonon interactions and impurity scattering.
The resulting Green function is then the ”real” Green function of the system.
In general, the self-energy is a complex function with the real part describing
the change in energy (which is a renormalization of mass) and the imaginary
part describing the lifetime of the energy state. Since Σ describes the changes
of electron states, it depends on Green functions having equal coordinates i.e.
Σαβ (x) ∝ Gαβ (x, x). Comparing Σ to Δ (see Eq. 2.7) we can say that Δ is
the anomalous equivalent of the self-energies, but now associated with a two-
particle state. The interactions of importance are the interactions between
or with quasiparticles (the elementary excitations). These interactions are re-
sponsible for the relaxation of the system to an equilibrium state, where it
is assumed that the crystal lattice (phonons + impurities) itself is already in
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equilibrium and forms a heat bath. The main contributions to the relaxation
(in descending order of importance) are scattering with impurities (both non-
magnetic and magnetic), electron-phonon interactions and electron-electron
interactions. A powerful method to incorporate the interaction between elec-
trons and random impurities has been developed by Abrikosov and Gor’kov
[24]. It is assumed that physical properties of superconductors containing a
large amount of random impurities can be obtained by averaging over realiza-
tions of the disordered impurity potentials. A second assumption is the Born
approximation, which implies that the scattering potential is small compared
to the characteristic atomic potential (which is of the order of the Fermi en-
ergy). For isotropic scattering (there is no preferred direction to scatter into,
and the dependence on p̂ is lost) the self-energy becomes:

Σ̌ (R, ε) =
i�

2τimp
〈ǧ (R, p̂1, ε)〉p1

+
i�

2τsf
(σ3 ⊗ τ0) 〈ǧ (R, p̂1, ε)〉p1

(σ3 ⊗ τ0) (2.15)

where the momentum average 〈A (p̂)〉p =
∫

A (p̂) dΩp

4π . Furthermore, τimp

and τsf are the scattering times for scattering at non-magnetic impurities and
magnetic impurities respectively. The first term thus describes non-magnetic
impurity scattering while the second describes the magnetic impurity scatter-
ing.

When a material is in the dirty limit, a particle scatters a lot of times before
losing its phase coherence and this results in the loss of the initial momentum
direction. The Green functions, which describe the electron and hole motion,
become nearly isotropic in this limit. In a first approximation, they no longer
depend on momentum directions and the first-order correction is linear in p̂,
which is the unit vector in the direction of momentum (and is equal to v̂F ).
For the quasiclassical Green functions in the dirty limit we write:

ǧ (R, p̂, ε) = ǧ0 (R, ε) + p̂ǧ (2.16)

where both the isotropic part ǧ0 and the correction ǧ do not depend on the
direction of momentum. Furthermore |ǧ| � ǧ0 and the normalization condi-
tion ǧ2 = 1̌ applies. Inserting this expansion into the Eilenberger equation and
averaging over momentum directions results in the Usadel equation [25], which
is fully isotropic. For the stationary system, in the absence of electromagnetic
fields, it reads:

i�D∂R (ǧ0∂Rǧ0) −
[
Δ̌ + ε (σ0 ⊗ τ3) , ǧ0

]
=

[
Σ̌sf , ǧ0

]
(2.17)

Where Σ̌sf (R, ε) = i�
2τsf

(σ3 ⊗ τ0) ǧ0 (R, ε) (σ3 ⊗ τ0) and we used that the dif-
fusion constant D is coupled to the Fermi velocity and the elastic mean free
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path by D = 1
3vF �e where the elastic mean free path �e = vF τimp. From the

scattering at impurities, only the magnetic impurity term remains, which acts
as pair breaker. The matrix Green function ǧ0 (R, ε) and Δ̌ (R) have the usual
form in Nambu⊗spin space.

An important limitation of the quasiclassical approximation is the inabil-
ity to account for different (non-identical) spin bands with different Fermi
velocities, as it poses problems to make the integration over dξp. As a result,
identical spin bands are used, which in general is correct for normal metals and
superconductors. However, for a ferromagnet such a model can only be correct
if the spin polarization is about zero. This, in combination with the general
limitation of correlations between particles separated by energies of the order
EF , is the weak ferromagnetic limit. It has Eex � EF and a polarization of
0%. A weak ferromagnet is treated as a normal metal with the inclusion of a
small exchange field. The strong ferromagnetic limit is when Eex ∼ EF , and
usually the polarization is no longer close to zero. The incapability of dealing
with non-identical spin bands does not mean that the model cannot treat spin
dependent interactions. In fact, the attractive interaction itself depends on
spin directions, and also spin-flip processes were already included. As long as
the spin dependent interactions are not caused by non-identical spin bands,
they can be included in the Hamiltonian.

For spin independent systems a simplification is possible, which comes
down to dropping the spin space ordering. Such systems do not contain any
coherent spin dependent interactions at all (i.e. changing the spin direction of
a particle without disturbing its energy), however, they do include for exam-
ple spin scattering which randomizes spin. In this case, several components of
the Green functions will vanish. For the normal Green functions, components
with opposite spin directions vanish while for the anomalous Green functions
the components having equal spin directions vanish. The reason for this is
that there are no interactions to coherently flip the spin of a particle. For a
single particle (normal Green function) this means that a non-zero probabil-
ity amplitude is only possible if the particle stays in a single spin band. It
also means that for a Cooper pair the correlation exists only between opposite
spin directions (pairing only occurs between opposite spin directions, and an
electron of the Cooper pair cannot flip its spin coherently to create a correla-
tion between equal spin directions). For the non-zero Green functions we get:
G↑↑ = G↓↓ = G and G↑↑ = G↓↓ = G (the two spin bands are identical). For the
anomalous Green functions we get: F↑↓ = −F↓↑ = F and F ↑↓ = −F ↓↑ = F .
The matrix Green function and order parameter in Nambu⊗spin space now



24 Chapter 2. Theoretical concepts

reduce to:

ǧ0 =

(
Gσ0 iFσ2

iFσ2 Gσ0

)
, Δ̌ =

(
0 iΔσ2

iΔσ2 0

)
, (2.18)

while for the spin-flip self-energy matrix we find:

Σ̌sf =
i�

2τsf

(
Gσ0 −iFσ2

−iFσ2 Gσ0

)
(2.19)

We see that the Nambu space matrices all have a σ0 spin symmetry on the
diagonal and a σ2 spin symmetry on the off-diagonal. Multiplication of two
such matrices results in a matrix having the same spin symmetry, therefore
the spin space effectively drops out of the equations. We then find for the spin
independent Usadel equation, using now theˆnotation for the 2×2 matrix in
Nambu space:

i�D∂R (ĝ0∂Rĝ0) −
[
Δ̂ (R) + ετ3, ĝ0

]
=

[
Σ̂sf , ĝ0

]
(2.20)

with:

ĝ0 =

(
G iF

iF G

)
, Δ̂ =

(
0 iΔ

iΔ 0

)
, Σ̂sf =

i�

2τsf
τ3ĝ0τ3 (2.21)

The self-consistency relation for Δ as well as the special boundary condition
necessary to describe interfaces between materials are given in Chapter 7.

2.1.5 Unconventional Cooper pairs

Stimulated by the observation or idea that the 3-Helium superfluid state should
have a p-wave orbital state (below 0.07 K) the BCS theory has been generalized
for non-zero orbital angular momentum. First in the works of Anderson and
Morel [26] and improved by Balian and Werthamer [27] (see Leggett’s nobel
lecture for a review [28]). A condensation of pairs into � = 1 or higher states
can become favorable when for example there is a strong short-range repulsion
preventing condensation into the s-wave configuration, which is the case for
the 3-Helium superfluid. Because a Cooper pair consists of two Fermi particles
and obeys Fermi statistics, an anti-symmetric wave function is required under
the exchange of the two particles (the Pauli principle). This puts restraints
on the possible types of pairing (i.e. the possible combinations of orbital and
spin states). The orbital state is symmetric if the orbital quantum number

in this thesis we use ,̂ˇand˘to respectively denote a 2×2, 4×4 and 8×8 matrix
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� = 0, 2, ... (even) and anti-symmetric if � = 1, 3, ... (odd). The � = 0, 1, 2 are
the s-, p- and d-wave respectively. The spin state of a pair is either in the
symmetrical spin singlet state (S=0) or in the anti-symmetrical spin triplet
state (S=1). The implication of this is that pairs in s- or d-wave orbital states
should be in spin singlet states, while pairs in p-wave orbital state should be
in spin triplet states.

An important difference between s-, p- and d-wave is that only in case of
pairing into s-wave orbital states, the superconducting energy gap is isotropic.
It does not depend on momentum k and no single particle states exist for
energies within the gap region. This makes the s-wave superconductor robust
against impurity scattering because there are no available normal electron
states which can ”absorb” a pair after scattering at an impurity. However,
when we consider a p- or d-wave orbital state, the energy gap is no longer
isotropic. This means that for a certain absolute value of k (with energy εk),
some directions have a full or reduced gap, while other direction don’t have a
gap at all. As a result, the density of single particle states becomes non-zero
(and non-constant) for energies inside the gap region. These superconductors
are not robust against impurity scattering and only survive in clean systems,
where the superconducting coherence length is (much) smaller than the elastic
mean free path. The Cooper pairs as suggested by BCS theory are in a spin
singlet state with s-wave orbital state, which is called conventional supercon-
ductivity. Triplet superconductivity in conventional thin film superconductors
thus seems a non-existing phenomena, and yet it was recently measured in ex-
periments of Keizer et al. [29] en Sosnin et al. [30]. In the first, triplet pairing
was induced in the half-metallic ferromagnet CrO2 (100 % spin polarized ma-
terial), while in the latter is was induced in Holmium (Ho) which is a conical
ferromagnet. Somehow the above discussion about the possible combinations
between orbital and spin states is circumvented. The answer to this lies in the
time coordinate/symmetry which thus far was not really taken into account.
If the time dependent part of the Cooper pair wave function is anti-symmetric
under the exchange of the two particles, a s-wave spin-triplet pairing becomes
possible [31]. This mechanism should also allow for p-wave singlets, but they
have not been observed (yet).

Another type of unconventional superconductivity is what is now known
as the LOFF state, named after Fulde and Ferrell (1964) [32] and Larkin and
Ovchinnikov (1964) [33] whom considered this situation for the first time. The
LOFF state is an inhomogeneous superconducting state, where the two sin-
gle electron states forming the paired-state belong to different Fermi surfaces.
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This difference between the Fermi surfaces for the two spin bands is (in the
model systems) created by a homogeneous exchange field generated by polar-
ized magnetic impurities, making the LOFF state a display for the coexistence
of ferromagnetism and superconductivity. The parameter which determines if
the LOFF state is viable is the strength of the exchange field compared to the
condensation energy (the paramagnetic effect). Unlike the conventional BCS
state, the Cooper pairs in the LOFF state have acquired a non-zero total mo-
mentum. This gives rise to a spatially varying Cooper pair density (and gap
potential). Electronegativity is maintained by the normal electrons created
from the breaking of pairs (which is the cause for the density changes). The
description of the LOFF state is very similar to the induced superconductivity
(or proximity effect) in S/F junctions.

2.2 Fundamentals of ferromagnetism

In our experimental works the ferromagnets are ”used” for their exchange field
to investigate their interaction with superconductivity. In this section a brief
description of magnetism is given, focussed on the type and appearance it
takes in our devices (see ref [34] for a more detailed description).

Magnetism is a phenomenon encountered in nature, for example it is found
in the magnetic mineral Fe3O4 (known as Magnetite). Magnetism is well inte-
grated in nowadays technology, especially in the area of digital data storage.
The strength of magnetism, or actually, the magnetic induction or magnetic
flux density, is expressed in Tesla. The earth’s field is around 30-50 μT at the
surface, which is very weak compared to magnetic materials which can have
surface strengths up to 1 or 2 Tesla. A magnetic field can be connected to
electrical currents. These can be macroscopic, as e.g. utilized in electromag-
netic coils. In superconductors, macroscopic screening currents are able to
expel magnetic flux from its interior. They can also be microscopic, and it are
the atomic electrical currents together with the magnetic moments connected
to the electron spin, which lead to the magnetization of matter.

Whenever a piece of material is put into a magnetic field, the electron spin
and its associated magnetic moments will start to align with the field, which
behavior is know as paramagnetism (it typically only involves a small fraction
of the electrons and the induced field is rather weak). However, only few
materials show a spontaneous alignment of the spins in the absence of external
magnetic fields. This phenomenon is another display of a condensed state of
the electrons, just as superconductivity is. Again, the ordering appears below a
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certain critical temperature, while above this temperature the directions of the
magnetic moments randomize resulting in a zero net magnetization. Different
types of magnetic alignment exist. In a ferromagnetic material, the alignment
is parallel and the critical temperature is called the Curie temperature TC. In
an antiferromagnetic material the alignment is perfectly antiparallel and the
critical temperature is called the Néel temperature TN. All the alignments in
between are the ferrimagnetic materials.

All materials are built up from atoms, which consist of a positively charged
core of protons and neutrons with negatively charged electrons orbiting around
it. Both the electron cloud and the nucleus carry an intrinsic magnetic mo-
ment, but in general the magnetic moment of the nucleus is much smaller
than that of the electrons, and therefore we narrow down the discussion to
the electron part. In isolated atoms, incompletely filled electronic shells carry
both an orbital angular momentum and a spin angular momentum, and there-
fore a magnetic moment. As long as the orbits do not overlap, these ”local
moments” also occur in solids matter, but we shall not be concerned with such
magnetism either. Instead, we focus on so-called band ferromagnets, which
are found in particular in alloys of 3d-transition metals (Ti, V, Cr, Mn, Fe, Co,
Ni and Cu). In a band ferromagnet, the two spin bands are asymmetrically
as depicted in Fig. 2.3. Where in the normal metal (in the ground state) both
spin bands are filled up to the Fermi energy EF and contain an equally number
of electrons. In case of a ferromagnet one spin band (majority band) contains
more electrons n↑ and is filled up to a higher energy level compared to the
other spin band (minority band), which contains n↓ electrons. The energy of
the electron states are now given by ε↑,↓ (k) = ε0 (k)− I

n↑,↓
n with I a measure

for the exchange correlation and n = n↑ + n↓. In this new state, the kinetic

normal metal ferromagnet

Eex

N(E)

E

E
F

N(E)

E

E
F

Figure 2.3: Filling of the density of states N(E) of the two spin bands for a normal
metal and a ferromagnet, with EF the Fermi energy and Eex the exchange energy

energy has increased (electrons originally occupying states with k < kF now
occupy states with k > kF , increasing the kinetic energy ∝ k2). However, the
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potential energy has decreased (with less degenerate states doubly occupied,
the total spatially overlap of electron states has reduced, which reduces the
Coulomb repulsion energy). This new state is stable if the potential energy
decrease is larger than the kinetic energy increase. This leads to the Stoner
criterium for ferromagnetism to occur: N (EF ) I > 1, with N (EF ) the density
of states at the Fermi energy.

2.2.1 Magnetic domains and switching

A ferromagnet at a temperature below its Curie temperature thus shows spon-
taneous magnetization. However, the magnetization is not necessarily homo-
geneous. Moreover, the net magnetization of a ferromagnet (in absence of
any field) is usually close to zero! Energetically there is a strong preference

Figure 2.4: Different possible domain configurations in a ferromagnet, with from left
to right a decrease of the induced field outside the ferromagnet.

to keep the magnetization inside the material, and this typically leads to the
formation of domains (see Fig. 2.4). Each domain has a single orientation
of the magnetization vector and the domains are separated by domain walls,
which have typically a much smaller lateral dimension. In the domain wall,
the the magnetization vector rotates from the direction of the domain on the
one side to the direction of the domain on the other side. Two main classes of
domain walls are distinguished (see Fig. 2.5). In Bloch walls the rotation goes
out-of-plane, while in Néel walls it goes in-plane (where the plane is spanned
by the two magnetization vectors). Other more complex rotations exists, but
are always a combination of the Bloch and Néel type.
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Figure 2.5: Rotation of the magnetization vector M in an out-of-plane Bloch domain
wall (top) and an in-plane Néel domain wall (bottom)

The appearance of the domain configuration is the result of minimizing the
total energy of the system. For a ferromagnet, the following terms are to be
considered. The exchange energy (Eex) relates to the interaction between elec-
tron spins and is minimized for parallel alignment of the spins. The Zeeman
energy (EH) relates to the direction of the magnetization with respect to the
external field. It minimizes for parallel alignment. The crystalline anisotropy
energy (Eca) relates to the direction of the magnetization with respect to the
lattice orientation (it is minimized for alignment with the so-called lattice
easy-axes). The magnetostatic (or demagnetization) energy (ED) is an effect
of the dipole fields and therefore connected to the shape of the ferromagnet. It
is minimized by keeping flux inside the ferromagnet (or inducing a lowest field
outside the ferromagnet). The demagnetization energy is responsible for the
presence of domains, while the competition between the exchange energy and
crystalline anisotropy energy determines the width of the domain walls. The
first favors a (infinitely) broad wall, while the latter favors a thin as possible
wall. When the sample dimension becomes of the order of the typical domain
sizes, which are usually in the μm range, the shape anisotropy becomes the
dominant energy term (because it cannot become lower anymore by making
domains), especially in elongated shapes. For a long and thin wire, this often
leads to a magnetization aligned with the wire direction. The actual magnetic
configuration in the ferromagnet is coupled to an external magnetic field (H)
through the Zeeman term. Whenever this field H increases or decreases, the
magnetic configuration in the ferromagnet usually changes as well, leading to
a change in the (average) magnetization vector M. Fig. 2.6 illustrates this
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behavior, where the origin gives the initial state of the ferromagnet (prac-
tically zero net magnetization). The curve then passes the points a to f in
alphabetic order and ends up again in point a. The foremost characteristic of
this curve is that it shows hysteresis (i.e. there is a difference in the path for
going up and down in field), and it is generally known as the hysteresis curve.
For high enough (absolute) field, the ferromagnet saturates. It has become a
single domain, with its magnetization vector pointing along the applied field.
Points b and e are the remanent (or residual) magnetization points. After
being (partly) saturated once, the ferromagnet now shows a significant mag-
netization in zero applied field. Points c and f are the coercive field points.
They indicate the field required to return to a net magnetization of zero, or,
to change the direction of magnetization. The hysteresis curve shows, for the
chosen direction of applied field, what field strengths are required to fully mag-
netize the ferromagnet. It also shows over which field range there is a presence
of magnetic domains, and it shows how ”easy” or ”hard” it is to magnetize
along the chosen direction. An easy direction result in a squarish hysteresis
curve, with the remanent field values close to the saturation values. For a hard
direction the remanent field values are much reduced (points b and e close to
0) and the hysteresis curve starts to close.

Being two very different phenomena, antagonistic even, because the super-
conductor tries to expel any magnetic field from its interior. The two states
are very similar at the same time. Both superconductivity and ferromagnetism
are mean field orders of electron spins, parameterized by Δ and Eex respec-
tively. Both orders appear below a certain critical temperature and change the
normal metal density of states near the Fermi energy. However, the ferromag-
netic density of states is (usually) just an energy shifted version of the normal
density of states and the charge, energy and spin transport are governed by
normal electrons. The superconductor is much more special in this aspect,
as now a gap region has appeared near the Fermi energy. Charge transport
is now governed by Cooper pair, which don’t transport any heat (the energy
is always the Fermi energy, no extra energy can be carried by the Cooper
pair), and only the non conventional types can carry spin. Ferromagnetism
is an ordering/allignment of electron spin such that one spin band contains
more filled states (the majority band) and one contains less filled states (the
minority band). As a result, there is a polarization of the electron spin and a
potential (and kinetic) energy difference between the two spin bands. In the
conventional superconductor, the spin ordering goes in k-space, and in real
space no differences exists between the two spin populations.
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Figure 2.6: Hysteresis curve showing saturation magnetization (points a and d) re-
manent magnetization (points b and e) and coercive fields (points c and f).

2.3 Proximity effect

2.3.1 Proximity effect in S/N

Although Cooper pairs are only generated inside a superconductor (for T <
Tc), they are not confined to the interior of the superconductor itself. In a
junction between a superconductor (S) and a normal metal (N) Cooper pairs
can move from S to N, inducing superconducting properties into the normal
metal. This is called the (superconducting) proximity effect. At first sight,
this proximity effect does not seem possible as the Cooper pairs are not eigen-
functions of any non-superconducting material. Besides that, normal electron
transport is blocked by the energy gap for all energies close to the Fermi en-
ergy. However, a unique mechanism exists that allows for the transfer of a
Cooper pair from S to N (and visa versa). This process is the Andreev re-
flection [35] and is depicted in Fig. 2.7 (right panel). An incoming (excited)
electron at energy ε < Δ reaches the S/N interface. But, instead of being re-
flected it drags along a second electron at energy −ε, with opposite direction
of momentum and spin, to enter the superconductor as a Cooper pair. This
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second electron is taken from the valence band and consequently leaves a hole
behind. This hole then travels back along the path of the original incoming
electron because it has opposite direction of momentum. The reverse mech-
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Figure 2.7: The right panel shows the Andreev reflection at a normal metal - super-
conductor interface. Upon reaching the interface, the incoming electron at energy ε
causes a hole reflection at energy −ε (together they form the correlated electron-hole
pair). The incoming electron itself and the missing electron in the valence band have
entered the superconductor where they are converted into a Cooper pair. The left
panel shows the correlated electron-hole in k-space.

anism takes place as well. In that case the incoming particle is a hole in the
valence band (energy −ε), which upon arriving at the interface pulls a Cooper
pair out of the condensate. One of the electrons occupies the hole, while the
other electron occupies an excited state in de conduction band (energy ε, with
opposite direction of momentum and spin compared to the incoming hole) and
travels back along the path of the original incoming hole. The net result of
an Andreev reflection is thus a charge transfer of −2e from N to S. No ex-
cessive energy is transferred as in N the electron excitation is swapped for an
energy-equivalent hole excitation, while in S the Cooper pair is simply added
to the condensate (the ground state). The Andreev reflection is thus purely a
transfer of charge.

The induced electron-hole pair in N carries superconducting properties
along the path of travelling. It is a Cooper pair no longer bound together by
the attractive interaction. However, the two electrons that form the Cooper
pair through Andreev reflection (and consequently the induced electron-hole
pair) do not necessarily have exactly opposite momentum. The electron from
the conduction band has kF + δk, while the electron from the valence band
has −kF + δk (Fig. 2.7, left panel). This sums up to a net momentum of
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2δk ∼ ε
εF

kF � kF . The result of this k-vector mismatch is that the in-
duced pair dephases, even in the absence of pair breaking mechanisms. Only
a correlated pair at the Fermi energy (δk = 0) can escape from this de-
phasing. In case of diffusive systems, the dephasing time corresponds to
a travelling distance represented by the (energy averaged) coherence length
ξN =

√
(�DN/ (kBT )) =

∫
ξN (ε) dε, with DN the normal metal diffusion

constant and T the temperature, which is taken as the primary source of de-
phasing. Other sources of dephasing, such as inelastic processes and magnetic
fields, will only shorten this coherence length. At the Fermi energy, ξN (ε) goes
to infinity, while for increasing energy this length becomes shorter. This is why
for T → 0, ξN → ∞ as the only possible excitations at zero temperature ar
located at the Fermi energy. In reality, the coherence length will still be finite
(but pretty long) due to the other forms of dephasing. In S a Cooper pair is
being constructed(destructed) from(into) the two electrons from N. This con-
version also takes place over a certain distance, which is the superconducting
coherence length ξS =

√
(�DS/ (kBTc)) with DS the superconductor diffusion

constant (also for diffusive systems). Although ξS varies per material, it is
typically in the range from 10 nm to 1 μm. This is also the typical range for
ξN , unless the temperature is close to zero (for conventional superconductors
this means at least T < 1 K).

2.3.2 Proximity effect in S/F

When the normal metal is replaced by a ferromagnet (F), the effects of a
non-zero spin polarization P and exchange energy Eex have to be included.
One consequence is a reduction of the Andreev reflections as the mechanism
becomes limited by the minority spin band [36]. In case of 100% spin polar-
ization, the Andreev reflection even becomes fully blocked due to absence of
a complete spin band. In the presence of an (elastic) spin-rotation/flip mech-
anism at the interface, this blocking can be partially circumvented as this
effectively allows for Andreev reflection using a single spin band. A second
consequence is that the induced electron-hole pair experiences the exchange
splitting of the spin bands in the ferromagnet. There is a potential energy
difference between spin up direction and spin down direction of an electron
(which is at a fixed total energy). The minority spin band has an increased
potential energy, which means that at a certain energy level (total energy),
for example the Fermi energy, the kinetic energy of an electron in the minor-
ity spin band is lower compared to the majority spin band. As a result the
Cooper pair acquires a net momentum which leads to an oscillation on top of

using 2m (εF + ε) = �
2 (kF + δk)2 and ε � εF
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an exponential decay (see Fig. 1.3), as was shown by Demler and co-workers
[37]. The length scales involved are in general much smaller than the ”stan-
dard decay” (as in S/N) because the exchange energy is usually much higher
than the superconductor transition temperature. As an alternative approach
to examine the effect of the exchange field on the spin singlet state, we use the
Dirac notation and write for the singlet (Ψs) and triplet (Ψt

0,Ψ
t−1,Ψ

t
+1) states:

Ψs = 〈↑ | ↓〉 − 〈↓ | ↑〉
Ψt

0 = 〈↑ | ↓〉 + 〈↓ | ↑〉
Ψt−1 = 〈↓ | ↓〉
Ψt

+1 = 〈↑ | ↑〉

(2.22)

where | ↑〉 and | ↓〉 represent the spin up and spin down state (at fixed energy).
In the presence of the exchange energy Eex, the momentum of the electron in
the minority (spin down) band is decreased. As a result the spin down state
changes into:

| ↓〉 → | ↓〉 × e(−itEex/h)

〈↓ | → 〈↓ | × e(+itEex/h)
(2.23)

The Cooper pair in the spin singlet state then changes as follows:

Ψs = 〈↑ | ↓〉e−itEex/h − 〈↓ | ↑〉e+itEex/h

= Ψs × cos (tEex/h) − Ψt
0 × i sin (tEex/h)

(2.24)

The amplitude of the singlet state follows indeed an oscillation, and it also
shows that the nature of the oscillation is actually a change into the triplet
component Ψt

0. The period of this oscillation T = 2πh/Eex, which in a dif-
fusive system (diffusion constant DF ) corresponds to a length of

√
DF T =

2π
√

�DF /Eex = 2πξF . The definition for the ferromagnetic coherence length
ξF is similar to its normal and superconducting counter parts, except that
each coherence length is based on the dominating energy term of the system.
When, for example, the temperature is of the same order as the exchange
energy, the temperature has to be added to ξF . The presence of a homoge-
neous exchange field thus leads to the appearance of correlated spin triplet
pairs. However, only one out of the three spin triplets appears, and since it
still consists of both spin directions, the ferromagnet breaks it down just as
easy as the conventional singlet pairs. The other two, the spin equal triplets,
are generate from the Ψt

0 triplet once it experiences multiple directions of the
exchange field [38, 39]. These ”multiple directions” actually means inhomo-
geneous magnetism, which for example can come from magnetic domains or
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magnetic impurities. These are needed to rotate the spins of the Ψt
0 (mz = 0)

component such that it gathers non-zero mz which are the ”spin equal” com-
ponents. An interface which exhibits inhomogeneous magnetism is called a
spin active interface. Fig. 2.8 shows calculations on such spin active inter-
face by Eschrig et al. [40]. The amplitudes of all generated components are
depicted. In case of a weakly polarized ferromagnet (top curves), the spin-
active interface does not generate a significant fraction of long-range triplet
components. In case of a strongly polarized ferromagnet (bottom curves) the
long-range triplet component which is aligned with the magnetization vector
in the ferromagnet arises. The decay of this component in the ferromagnet is
much slower than all other induced components in F. In the superconductor,
all generated triplet components decay over a characteristic length ξS . The
singlet component recovers over that distance, being at a lowest amplitude at
the interface.

Figure 2.8: Calculation of the triplet components generated at a spin-active S/F
interface, as taken from Eschrig et al. [40]. Top: weakly polarized ferromagnet,
Bottom: strongly polarized ferromagnet
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