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Introduction
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2 Chapter 1. Introduction

1.1 Superconductivity

Absolutely nothing... is all that is left of the resistance of a superconduc-
tor. This stunning result was first seen by Heike Kamerlingh Onnes in 1911
at the university of Leiden when cooling down a piece of metallic Mercury
(Hg) to below 4.2 K [1]. Normally for metallic substances the electrical re-
sistance goes down with decreasing temperature and saturates at low tem-
peratures meaning that a finite resistance remains, caused by imperfections
to the (infinite) crystal lattice. The unique property of a superconductor
is that the resistance suddenly vanishes at the moment that the tempera-
ture falls below the critical temperature (Tc) of the material (see Fig. 1.1).
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Figure 1.1: Typical resistance ver-
sus temperature curves for a normal
metal and superconductor with transi-
tion temperature Tc.

Several well-known elemental supercon-
ductors are Aluminum (Al), Tin (Sn),
Lead (Pb) and Niobium (Nb) with re-
spective Tc’s of 1.2, 3.7, 7.2 and 9.3 K.
The latter being the highest of ele-
mental bulk superconductors. Higher
Tc’s are found in a variety of alloys
and compounds. Widely used are the
compounds of Niobium with Nitrogen
(NbN) and with Titanium (Nb0.6Ti0.4),
which have respective Tc’s of 16.1 and
9.8 K. In 1986, a new class of supercon-
ductors was discovered by Bednorz and
Müller [2], the superconducting copper-
oxides (cuprates). These are synthe-
sized ceramic compounds with a per-
ovskite crystal structure. A (at that
time) staggering Tc as high as 92 K was found in the cuprate YBa2Cu3O7,
now know as YBCO (Yttrium-Barium-Copper-Oxide). This meant supercon-
ductivity at temperatures above the liquid Nitrogen (LN2) temperature of
77 K, which is the standard coolant to get far below room temperature. Cur-
rently the highest observed Tc for a bulk material is found in a cuprate and
reaches 138 K (the cuprate being (Hg0.8Tl0.2)Ba2Ca2Cu3O8.33). The complete
disappearance of electrical resistance is not the only unique property of a su-
perconductor. A second important property is the expulsion of magnetic flux
from the interior of the superconductor (Meissner effect [3]) which also starts
when the temperature gets below Tc. This is very different from ordinary, non-
superconducting matter, where magnetic flux can (almost) penetrate straight
through. Two main types of superconductors are distinguished based on their
ability to expel magnetic flux. In type-i superconductors the expulsion is
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complete up to a certain maximum or critical field Hc1, above which the su-
perconductor returns to the normal state. Type-ii superconductors also show
complete expulsion up to a field Hc1, but now for higher fields magnetic flux
starts to enter the superconductor in the form of small flux bundles, so-called
vortices, crossing the interior of the superconductor (see Fig. 1.2). These

superconductorsuperconductornormal metal

Magnetic flux lines from a homogeneous source

type I type II

Figure 1.2: Magnetic flux lines through a normal metal, a type- i superconductor and
a type- ii superconductor. Dashed lines represent the vortices.

vortices are like tubes having a non-superconducting core and carry a single
quantum of flux φ0 = h/(2e). With increasing field the density of vortices
increases until at a field Hc2 the superconductor becomes normal. Almost
all elemental superconductors are type-i (exceptions are Niobium, Vanadium
(V) and Technetium (Tc)), while the cuprates and the other superconducting
alloys and compounds are all type-ii.

But what exactly is superconductivity? This question remained unan-
swered for almost 50 years. The microscopic mechanism and description of
this phenomenon got shape in 1957, when it was recognized that an attrac-
tive interaction between electrons is needed. For the classical superconductors
this is mediated by electron-phonon coupling, but for the high-Tc supercon-
ductors the interaction mechanism is not fully unravelled yet even at present
day. In short, superconductivity is a condensed state (or condensate) of spe-
cially paired electrons isolated from the normal electrons by an energy gap
∆. The binding energy of the pairs is weak (order of meV) and easily de-
stroyed by temperature, so only at very low temperatures superconductivity
will appear. It is a macroscopic quantum phenomena which can be described
by a single wave function characterized by an amplitude and phase (both in
general functions of position and time). This condensate of electron pairs thus
moves/acts as a single entity and is not hindered by the obstacles that cause
dissipation for the normal electrons. One could say, the mechanism for dis-
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sipation in normal metals (such as inelastic collisions with other electrons or
the crystal lattice) are just not powerful enough to break these electron pairs
apart. For temperatures above Tc the superconductor act as a normal metal.
The Fermi sphere (the collection of electronic states) is filled up to the Fermi
energy (EF ) with the exception of an energy shell of order kBT around EF

which contains excited states. Furthermore, around EF the density of states
is continuous and more or less constant. For temperatures below Tc the super-
conducting condensate emerges with a peculiar density of states around the
Fermi energy; the condensate itself is located at EF , but the continuum of
states closely around EF have disappeared. The condensate is isolated from
the normal electron states by an an energy of ∆, both to the states below
and above EF . The full size of the energy gap is 2∆ ∼ 3.5kBTc (for weak
coupling) and thus directly relates to Tc. The electron pairs in the condensate
are called Cooper pairs, named after Leon Cooper who in 1956 came up with
the idea of these pairs. The pairing goes in a special way: only electrons with
opposite momentum (k-vector) and opposite spin can form a Cooper pair and
condense into the condensate (in case of a conventional superconductor). The
conventional Cooper pair thus contains an electron with spin up and an elec-
tron with spin down. This makes superconductivity intrinsically incompatible
with magnetic fields, which tend to align all the electron spins. A direct result
of the fact that the condensate can move freely, is that it can create circu-
lar currents (screening currents) to generate a magnetic field. This is what
happens when a superconductor is exposed to magnetic flux; it generates and
equal but opposite field to expel the magnetic flux from its interior. Can a
superconductor expel just any field? No, because the supercurrent density,
and thus the generated field strength, is limited. Above this maximum the
Cooper pairs become unstable and the condensate collapses, forcing the su-
perconductor back to the normal state. The field at which this happens is
called the (upper) critical field, and the maximum current it can carry is the
critical current Ic. Whether a superconductor is type-i or type-ii depends
on the ratio between two important parameters of the superconductor. These
two are the superconducting coherence length ξS and the magnetic penetra-
tion depth λ. The first one (although a variety of definitions exists) is roughly
the characteristic length over which ∆ can change its amplitude significantly.
It is also roughly the average size of a Cooper pair, which is a very non-local
object. The second one is the distance over which magnetic flux can penetrate
the superconductor from the sides/surfaces (a normal metal has infinite λ). If
the ratio λ/ξS < 1/

√
2 the superconductor is type-i, else it is type-ii, where

for ξS the Ginzburg-Landau coherence length should be used. In other words,
only when the magnetic field screening is strong enough to reduce λ to about
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ξS , the superconductor can completely free its interior from magnetic flux.
Otherwise, the superconductor gives up certain areas, in the form of vortices,
to permit flux passing through its interior.

1.2 S/F junctions

Whenever (a layer of) one material is connected to another (layer of) mate-
rial, an interface is created. At the interface the electronic states from both
sides are glued together and the electronic properties of both materials be-
come mixed in a small region near the interface. The quality of the interface
determines the resistance, or better, the transmission and reflection probabil-
ities for an incoming electron. In general these probabilities depend on the
wave vector (or energy) and spin of the incoming electron. The latter be-
comes important when magnetic materials are used. The resulting interface
region may have new properties (i.e. properties that don’t appear in the bulk
materials) and transport characteristics can change drastically. This makes
it very interesting for both fundamental research and for applied / device-
oriented research. A good example is the diode (or pn-junction), which is
a very commonly used device and can be formed by connecting a p-type to
an n-type doped semiconductor. It shows a highly non-linear (non-ohmic)
current-voltage characteristic: the interface allows electrical current to pass in
one direction, while blocking the other direction. Whenever a magnetic ma-
terial is used the interface will have a spin dependent transmission/reflection.
Usually the transmission for one spin direction is (much) better than for the
opposite spin direction. This difference originates from the availability of elec-
tron states near the Fermi energy, which for magnetic materials are generally
unequal for the two spin directions. A particular convenience of the electron
spin is that its direction can be externally manipulated by applying a mag-
netic field. This possible manipulation combined with spin dependent interface
properties has led to many spin based devices. Perhaps most important is the
Giant-Magneto-Resistance (GMR) effect. In GMR devices, the electrical re-
sistance can be changed significantly by a relative small external field. This
effect forms the basis for modern spintronics, also called spin transport elec-
tronics. These are devices where the electron spin is exploited to manipulate
the transport of its electrical charge, thus manipulating the transport charac-
teristics of the device. Although superconductors can carry electrical current
without energy loss, they are not well fitted to integrate in standard electronics
due to the very low temperature of operation. Yet they have found their way
into medical instruments where macroscopically large superconducting coils

Bloch states (plane waves) are defined by wave vector k and spin σ
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are used to generate high magnetic fields (necessary for the Magnetic Res-
onance Imaging (MRI) scanners) Next to this application of bulky ”power”
sources, they are also integrated into space technology electronics, usually as
highly sensitive measurement/detection electronics (sensors), as in outer space
the natural environment temperature is only a few Kelvin.

A superconductor (S) and ferromagnet (F) both have a global, but mu-
tually antagonistic, ordering for electron spins. This makes that interfaces
between the two materials (proximity systems) are expected to be very rich in
physics as multiple energy and length scales are competing with each other.
One of the main questions in these systems is: how does the induced su-
perconductivity (in F) behave and over what distances can it survive. The
main competitors are the superconducting gap energy ∆, the ferromagnetic
exchange energy Eex, the superconducting (ξS) and ferromagnetic (ξF ) coher-
ence length, and the size of the system (thicknesses of the layers). The energies
∆ and Eex are respectively coupled to the lengths ξS and ξF . Here, ξF is the
typical distance over which Cooper pairs dephase in the F layer, and Eex is
related to the potential energy difference between the (Fermi levels of the) two
spin bands. These S/F proximity systems are in general most interesting from
a fundamental and theoretical point of view. The first reports on junctions
between a superconductor and non-superconducting material date from 1970-
1973. Meservey et al. [4] and Tedrow et al. [5, 6] examined S/F junctions and
showed the existence of a spin-polarized current across Al/AlOx/F junctions.
From this an estimate for the degree of polarization of the ferromagnetic layer
was obtained. The Aluminum-Oxide (AlOx) is a (thin) insulator layer, and
as ferromagnetic material they used Iron (Fe), Cobalt (Co), Nickel (Ni) and
Gadolinium (Gd). In these experiments the superconductor was used for its
distinctive quasiparticle density of state (quasiparticles are the elementary ex-
citations of a system), which is zero for sub-gap energies and sharply peaked
near the gap edge. During the same period, Tinkham and Clarke [7, 8] studied
non-equilibrium superconductivity (which is an imbalance in the quasiparti-
cle density of states) in S/N junctions. They found that the conversion of
a normal (quasiparticle) current into a supercurrent leads to an imbalance
in the quasiparticle spectrum inside the superconductor. The quasiparticles
become distributed over the available states in a way similar to what is ex-
pected from an increase in temperature. Later it turned out that the effect
of non-equilibrium superconductivity is fundamentally not very different from
the effect of a ferromagnetic exchange field (or energy) on a superconductor.

The technological advancements in micro-structuring have boosted, and
made it possible to investigate proximity systems on a mesoscopic scale. This
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means down to the scale where the various characteristic lengths of the sys-
tems (like ξs) are competing (or: become visible). In S/F proximity systems,
superconductivity is induced into a natural hostile environment, where it is
broken down by the exchange energy Eex roughly over a distance ξF . In a
normal metal superconductivity is also broken down (roughly over a distance
ξN ), but the important energy is then the ”temperature” kBT which is usu-
ally much smaller than Eex, leading to ξN À ξF , and hence the Cooper pair
dephasing in N is much weaker. Apart from the much smaller distance over
which superconductivity survives in F, it also behaves in a rather different
way. Instead of a clean monotonic decay, it oscillates (see Fig. 1.3). But the

Ψ

x

superconductor

ξN

ξF

ΨN

ΨF

Figure 1.3: Amplitude of the (induced) superconducting wave function Ψ as function
of distance x, in a normal metal ΨN and a ferromagnet ΨF , with ξN and ξF the
respective coherence lengths.

interesting part does not stop with the oscillation, in fact, it is where it starts!
The oscillations are not just simple amplitude oscillations. Instead, it is the
nature of the pairing itself that is changing which causes this oscillation to
appear. The conventional Cooper pair is in a spin singlet state, but now,
under the influence of a homogeneous exchange field, spin triplet correlations
appear (due to spin rotation of the conventional Cooper pairs) and the Cooper
pair becomes a mixture of the two. Under the condition of inhomogeneous ex-
change fields, it is even possible to create all of the three spin triplet (instead
of only the mz = 0 component), which include the ”spin equal” components
(mz = ±1). The ferromagnet has succeeded in changing a part of the normal
Cooper pairs, which cannot live long in the ferromagnet, into other types of
pairs for which the ferromagnet is no longer a specially hostile environment.
This triplet pairing, or, more general, the effect of inhomogeneous exchange
fields on the superconducting state, is currently a burning question and a se-
rious research topic in the field of S/F proximity systems. Moreover, there is
also interest in the behavior at the S-side of the interface where it is possible
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that ferromagnetism is induced.

1.3 Motivation & Outline

The oscillation of the Cooper pair density appears whenever the Cooper pairs
experience a homogeneous exchange field. However, for the generation of the
”spin equal” triplet components the Cooper pairs need to experience a non-
homogeneous exchange field. Such non-homogeneous exchange fields are found
in magnetic domains and domain walls. About half of this thesis relates to
this problem: what is the effect of inhomogeneous magnetism (in the form of
domains and domain walls) on the superconducting state. Thus, rather than
examining the induced superconductivity in the ferromagnet, we examine the
changes to the superconducting state as caused by the magnetic domains. This
we do in a special type of structure that gained much attention: the supercon-
ducting spin-valve. Also in such a spin-valve structure we search for traces of
induced magnetism in the superconductor, and by replacing the ferromagnet
for a normal metal under non-equilibrium conditions we (theoretically) exam-
ine non-equilibrium effects on the superconducting state. The latter two form
the other half of this thesis.

The superconducting spin-valve consist of a superconductor sandwiched
between two ferromagnetic layers (see Fig. 1.4). Calculations show that for
such a device Tc is always higher if the magnetization, and therefore the ex-
change fields, form a anti-parallel (AP) configuration than if they form a par-
allel (P) configuration [9, 10]. In effect it is a organized inhomogeneous device,
which can be switched from inhomogeneous (AP) to homogeneous (P). When
the ferromagnetic layers are thin enough, they are also subject to the oscil-
latory nature of the induced superconductivity and can show full re-entrant
behavior, which is the most interesting feature of such a device: the possi-
bility to switch on and off superconductivity by a small field manipulation,
and hence, controlling the supercurrent through the device. To gain control
of the exchange field, soft magnetic materials are favorable since they can
be switched by small external fields such to not disturb the condensate. To
achieve separate switching, materials (or layers) with different switching fields
can be used, or one could pin one of the layers by using an anti-ferromagnet.
The latter one is the one proposed in the first proposal of the spin-valve and
is most popular.

Theory describing the superconducting spin-valve (or more general, S/F
proximity) is well developed for the case of weak ferromagnetism (Eex ¿ EF )
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ferromagnet
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superconductor
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Figure 1.4: Schematic of the proposed superconducting spin-valve, where the direction
of the exchange field Hex of one of the layers is pinned by the anti-ferromagnet,
while the other can be manipulated by a (small) external field. The calculations are
taken from [9] (with interface transparency parameter TF = 25) and show that the
reduced transition temperature tc in anti-parallel (AP) configuration is always higher
compared to parallel (P) configuration of the ferromagnetic exchange fields. Here,
d is the layer thickness, ξ the coherence length, and subscripts S and F denote the
superconductor and ferromagnet.

with homogeneous exchange fields. For strong ferromagnetic materials, or for
inhomogeneities in the exchange field (in particular from domains or domain
walls), the framework is either intrinsically not suitable or poses severe diffi-
culties. From the experimental side, measurements on spin-valves based on
weak ferromagnets (and almost zero spin polarization) seem to coincide with
the theoretical prediction, although the effects are generally weaker than what
might be expected from theory. However, it is doubtful that the pre-assumed
conditions of homogeneous exchange fields are always realized. This makes
the interpretation of the results at least ”open for discussion”, as the effects of
magnetic domains and domain walls might be the actual dominating mecha-
nism for the observed effect. When using strong ferromagnets, where Eex is no
longer much smaller than EF and there will be a non-zero spin polarization,
contradictory looking results are obtained. Apart from differences in the sam-
ple geometry and/or used materials, dipolar fields coming from domains (or
domain walls) are often mentioned as being the source for these results. As
these main difficulties are all related to domains, it is only natural to examine
these effects in more detail, which is the main part of this thesis. Chapter
two describes the basics of the theoretical concepts encountered in the follow-
ing chapters. Chapter three gives a brief description of the sample fabrication
and measurements setup. Chapter four and five focus on the effect of domain
structure in the ferromagnetic layers on the working of the superconducting
spin-valve. This is examined for both the weak ferromagnetic based CuNi

creo
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spin-valve (chapter four) as for the strong ferromagnetic based Py spin-valve
(chapter five). Chapter six is a rather different type of experiment on the
superconducting spin-valve, where an attempt is made to detect inverse prox-
imity (induced magnetism in the superconductor) by the usage of muon spin
rotation experiments. Chapter seven is a theoretical work on non-equilibrium
superconductivity in a mesoscopic superconducting wire, connected to normal
metallic reservoirs.
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Theoretical concepts

11
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2.1 Fundamentals of superconductivity

2.1.1 Foundation of the microscopical description

The work of Cooper [11] (1956) shows that if the interaction between electrons
leads to a net attraction between two electrons close to the Fermi surface, then
bound states can be formed located below the Fermi surface. The density of
these bound states strongly depends on the total momentum K of the pair,
being at a maximum where K = 0 and rapidly going to zero for non-zero K.
It was therefore suggested that the elementary excitations of the pair were
most likely to correspond to the splitting of the pair rather than to increasing
the kinetic energy of the pair (since its density falls of so quickly with increas-
ing K). Such net attractive interaction between electrons can occur when
the attractive phonon interaction dominates the Coulomb repulsion. Where
the latter mechanism is just the direct repulsion between two particles of the
same charge, the first mechanism is an indirect interaction. The negatively
charged electron slightly deforms the surrounding lattice by pulling on the
positively charged atoms and while the electron moves around, it leaves a trail
(or wave) of such deformations (or phonons). As this is an area with slightly
increased positive charge, it attracts new electrons. Effectively, by this mech-
anism electrons attract each other mediated by phonons. In the works of
Bardeen, Cooper and Schrieffer [12, 13] (BCS theory, 1957) and of Bogoliubov
[14] (1958) a systematic theory of superconductivity has been erected on this
principle of attraction. It was shown that the ground state of such a system
of interacting Fermi particles is located below the normal state with a filled
Fermi sphere and, in consequence, it is separated from the excited states by
an energy gap with a magnitude of the order of the coupling energy of an
individual pair. Furthermore, the net attraction between electrons takes place
inside an energy shell of order kBTc around the Fermi surface, with Tc the
superconducting transition temperature. For the elemental superconductors,
like Aluminum (Al), Mercury (Hg), Niobium (Nb), Tin (Sn) and Lead (Pb),
this coupling ranges up to about 1 meV, with a corresponding Tc up to about
10 K. An essential feature of the BCS theory is that all the Cooper pairs must
behave in exactly the same way, which makes that they can be described by a
single wave function. According to BCS theory: ”The pairs should be chosen
so that transitions between them are possible, i.e. they all have the same total
momentum”. As a best choice for the ground state pairing they took pairs
with zero total momentum and opposite spin. The latter because exchange
terms enhance the repulsive interaction for parallel spins. The Cooper pairs
are located at the Fermi energy which is separated by an energy gap ∆ from
the quasiparticle states. The total gap between the (occupied) quasiparticle
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spectrum below EF and the (unoccupied) quasiparticle spectrum above EF

is 2∆ ≈ 3.5kBTc. This approximation is valid in the weak coupling limit,
which means superconductors for which N0V < 0.3 where N0 is the normal
density of states at the Fermi energy and V the attractive interaction. Most
classical superconductors belong to this limit (Al has a bulk Tc of 1.2 K with
∆ ∼ 180 µeV) but for example Pb with a bulk Tc of 7.2 K and ∆ ∼ 1.3 meV
does not. The left panel of Fig. 2.1 shows the pairing of states in k-space, for
both a filled pair state (|k| > kF ) and an empty pair state |k| < kF . The
elementary excitations are broken paired states, which means that one of the
two states of the paired state is occupied and one is empty. If |k| < kF the
excitation is hole-like in its behavior, while for |k| > kF it is electron-like. The
k-space represents only kinetic energy and thus the (potential) energy lower-
ing of the paired states due to condensation is not ”included”. The paired
states assemble in the condensate which is at the Fermi energy EF while the
excitations (broken states) occupy single electron states in the quasiparticle
spectrum (right panel of Fig. 2.1, with EF = 0). Electron-like excitation have
E > EF and hole-like excitations have E < EF . The Cooper pairs can be bro-
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 ∆

NS / N0

quasiparticle spectrum

kx0
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kF

δk

δk << kF

paired states

Figure 2.1: Pairing of states in k-space (left panel) and quasiparticle spectrum
(right panel) for a BCS superconductor. The light/dark shaded areas represent
empty/occupied states, the black/white dots represent electron/hole excitations and
the wiggled lines represents the paired states. Left panel: The Fermi wave vector kF

is much larger then the shell δk around kF where the pairing takes place (for clarity
kz is taken zero). Right panel: The density of states NS is normalized to the normal
state density of states N0, the energy E is normalized to the gap energy ∆, and the
Fermi energy EF is set to zero.
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ken into excited states by temperature, but also by mechanisms that change
the pairing itself. The Cooper pairs in a conventional bulk superconductor
(s-wave, spin-singlet = BCS superconductor) consist of two electrons with op-
posite spin and momentum close to Fermi momentum. The Fermi spheres to
which the two particles (k, ↑) and (−k, ↓) belong are identical, say symmet-
rical. Whenever this symmetry is lifted the Cooper pair starts to experience
a pair breaking force, weakening the superconducting state. Two types of
symmetry breaking effects are recognized. The orbital effect is related to a
shift between the Fermi spheres, which happens if the one acquires a net mo-
mentum with respect to the other. The paramagnetic effect is related to a
change in the size between the Fermi spheres, which translates to an exchange
energy between the two spin states. The orbital effect is responsible for the
limitation of the supercurrent density and magnetic flux expulsion. In terms
of momentum p the two electrons of the Cooper pair are (p, ↑) and (−p, ↓),
but in the presence of an electromagnetic field described by the vector po-
tential A, the potential (or field) momentum eA/c needs to be added to the
kinetic momentum mv, with c the velocity of light. For the Cooper pair this
results in (p + eA/c, ↑) and (−p + eA/c, ↓), which gives a total momentum
of 2eA/c. The exerted Lorentz force is directed in opposite directions for
the two electrons, trying to break the Cooper pair. Whenever the associated
energy of the pair momentum exceeds the condensation energy, the Cooper
pair is no longer a stable ground state. A transition from the superconducting
state to the normal state by the orbital effect is essentially due to the kinetic
energy of the pairs becoming larger than the condensation energy, while by
the paramagnetic effect it is if the exchange energy becomes larger then the
condensation energy.

The BCS Hamiltonian that describes superconductivity is valid for a su-
perconductor in equilibrium at zero temperature in the absence of any interac-
tions other than the attractive interaction that causes the formation of Cooper
pairs. Using the creation and annihilation operators (c†kσ and ckσ) for Bloch
states specified by wave vector k and spin σ, it can be expressed as:

HBCS =
∑

kσ

εknkσ +
∑

kk′
Vkk′c

†
k↑c

†
−k↓c−k′↓ck′↑ (2.1)

where nkσ = c†kσckσ is the single-particle number operator (which counts the
number of particles in a specific state), εk = ~2k2/ (2m) is the correspond-
ing (kinetic) energy with m the electron mass, measured with respect to the

momentum p, velocity v and wave vector k are related by p = mv = ~k
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Fermi energy, and Vkk′ is the attractive interaction. The first term appear-
ing in the Hamiltonian is the standard kinetic energy term, while the second
term describes the scattering of a Cooper pair from state (k′ ↑,−k′ ↓) to state
(k ↑,−k ↓) under the influence of the attractive interaction. In the BCS model,
the attractive interaction is taken constant, Vkk′ = V , for energies up to a cer-
tain cut-off energy (the Debye energy), otherwise it is zero. The Hamiltonian
is accompanied by a self-consistency relation for the energy gap:

1
V

=
1
2

∑

k

1√
∆2 + ε2k

(2.2)

Solving the Hamiltonian for a certain potential V gives the eigenstates and
eigenenergies of the superconductor. By inserting these into the self-consistency
equation, the chosen potential V should be regained if the chosen value was
correct. These two equations (Eq. 2.1, 2.2) form the basis for the modern
description of superconductivity, which is written in the language of Green
functions.

2.1.2 Bogoliubov-de Gennes equation

The BCS theory is written in (standard) single particle creation and annihila-
tion operators for Bloch states specified by wave vector k and spin σ. However,
the elementary excitations of the superconductor are no longer the single par-
ticle states which we have for a normal metal, instead they are broken Cooper
pair states. This makes the usage of the standard single particle creation and
annihilation operators very cumbersome (for finite temperatures). A mathe-
matical formulation based on the BCS theory was developed by Bogoliubov
where he introduced the concept of coherent mixtures of particles and holes to
describe a superconductor at finite temperatures. These mixed particle-hole
excited states are known as Bogoliubons. The introduction of operators for
these Bogoliubons has been generalized and evolved into what is now known
as the Bogoliubov-deGennes (BdG) equation [15]. In this description, the
standard momentum operators (k-space) have been replaced by field oper-
ators (real-space), which have the advantage that they are able to describe
systems in which k is no longer a good quantum number and thus the eigen-
functions are no longer plane waves (dirty systems for example). The solutions
(eigenfunctions) are given by an electron-like part, ψe (r), and a hole-like part,
ψh (r), which have to be solved in a self-consistent manner fulfilling the gap
equation. The Bogoliubov-deGennes equation can be expressed as:

(
H0 ∆(r)

∆ (r)∗ −H∗
0

) (
ψe (r)

ψh (r)

)
= E

(
ψe (r)

ψh (r)

)
(2.3)
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The Hamiltonian H0 contains the kinetic energy term plus all interactions
other than ∆ (like the crystal potential and impurity potential). The ∗ sym-
bol denoted the complex conjugate. Clearly, the coupling between electron
and hole states exists for nonzero ∆ only. One of the many applications of the
BdG equations is the model of Blonder-Tinkham-Klapwijk [16] (BTK, 1982),
which solves the BdG equations for an N/S interface with arbitrary interface
barrier potential. They consider all possible reflection/transmission processes
at the interface (normal reflection, Andreev reflection, normal transmission,
branch-crossing transmission) and calculate the energy dependent transport
probabilities, which allows for the calculation of current (I) - voltage (V) char-
acteristics. While the BTK model seems the ”end of the story” for N/S inter-
faces, in 1991 it was shown [17] that it breaks down when transport is domi-
nated by impurity scattering. Strictly speaking, BTK remains correct but its
validity becomes limited to the interface itself (which remains ballistic) and
so looses is functionality for determining transport properties. So, although
potentially the BdG model can deal with impurities, in real systems it is often
still of not much use. This is because the positions (and therefore the poten-
tial) of the impurities are generally unknown, making it a serious difficulty
to add the effects of scattering processes near the interface. This shifted the
attention towards the usage of quasiclassical Green functions, which by then
was already solidly formulated for about 20 years. The theoretical framework
exhibits a higher complexity of mathematical concepts, but its functionality
is more powerful. Currently, this framework is the modern way to describe
superconductivity.

2.1.3 Green functions and the Gor’kov equation

A large amount of theoretical work has been done in describing superconduc-
tivity using quantum field theory, which had proved to be a very powerful and
effective tool for microscopic theories of solid state systems (for a thorough
description see for example [18, 19]). Green functions contain the information
of the transport probabilities of single particles. They describe how particles
propagate through the system influenced by all kind of interactions. Once the
Green functions of a system are known, all single-particle properties of the
system are known (for example, the density of states and electrical current)
The single-particle normal Green function is defined by:

Gαβ

(
x, x′

)
= −i

〈
Tt

(
ψα (x) ψ†β

(
x′

))〉
st

(2.4)

with x = (r, t) and ψ†α (x) and ψα (x) are the time dependent electron cre-
ation and annihilation (Heisenberg) operators respectively, satisfying the usual



2.1. Fundamentals of superconductivity 17

commutation rules for Fermi statistics. The Green function is a statistical
average over all possible paths from x′ to x, denoted by 〈...〉st and Tt is the
time-ordering operator which orders the operators logically in time, giving
a minus sign for each permutation. Effectively, the normal Green function
Gαβ (x, x′) describes the movement of a particle from x′ to x, or more pre-
cise, the probability amplitude for a particle to move coherently from x′ to
x, where β and α are the initial and final spin direction of the particle (the
particle being an electron if t > t′ and a hole if t < t′). Note that the normal
Green function depends on the standard electron operators and not on the
quasiparticle operators introduced by Bogoliubov (to describe single-particle
motion). The normal Green function is complemented by a Green function
that describes the opposite movement:

Gαβ

(
x, x′

)
= −i

〈
Tt

(
ψ†α (x) ψβ

(
x′

))〉
st

(2.5)

and they are related through Gαβ (x, x′)∗ = −Gαβ (x, x′), where ∗ denotes the
complex conjugate. In addition to the normal Green functions which describes
coherent motion of single-particles (using single-particle electron states), a sec-
ond type of Green function is needed to deal with the Cooper pairs, which oc-
cupy the paired states. These so-called anomalous Green functions are defined
by:

Fαβ (x, x′) = −i 〈Tt (ψα (x) ψβ (x′))〉st
Fαβ (x, x′) = −i

〈
Tt

(
ψ†α (x) ψ†β (x′)

)〉
st

(2.6)

and satisfy Fαβ (x, x′)∗ = −Fαβ (x, x′). Clearly, Fαβ (x, x′) annihilates a
Cooper pair (empties a Cooper pair state) and Fαβ (x, x′) creating one (fills a
Cooper pair state). Just as for the normal Green function, the transport na-
ture is visible again as the highest probability to create(annihilate) a Cooper
pair is at, or very near the position where the first(remaining) electron has
coherently travelled to during the time interval from t′ to t. Fig. 2.2 shows a
graphical representation of the normal and anomalous Green function. Next to
these real time Green functions, the imaginary time Matsubara Green function
is often encountered in literature within the field of superconductivity. The
Matsubara Green function is valid for systems in equilibrium (i.e. no potential
differences) and has the advantage that at finite temperatures the ordering of
the electron operators is still unambiguously defined. For the real-time Green
functions special time ordering rules (Keldysh technique) are necessary (adding

{
ψα (x) , ψ†β (x′)

}
= δ (x− x′) δαβ and {ψα (x) , ψβ (x′)} =

{
ψ†α (x) , ψ†β (x′)

}
= 0.
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superconductor

ψα(r',t') ψα(r,t)

Fα (x,x')

ψα(r,t)ψα(r',t')

Gα (x,x')

Figure 2.2: (Left) A spin up electron is added to the superconductor (location r′,
time t′) and at time t > t′ the probability to find that electron at location r is
probed (where the electron could have taken any possible path from r′ to r). This
represents the normal Green function G↑↑ (x, x′). (Right) The spin up electron of
a Cooper pair is taken out of the superconductor (location r′, time t′) and at time
t > t′ the probability to find the remaining electron of the Cooper pair is probed.
This represents the anomalous Green function F↓↑ (x, x′).

to the mathematical complexity), but it is applicable to non-equilibrium sys-
tems as well. The anomalous Green functions describe the superconducting
correlations and are related to the order parameter ∆ of the superconductor.
This order parameter is a measure for the strength of the superconducting
energy gap and uses the same symbol. For an s-wave superconductor we have:

∆αβ (x) = −λFαβ (x, x)

∆αβ (x) = −λFαβ (x, x)
(2.7)

where λ is the attractive interaction (λ < 0). Using the anti-commutation
rules one can obtain: ∆αα (x) = −∆αα (x) and ∆αα (x) = −∆αα (x). As a
consequence, the order parameter (for an s-wave superconductor) has to be
zero for equal spin directions. Only the pairing of electrons/states with oppo-
site spin directions contribute to the superconducting order parameter, which
is a fundamental assumption within the BCS theory.

The Green functions can be conveniently written/ordered into 2×2 matri-
ces in spin space, where the elements contain all possible spin combinations.
The set of matrices that span the spin space are the Pauli spin matrices given
by:

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.8)
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where σ0 is the unity matrix in spin space and σiσi = σ0. For the normal
Green function and the order parameter we write:

Ĝ (x, x′) =

(
G↑↑ (x, x′) G↑↓ (x, x′)

G↓↑ (x, x′) G↓↓ (x, x′)

)
, ∆̂ (x) =

(
0 ∆↑↓ (x)

∆↓↑ (x) 0

)
(2.9)

Similar definitions hold for Ĝ (x, x′), F̂ (x, x′), F̂ (x, x′) and ∆̂ (x). These
(2×2) matrix Green functions can be further collected/ordered into a single
(4×4) matrix Green function in the Nambu⊗spin space, with ⊗ the tensor
product. In the Nambu space (particle-hole space) the Green functions are
ordered based on the different combinations of electron/hole operators (ψ†

creates an electron, ψ creates a hole). The elementary matrices of the Nambu
space are identical to the ones that span the spin space, but now are denoted
by τ0, τ1, τ2 and τ3. The matrix Green functions Ĝ, Ĝ, F̂ and F̂ each consist
of a different combination of the two types of electron operators. The matrix
Green function and matrix order parameter in Nambu⊗spin space are written
as:

Ǧ
(
x, x′

)
=


 Ĝ (x, x′) F̂ (x, x′)

F̂ (x, x′) Ĝ (x, x′)


 , ∆̌ (x) =

(
0 ∆̂ (x)

∆̂ (x) 0

)
(2.10)

For stationary systems the Green functions no longer depend on the explicit
time coordinates, but rather on the time difference between the two operations:
Ǧ (x, x′) → Ǧ (r, r′, t− t′). By making a Fourier transform over the time
difference the energy dependent Green functions are obtained:

Ǧ
(
r, r′, ε

)
=

∫
e−iε(t−t′)/~Ǧ

(
r, r′, t, t′

)
d(t− t′) (2.11)

with ε the energy of the single-particle (state). When using the imaginary
time Matsubara Green functions this works out a bit different. The Matsubara
Green functions are defined at the finite time interval: − ~

kBT < τ − τ ′ < ~
kBT ,

and as a result, the Fourier transformed Green functions are non-zero only for
a discrete set of frequencies: ~ωn = (2n+1)πkBT , where ωn are the Matsubara
frequencies. This series of frequencies continues up to the cut-off frequency
ωD, which is the Debye frequency. Just as within the BCS model where the
Debye energy limits the range over which the attractive interaction is non-zero.

Gor’kov rewrote the original BCS Hamiltonian (Eq. 2.1) into an equation
for the Green functions of the system [20]. In matrix form this equation takes
a similar form as the BdG equations (Eq. 2.3) with the main difference that
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the eigenstate functions of BdG are replaced by the Green functions of the
system. Using the τi and σi matrices, the stationary Gor’kov equation can be
expressed as:

(−ε (σ0 ⊗ τ3) + H (r) (σ0 ⊗ τ0)− ∆̌ (r)
)
Ǧ (r, r′, ε) = ~δ (r− r′) (σ0 ⊗ τ0) (2.12)

with δ (x) the Dirac delta function and H (r) = − ~2
2m

(
∂r + q

i~A
)2 + qϕ is the

Hamiltonian of a particle (of mass m and charge q) in an electromagnetic
field (with vector potential A and scalar potential ϕ). Furthermore, qϕ =
EF − µ is the energy difference between the Fermi energy and the chemical
potential, and ∂r ≡ ∂/∂r. With this new set of equations, Gor’kov showed
[21] that the famous phenomenological Ginzburg-Landau theory [22] can be
microscopically derived from the BCS theory for temperatures close to the
transition temperature. This is a solid proof for the ”correctness” of the
phenomenological Ginzburg-Landau model.

2.1.4 Quasiclassical approximation: Usadel equation

Cooper pairs are non-local objects and much larger (size is of order ξs) than
the Fermi wavelength λF . Therefore, their transport properties (or Green
functions) do not vary strongly on the scale of λF . This is the key to the qua-
siclassical approximation which greatly reduces the complexity of the Gor’kov
equations. The approximation is based on the observation that the Green
functions entering the Gor’kov equations contain (in most cases) fast oscilla-
tions on the scale of λF due to self-interference effects (like weak localization).
These fast oscillations are all redundant information when interested in su-
perconductivity, which only feels the average of such oscillations. The main
idea of the quasiclassical approximation is that the relative coordinate of the
Green functions ρ = r − r′ is responsible for the fast oscillations, while the
center-of-mass coordinate R = (r + r′) /2, is responsible for the slow oscilla-
tions. Therefore, to lose the redundant information, one could average out
the relative coordinate. A convenient way to do this is by first applying a
Wigner transformation: r → R + ρ/2 and r′ → R − ρ/2, which is an ex-
act transformation to go from coordinates (r, r′) to (R, ρ′). Next to make a
Fourier transform over the relative coordinate (to separate the fast and slow
oscillations in the obtained spectrum) resulting in the relative momentum p,
and finally to integrate over the magnitude of the momentum. The precise
definition of the quasiclassical Green functions, defined through the Gor’kov
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Green functions, reads:

ǧ (R, p̂, ε) =
i

π

∫
dξp

∫
d(r− r′)Ǧ

(
r, r′, ε

)
e−ip·(r−r′)/~ (2.13)

where p̂ = p/p is the unit vector in the direction of momentum (p is the
momentum magnitude) and ξp is the kinetic energy variable which is connected
to the momentum: ξp = vF (p− pF ), where pF = mvF is the Fermi momentum
and vF the Fermi velocity. Application of this quasiclassical approximation on
the Gor’kov equation (Eq. 2.12) leads to the Eilenberger equation [23], which
in the absence of electromagnetic fields is written as:

−i~vF∂Rǧ − [
ε (σ0 ⊗ τ3) + ∆̌, ǧ

]
=

[
Σ̌, ǧ

]
(2.14)

where the commutator of two elements [a, b] = ab − ba, and we used that
vF p̂ = vF . Furthermore, ǧ (R, p̂, ε) and ∆̌ (R) are the quasiclassical variants
of Eq. 2.10 and the right-hand-side of the Eilenberger equation adds the effect
of self-energies (see below). The Eilenberger equation is called quasiclassi-
cal since it describes the system using a mixture of classical and quantum
mechanics. It uses the quantum mechanical field operators to find the prob-
ability amplitudes (the Green functions) of the motion of classical particles
with velocity vF and direction p̂.

The presented form of the Gor’kov equation (Eq. 2.12) does not contain any
interaction term other than the attractive interaction responsible for supercon-
ductivity. Taking ∆ = 0 (or T > Tc) makes it a normal metal and one could
say the Green functions are now all of ”non-interacting” types. In general, the
Green functions are complemented by something called self-energy, usually de-
noted by Σ. Loosely speaking, the self-energy dresses up the non-interacting
Green function by adding the effects of other interactions, such as electron-
electron interactions, electron-phonon interactions and impurity scattering.
The resulting Green function is then the ”real” Green function of the system.
In general, the self-energy is a complex function with the real part describing
the change in energy (which is a renormalization of mass) and the imaginary
part describing the lifetime of the energy state. Since Σ describes the changes
of electron states, it depends on Green functions having equal coordinates i.e.
Σαβ (x) ∝ Gαβ (x, x). Comparing Σ to ∆ (see Eq. 2.7) we can say that ∆ is
the anomalous equivalent of the self-energies, but now associated with a two-
particle state. The interactions of importance are the interactions between
or with quasiparticles (the elementary excitations). These interactions are re-
sponsible for the relaxation of the system to an equilibrium state, where it
is assumed that the crystal lattice (phonons + impurities) itself is already in
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equilibrium and forms a heat bath. The main contributions to the relaxation
(in descending order of importance) are scattering with impurities (both non-
magnetic and magnetic), electron-phonon interactions and electron-electron
interactions. A powerful method to incorporate the interaction between elec-
trons and random impurities has been developed by Abrikosov and Gor’kov
[24]. It is assumed that physical properties of superconductors containing a
large amount of random impurities can be obtained by averaging over realiza-
tions of the disordered impurity potentials. A second assumption is the Born
approximation, which implies that the scattering potential is small compared
to the characteristic atomic potential (which is of the order of the Fermi en-
ergy). For isotropic scattering (there is no preferred direction to scatter into,
and the dependence on p̂ is lost) the self-energy becomes:

Σ̌ (R, ε) =
i~

2τimp
〈ǧ (R, p̂1, ε)〉p1

+
i~

2τsf
(σ3 ⊗ τ0) 〈ǧ (R, p̂1, ε)〉p1

(σ3 ⊗ τ0) (2.15)

where the momentum average 〈A (p̂)〉p =
∫

A (p̂) dΩp

4π . Furthermore, τimp

and τsf are the scattering times for scattering at non-magnetic impurities and
magnetic impurities respectively. The first term thus describes non-magnetic
impurity scattering while the second describes the magnetic impurity scatter-
ing.

When a material is in the dirty limit, a particle scatters a lot of times before
losing its phase coherence and this results in the loss of the initial momentum
direction. The Green functions, which describe the electron and hole motion,
become nearly isotropic in this limit. In a first approximation, they no longer
depend on momentum directions and the first-order correction is linear in p̂,
which is the unit vector in the direction of momentum (and is equal to v̂F ).
For the quasiclassical Green functions in the dirty limit we write:

ǧ (R, p̂, ε) = ǧ0 (R, ε) + p̂ǧ (2.16)

where both the isotropic part ǧ0 and the correction ǧ do not depend on the
direction of momentum. Furthermore |ǧ| ¿ ǧ0 and the normalization condi-
tion ǧ2 = 1̌ applies. Inserting this expansion into the Eilenberger equation and
averaging over momentum directions results in the Usadel equation [25], which
is fully isotropic. For the stationary system, in the absence of electromagnetic
fields, it reads:

i~D∂R (ǧ0∂Rǧ0)−
[
∆̌ + ε (σ0 ⊗ τ3) , ǧ0

]
=

[
Σ̌sf , ǧ0

]
(2.17)

Where Σ̌sf (R, ε) = i~
2τsf

(σ3 ⊗ τ0) ǧ0 (R, ε) (σ3 ⊗ τ0) and we used that the dif-
fusion constant D is coupled to the Fermi velocity and the elastic mean free
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path by D = 1
3vF `e where the elastic mean free path `e = vF τimp. From the

scattering at impurities, only the magnetic impurity term remains, which acts
as pair breaker. The matrix Green function ǧ0 (R, ε) and ∆̌ (R) have the usual
form in Nambu⊗spin space.

An important limitation of the quasiclassical approximation is the inabil-
ity to account for different (non-identical) spin bands with different Fermi
velocities, as it poses problems to make the integration over dξp. As a result,
identical spin bands are used, which in general is correct for normal metals and
superconductors. However, for a ferromagnet such a model can only be correct
if the spin polarization is about zero. This, in combination with the general
limitation of correlations between particles separated by energies of the order
EF , is the weak ferromagnetic limit. It has Eex ¿ EF and a polarization of
0%. A weak ferromagnet is treated as a normal metal with the inclusion of a
small exchange field. The strong ferromagnetic limit is when Eex ∼ EF , and
usually the polarization is no longer close to zero. The incapability of dealing
with non-identical spin bands does not mean that the model cannot treat spin
dependent interactions. In fact, the attractive interaction itself depends on
spin directions, and also spin-flip processes were already included. As long as
the spin dependent interactions are not caused by non-identical spin bands,
they can be included in the Hamiltonian.

For spin independent systems a simplification is possible, which comes
down to dropping the spin space ordering. Such systems do not contain any
coherent spin dependent interactions at all (i.e. changing the spin direction of
a particle without disturbing its energy), however, they do include for exam-
ple spin scattering which randomizes spin. In this case, several components of
the Green functions will vanish. For the normal Green functions, components
with opposite spin directions vanish while for the anomalous Green functions
the components having equal spin directions vanish. The reason for this is
that there are no interactions to coherently flip the spin of a particle. For a
single particle (normal Green function) this means that a non-zero probabil-
ity amplitude is only possible if the particle stays in a single spin band. It
also means that for a Cooper pair the correlation exists only between opposite
spin directions (pairing only occurs between opposite spin directions, and an
electron of the Cooper pair cannot flip its spin coherently to create a correla-
tion between equal spin directions). For the non-zero Green functions we get:
G↑↑ = G↓↓ = G and G↑↑ = G↓↓ = G (the two spin bands are identical). For the
anomalous Green functions we get: F↑↓ = −F↓↑ = F and F ↑↓ = −F ↓↑ = F .
The matrix Green function and order parameter in Nambu⊗spin space now
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reduce to:

ǧ0 =

(
Gσ0 iFσ2

iFσ2 Gσ0

)
, ∆̌ =

(
0 i∆σ2

i∆σ2 0

)
, (2.18)

while for the spin-flip self-energy matrix we find:

Σ̌sf =
i~

2τsf

(
Gσ0 −iFσ2

−iFσ2 Gσ0

)
(2.19)

We see that the Nambu space matrices all have a σ0 spin symmetry on the
diagonal and a σ2 spin symmetry on the off-diagonal. Multiplication of two
such matrices results in a matrix having the same spin symmetry, therefore
the spin space effectively drops out of the equations. We then find for the spin
independent Usadel equation, using now theˆnotation for the 2×2 matrix in
Nambu space:

i~D∂R (ĝ0∂Rĝ0)−
[
∆̂ (R) + ετ3, ĝ0

]
=

[
Σ̂sf , ĝ0

]
(2.20)

with:

ĝ0 =

(
G iF

iF G

)
, ∆̂ =

(
0 i∆

i∆ 0

)
, Σ̂sf =

i~
2τsf

τ3ĝ0τ3 (2.21)

The self-consistency relation for ∆ as well as the special boundary condition
necessary to describe interfaces between materials are given in Chapter 7.

2.1.5 Unconventional Cooper pairs

Stimulated by the observation or idea that the 3-Helium superfluid state should
have a p-wave orbital state (below 0.07 K) the BCS theory has been generalized
for non-zero orbital angular momentum. First in the works of Anderson and
Morel [26] and improved by Balian and Werthamer [27] (see Leggett’s nobel
lecture for a review [28]). A condensation of pairs into ` = 1 or higher states
can become favorable when for example there is a strong short-range repulsion
preventing condensation into the s-wave configuration, which is the case for
the 3-Helium superfluid. Because a Cooper pair consists of two Fermi particles
and obeys Fermi statistics, an anti-symmetric wave function is required under
the exchange of the two particles (the Pauli principle). This puts restraints
on the possible types of pairing (i.e. the possible combinations of orbital and
spin states). The orbital state is symmetric if the orbital quantum number

in this thesis we use ,̂ˇand˘to respectively denote a 2×2, 4×4 and 8×8 matrix
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` = 0, 2, ... (even) and anti-symmetric if ` = 1, 3, ... (odd). The ` = 0, 1, 2 are
the s-, p- and d-wave respectively. The spin state of a pair is either in the
symmetrical spin singlet state (S=0) or in the anti-symmetrical spin triplet
state (S=1). The implication of this is that pairs in s- or d-wave orbital states
should be in spin singlet states, while pairs in p-wave orbital state should be
in spin triplet states.

An important difference between s-, p- and d-wave is that only in case of
pairing into s-wave orbital states, the superconducting energy gap is isotropic.
It does not depend on momentum k and no single particle states exist for
energies within the gap region. This makes the s-wave superconductor robust
against impurity scattering because there are no available normal electron
states which can ”absorb” a pair after scattering at an impurity. However,
when we consider a p- or d-wave orbital state, the energy gap is no longer
isotropic. This means that for a certain absolute value of k (with energy εk),
some directions have a full or reduced gap, while other direction don’t have a
gap at all. As a result, the density of single particle states becomes non-zero
(and non-constant) for energies inside the gap region. These superconductors
are not robust against impurity scattering and only survive in clean systems,
where the superconducting coherence length is (much) smaller than the elastic
mean free path. The Cooper pairs as suggested by BCS theory are in a spin
singlet state with s-wave orbital state, which is called conventional supercon-
ductivity. Triplet superconductivity in conventional thin film superconductors
thus seems a non-existing phenomena, and yet it was recently measured in ex-
periments of Keizer et al. [29] en Sosnin et al. [30]. In the first, triplet pairing
was induced in the half-metallic ferromagnet CrO2 (100 % spin polarized ma-
terial), while in the latter is was induced in Holmium (Ho) which is a conical
ferromagnet. Somehow the above discussion about the possible combinations
between orbital and spin states is circumvented. The answer to this lies in the
time coordinate/symmetry which thus far was not really taken into account.
If the time dependent part of the Cooper pair wave function is anti-symmetric
under the exchange of the two particles, a s-wave spin-triplet pairing becomes
possible [31]. This mechanism should also allow for p-wave singlets, but they
have not been observed (yet).

Another type of unconventional superconductivity is what is now known
as the LOFF state, named after Fulde and Ferrell (1964) [32] and Larkin and
Ovchinnikov (1964) [33] whom considered this situation for the first time. The
LOFF state is an inhomogeneous superconducting state, where the two sin-
gle electron states forming the paired-state belong to different Fermi surfaces.
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This difference between the Fermi surfaces for the two spin bands is (in the
model systems) created by a homogeneous exchange field generated by polar-
ized magnetic impurities, making the LOFF state a display for the coexistence
of ferromagnetism and superconductivity. The parameter which determines if
the LOFF state is viable is the strength of the exchange field compared to the
condensation energy (the paramagnetic effect). Unlike the conventional BCS
state, the Cooper pairs in the LOFF state have acquired a non-zero total mo-
mentum. This gives rise to a spatially varying Cooper pair density (and gap
potential). Electronegativity is maintained by the normal electrons created
from the breaking of pairs (which is the cause for the density changes). The
description of the LOFF state is very similar to the induced superconductivity
(or proximity effect) in S/F junctions.

2.2 Fundamentals of ferromagnetism

In our experimental works the ferromagnets are ”used” for their exchange field
to investigate their interaction with superconductivity. In this section a brief
description of magnetism is given, focussed on the type and appearance it
takes in our devices (see ref [34] for a more detailed description).

Magnetism is a phenomenon encountered in nature, for example it is found
in the magnetic mineral Fe3O4 (known as Magnetite). Magnetism is well inte-
grated in nowadays technology, especially in the area of digital data storage.
The strength of magnetism, or actually, the magnetic induction or magnetic
flux density, is expressed in Tesla. The earth’s field is around 30-50 µT at the
surface, which is very weak compared to magnetic materials which can have
surface strengths up to 1 or 2 Tesla. A magnetic field can be connected to
electrical currents. These can be macroscopic, as e.g. utilized in electromag-
netic coils. In superconductors, macroscopic screening currents are able to
expel magnetic flux from its interior. They can also be microscopic, and it are
the atomic electrical currents together with the magnetic moments connected
to the electron spin, which lead to the magnetization of matter.

Whenever a piece of material is put into a magnetic field, the electron spin
and its associated magnetic moments will start to align with the field, which
behavior is know as paramagnetism (it typically only involves a small fraction
of the electrons and the induced field is rather weak). However, only few
materials show a spontaneous alignment of the spins in the absence of external
magnetic fields. This phenomenon is another display of a condensed state of
the electrons, just as superconductivity is. Again, the ordering appears below a
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certain critical temperature, while above this temperature the directions of the
magnetic moments randomize resulting in a zero net magnetization. Different
types of magnetic alignment exist. In a ferromagnetic material, the alignment
is parallel and the critical temperature is called the Curie temperature TC. In
an antiferromagnetic material the alignment is perfectly antiparallel and the
critical temperature is called the Néel temperature TN. All the alignments in
between are the ferrimagnetic materials.

All materials are built up from atoms, which consist of a positively charged
core of protons and neutrons with negatively charged electrons orbiting around
it. Both the electron cloud and the nucleus carry an intrinsic magnetic mo-
ment, but in general the magnetic moment of the nucleus is much smaller
than that of the electrons, and therefore we narrow down the discussion to
the electron part. In isolated atoms, incompletely filled electronic shells carry
both an orbital angular momentum and a spin angular momentum, and there-
fore a magnetic moment. As long as the orbits do not overlap, these ”local
moments” also occur in solids matter, but we shall not be concerned with such
magnetism either. Instead, we focus on so-called band ferromagnets, which
are found in particular in alloys of 3d-transition metals (Ti, V, Cr, Mn, Fe, Co,
Ni and Cu). In a band ferromagnet, the two spin bands are asymmetrically
as depicted in Fig. 2.3. Where in the normal metal (in the ground state) both
spin bands are filled up to the Fermi energy EF and contain an equally number
of electrons. In case of a ferromagnet one spin band (majority band) contains
more electrons n↑ and is filled up to a higher energy level compared to the
other spin band (minority band), which contains n↓ electrons. The energy of
the electron states are now given by ε↑,↓ (k) = ε0 (k)− I

n↑,↓
n with I a measure

for the exchange correlation and n = n↑ + n↓. In this new state, the kinetic

normal metal ferromagnet

Eex

N(E)

E

E
F

N(E)

E
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F

Figure 2.3: Filling of the density of states N(E) of the two spin bands for a normal
metal and a ferromagnet, with EF the Fermi energy and Eex the exchange energy

energy has increased (electrons originally occupying states with k < kF now
occupy states with k > kF , increasing the kinetic energy ∝ k2). However, the
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potential energy has decreased (with less degenerate states doubly occupied,
the total spatially overlap of electron states has reduced, which reduces the
Coulomb repulsion energy). This new state is stable if the potential energy
decrease is larger than the kinetic energy increase. This leads to the Stoner
criterium for ferromagnetism to occur: N (EF ) I > 1, with N (EF ) the density
of states at the Fermi energy.

2.2.1 Magnetic domains and switching

A ferromagnet at a temperature below its Curie temperature thus shows spon-
taneous magnetization. However, the magnetization is not necessarily homo-
geneous. Moreover, the net magnetization of a ferromagnet (in absence of
any field) is usually close to zero! Energetically there is a strong preference

Figure 2.4: Different possible domain configurations in a ferromagnet, with from left
to right a decrease of the induced field outside the ferromagnet.

to keep the magnetization inside the material, and this typically leads to the
formation of domains (see Fig. 2.4). Each domain has a single orientation
of the magnetization vector and the domains are separated by domain walls,
which have typically a much smaller lateral dimension. In the domain wall,
the the magnetization vector rotates from the direction of the domain on the
one side to the direction of the domain on the other side. Two main classes of
domain walls are distinguished (see Fig. 2.5). In Bloch walls the rotation goes
out-of-plane, while in Néel walls it goes in-plane (where the plane is spanned
by the two magnetization vectors). Other more complex rotations exists, but
are always a combination of the Bloch and Néel type.
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Figure 2.5: Rotation of the magnetization vector M in an out-of-plane Bloch domain
wall (top) and an in-plane Néel domain wall (bottom)

The appearance of the domain configuration is the result of minimizing the
total energy of the system. For a ferromagnet, the following terms are to be
considered. The exchange energy (Eex) relates to the interaction between elec-
tron spins and is minimized for parallel alignment of the spins. The Zeeman
energy (EH) relates to the direction of the magnetization with respect to the
external field. It minimizes for parallel alignment. The crystalline anisotropy
energy (Eca) relates to the direction of the magnetization with respect to the
lattice orientation (it is minimized for alignment with the so-called lattice
easy-axes). The magnetostatic (or demagnetization) energy (ED) is an effect
of the dipole fields and therefore connected to the shape of the ferromagnet. It
is minimized by keeping flux inside the ferromagnet (or inducing a lowest field
outside the ferromagnet). The demagnetization energy is responsible for the
presence of domains, while the competition between the exchange energy and
crystalline anisotropy energy determines the width of the domain walls. The
first favors a (infinitely) broad wall, while the latter favors a thin as possible
wall. When the sample dimension becomes of the order of the typical domain
sizes, which are usually in the µm range, the shape anisotropy becomes the
dominant energy term (because it cannot become lower anymore by making
domains), especially in elongated shapes. For a long and thin wire, this often
leads to a magnetization aligned with the wire direction. The actual magnetic
configuration in the ferromagnet is coupled to an external magnetic field (H)
through the Zeeman term. Whenever this field H increases or decreases, the
magnetic configuration in the ferromagnet usually changes as well, leading to
a change in the (average) magnetization vector M. Fig. 2.6 illustrates this
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behavior, where the origin gives the initial state of the ferromagnet (prac-
tically zero net magnetization). The curve then passes the points a to f in
alphabetic order and ends up again in point a. The foremost characteristic of
this curve is that it shows hysteresis (i.e. there is a difference in the path for
going up and down in field), and it is generally known as the hysteresis curve.
For high enough (absolute) field, the ferromagnet saturates. It has become a
single domain, with its magnetization vector pointing along the applied field.
Points b and e are the remanent (or residual) magnetization points. After
being (partly) saturated once, the ferromagnet now shows a significant mag-
netization in zero applied field. Points c and f are the coercive field points.
They indicate the field required to return to a net magnetization of zero, or,
to change the direction of magnetization. The hysteresis curve shows, for the
chosen direction of applied field, what field strengths are required to fully mag-
netize the ferromagnet. It also shows over which field range there is a presence
of magnetic domains, and it shows how ”easy” or ”hard” it is to magnetize
along the chosen direction. An easy direction result in a squarish hysteresis
curve, with the remanent field values close to the saturation values. For a hard
direction the remanent field values are much reduced (points b and e close to
0) and the hysteresis curve starts to close.

Being two very different phenomena, antagonistic even, because the super-
conductor tries to expel any magnetic field from its interior. The two states
are very similar at the same time. Both superconductivity and ferromagnetism
are mean field orders of electron spins, parameterized by ∆ and Eex respec-
tively. Both orders appear below a certain critical temperature and change the
normal metal density of states near the Fermi energy. However, the ferromag-
netic density of states is (usually) just an energy shifted version of the normal
density of states and the charge, energy and spin transport are governed by
normal electrons. The superconductor is much more special in this aspect,
as now a gap region has appeared near the Fermi energy. Charge transport
is now governed by Cooper pair, which don’t transport any heat (the energy
is always the Fermi energy, no extra energy can be carried by the Cooper
pair), and only the non conventional types can carry spin. Ferromagnetism
is an ordering/allignment of electron spin such that one spin band contains
more filled states (the majority band) and one contains less filled states (the
minority band). As a result, there is a polarization of the electron spin and a
potential (and kinetic) energy difference between the two spin bands. In the
conventional superconductor, the spin ordering goes in k-space, and in real
space no differences exists between the two spin populations.
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Figure 2.6: Hysteresis curve showing saturation magnetization (points a and d) re-
manent magnetization (points b and e) and coercive fields (points c and f).

2.3 Proximity effect

2.3.1 Proximity effect in S/N

Although Cooper pairs are only generated inside a superconductor (for T <
Tc), they are not confined to the interior of the superconductor itself. In a
junction between a superconductor (S) and a normal metal (N) Cooper pairs
can move from S to N, inducing superconducting properties into the normal
metal. This is called the (superconducting) proximity effect. At first sight,
this proximity effect does not seem possible as the Cooper pairs are not eigen-
functions of any non-superconducting material. Besides that, normal electron
transport is blocked by the energy gap for all energies close to the Fermi en-
ergy. However, a unique mechanism exists that allows for the transfer of a
Cooper pair from S to N (and visa versa). This process is the Andreev re-
flection [35] and is depicted in Fig. 2.7 (right panel). An incoming (excited)
electron at energy ε < ∆ reaches the S/N interface. But, instead of being re-
flected it drags along a second electron at energy −ε, with opposite direction
of momentum and spin, to enter the superconductor as a Cooper pair. This
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second electron is taken from the valence band and consequently leaves a hole
behind. This hole then travels back along the path of the original incoming
electron because it has opposite direction of momentum. The reverse mech-

EF

E

x

e

e

h

+ CPε

-ε

superconductornormal metal

e-h dephasing CP conversion
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ky
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Figure 2.7: The right panel shows the Andreev reflection at a normal metal - super-
conductor interface. Upon reaching the interface, the incoming electron at energy ε
causes a hole reflection at energy −ε (together they form the correlated electron-hole
pair). The incoming electron itself and the missing electron in the valence band have
entered the superconductor where they are converted into a Cooper pair. The left
panel shows the correlated electron-hole in k-space.

anism takes place as well. In that case the incoming particle is a hole in the
valence band (energy −ε), which upon arriving at the interface pulls a Cooper
pair out of the condensate. One of the electrons occupies the hole, while the
other electron occupies an excited state in de conduction band (energy ε, with
opposite direction of momentum and spin compared to the incoming hole) and
travels back along the path of the original incoming hole. The net result of
an Andreev reflection is thus a charge transfer of −2e from N to S. No ex-
cessive energy is transferred as in N the electron excitation is swapped for an
energy-equivalent hole excitation, while in S the Cooper pair is simply added
to the condensate (the ground state). The Andreev reflection is thus purely a
transfer of charge.

The induced electron-hole pair in N carries superconducting properties
along the path of travelling. It is a Cooper pair no longer bound together by
the attractive interaction. However, the two electrons that form the Cooper
pair through Andreev reflection (and consequently the induced electron-hole
pair) do not necessarily have exactly opposite momentum. The electron from
the conduction band has kF + δk, while the electron from the valence band
has −kF + δk (Fig. 2.7, left panel). This sums up to a net momentum of
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2δk ∼ ε
εF

kF ¿ kF . The result of this k-vector mismatch is that the in-
duced pair dephases, even in the absence of pair breaking mechanisms. Only
a correlated pair at the Fermi energy (δk = 0) can escape from this de-
phasing. In case of diffusive systems, the dephasing time corresponds to
a travelling distance represented by the (energy averaged) coherence length
ξN =

√
(~DN/ (kBT )) =

∫
ξN (ε) dε, with DN the normal metal diffusion

constant and T the temperature, which is taken as the primary source of de-
phasing. Other sources of dephasing, such as inelastic processes and magnetic
fields, will only shorten this coherence length. At the Fermi energy, ξN (ε) goes
to infinity, while for increasing energy this length becomes shorter. This is why
for T → 0, ξN → ∞ as the only possible excitations at zero temperature ar
located at the Fermi energy. In reality, the coherence length will still be finite
(but pretty long) due to the other forms of dephasing. In S a Cooper pair is
being constructed(destructed) from(into) the two electrons from N. This con-
version also takes place over a certain distance, which is the superconducting
coherence length ξS =

√
(~DS/ (kBTc)) with DS the superconductor diffusion

constant (also for diffusive systems). Although ξS varies per material, it is
typically in the range from 10 nm to 1 µm. This is also the typical range for
ξN , unless the temperature is close to zero (for conventional superconductors
this means at least T < 1 K).

2.3.2 Proximity effect in S/F

When the normal metal is replaced by a ferromagnet (F), the effects of a
non-zero spin polarization P and exchange energy Eex have to be included.
One consequence is a reduction of the Andreev reflections as the mechanism
becomes limited by the minority spin band [36]. In case of 100% spin polar-
ization, the Andreev reflection even becomes fully blocked due to absence of
a complete spin band. In the presence of an (elastic) spin-rotation/flip mech-
anism at the interface, this blocking can be partially circumvented as this
effectively allows for Andreev reflection using a single spin band. A second
consequence is that the induced electron-hole pair experiences the exchange
splitting of the spin bands in the ferromagnet. There is a potential energy
difference between spin up direction and spin down direction of an electron
(which is at a fixed total energy). The minority spin band has an increased
potential energy, which means that at a certain energy level (total energy),
for example the Fermi energy, the kinetic energy of an electron in the minor-
ity spin band is lower compared to the majority spin band. As a result the
Cooper pair acquires a net momentum which leads to an oscillation on top of

using 2m (εF + ε) = ~2 (kF + δk)2 and ε ¿ εF
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an exponential decay (see Fig. 1.3), as was shown by Demler and co-workers
[37]. The length scales involved are in general much smaller than the ”stan-
dard decay” (as in S/N) because the exchange energy is usually much higher
than the superconductor transition temperature. As an alternative approach
to examine the effect of the exchange field on the spin singlet state, we use the
Dirac notation and write for the singlet (Ψs) and triplet (Ψt

0,Ψ
t
−1,Ψ

t
+1) states:

Ψs = 〈↑ | ↓〉 − 〈↓ | ↑〉
Ψt

0 = 〈↑ | ↓〉+ 〈↓ | ↑〉
Ψt
−1 = 〈↓ | ↓〉

Ψt
+1 = 〈↑ | ↑〉

(2.22)

where | ↑〉 and | ↓〉 represent the spin up and spin down state (at fixed energy).
In the presence of the exchange energy Eex, the momentum of the electron in
the minority (spin down) band is decreased. As a result the spin down state
changes into:

| ↓〉 → | ↓〉 × e(−itEex/h)

〈↓ | → 〈↓ | × e(+itEex/h)
(2.23)

The Cooper pair in the spin singlet state then changes as follows:

Ψs = 〈↑ | ↓〉e−itEex/h − 〈↓ | ↑〉e+itEex/h

= Ψs × cos (tEex/h)−Ψt
0 × i sin (tEex/h)

(2.24)

The amplitude of the singlet state follows indeed an oscillation, and it also
shows that the nature of the oscillation is actually a change into the triplet
component Ψt

0. The period of this oscillation T = 2πh/Eex, which in a dif-
fusive system (diffusion constant DF ) corresponds to a length of

√
DF T =

2π
√
~DF /Eex = 2πξF . The definition for the ferromagnetic coherence length

ξF is similar to its normal and superconducting counter parts, except that
each coherence length is based on the dominating energy term of the system.
When, for example, the temperature is of the same order as the exchange
energy, the temperature has to be added to ξF . The presence of a homoge-
neous exchange field thus leads to the appearance of correlated spin triplet
pairs. However, only one out of the three spin triplets appears, and since it
still consists of both spin directions, the ferromagnet breaks it down just as
easy as the conventional singlet pairs. The other two, the spin equal triplets,
are generate from the Ψt

0 triplet once it experiences multiple directions of the
exchange field [38, 39]. These ”multiple directions” actually means inhomo-
geneous magnetism, which for example can come from magnetic domains or
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magnetic impurities. These are needed to rotate the spins of the Ψt
0 (mz = 0)

component such that it gathers non-zero mz which are the ”spin equal” com-
ponents. An interface which exhibits inhomogeneous magnetism is called a
spin active interface. Fig. 2.8 shows calculations on such spin active inter-
face by Eschrig et al. [40]. The amplitudes of all generated components are
depicted. In case of a weakly polarized ferromagnet (top curves), the spin-
active interface does not generate a significant fraction of long-range triplet
components. In case of a strongly polarized ferromagnet (bottom curves) the
long-range triplet component which is aligned with the magnetization vector
in the ferromagnet arises. The decay of this component in the ferromagnet is
much slower than all other induced components in F. In the superconductor,
all generated triplet components decay over a characteristic length ξS . The
singlet component recovers over that distance, being at a lowest amplitude at
the interface.

Figure 2.8: Calculation of the triplet components generated at a spin-active S/F
interface, as taken from Eschrig et al. [40]. Top: weakly polarized ferromagnet,
Bottom: strongly polarized ferromagnet
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3.1 Sample specifics

For this work the standard geometry of our devices are elongated S/F bi-layer
and F/S/F tri-layer strips. The lateral dimension are either in the macroscopic
regime, with a typical dimension of 100 µm × 1000 µm, or in the mesoscopic
regime, with a typical dimension of 2 µm × 40 µm. These strips are con-
tacted with non-magnetic, non-superconducting microscopic contacts which
lead to large (1 mm × 1 mm) contacting pads where connections to the mea-
surement electronics can easily be made. The contact geometry to the strip
is a 4-probe type with 10 µm respective 1 mm spacing between the voltage
probes for the microscopic and macroscopic samples. For the superconductor
we use Niobium (Nb), for the ferromagnets we use Copper-Nickel (CuNi) and
the Nickel-Iron alloy Permalloy (Py = Ni80Fe20) to investigate respectively the
weak and strong exchange limit. The contacting material is Gold (Au). The
substrates used for our devices are all Silicon (Si) cut along the [100]-plane
with a low p-type doping concentration of 1013−16 dopants per cm3. The de-
vices are made in a three-step process: 1) depositing the layers for the strip, 2)
defining and etching down the strip and 3) defining and growing the contacts.
The details of these three steps are written down below.

In the first step, the metallic layers that comprise the strip are grown
onto the Si(100) substrates by DC magnetron sputtering in a ultra high vac-
uum chamber with a background pressure of 10−9 mbar, using Argon (Ar)
as plasma. Specific sputtering parameters for the different materials are as
follows:

target Ar pressure sputtering rate
Nb 4.0 µbar 0.12 nm/sec

Cu50Ni50 4.0 µbar 0.04 nm/sec
Ni80Fe20 2.5 µbar 0.20 nm/sec

No additional cooling was used during sputtering, meaning the sputtering tem-
perature starts at room temperature and slowly increases with some tens of
degrees. For the sample with Py layers, a specially made magnetic sample
holder was used to induce a homogeneous in-plane magnetic field. This sets
the direction of the magnetic easy axis and also improves its switching proper-
ties. The orientation of the strip is defined parallel to this induced easy axis.
Unless specifically mentioned, a thin Nb capping layer (about 2 nm thick) is
added on top of the layer package to prevent oxidation of the top ferromagnetic
layer. The purity of the Nb target is 99.95 % which yields a Tc of 9.1-9.2 K.
The ratio Cu/Ni in the target is 50/50 (atomic percentage), which results in
an approximate 43/57 ratio at the sample. The Curie temperature of the
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Cu43Ni57 is around 150 K and it has a degree of polarization close to zero.
The (corresponding) exchange energy is some tens of meV (¿ EF ) making it
a model weak ferromagnet. For the Py the Curie temperature is much higher,
around 950-1000 K, and it has a degree of polarization of about 45 %. The
(corresponding) exchange energy is some hundreds of meV, which is a sizable
fraction of the Fermi energy, making it a strong ferromagnet.

In the second step the strips are defined by standard lithographic tech-
niques and afterwards etched down. First, a MaN 2405 (a negative-tone re-
sist) is spin coated at 6000 RPM (during 60 seconds) on top of the layer
package. Afterwards it is baked for 10 minutes at 90 oC. Standard electron
beam lithography, using a JEOL JSM 820 Scanning Microscope, was used
to pattern the strips and several alignment markers. The beam current was
30 pA and the dose 45 µC/cm2. As developer, the MaD 332 was used to
dissolve the non-exposed areas (in about 30-35 seconds). The thus obtained
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Figure 3.1: Sketch of the side-view of the substrate after (a) spin coating the MaN
2405 resist, and (b) etching down the strip. In (a), the darker-colored resist areas
will we sufficiently exposed by the electron beam, and after developing that is what
remains.

resist pattern serves as a protective mask for the following Ar ion-etching (see
Fig. 3.1) which is performed at 2.5 µbar Ar pressure in a background pressure
of 10−6 mbar. Etch times were ranging from 5 to 15 minutes depending on the
specific layer thicknesses and to prevent burning and hardening of the resist,
the sample was continuously cooled with Nitrogen gas (N2). Additionally, the
sample normal makes a small angle with the incoming ions and the sample
is rotating in plane at a speed of order 10 Hz. In this way, the unwanted re-

creo




40 Chapter 3. Experimental details

deposition (of the sputtered material) at the sides of the strip is continuously
etched away. Finally, the remaining part of the resist mask was cleaned-off
using boiling acetone (at 70-75 oC).

In the last step, the contacts are lithographically defined using a lift-off
geometry after which the contacting material is sputtered. The used lift-off
geometry consist of a double positive-tone resist layer, where the in-plane
development of the bottom resist expands further then the top layer. A
PMGI/PMMA double resists layer is spin coated. First the PMGI at 4000
RMP (during 60 seconds) followed by a post-bake of 90 minutes at 200 oC,
next the PMMA at 4000 RMP (during 60 seconds) followed by a post-bake of
30 minutes at 160 oC. Contacting pads and leads towards the strips were pat-
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and Au deposition
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resist layer: PMMA
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Figure 3.2: Sketch of the side-view of the substrate after (a) spin coating the
PMGI/PMMA double resist layer, and (b) sputtering the contact material. In (a),
the darker-colored resist areas will we sufficiently exposed by the electron beam, and
after developing that is what dissolved. In (b), all the remaining resist (with Au on
top) is dissolved using developer, completing the lift-off technique.

terned using the JEOL Microscope, where the alignment markers are used to
align this new pattern with the strip. The used beam current was 10 nA and
the dose 200 µC/cm2. The development is now a two-step process. First the
top PMMA layer is developed in diluted acetone for 35 seconds (diluted with
demi-water, roughly at a 50/50 volume ratio). Second is the development of
the PMGI layer in MF 322 for 5 minutes, where the last 2-3 minutes are used
to create an undercut. A short cleaning in an Oxygen plasma is performed to
remove some resist residues from the contacting areas on the strips (to lower
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the interface resistance). Finally the Au contacts are sputtered (see Fig. 3.2)
in a ultra high vacuum chamber with a background pressure of 10−7 mbar
using an Ar plasma. Additionally, an initial few monolayers of Titanium (Ti)
are sputtered in situ as adhesion layer for the Au. The Au contacts are aimed
at a thickness of 100 nm and sputtered at an approximate rate of 0.17 nm/sec
with an Ar pressure of 4 µbar. After sputtering the sample is immersed in
NMP (N-methyl-2-pyrrolidone) to complete the lift-off by dissolving all resist.

3.2 Measurement setup specifics

The three main types of transport measurements on our samples are field
dependent resistance measurements R (H) at low temperatures, temperature
dependent resistance measurements R (T ) and field dependent critical current
measurements Ic (H) (Ic is determined from measuring the current-voltage
characteristics). These measurements are all performed using the same setup,
which consist of a standard 4He cryostat with a home-built insert which is con-
nected to the measurement electronics (see Fig. 3.3). The cryostat is equipped
with magnetic shielding to provide a low-noise environment and a supercon-
ducting coil (NbTi wire) to provide the magnetic field (up to 1 T). The cryostat
insert is a closed type, where the sample chamber is shielded from the Helium
bath inside the cryostat. The inner sample space is continuously pumped dur-
ing measurements and reaches a pressure around 0.1 mbar. An Agilent DC
power supply was used for the coil magnet. It provided a smallest current step
of 1 mA, which corresponds to an induced field of about 0.1 mT. A heater (Cu
wire) is used to increase the sample temperature which, for the given pressure,
can go up to at least 10 K. The temperature itself is measured using a car-
bon glass resistor which has a low temperature sensitivity of about 200 Ω/mK.
The desired (low) temperature is PID-regulated by an isolated GPIB circuit to
increase its response time, resulting in a good temperature stability with fluc-
tuations of 0.1-0.3 mK at the sample, in the range 4.2 K to 10 K. A Keithley
K2400 was used for the heater current source. To measure the resistance of the
thermometer a Keithley K220 current source and a Keithley K181 nanovolt-
meter were used. By pumping the Helium bath directly the temperature can
be lowered down to 1.7-1.8 K, which is necessary for the Ic (H) measurements.
All the R (H) and R (T ) measurements are performed in the range 5-10 K, as
the superconducting transition temperature for our samples is between 5 K
and 7 K.

All measurements are current biased and for the R (H) and R (T ) mea-
surements we perform bipolar measurements (measuring the voltage difference
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Figure 3.3: Schematic of the measurement setup.

for both positive and negative current and taking the average), with a current
density of the order 2.5 ×108 A/m2. The sample is measured using a Keithley
K2182 nanovolt meter and Keithley K224 programmable current source. For
the critical current measurements we make use of a pulsed current technique.
By applying short current pulses, Joule heating of the sample is minimized
and the critical current can be determined much more accurately. We used
3 ms current pulses, with an interval of several seconds between the pulses
and an increasing amplitude until the critical current is reached and the su-
perconductor is driven into the normal state. The samples are initially cooled
down in zero field condition and the first measurement at a fixed temperature
always starts in zero applied field. The current pulse generates a voltage pulse
across the voltage probes of the sample, which is amplified and measured with
an oscilloscope. An external trigger pulse is used to synchronize the current
pulse with the measurement time-window of the oscilloscope to catch the volt-
age pulse. The voltage amplifier is an EG&G 5113 differential amplifier with
incorporated band filters and the oscilloscope is a digital Tektronix TDS1002.
The external trigger is generated by a standard DAC-interface and all equip-
ment is GPIB controlled.
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4.1 Introduction

A superconductor (S) and a ferromagnet (F) both show a mean-field order
for the electron spin. In the ferromagnet the ordering is in real-space and
the exchange field (Hex) (or exchange energy Eex) favors one spin direc-
tion, while in the superconductor the ordering is in k-space and the order
parameter (∆) is built up from Cooper pairs consisting of electrons with op-
posite spins. Bringing these antagonistic types of order into close proxim-
ity leads to a complex interplay with new possible ground states, and pos-
sible consequences for the superconductivity as well as for the magnetism
[41, 42, 31]. The foremost characteristics of the S/F proximity effect in
the case of homogeneous Hex are the oscillatory decay of the induced or-
der parameter in the F metal and the emergence of spin triplet correlations.

Superconductor Ferromagnet

CP

Figure 4.1: Spin ordering of the two
electrons of a Cooper pair (CP) in
the superconductor, and of the lattice
points in the ferromagnet.

In special cases this could enable the for-
mation of the spin equal (long range)
components of the triplet, in particu-
lar for inhomogeneous exchange fields
[39] or halfmetallic ferromagnets [43].
The oscillatory order parameter brings
about an oscillation of the supercon-
ducting transition temperature Tc as
function of the F layer thickness, which
has been observed in various experi-
ments [44, 45]. This phenomenon is rea-
sonably well understood and described
by theoretical models. As for the exis-
tence of long range triplet components,
two experiments has been reported thus
far [29, 30], but their existence is not yet fully accepted.

Two main consequences of the interplay between magnetism and super-
conductivity are the S/F/S π-junction, and the F/S/F superconducting spin-
valve. In the π-junction the order parameter oscillation in the F metal yields
a phase change of π between the superconducting banks, which was demon-
strated to exist both by transport experiments [46] and in measurements of
the density of states on the F-side of and S/F sandwich [47]. The spin-valve
exhibits (in theory) re-entrant superconductivity by switching the magneti-
zation of the F banks from parallel (P) to anti-parallel (AP), which would
lead to a controllable supercurrent through a small field manipulation [9, 10].
Theory describing both phenomena is well developed for the case of weak
ferromagnetism with homogeneous exchange fields, as then the quasiclassical
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Green functions adequately describe the transport probability of electrons and
Cooper pairs. However, inhomogeneities in Hex, in particular from domains
or domain walls, still pose difficulties for both experiment and theory. More-
over, for ferromagnets with strong exchange fields, where Eex is no longer
much smaller than the Fermi energy EF , or with non-zero polarization of
the electronic spin bands, the current framework is not suitable as it does
not incorporate these effects. For the case of the spin-valve effect, which is
strongest close to Tc where superconductivity is still weakly developed, mag-
netic domains could also have a significant effect on the superconducting gap
and thus on the working of the superconducting spin-valve. This is the issue
we address in this and the following chapter, where here we deal with weak
ferromagnetism and in the next chapter with strong ferromagnetism.

4.2 The superconducting spin-valve

The conventional superconducting spin-valve structure is a system where two
ferromagnetic layers are separated by a superconducting spacer. It was first
proposed by Tagirov [9] (and similarly by Buzdin and co-workers [10]) who
calculated, using linearized Usadel equations, the superconducting transition
temperature of the S-layer as function of F-layer thickness, for both the par-
allel (P) and antiparallel (AP) direction of exchange fields. It was shown that
for weak ferromagnets, Tc for the anti-parallel configuration is always higher
than for the parallel case, where a weak ferromagnet really means a ferro-
magnet with Eex ¿ EF and a polarization close to zero. This change in Tc

becomes more interesting when the thickness of the F layers becomes of the
order of the coherence length in F, since there exist a (small) thickness range
of the F layers where it should be possible to fully suppress superconductiv-
ity in the parallel configuration, while having a finite Tc in the anti-parallel
configuration. It should thus be possible to switch between the normal and
superconducting state, and hence ”valving” a supercurrent, if the direction of
the exchange fields can be controlled. The spin-valve can only work if there is
a coupling between the two F layers which additionally couples to the order
parameter, since it is the order parameter which should differentiate between a
parallel or anti-parallel alignment. This coupling is provided by Cooper pairs
and therefore the thickness of the S layer should be limited to several times the
superconducting coherence length. When this condition is met, Cooper pairs
in the superconductor can touch both the F layers (i.e. one of the electrons is
”close” to one of the F layers, and the other electron is ”close” to the other
F layer). Due to the non-local nature of the Cooper pairs (and the Andreev
reflection process), the Cooper pair can leave the superconductor such that



46 Chapter 4. Superconducting spin-valve: weak ferromagnetic case

the two electrons enter a different F layer. In the anti-parallel alignment of
the direction of exchange fields, the two electrons enter identical spin bands.
However, this is not true for the parallel alignment. In that case, there is a
potential difference between the electrons which is balanced by a difference in
kinetic energy (just as for the standard S/F proximity). This kinetic momen-
tum difference leads to additional dephasing of the induced ”pair”, which in
turn results into a lowering of the Cooper pair density. The final result is thus
an additional lowering of Tc in case of parallel alignment. This mechanism of
the (weak-limit) spin-valve is illustrated in Fig. 4.2. Dipolar fields were not
taken into account in theoretical model, and thus an argument of the kind ”In
an anti-parallel alignment the dipolar fields create a more natural environment
compared to the parallel alignment” to explain the Tc difference is, although
correct, not what the weak-limit models are about. When the thickness of

Ferromagnet, F1

Hex

~ξS

Superconductor Ferromagnet, F2

Hex

Hex
CP

Eex

N(E)

E

EF

Eex

N(E)

E

EF

Eex

N(E)

E

EF

(P)

(AP)

Eex << EF

Figure 4.2: Comparing the parallel (P) and anti-parallel (AP) configuration of the fer-
romagnetic exchange fields Hex in a superconducting spin-valve. Here, a Cooper pair
(CP) couples the two ferromagnetic layers F1 and F2, with ξS the superconducting
coherence length. In F1 the orientation of Hex is ”down” while in F2 the orienta-
tion is either ”up” (AP configuration) or ”down” (P configuration). The presented
electron band structures are impressions of how a weak ferromagnet is treated in the
theoretical framework: as a normal metal with identical spin bands near the Fermi
energy EF (and thus no spin polarization) and a weak exchange field Eex ¿ EF ,
making the distortion to the spin bands very small

the F layer becomes of the order of the coherence length in the ferromagnet
(ξF ), the induced oscillating order parameter in F reaches its outer boundary.
This results in a back-reflection of the oscillation and causes self-interference.
This is the origin of the minimum in Fig. 1.4, and thus of the re-entrance effect.
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By now, various spin-valve systems has been measured. A number of them
have Nb as superconductor in combination with weakly magnetic CuNi [48, 49]
or stronger magnets such as Ni [50], Ni80Fe20 (Permalloy, Py) [51, 52, 53], Co
and Fe combined [54] or Co [55]. Moreover, the systems do not only differ in
type of magnet, also the method to obtain switching is different. Some use
a spin-valve stack with antiferromagnetic Fe50Mn50 adjacent to one of the F
layers in order to pin its magnetization, while the magnetization of the other
layer can rotate freely. This is the case in the reports on Nb/CuNi [48, 49],
Nb/Ni [50], Nb/Py [52]. The other experiments rely on the difference in thick-
ness of the F layers in order to obtain different coercive fields, as in the reports
on Nb/Py [51, 53], Nb/(Co,Fe) [54] and Nb/Co [55]. The experiments using
a pinning layer confirm the general prediction for the superconducting spin-
valve: in the P alignment of the two F layers, the transition temperature TP

c

is slightly lower than TAP
c in the AP alignment. The experiments without pin-

ning layer report the reverse behavior, with strong indications that now stray
fields and magnetic coupling of the F layers play a role. Taken together, the
literature data seem to suggest that the presence of the pinning layer makes a
distinction in the outcome of the experiments by suppressing secondary stray
field effects originating from local inhomogeneities (like domain walls). We are
not aware that this observation has been made before, but it makes it possible
to understand all the different reports in a unified way. There is, however,
another issue which has not been fully resolved: the size of the apparent spin-
valve effects are small compared to theoretical predictions. Changes in Tc are
mostly less than 10 mK, and in bilayer experiments involving Py it was demon-
strated that the relative enhancement of superconductivity over domains walls
resulted in a similar-sized increase in Tc [56]. For the weak ferromagnets such
as Cu1−xNix (with x in the range 0.5 - 0.6), which played such an important
role both in demonstrating π-junctions and (apparent) spin switching, it was
not yet investigated whether domains in the F layer can enhance superconduc-
tivity in a similar way. In this chapter, we report on a study of Nb/Cu43Ni57

bilayers and trilayers where we compare anisotropic magnetoresistance (AMR)
effects in the normal state with the magnetoresistance in the superconducting
transition and measurements of the depairing (critical) current Idp below Tc,
both for microstructured and large-scale samples. We show that in bilayers
enhanced superconductivity is indeed found when the F-layer is in a domain
state. In the transition this is seen as a decrease in resistance in the field range
where domains occur according to AMR. Below the transition it is seen as a
maximum in Idp as function of the in-plane magnetic field. Interestingly, the
maximum occurs at significantly higher field values than where the domain
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state occurs above or in the transition, suggesting that the well-developed su-
perconductivity now influences the mechanism of magnetization rotation in
the F layer. Finally, in trilayers we basically make the same observations. A
domain-state dominated mechanism for spin-valve effects therefore cannot be
ruled out.

4.3 Sample details

400 x 400 µm2

(c)

50 x 50 µm2

(b)

I+ I-

V+ V- Si substrate

Au leads

lift-off residue

40x2 µm2 bilayer strip(a)

Figure 4.3: SEM images of 40×2 µm2 bilayer devices (a) standard 4-probe device, (b)
contact included device and (c) bonding pads and leads. In (a), the bright colored
Au leads were deposited using a lift-off mask technique, leaving typical Au residues.
The geometry of c) is used for all devices.

Nb/Cu43Ni57 layers were grown onto Si(100) substrates by DC magnetron
sputtering in a ultra high vacuum chamber with a background pressure of 10−9

mbar and an Ar pressure of 4 µbar with Nb as bottom layer (see Ch. 3.1 for
additional details). The Cu43Ni57 thickness was kept at 10 nm for all samples,
while the Nb layers are 20 nm for the bilayers, and 25 nm for the trilayers.
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Also all devices have and addition Nb capping layer (of 1-2 nm thick) on top
of the Cu43Ni57 top layer. The ratio Cu/Ni in the target is 50/50 (atomic
percentage), which results in an approximate 43/57 ratio at the sample. The
Curie temperature of the Cu43Ni57 is around 150 K, and it has a degree of
polarization close to zero (making it a model weak ferromagnet). The purity
of the Nb target is 99.95% which yields a Tc of 9.1-9.2 K. Different samples
were used for different bridge widths, although sometimes two bridges were
patterned and measured on the same sample. Standard electron beam lithog-
raphy was used to pattern micro-sized strips with a length of 40 µm and a
width ranging from 1 to 4 µm. These strips were etched with Ar ion-etching
(at 2.5 µbar Ar pressure) in a background pressure of 10−6 mbar. Au contacts
were sputtered in a second deposition step using a lift-off resist-mask tech-
nique, with a few monolayers of Ti used as adhesion layer for the Au. The
contact geometry is 4-probe with 10 µm spacing between the voltage probes.
Fig. 4.3a shows SEM (scanning electron microscope) images of 40×2 µm2 bi-
layer strips. The contour lines surrounding the high contrast Au leads are Au
lift-off residues. Trilayers and macroscopic sized samples were made using the
same recipe, where for the latter the strip dimensions are 2000×200 µm2 with
1000 µm spacing between the voltage probes. The superconducting transition
temperature for the bilayer samples, measured after structuring was 6.5 K,
except for the 40×1 sample where it was 7.5 K, probably due to a slightly
thicker Nb layer. For the trilayers it was 5.9 K. The thickness dependence
of Tc for plain Nb films and for Nb/F and F/Nb/F are presented in earlier
works [57, 58]. The two-step process in order to make separate electrical Au
contacts to the strips, rather than etch out a full geometry including contacts,
is crucial for the experiments, since otherwise the influence of the (magnetic)
contact areas can be significant as we show in Ch. 4.5. For those devices with
’contacts included’, strips including leads to the bonding pads are all etched
down during one step of Ar ion-etching.

The micron sized lateral dimensions brings along two main advantages: it
promotes probing states with only few domains, avoiding a large spaghetti of
domain states, and the resistance c.q. the cross-section is sufficiently high for
anisotropic magnetoresistance (AMR) measurements and critical current (Ic)
measurements. The AMR measurements play a key role in our experiments
since they allow to determine if and when domains appear in the ferromagnet
just above Tc. This can then be compared to the response of the superconduc-
tor to an applied field in and below the transition. Resistance measurements
were done in a standard 4He cryostat with magnetic shielding to provide a low-
noise environment, and a superconducting coil to provide the magnetic field
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(ranging up to 1 T). All field measurements are performed with the externally
applied field directed along the strips, which implies the current is parallel to
field. For CuNi this should result in a resistance decrease when domains are
being formed in a initially homogeneous state, similar to the behavior of the
elemental transition metals Fe, Co and Ni. At temperatures well below Tc we
performed Ic measurements, which probe the gap amplitude in the supercon-
ductor. The method for such measurements makes use of pulsed currents, and
was described in Ref. [59].

4.4 Results
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Figure 4.4: Resistance normalized to the value at 300 mT as function of an in-plane ap-
plied field Ha on Nb/Cu43Ni57 bilayer strips of 40×1, 40×2, 40×4 and 2000×200 µm2.
Temperatures were in a range between 7.5 K and 9 K for the different datasets. The
curves are shifted for clarity, each with a value of 1 × 10−4 with respect to the one
below. Also shown are data on a 40×2 µm2 Cu43Ni57/Nb/Cu43Ni57 trilayer strip (all
with Nb in normal state); these data are not shifted.
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Data were obtained for samples with different bridge widths, as well for
temperatures above and below Tc, and we present them in the following way.
We first give a brief overview of the behavior of the different samples. We then
concentrate on the 40×2 µm2 bilayer strip, which best illustrates most of the
physics, before coming back to the samples with different bridge widths. The
results of the field-dependent resistance measurements R (H) at a temperature
just above Tc are presented in Fig. 4.4 for bilayer strips with a width of 1 µm,
2 µm and 4 µm, as well as for the large bilayer structure (2000×200 µm2),
and for a 40×2 µm2 trilayer strip. The resistance values are normalized to the
value measured at 300 mT. The data clearly show hysteresis and resistance
dips. The relative resistance change is of order 10−4 and the minimum of the
dips is close to a field of ±22 mT. This field we call the dip-field Hdip,n (n
meaning the normal state) and is generally taken as the coercive field of the
ferromagnetic layers. The width of the hysteretic parts is about 50 mT. All
bridges show similar values for Hdip,n and the hysteretic width, and they lead
to the conclusion that domains are forming in all our ferromagnetic layers,
despite the parallel field alignment and narrow strips with high aspect ratio.

4.4.1 Results on the 2 µm bridge
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Figure 4.5: Resistance R versus in-plane applied field Ha on a 40×2 µm2 Nb/Cu43Ni57
bilayer strip at several temperatures above the superconducting transition. Arrows
in the top curve show the direction of the field sweep starting from high fields.
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Results of R (H) on a 40×2 µm2 bilayer strip for several temperatures
T > Tc are presented in Fig. 4.5 and illustrate that the values Hdip,n are in-
dependent of temperature in the range of a few Kelvin above Tc. The same
measurements are repeated for T < Tc and shown in Fig. 4.6, where the re-
sistance is normalized to the value at zero field. The measured signal now
comes predominantly from the superconducting layer, which is shorting the
ferromagnetic layer by percolation paths. The R (H) are measured at var-
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Figure 4.6: Resistance normalized to the value at zero field on a 40×2 µm2

Nb/Cu43Ni57 bilayer strip at several temperatures in the transition curve (Nb in
superconducting state). The bottom curve is for T = 6.58 K. Each subsequent curve
is shifted by +0.05 with respect to the previous one, with corresponding temperatures
6.55, 6.52, 6.50, 6.48, 6.46, 6.44 and 6.42 K (top curve).

ious temperatures along the transition curve shown in Fig. 4.7, which has
an approximate width of 100 mK. The 100 mK width makes that a relative
resistance change of 10−4 (our typical result in the AMR measurements) cor-
responds to a temperature change of 0.01 mK. This is below our measurement
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accuracy, so we loose track of any AMR features while in the transition area.
Again there are two clear dips visible as well as a parabolic shaped response at
higher fields, for all measurement except for the one very near the top of the
transition curve at 6.58 K. That one gives a straight line; apparently the super-
conductor is driven into the normal state by the measurement current which
in all measurements was of the order 2.5 ×108 A/m2. The relative resistance
change (δR)/R in the dips is now of order of percents, much larger than the
observed AMR effect. Moreover, the size of the dip, meaning the maximum
value of the resistance difference δR between forward and backward sweeps,
goes through a maximum. Fig. 4.7 shows δR taken from the unnormalized
data as function of temperature. It peaks at 6.52 K, which is about halfway in
the transition in the steepest part. We can related this to a shift in Tc accord-
ing to δR = δTc(∂R/∂T ) which comes to a few mK. Looking more carefully
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Figure 4.7: Temperature variation of the resistance of the device from Fig. 4.6 in
the transition (left-hand scale), which is a typical result for all our devices. It also
shows the temperature variation of the magnitude of the resistance dip δR (right-hand
scale).

at the R (H) curve we notice that (coming from positive fields) the parabolic
shaped curve, which reflects the standard response of the superconductor on a
magnetic field, first makes an upward oriented kink around H = 18 mT before
it arrives at the dip, with Hdip,s = −12 mT (s denoting the superconducting
state). The location of the dips and their normalized sizes do not show a
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upward kink
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Figure 4.8: Comparison of the field dependence of the resistance R for a 40×2 µm2

Nb/Cu43Ni57 bilayer strip, with T above Tc (right-hand scale) and below Tc (left hand
scale). The solid lines are data taken with decreasing field starting from +300 mT, as
shown by the arrows; The dashed lines are data taken with increasing field starting
from -300 mT. The upward kink in the decreasing-field data below Tc is also indicated.

strong temperature effect, which is a clear sign that the development of the
superconducting gap is not significantly changing the ferromagnetic domain
structure. Important to remark, however, is that the dip fields Hdip,s are al-
most a factor two smaller than the dip fields Hdip,n. We come back to this
below, but for the moment we assume that they are still due to the domain
state occurring in the Cu43Ni57 layer. The dips reflect an enhancement of the
(emerging) superconducting state, and therefore indicate that Tc is shifting
towards higher values in the domain state, just as seen in previous work on
Nb/Py bilayers. In Fig. 4.8 we show a comparison of the R (H) measurements
(on our 40×2 µm2 bilayer) above and below Tc. It illustrates the difference in
dip fields, but more important is to establish that the upward kink seen below
Tc in the decreasing field data is still at positive fields in a regime, according
to the AMR data, where domains are growing. On the other hand, no similar
feature is detected in the AMR data.

We now want to discuss the observations with respect to the dip fields
and the upward kink. Firstly, it is important to realize that the resistance
dip occurring in the AMR effect is due to the fact that the resistance in the
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ferromagnet depends on the angle between the local magnetization M and
the current I with, for the case of CuNi, the lowest resistance when M ⊥ I
[34]. The resistance minimum found when changing the direction of the mag-
netization then signifies the maximum amount of domains with a direction
perpendicular to the current and the bridge. In the superconducting state,
however, the resistance minimum comes about by a different mechanism, since
it is determined by the average exchange field sampled by a Cooper pair of
characteristic length ξS , which can be quite large close to Tc. There is no rea-
son why the two types of averaging over a domain configuration would yield
the same resistance minimum; for instance, a configuration where all of the
magnetization is perpendicular to the current would give a strong minimum
in AMR, but no resistance lowering in the superconducting state, since the
exchange field in that case is homogeneous. It is interesting to remark that
this difference would not be observable in Nb/Py, since in that case the switch-
ing was in such a small field range (order 10−4 T that a possible averaging
difference would go unnoticed [56].

That leaves an explanation for the kink feature in Rs (H). Looking again
at Fig. 4.8, it does not seem a coincidence that the kink in the decreasing field
data occurs around the coercive field in the increasing field part of the loop.
In very similar measurements (R(H) in the resistive transition) on Nb/Py
[56] a small increase in R was found at this field point in the hysteresis loop,
although it was not visible in the magnetization that domains started to form.
Apparently, domain formation starts when the field value comes inside the
hysteresis loop even for quite square loops. Here we believe that the domain
formation accelerates and starts to produce stray fields (either perpendicular,
or in-plane), resulting in the kink because they act as Cooper pair breakers.

4.4.2 Other bilayers and trilayers

The 2 µm wide bilayer strips clearly show a decrease in resistance of the su-
perconductor in the domain area of the ferromagnet. The results for other
strip widths, specifically for 1 µm and ’large’ (200 µm wide, 2 mm long) are
given in Fig. 4.9, together with the result on a 40×2 µm2 trilayer. These
presented curves are all below the steep part of the transition curve. They
basically confirm the 2 µm data, but there are some differences. First of all,
in the narrower 1 µm strip the resistance dips have completely disappeared,
while the AMR data of Fig. 4.4 definitely indicate the presence of domains.
Instead, only the parabolic feature remains here. On the other hand, for the
larger widths the resistance dips are present at the same field value or a bit
lower but now a new sharp dip appears, precisely coincident with the upward
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Figure 4.9: Normalized resistance measurements on a 40×1, 40×2 and
2000×200 µm2 Nb/Cu43Ni57 bilayer (first one shifted by +0.05) and a 40×2 µm2

Cu43Ni57/Nb/Cu43Ni57 trilayer strip (shifted by +0.2). Temperatures are all below
the steep part of the corresponding transition curves.

kink discussed in the previous paragraph. Important of course is that also
the new dip signifies lowering of resistance and is therefore not due to stray
field enhancement. Without more precise knowledge of the size and shape of
the domains and their evolution, it is difficult to give a solid explanation for
these observations. What is known from decoration experiments with mag-
netic particles is that the typical domain size on large samples is of the order
of 0.5 µm [60]. Still, we perceive a hierarchy of events. For the smallest strip
AMR detects the occurrence of domains with a component of their magneti-
zation perpendicular to the current, but with a magnetization spread that is
not large enough to significantly change the average field that Cooper pairs
experience. For the 2 µm strip the domain configuration in the switching is
apparently different, and leads to a smaller averaged exchange field. For wider
strips the domain state passes through even more configurations. In particular
around the coercive field there probably is a large number of small domains,
which leads to a sharp resistance dip.

Fig. 4.9 also shows a measurement on the trilayer structured as a 40×2 µm2

strip. The data show both the shallow dips and the sharp dips, similar to the
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Figure 4.10: Voltage V versus current I measured on a 40×2 µm2

Cu43Ni57/Nb/Cu43Ni57 trilayer strip at 4.3 K and 58 mT. The sharp jump at 0.44 mA
is taken as a measure for the critical (depairing) current.

bilayers with wider bridge widths. The bilayer results exclude that the two
dips are due to different switching fields for the two layers, but in the spirit
of the hierarchy sketched above, the domain state in the trilayer seems to
resemble those of wider bilayers, which suggest a form of coupling between
the two layers. From the size of the dip in Rs (H), and the steepness of the
transition curves at that temperature, we can estimate the corresponding Tc

shift. For all our devices this results in an approximate shift of few mK. We
also measured the transition curve at Hdip for the cases that the field was set
from high positive fields (corresponds to the parabola) and from high negative
fields (corresponds to the dip). In this way we found a shift in Tc of about
1.5 mK, which is hardly different from the values reported for the CuNi-based
spin-valve in Ref. [49].

4.4.3 Ic (H) well below Tc

So far we focussed on transport measurements around the transition, which
consistently show an enhancement of Tc in the domain state of the F layers.
To see what happens below Tc we conducted a series of critical current mea-
surements as function of applied field, Ic (Ha) by measuring the current I -
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Figure 4.11: Critical current measurements Ic as function of applied magnetic field Ha

on a 40×2 µm2 Cu43Ni57/Nb/Cu43Ni57 trilayer strip for different reduced temperature
T/Tc as indicated. The value of Tc is 5.73 K. Dotted vertical lines indicated the
positions of the maxima in Ic; dotted horizontal lines show the average value of Ic

around zero field as reference for the indicated values of increase in Ic at the maximum.

voltage V characteristic. We used 3 ms current pulses, with an interval of sev-
eral seconds and increasing in amplitude until the critical current is reached
and the superconductor is driven in the normal state. The sample is initially
cooled down in zero field condition and the first measurement at a fixed tem-
perature always starts in zero applied field. The I-V curves all showed a
sharp jump from almost zero voltage to the normal state, as we found be-
fore on S-films and S/F bilayers [59, 57]. An example is given in Fig. 4.10.
The jump indicates that we are measuring a depairing current rather than the
onset to vortex flow, which means that the measurement is directly sensitive
to the superconducting gap. Also, the value of Ic is well defined due to the
sharp transition. The results for the 40×2 µm2 Cu43Ni57/Nb/Cu43Ni57 tri-
layer are shown in Fig. 4.11, for three temperatures well below Tc, in terms
of the reduced temperature t = T/Tc down to t = 0.5. All data show the
same behavior, with initial constant Ic for increasing Ha, followed by a small
maximum of the order of 1 %, before a decrease sets in. The field values
where the maximum occurs, Hmax, are in the range 50 mT - 60 mT and in-
crease with decreasing temperature. The uncertainty in the determination of
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Ic is basically the step size for the increase in current (1.8 µA) and therefore
significantly below the enhancement of Ic we find around Hmax. We interpret
the enhanced Ic as an enhancement of the superconducting gap, and note that
the percentage change is similar to the observed shifts in Tc. The peaks, how-
ever, do appears at fields higher than the observed dips fields in our R (H)
measurements. In Fig. 4.12 we combine the values for Hdip and Hmax for the
40×2 µm2 Cu43Ni57/Nb/Cu43Ni57 trilayer. It shows the constant value for
Hdip,n, the jump to a lower value in the transition, and then the significant
increase well below Tc.

We interpret the maximum in Ic as still caused by the domain state of
the F layers. We do not know of similar data in the regime below T = 0.9,
except for a report on Nb/Co bilayers where an increase in Ic of almost 50 %
was found at around t = 0.5 [61]. Such a large value may well be an arte-
fact caused by the sample geometry. As mentioned in Ch. 4.3, the geometry
used here consists of simple bars with Au contacts. When the contact pads
are included in the etching, all observations can change significantly, and in
particular for the Ic enhancement we also find an increase of over 60 % as will
be shown in Ch. 4.5. The smaller value (of order 1 %) also seems intuitively
reasonable, since the superconducting order parameter is now well developed
and the superconducting coherence length is small, making the sampling of
the domain state by the Cooper pair less efficient. That leaves the question
of the increase in coercive fields to values above 60 mT. In order to set these
in perspective, we can estimate the maximum coercive field Hc,m as expected
for coherent rotation of the magnetization in the framework of the Stoner-
Wohlfart model [34, 62]. For the field along the easy axis of magnetization,
Hc,m equals the anisotropy field Han = 2Ka/(µ0Ms), with Ka the anisotropy
constant and Ms the saturation magnetization. Taking a value of 6×103 J/m3

for Ka [63] and a value of 0.1 T for µ0Ms [58] leads to roughly µ0Han = 0.1 T,
still above the value we find for the coercive fields. This indicates that the su-
perconducting state has a significant effect on the domain structure during the
rotation of the magnetization, going in the direction of coherent rotation. As
that would mean that the amount of domain walls becomes less, it would be
another ground for the small effects observed in the superconductor far below
Tc. Incidentally, similar effects of the superconductor on the magnetic state
have been reported before. Magnetization measurements using a microfabri-
cated Hall probe on Al/Ni submicron samples showed that shielding currents
can reshuffle magnetic domains [64]. Similarly, magnetization measurements
by SQUID magnetometry on S/F multilayers demonstrated changes in the
magnetic state of the F layers in response to the onset of superconductivity
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[65, 66].
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Figure 4.12: Collection of the measured dip and peak fields Hd,p in our devices as
function of temperature.

4.5 The influence of magnetic contacts

In measurements on the effects of stray fields and the spin-valve mechanism in
F/S/F trilayers different sample geometries are used. In particular for litho-
graphically structured samples it is tempting to include contact pads in the
layout, since then only a single etch step is needed to fabricate the full device.
Here we show that such a ’contact-included’ geometry behaves very differently
from a simple strip which has been contacted with Au leads. A SEM image
of a contact included strip is shown in Fig. 4.3b, and Fig. 4.3c shows the ge-
ometry of the bonding pads and leads to the strip. Field-dependent resistance
measurements on a contact-included 40×2 µm2 bilayer for T > Tc and T < Tc

are shown in Fig. 4.13 and Fig. 4.14 respectively, where they are compared
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Figure 4.13: Resistance measurements on a contact-included 40×2 µm2 Nb/Cu43Ni57
bilayer strip, compared to a strip-like standard device of similar size (Nb in the normal
state). The temperatures of the measurements (7.5 K and 7 K) are just above Tc for
both devices. The values of the dip field are indicated with the dotted lines.

to the results obtained on our standard bilayer strip. Above Tc the AMR dip
shows a large broadening of about a factor 4, while the coercive field value is
about the same with a value close to ±22 mT. Below Tc the results are not
very different, except that the location of the dip has shifted to a higher value
coinciding with the observed coercive field. From these resistance measure-
ment the ”malfunctioning” of the device is not clear, but it does point towards
a coercive-field dominated working of the device, from which we have shown
is not the underlying mechanism in our strips. In Fig. 4.15 we show critical
current measurements on a contact-included 40×2 µm2 trilayer and compare
them to the results obtained on the standard trilayer strip. The obvious differ-
ence is the size of the peak, which now shows an increase of nearly 60 percent!
The location of the peak compares very well to the ones found on the standard
device. Most likely, the T-shaped contact areas create a bottleneck for the su-
percurrent. Due to that shape, the magnetic anisotropy energies are likely to
dominate the formation process and induce a very inhomogeneous magnetic
profile localized near the contacts. This explains the large broadening of the
AMR curve. Furthermore, this complex domain structure (or rather the stray
fields produced by it) strongly suppresses the gap, an effect which apparently
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Figure 4.14: Resistance measurements on a contact-include 40×2 µm2 Nb/Cu43Ni57
bilayer strip, compared to a strip-like standard device of similar size (Nb in the su-
perconducting state). The temperatures of the measurements (6.46 K and 6 K) are
in the resistive transition for both devices. The values of the dip field are indicated
with the dotted lines.

disappears at higher fields, resulting in a large increase in critical current.

4.6 Conclusions

In conclusion, we investigated the effect of magnetic domains on a supercon-
ductor for the case of weakly ferromagnetic Cu43Ni57 by comparing magne-
totransport measurements above and below the superconducting transition,
both for bilayers and for trilayers resembling a spin-valve geometry, and for
small structures as well as for large samples. We generally find that above
the transition the resistance change is dominated by the AMR effect of the
ferromagnetic layer (with a relative change of order 10−4), while in the tran-
sition it is dominated by changes in the superconducting gap (with a relative
change of order 10−1). The AMR measurements show that domains are ap-
pearing in all our devices even down to the smallest bridges of 1 µm wide,
with nearly identical hysteretic behavior and a coercive field value of 22 mT.
In the samples with a 2 µm bridge a small but clear enhancement of Tc is
found inside the transition which we claim to be due to the presence of mag-
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Figure 4.15: Critical current measurements Ic as function of applied magnetic field Ha

on a contact-included 40×2 µm2 Cu43Ni57/Nb/Cu43Ni57 trilayer strip, for a reduced
temperature T/Tc = 0.69. The dashed lines show the data from the standard devices
displayed in Fig. 4.11. Also indicated is the critical current increase in the peak as
compared to the zero-field value.

netic domains. This enhancement is present in a limited field range, somewhat
smaller than the range over which domains are present in the ferromagnetic
layers. Still in the transition, the largest effect on the resistance is at a dif-
ferent field than the largest dip in the AMR. We believe that this reflects the
difference in mechanisms giving rise to the two effects; on the one hand mag-
netization perpendicular to the current, on the other optimal sampling when
the superconducting coherence length and the ferromagnetic domain sizes are
of similar order. In samples with wider bridges even two dips are found in the
transition, which is qualitatively ascribed to the evolution of domain states
which appears to be possible in these wider samples. By going to lower tem-
peratures and measuring the critical current (as a measure of the strength of
the superconducting gap) we see that this enhancement is still present but the
field at which it appears is shifting towards significantly higher values. This
we attribute to the increasing strength of the superconductor which is forc-
ing the ferromagnet to switch in a more single domain type of manner. The
results on our micro-structured bilayers are very similar to the ones on our
large-scale bilayer and micro-structured trilayers. All different measurement



64 Chapter 4. Superconducting spin-valve: weak ferromagnetic case

show enhancement of the superconducting gap with a relative size of a few
percent. This is very similar to all previous works on spin-valves involving
weakly ferromagnetic CuNi, where the mechanism was believed to be the par-
allel vs anti-parallel orientation of the exchange fields. In view of our results,
domain formation in the individual F-layers should be considered at least as
an effect of similar importance.
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5.1 Introduction

To grasp the differences between the weak ferromagnetic based spin-valves, as
discussed in the previous chapter, and the strong ferromagnetic based spin-
valves, which are the main ingredient of this chapter, let us start by highlight-
ing the key aspects of the former, in particular, the mechanisms involved in
the working of the spin-valve device. The term ”weak” in this context means
not only that the ferromagnetic exchange energy Eex is much smaller than the
Fermi energy EF , but additionally assumes identical spin bands (to achieve
zero spin polarization) and neglects contributions from the dipolar fields gen-
erated by the magnetization resulting from Eex. These two assumptions seem
to be reasonable for small and homogenous exchange field Hex, and for these
systems, experimental data confirm the theoretical predictions [48, 49]. For
the spin-valve system in the weak limit with homogeneous Hex, the driving
mechanism that leads to the Tc difference between the parallel (P) and anti-
parallel (AP) alignment of the exchange fields, is based on enhanced dephasing
of the induced pairs in P alignment. This originates from the momentum dif-
ference the induced pair obtains if the system is in P alignment, which it does
not obtain in AP alignment (see Fig. 4.2). The enhanced dephasing causes
a lowering of the Cooper pair density near the interface which leads to a Tc

lowering. Inhomogeneities in Hex, especially in the form of magnetic domains
and domain walls, make that at a single S/F interface anti-parallel regions
exist. The alignment is no longer purely parallel, and all the non-parallel
fractions/regions contributes to a Tc enhancement. It is still the Cooper pair
which needs to provide this coupling (and sample different directions of the
exchange fields) and therefore, just as in the spin valve where the two F layers
should not be separated more than a few times the superconducting coherence
length ξS , the distance over which the inhomogeneity should appear (to make
a difference) is also limited to a few times ξS . The use of weak limit theory is
actually a forced restriction. The theoretical framework based on the quasi-
classical Green functions is unable to deal with correlation between particles
which are separated by energies of the order of EF . This limit the models
to ferromagnets with Eex ¿ EF . Secondly, incorporating non-identical spin-
bands (to deal with polarization) into the model gives severe mathematical
difficulties, and thus identical (normal metal) spin bands are used, which is
another reason to remain in the limit for weak ferromagnetism. What can
be included are dipolar fields and inhomogeneities, and especially the latter
has been included in the form of domain walls in S/F [41] or non-collinear
magnetization in spin-valves [67]

In the previous chapter we studied Nb/CuNi devices, and in particular
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the influence of the domains on the superconducting state. We found a con-
tribution from these domains equally important as that from the P versus
AP state in real spin-valve devices. However, a dominant contribution from
dipolar fields, generated by those domains, was not found in any of the de-
vices. In this chapter we continue this study on Nb/Py spin-valves, where
the dipolar fields are much stronger. As we will show, in these devices the
dipolar fields may become a dominant contribution and couple the magnetic
states of both the Py layers in the spin-valve. Before we show the results ob-
tained on the various devices, we first discuss what the effects of non-identical
spin bands, encountered in ”real” (or strong) ferromagnetic materials, on the
superconducting spin-valve will be, on a qualitative level.

5.2 Polarized spin bands

We consider a thin layered F/S/F spin-valve in the dirty limit (i.e. all relevant
length scales are much longer than the electron mean free path). The ferromag-
nets are homogeneously magnetized (single domain) and the exchange fields
of the two ferromagnets are directed along the interfaces in either a parallel
(P) or anti-parallel (AP) configuration. The dipolar fields of the ferromagnets
are assumed to be much lower than Hc‖ (the parallel critical field strength)
and do not affect the superconducting state (i.e. their pair breaking strength
is zero). The exchange energies of the ferromagnets are neither in the so called
weak-limit (Eex ¿ EF ) or the strong-limit (Eex ∼ EF ), so we have Eex < EF .
As a result, the spin bands cannot considered to be identical (weak limit)
or decoupled (”perfect” strong limit). This, in consequence, gives rise to a
spin dependent density of states, Fermi velocity, diffusion constant, etc. The
(much) increased strength of the exchange field, compared to the weak limit,
results in an enhancement of the suppression of the superconducting state.
However, there is also an opposite effect due to the polarization of the spin
bands. The Andreev reflections at a single interface become suppressed due
to the presence of the minority spin band, more Cooper pairs are confined
inside the superconductor, and the polarization therefore leads to a reduced
suppression of the superconducting state. For the spin-valve, the essential
process is the crossed Andreev reflection, in which the two electrons of the
pair are removed in the opposite ferromagnetic banks. In the P configuration
this always includes a minority spin band, while in the AP configuration both
electrons can be accomodated in the majority bands. This means the AP
configuration is now less confining and more efficient as pair breaker. In the
limit of full spin polarization Cooper pairs have become fully confined in the
P configuration, but still can leave the superconductor by crossed Andreev
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reflections in the AP configuration. In other words, for weak magnets the P
configuration suppresses superconductivity more strongly, but in the case of
strong spin polarization it is the AP configuration, opposite to the weak limit
result!

Ferromagnet, F1

Hex

~ξS

Superconductor Ferromagnet, F2

Hex

Hex
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N(E)
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Figure 5.1: Comparing the parallel (P) and anti-parallel (AP) configuration of the fer-
romagnetic exchange fields Hex in a superconducting spin-valve. Here, a Cooper pair
(CP) couples the two ferromagnetic layers F1 and F2, with ξS the superconducting
coherence length. In F1 the orientation of Hex is ”down” while in F2 the orientation is
either ”up” (AP configuration) or ”down” (P configuration). The presented electron
band structures represent strong ferromagnets with non-zero polarization.

A crossover from the established weak limit result to a reversal of the effect
for strongly spin polarized ferromagnets is thus expected, but no theoretical
predictions nor experimental data are available to confirm or refute this. To
complicate matters, a relative increase of resistance when switching the mag-
netization may also be due to a change in the stray fields coming from the F
layers. These issues are reflected in the literature. Results obtained on weak
ferromagnet based spin-valves are all in line with the theoretical predictions,
but that is not the case for systems involving strong magnets, such as Ni [50],
Ni80Fe20 (Permalloy, Py) [51, 52, 53], Co and Fe combined [54] or Co [55]. In a
number of these experiments, a reversed behavior is observed, giving a higher
Tc in the parallel alignment. This is the case in reports on Nb/Py[51, 53],
Nb/(Co,Fe)[54] and Nb/Co[55]. What all these reports have in common is
that they do not make use of an anti-ferromagnetic pinning layer to pin the
magnetization direction of one of the two F layers. The other experiments
using strong ferromagnets all do use such pinning layer, improving the qual-

creo
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ity of the AP state, and there the ”standard” spin-valve working is obtained.
The non-pinned devices make use of F layers which intrinsically have different
switching fields in order to switch them separately and create the AP align-
ment. This can be obtained by using different materials or thicknesses for the
two F layers. The reports showing the reversed behavior do not agree on the
suggested dominant mechanism, although most are in favor of a stray field
based explanation, which in weak ferromagnetic based spin-valves was shown
not to be (dominantly) present at all. A plausible argumentation is that the
absence of a (strong) pinning layer (the switch field for the pinned AFM layer
is quite a bit higher than the switch field of the F layer) leads to a less well
defined AP state, where domains are present. The dipolar fields coming from
these domains then have to overpower the effect of exchange field averaging,
which is the standard (weak limit) mechanism. This fits with the following
reports, which are all based on macroscopic sized samples. In the work of
Stamopoulos et al. [53] a stray field coupling between the F layers is claimed,
which act as source for the reversed behavior. In the work of Steiner et al. [54]
it is concluded that the results strongly favor an explanation based on local
stray fields. In the work of Carapella et al. [55] it is claimed that stray fields
create a glassy vortex state, which is responsible for the reversal. A different
mechanism connected to the polarization of the spin bands was claimed by
Rusanov et al. [51] who used microscopic sized samples and was the first to
observe this reversal. For such small samples, a deviant working of the device
is not unexpected due to the lateral sizes competing with domain formation
and switching.

To determine the Tc shift one typically measures the transition curve R (T )
from normal to superconducting state, and compares the P and AP alignments
(preferably at equal but opposite external field). To gain more insight in the
working of the device, a full field sweep at a fixed temperature on the transition
curve can be made. The resistance ideally would remain constant until the
device switches states, at which the resistance jumps to its different value. Es-
pecially in the work of Rusanov et al. [51] such (almost perfect) jumps/blocks
where found and it was assumed this was directly related to a switching be-
tween the states (P and AP). However, the lowest resistance (highest Tc) was
found in the P configuration, meaning a reversed result compared to the weak
limit result. In this work we re-examined this issue.

Here we present a series of measurements on Nb/Py bilayers and spin-valve
devices where we compare anisotropic magnetoresistance (AMR) effect in the
normal state with the magnetoresistance measurements in the superconducting
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state. We also present measurements of the depairing (critical) current Idp far
below Tc, and we explore both large scale devices (which were commonly
used in previous works) and micro-sized devices. In particular we show that
a dipolar coupling between the two Py layers disturbs the AP configuration
in the spin-valve, and that the suppression of the stray fields outweighs the
domain averaging effect of Cooper pairs.

5.3 Experimental details

40 x 2 µm2 trilayer strip (Py based no capping)

I+ I-V+ V-

Si substrate

Au lead Au lead

Figure 5.2: SEM image of a 4-probe 40×2 µm2 spin-valve device. The distance
between the voltage probes (V+ and V−) is 10 µm and the full length of the spin-
valve wire is 40 µm. Similar Au contacting leads for the current probes are at the
end points of the wire (not shown).

Nb/Py layers were grown on Si(100) substrates by DC magnetron sputter-
ing in a ultra high vacuum chamber with a background pressure of 10−9 mbar
and an Ar pressure of 4 µbar for the Nb and 2.5 µbar for the Py, with Nb
as bottom layer (see Ch. 3.1 for additional details). The substrate holders
were equipped with a small magnet to determine the direction of easy axis
for the Py layers and enhance the fast switching properties. The Nb layer
thickness was kept at 50 nm for all samples, while for the Py layers thickness
we used 20 nm and 50 nm. For our Py/Nb/Py spin-valve devices the bottom
Py layer is 50 nm thick and the top Py layer is 20 nm thick. All devices
have an additional 2 nm Nb capping layer added on top to prevent oxidation
of the top Py layer. In Ch. 5.4.4 we show that not adding such a protec-
tive layer leads to a exchange-biased Py layer, likely due to anti-ferromagnetic
iron-oxide formation. The Py has a degree of polarization close to 45 % and
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a Curie temperature around 900 K. The purity of the Nb target is 99.95 %
which yields a Tc of 9.1-9.2 K. Standard electron beam lithography was used
to pattern both the micro-sized strips, with a length of 40 µm and a width
of 1 to 4 µm, and the large scale devices (2000×200 µm2). In all cases, the
direction of the strips is aligned with magnetic easy axis of the Py layer. The
strips were etched using Ar ion-etching at an Ar pressure of 3 µbar with a
background pressure of 10−6 mbar. Au contacts were sputtered in a second
deposition step using a lift-off resist mask technique. A few nanometers of Ti
were sputtered as adhesion layer for the Au. The contact geometry is 4-probe,
with 10 µm spacing between the voltage probes for the micro-sized strips and
1000 µm for the large scale structures. Fig. 5.2 shows a SEM (scanning elec-
tron microscope) image of a 40×2 µm2 spin-valve. This recipe is used for both
bilayer and spin-valve, both for micro-sized and macro-sized devices. Typical
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Figure 5.3: Temperature variation of the resistance around the transition temperature
Tc (plotted as T − Tc) for (from left to right) a Py(50)/Nb(50)/Py(20) spin-valve
(SV), a Nb(50)/Py(50) bilayer (BL50) and a Nb(50)/Py(20) bilayer (BL20), with
numbers representing the layer thickness in nm. Resistance is normalized to the
low temperature resistance R0 and curves are shifted along temperature for clarity.
Lateral dimensions of the devices are given in the graph in units of µm2. The table
shows Tc and R0 of all devices presented in this chapter.

transition curves (resistance R versus temperature T around Tc) for several
of our devices are shown in Fig. 5.3, where curves are represented as T − Tc

(with Tc defined as the midpoint of the transition) and shifted for clarity. The
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typical width of the transition is 50 to 100 mK. Also shown in the figure are
all Tc’s and low temperature normal state resistances (R0) for our devices.
Note the difference in Tc between bilayers and spin-valves. The choice for the
different layer thicknesses for the Py in the spin-valve device is to establish
different coercive fields, making the device switchable from parallel to anti-
parallel. The coercive fields of the 20 and 50 nm thick micro-sized Py strips
are expected to be in the range from 0 to 20 mT [51] with a wider strip leading
to a lower coercive field value (a large Py thin film of 20 nm thickness was
measured to have a coercive field less than 0.5 mT). For our typical micro-
sized strips (1 to 4 µm wide) we have always found a difference of about 5 mT
between the two different thicknesses. However, as we will show later, the
mutual influence of the exchange fields prevents a clean switching. The micro-
sized elongated structures were chosen to promote single domain switching.
They also have sufficiently large cross-sectional resistance to perform criti-
cal current (Ic) measurements. We performed anisotropic magneto-resistance
(AMR) measurements (mainly at low temperature) just above Tc to see if
and when domains appear in our Nb/Py bilayer systems, and then compare
this to the AMR signal of the trilayer to see if the Py layers become coupled
through their dipolar fields. The response of the superconductor is found by
comparing these AMR measurements to the magnetoresistance measurements
in the transition. All measurements were done in a standard 4He cryostat with
magnetic shielding to provide a low-noise environment. It is equipped with
a superconducting coil to generate magnetic fields up to 1 T. All field mea-
surements are performed with the direction of the applied field Ha along the
long side of the strip, which implies Ha ‖ I (the measurement current). The
critical current (Ic) measurements are performed well below Tc, and probe the
gap strength, enabling a comparison between P and AP below the transition
area. A pulsed current method was used for these measurements, which is
described in Ref. [59].

5.4 Results

5.4.1 R(H) for T > Tc

Fig. 5.4 shows the result of R (H) measurements on large scale Nb/Py bilayers
and a Py/Nb/Py spin-valve, all with lateral dimension 2000×200 µm2 and at
a temperature of 9 K (Nb in normal state). All devices show the characteristic
AMR dip, with a relative resistance change close to 0.06 percent. The spin-
valve and bilayer with the thick Py layer (50 nm) show a very similar hysteretic
curve with a coercive field value close to 1 mT, however, the bilayer with the
thin Py layer (20 nm) shows a much broader dip with a coercive field close
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Figure 5.4: Resistance normalized to the value at 30 mT (called R0 in the figure) as
function of the in-plane applied field Ha on large scale devices with lateral dimension
2000×200 µm2, all at temperature T = 9 K. From top to bottom, a Nb(50)/Py(20)
bilayer (BL20), a Nb(50)/Py(50) bilayer (BL50), and a Py(50)/Nb(50)/Py(20) spin-
valve (SV), with numbers representing the layer thickness in nm. The BL50 and SV
curves are shifted by respectively -0.0008 and -0.0016.

to 3 mT. The same measurements but now on micro-structured strips, all
with lateral dimension 40×4 µm2, are shown in Fig. 5.5. For the spin-valve,
block-shaped hysteretic dips appear with switches near ±1 mT and ±3 mT,
and with (again) a relative resistance change of 0.06 percent. For both the
50 nm thick and 20 nm thick bilayer we do not see any AMR dip coming out
of the measurement noise, pointing towards a single domain type of switching.
The noise level is similar for all three devices and about 0.01 percent, which
is 0.3-0.4 mΩ in terms of absolute resistance value. It is significantly worse
than the large scale devices and suggests that contacts to the strip are of lesser
quality.

The appearance of this (seemingly) 2-step switch process in the micro-sized
spin-valve is very different from the large scale spin-valve. Yet, the size of the
resistance chance is similar in both cases, and the observed switching fields
of the blocks coincide with the coercive fields of the two different large scale
bilayers (1 mT and 3 mT, respectively). To further explore this 2-stepped type
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as function of the in-plane applied field Ha on micro-sized devices with lateral di-
mension 40×4 µm2, all with temperature T = 9 K. The presented curve is from
a Py(50)/Nb(50)/Py(20) spin-valve, while the results on the Nb(50)/Py(20) and
Nb(50)/Py(50) bilayers (BL20 and BL50) are ”flat” and within the noise of the spin-
valve, with numbers representing the layer thickness in nm.

of switching we fabricated a narrower bridge (1 µm wide) increasing the shape
anisotropy energy, thus enhancing its importance in determining the possible
domain states in the strips. Results are presented in Fig. 5.6 and show a
series of R (H) measurements at constant temperature (T = 9 K) above Tc.
Although no two curves are identical, there seem to be only a limited number
of values for the applied field where a jump in resistance is seen, and also
the size of those jumps take only few different values. The range over which
hysteresis is found goes from ± (4 to 14) mT, which is significantly higher than
in the other devices. Also the size of the resistance change is about 10× higher
than in our wider devices, implying more dense, and/or more perpendicular
domains (perpendicular to the current direction).

In all the large scale devices (bilayer and spin-valve) domains appear during
the switching, with a lower coercive field for a thicker Py layer. However,
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Figure 5.6: Resistance normalized to the value at 30 mT (called R0 in the figure)
as function of the in-plane applied field Ha on a 40×1 µm2 Py(50)/Nb(50)/Py(20)
spin-valve, with numbers representing the layer thickness in nm. All curves have a
different magnetic history and are repeatedly shifted by -0.005. For all measurements
the temperature was 9 K.

while the F layers in the bilayer devices can apparently switch freely, they
evidently become magnetically coupled in the spin-valve device. This coupling
appears to be such that a switching in the thinner layer (highest coercive
field) is triggered by the switching of the thicker layer (lowest coercive field).
In the 40×4 µm2 bilayer strips, the switching is no longer accompanied by
the formation and movement/rotation of domains over a relative broad field
range, but rather makes a fast single switch. Most likely this is due to the
enhanced shape anisotropy which favors single domain switching. In a spin-
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valve device of the same lateral dimension the F layers become coupled, just
as in the large scale spin-valve. Only now, the intrinsic type of switching
of the separate layers is different, and this results in a two-stepped switch
process for the spin-valve. We recall that a dip in the resistance of the AMR
signal (in our devices) is representative for the appearance of inhomogeneities
(domains) in the magnetization. Therefore, rather than a switch from parallel
to anti-parallel, the blocks in the AMR signal indicate a switch from parallel
to a domain state. The measurements on the 40×1 µm2 spin-valve show that
a variety of possible domain states exists, which can be entered during the
two-stepped type of switching. In wider strips we have never observed such
behavior.
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Figure 5.7: Resistance as function of the in-plane applied field Ha on large scale
devices with lateral dimension 2000×200 µm2, at temperatures on the low-end of the
transition curve (Nb in superconducting state). From top to bottom, a Nb(50)/Py(20)
bilayer (BL20), a Nb(50)/Py(50) bilayer (BL50) and a Py(50)/Nb(50)/Py(20) spin-
valve (SV), with numbers representing the layer thickness in nm. The BL50 curve is
shifted by +0.5 and the BL20 curve is on the right-hand scale.

5.4.2 R(H) for T < Tc

A similar set of measurements is performed inside the transition, with Nb
superconducting. The R (H) are all taken at temperatures near the low-end
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of the transition curve to improve temperature stability. The measured sig-
nal now comes predominantly from the superconductor which is shorting the
ferromagnetic layers by percolation paths. Furthermore, any AMR features
are no longer visible due to the (relative) high ∂R/∂T in the transition. Our
typical 100 mK transition width, combined with a 10−4 relative resistance
change corresponds to a temperature change of 0.01 mK, which is below our
measurement accuracy of about 0.3 mK. Fig. 5.7 shows the result of R (H)
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Figure 5.8: Resistance as function of the in-plane applied field Ha on micro-sized
devices with lateral dimension 40×4 µm2, at temperatures on the low-end of the
transition curve (Nb in superconducting state). From top to bottom, a Nb(50)/Py(20)
bilayer (BL20), 2x a Nb(50)/Py(50) bilayer (BL50), and 2x a Py(50)/Nb(50)/Py(20)
spin-valve (SV), with numbers representing the layer thickness in nm. Two curves are
shifted (by -0.5 and +1.5) as indicated. The SV curves are on the right-hand scale.

measurements on the large scale devices (2000×200 µm2). While the bilayer
with the 50 nm thick Py layer does not show any hysteric feature at all, the
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curves repeatedly shifted by +2.5 as indicated. Right-hand scale: results for T > Tc

taken from Fig. 5.6.

bilayer with the 20 nm thick Py layer shows clear hysteric peaks. The location
of these observed peaks are around ± 6 mT, which is significantly higher than
the corresponding AMR dips (in the same device) which are at ± 3 mT. Also
the spin-valve shows such hysteretic peaks, but located at lower fields around
± 2 mT (the corresponding AMR dips in the same device are at ± 1 mT). For
the micro-sized devices (40×4 µm2) the same trend is observed (see Fig. 5.8)
with again no hysteretic feature in the bilayer with the 50 nm thick Py layer,
while the bilayer with the 20 nm thick Py layer and the spin-valve both do
show hysteretic peaks. In case of the bilayer, the peaks are located at ± 4 mT
(a lower value compared to the large scale devices) and still resemble the shape
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of peaks. For the spin-valve the peaks are now really block-shaped, indicating
again a 2-stepped type of switching, and have switching fields at ± 1 mT and
± 4 mT. In Fig. 5.9 we present the R (H) measurements on the thinner spin-
valve (40×1 µm2), and make a direct comparison with the obtained T > Tc

results (of the same sample, see Fig. 5.6). Block-shaped peaks are observed
with switches at ± 4 and ± 10 mT (or ± 14 mT) . Furthermore, there is
a striking resemblance between the observed blocks for T > Tc (dips) and
T < Tc (peaks). All observed switching fields in the R (H) measurements on
the large scale and micro-sized devices are collected in Table I:

2000× 200 40× 4 40× 1
SV BL50 BL20 SV BL50 BL20 SV

T > Tc 1 1 3 1-3 - - 4-14
T < Tc 2 - 6 1-4 - 4 4-14

Table I: Switching fields in mT for the various structures and samples, both above
and below Tc.

5.4.3 Ic(H) for T well below Tc

The presented transport measurements so far, all focus on temperatures closely
around the transition (T ∼ Tc). To study the working of the spin-valve well
below Tc we conducted a series of critical current measurements as function of
applied field, Ic (Ha) by measuring the current I - voltage V characteristic. We
used 3 ms current pulses, with an interval of several seconds and increasing
in amplitude until the critical current is reached and the superconductor is
driven in the normal state. The sample is initially cooled down in zero field
condition and the first measurement at a fixed temperature always starts in
zero applied field. The obtained I-V curves all showed a sharp jump from
almost zero voltage to the normal state, which indicates that we are measuring
a depairing current rather than the onset to vortex flow. This we (consistently)
found before on S-films and S/F bilayers [59, 57, 68]. The measurement is thus
directly sensitive to the amplitude of the superconducting gap, which limits
the critical current. Additionally, the value of Ic is well defined due to the
sharp transition. The results for the 40×4 µm2 Nb/Py spin-valve are shown
in Fig. 5.10, where Ic (H) curves are presented at four temperatures well below
Tc, which, in terms of the reduced temperature t = T/Tc go down to t = 0.5.
All data show a block-like dip for the increasing applied field (coming from
negative saturation) with switching fields around 0.5 mT and 3.5 mT, after
which the curve becomes constant. The observed switching fields of the blocks
do not show a temperature dependence, but do show a diminishing effect for
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Figure 5.10: Critical current measurements Ic, normalized to the maximum ob-
served value Ic,max per temperature, as function of the in-plane applied field Ha on a
40×4 µm2 Py(50)/Nb(50)/Py(20) spin-valve. The curves represent different reduced
temperatures T/Tc and are shifted for clarity by -0.03, -0.08 and -0.15. The indicated
percentages are the relative sizes of the dips.

decreasing temperature. The uncertainty in the determination of Ic is about
the step size for the increase in current (1 µA). We interpret the decrease of Ic

in the hysteretic region as a suppression of the superconducting gap. Because
the gap increases in strength for lower temperature, it is not strange to see a
diminishing effect of the percentage change. The switching fields coincide with
the values found in the transport measurements close to Tc (see Fig. 5.5 and
Fig. 5.8). Fig 5.11 shows the t = 0.94 curve up to higher field values, and the
standard decrease of Ic due to applied field becomes visible. Additionally, the
inset shows the actual I - V measurement at the highest used field (125 mT).

5.4.4 Exchange biased Py

All presented data so far has been on devices where the top Py layer is covered
by a thin Nb layer to protect it from oxidizing. Magnetoresistance measure-
ments on a 40×2 µm2 bilayer strip without such capping layer are presented
in Fig. 5.12, where R (H) at room temperature (T = 300 K) is compared with
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Figure 5.11: High field behavior of the T/Tc = 0.94 critical current measurement as
presented in Fig. 5.10. The inset shows the current voltage measurement of the curve
for µ0Ha = 125 mT.

low temperature (T = 10 K). At room temperature the AMR signal contains
the typical dips. They are symmetrical around zero field, with a coercive field
of ± 6 mT, and with a relative resistance change of 0.005. At low temperature
the dips have become broader, the coercive fields have become larger, but the
curve is no longer symmetric around zero field. The coercive fields are now
at -14 mT and 9 mT, which indicates an exchange bias of 2.5 mT (such that
unbiased the coercive fields would be symmetric again at ± 11.5 mT). We ex-
pect this exchange bias to be the result of the formation of anti-ferromagnetic
Fe2O3 in the Py layer.

5.5 Discussion and conclusion

Combining the results from all measurements above, the data sketch a coherent
picture of the behavior of Py/Nb/Py spin-valve structures. For temperatures
above the transition (Nb in normal state) we find that the resistance changes
are dominated by the AMR effect of the Py layers, with a relative resistance
change of order 10−4. In large scale devices, where domain formation is not
limited by the size of the sample, the observed resistance dips in the bilayers
with 20 nm and 50 nm thick Py appear at different fields. For the spin-
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are 20 nm thick.

valve structure we then expect to see all four resistance dips in the AMR,
however, we observe a behavior very similar to the bilayer with 50 nm thick
Py. Going to the microscopic regime, we no longer observe any dips at all in
the AMR signal of the bilayers, pointing towards a fast single domain type
of switching. Surprisingly, in the spin-valve we do observe resistance changes
in the AMR signal. A 2-stepped switching has appeared by going from large
scale to micro-sized spin-valves, most strongly pronounced in the thinnest
(1 µm wide) spin-valve structure. We believe this is a strong indication for
a magnetic coupling between the two Py layers by dipolar/stray fields, which
are locking domains into a (meta)stable configuration. For temperature below
the transitions (Nb superconducting) we observe peaks in the resistance now
dominated by changes in the superconducting gap, with a relative resistance
change of order 10−1. Especially in the 1 µm wide spin-valve, these peaks
are mirror images of the dips in the corresponding AMR signals. This implies
that 1) the superconductor does not influence/change the switching behavior
of the spin-valve, and 2) suppression of the superconductor is a direct effect
of the presence of the stray fields connecting the two Py layers. Such coupling
between the two F layers has not been found in any of the experiments using
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antiferromagnetic pinning layers. In the bilayers we only observe these peaks
in the devices with 20 nm thick Py (and not in the devices with 50 nm thick
Py). This we attribute to different types of domain walls. It is known that for
very thin Py layers the domain wall becomes of the Néel type, while for thicker
Py layers it is Bloch type [69]. The crossover between the two is around a Py
thickness of 35 nm, implying Néel walls in our 20 nm thick Py bilayer and Bloch
walls in our 50 nm thick Py bilayers. Calculations on stray fields generated by
domain walls shows a significantly higher magnitude for Néel walls than for
Bloch walls [70], which we believe is the source of the observed difference in
our bilayers. No traces are found of an enhancement of the superconductivity
by domain averaging from Cooper pairs, which we did observe in our CuNi
based devices and is the established weak limit result. We thus conclude
that the stray field contributions coming from the domains dominate over this
averaging effect. By going to lower temperatures and measuring the critical
current, which is a direct measure for the superconducting gap strength, we
observe that the suppression of superconductivity is still present. The fields at
which the suppression occurs overlaps with the peaks in the magnetotransport
measurements and do not change with temperature. This indicates that also
a well developed gap is not changing the switching of the Py layers, and likely
the spin-valve is still dominated by the stray fields. In our I - V measurements
we do not see traces of a vortex flow, while the stray fields connecting the two
F layers should result in vortices. However, since the domain state seems to
be unaffected by the gap, we believe it strong enough to keep any vortices in
place. Effectively, all vortices generated by the stray fields are strongly pinned
by the (rigid) domain state itself.
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6.1 Introduction

The main characteristics of the (superconducting) proximity effect of the S/F
interface are the emergence of spin triplet correlations and the oscillatory
nature of the induced order parameter in F. For these interfaces, the key pa-
rameters of S are the superconducting gap energy ∆ and the superconducting
coherence length ξS , while in F they are the exchange energy Eex (of the ex-
change field Hex) and coherence length ξF . For thin film, where we usually
are in the dirty limit, the layer thicknesses become important as well and the
following relations apply: ξS =

√
~DS/∆ and ξF =

√
~DF /Eex, where DS

and DF are the diffusion constants of the S and F layer respectively. While
usually the focus is on the leaking of ∆ (superconducting correlations) in F,
the inverse process occurs as well, which is the leaking of Eex (ferromagnetic
correlations) in S. This would lead to a certain amount of magnetization in the
S layer. Calculations performed recently indicate that this can be a measur-
able effect [31]. However, the commonly used measurement techniques, such
as transport measurements or surface probing, are unsuited for detecting the
reversed proximity effect, at least, in the way they are conventionally applied.
The mechanism of the reversed proximity essentially is a form of spin polar-
ization, or actually a spin dependent suppression, of the Cooper pairs near the
S/F interface. For the Cooper pairs which have an electron impinging the F
layer, the pair breaking strength experienced is lowest if the electron spin is
aligned with the exchange field. The result is that more (a higher density) of
these aligned Cooper pairs remain compared to the other orientations. This
(partial) alignment of the Cooper pair is in real space and when the elec-
tron with parallel spin direction is near the interface, the other electron of the
Cooper pair (which has an anti-parallel spin direction) is roughly at a distance
ξS from the interface. In the situation where the parallel electron is mainly
located on the F side of the interface, the S side of the interface will have a
higher density of anti-parallel electrons, while in the situation that the parallel
electron is still mainly on the S side, the net spin polarization oscillates from
parallel (near the interface) to anti-parallel (at roughly ξS from the interface),
and back to neutrality (at roughly few times ξS away from the interface). This
mechanism is shown in Fig. 6.1.

To investigate this (possible) induced magnetism in the superconductor we
need a measurement technique that can locally probe the magnetic moments in
the superconductor near the F/S interface, ”near” meaning down to the scale
of ξS , which is about 10 nm in our devices. Low energy muon spin rotation
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Figure 6.1: Schematic of the inverse proximity resulting in polarized Cooper pairs.
The dashed lines indicate the field profile. Figure taken from [31].

(LE-µSR) is one such technique, other are e.g. the (optical) Kerr effect, and
Nuclear Magnetic Resonance, and both these techniques have recently been
used to investigate the inverse proximity effect [71, 72]. We come back to this
in the discussion. LE-µSR makes use of spin polarized muons, which act as lo-
cal magnetic field probes when implanted into a sample. The implantation (or
stopping) profile depends on the muon energy and becomes broader for higher
energies. Low energy muons mean energies in the keV range, which allows
for probing down to the nanometer scale. All our LE-µSR measurements were
done at the Paul Scherrer Institut (PSI) in Villigen (Switzerland) in collabora-
tion with S. Lee and co-workers from St.Andrews University (Scotland). The
LE-µSR technique is a rather recent development, developed at PSI in early
2000 (see [73] for a review on this). A nice demonstration of this technique on
related spin-valve samples are the experiments conducted on Fe/Ag/Fe [74]
and Fe/Pb/Fe [75] thin films. The first experiment revealed the existence of a
spin density wave across the normal metallic Ag spacer layer. The second ex-
periment showed that such spin density wave still exists when the spacer layer
becomes superconducting (Pb has a bulk superconducting transition temper-
ature of 7.2 K). These spin density waves stretch across the full spacer layer
making it ideal for LE-µSR. The spin density wave is also a manifestation
of spin polarization but now from the conduction electrons. Two important
differences between a spin density wave and the inverse proximity effect are
the length over which the effect takes place, and the number of oscillation they
produce in the spin polarization profile. The spin density wave easily covers
the full S layer thickness while making multiple oscillations (order of 10), while
the inverse proximity effect is focussed near the interfaces and makes a half to
a full oscillation.

low energy muon spin resonance and low energy muon-spin relaxation are also commonly
used for this abbreviation
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6.2 Description of the measurement technique

In this section we first introduce the principle of the muon spin rotation tech-
nique, and then give a detailed description of the working of the experimental
setup.

6.2.1 Principle of muon spin rotation

The essential principle of the muon spin rotation technique comes down to be
able to follow the time evolution of a single muon spin. In the presence of a
local magnetic field (B), the muon starts to precess around this field (Lamor
precession) with a frequency (ωµ) given by:

ωµ = γµB (6.1)

where γµ = 851 MHz T−1 is the gyromagnetic ratio for the muon. When the
muon decays it emits a positron at an angle θ with respect to the momentary
muon spin direction (which is the most preferred direction). The probability
distribution for this angle is given by:

W (θ) = 1 +
1
3

cos (θ) (6.2)

which is an energy averaged value of the positron spectrum. By detecting
the emitted positron, (a fraction of) information is recovered about the muon
spin at the moment of the decay. When placed between two positron counter
detectors, the value of the magnetic field (B) can be recovered by making a
large number of single muon measurements (events), by simply counting the
positrons and record the time span of each event. Two main prerequisites
are that each event should be about identical in the starting situation (such
that the results can be added) and the muon has to be detected before en-
tering the sample to start the measurement timer. Thus, a monochromatic
spin-polarized muon beam is essential for the experiment. Fig. 6.2 shows a
simplified schematic of the muon spin rotation setup. The initial muon spin
direction at t = t0 = 0 is pointing towards the left positron counter detector
and the corresponding angle is φ0, with a anticlockwise precession direction of
frequency ωµ. At a certain time t > t0, the muon spin has rotated over an an-
gle ωµt and the muon spin direction has become φ (t) = ωµt + φ0. The chance
that the muon decays at that instance is given by (1/τµ)e−t/τµ , with τµ the
muon lifetime. Throughout this chapter we use the convention that t0 signals
the moment that the actual precession starts with φ0 being the starting angle
of the muon spin, measured with respect to the muon spin pointing towards
the left detector (in the figure this implies φ0 = 0). Furthermore, the starting
time is set to zero, t0 ≡ 0. The detectors do not cover all possible angles,
leaving a range of angles for which the emitted positron will not be detected,
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β

µ

right counter detector

left counter detector

ωµ

µ beamline

t0 , φ0 = φ(t0)
t , φ(t)

Figure 6.2: Basic setup of the muon spin rotation experiment. Here t0 and φ0 are the
initial time and starting angle of the muon (µ) spin. At time t > t0 the spin direction
has rotated anticlockwise with frequency ωµ and has now angle φ.

this ”dark-angle” is parameterized by β. To calculate the probability that at
t a positron is detected on the left (right) detector we need to integrate the
positron emission angle probability function W (θ) over all values of theta that
cause the positron to arrive at the left (right) detector, and multiply by the
chance that the muon actually decayed at that time. These probabilities are
given by:

PL (t) = 1
2πτµ

e
− t

τµ
∫ θ2

θ=θ1

(
1 + 1

3 cos (θ)
)
dθ = β′

τµ
(1 + A0 (t)) e

− t
τµ

PR (t) = 1
2πτµ

e
− t

τµ
∫ θ2+π

θ=θ1+π

(
1 + 1

3 cos (θ)
)
dθ = β′

τµ
(1−A0 (t)) e

− t
τµ

A0 (t) = PL(t)−PR(t)
PL(t)+PR(t) = − 1

3

sin(φ(t)−πβ′)−sin(φ(t)+πβ′)
2πβ′

θ1 = −φ (t) + β − π/2 , θ2 = −φ (t)− β + π/2

β′ ≡ π−2β
2π , φ (t) = ωµt + φ0 = γµBt + φ0

(6.3)

Here, the pre-factor 1/ (2π) is to normalize the probability function W (θ) and
β′ is the angular fractional covering of a detector plate. Furthermore, A0 (t) is
the so-called asymmetry signal which weighs the difference between counted
event on the left and right detector. It contains all physical information about
the muon precession, and thus the magnetic structure, and plays an important
role in the data analysis. In the limit of full covering detector plates (β → 0)
the asymmetry value has a maximum of ±0.21, while in the limit of point de-
tectors (β → π/2) it has a maximum value of ±0.33. Although the asymmetry
is improved for a point-like detector, the counts per second on the detector
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will be much decreased. Model detector signals and asymmetry are plotted
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Figure 6.3: The model detector signals PL and PR, the asymmetry between them A0,
and the Fourier transform of the asymmetry which gives the distribution of the field

.

in Fig. 6.3 for parameter values as given in the plot. Also shown is that by
making a Fourier transform of the asymmetry signal, the muon frequency (or
frequencies in general) is (are) recovered and appear as peaks in the spectral
plot. This is a way to find out which dominating frequencies (and thus local
magnetic field strengths) are present in the sample. In practice, the more
advanced ”maximum entropy based spectral analysis” (maxent) is used to re-
cover this frequency spectrum. In the real experiment, the muon is implanted
into the sample and is not located at a precisely known position. Instead,
it has a probability to be at a certain position which depends on the muon
energy. These probability profiles can be calculated. So, not only do we need

creo
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multiple measurements to collect data from muons which decayed at different
times (to follow the spin rotation), we also need a large number of measure-
ments to probe the full spatial distribution of the implanted muons. A typical
order of events to count is 106 and curves similar to the model signals are then
obtained in the form of histograms originating from the counted events at the
positron counter detectors. An important difference with the real experiment
is that the muons/experiment are/is subjected to decoherence, which results
in a damping of the asymmetry signal. Although the frequency spectrum of
the asymmetry signal gives important information about the dominating fre-
quencies (local magnetic fields), it does not tell from which part of the sample
they originate. The spatial information is lost! Reconstructing the spatial
distribution of the magnetic moments inside the sample from the raw data
is thus not possible, and the game to play is: assume a certain distribution,
calculate the corresponding frequency spectrum (or asymmetry signal), and
test how well this fits the measured data.

6.2.2 Experimental setup

At PSI, the muons for the experiment are generated in a secured area and are
then directed to the different measurement setups via the main muon transport
line. A schematic of the experimental setup is shown in Fig. 6.4, where the
entrance point of the muons to the setup is the moderator chamber. The muon
transport line and the connecting lines/chambers are all pumped down to a
pressure of about 10−7 to 10−8 mbar.

Generation of the muons

Muons (µ) are unstable elementary particles, decaying in vacuum with a life-
time of 2.2 µs. They are spin-1/2 particles and are positively or negatively
charged, with an elementary charge of e. Effectively, the negative muon is
like a heavy electron with a mass about 207 times larger, while the positive
muon is like a light proton with a mass about 9 times smaller (both types are
unstable though). They can be observed in cosmic rays with typical energies
in the GeV to TeV range at a (very low) rate of about 100 muons penetrating
a square meter every second at sea level. The muon originates from the decay
of pions (π), which in accelerators can be produced by bombarding a light
nuclear target with high energy protons. Charged pions decay into a muon
and neutrino (ν):

π+ → µ+ + νµ

π− → µ− + νµ
(6.4)
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Figure 6.4: The measurement setup area/unit, taken from [73]. Starting from the
entrance point for the muon beam, it shows the moderation chamber, the mirror, the
trigger chamber and sample chamber, all connected by electrostatic lenses to direct
and focus the muon beam.

Due to conservation laws, the produced positive muon (µ+) has its spin anti-
parallel to its momentum, while for the negative muon (µ−) they are parallel.
It is possible to create a nearly monochromatic beam of nearly 100 % spin po-
larized positive muons by selecting the so-called surface muons. These muons
are produced by positively charged pions that lost all their energy during the
proton bombarding processes and decayed at rest near the surface. The reason
that those muons form a near monochromatic beam is that they all have a
unique energy of 4.1 MeV and a momentum of 29.79 MeV/c. This process
is not possible for the negative muon because the produced π− particles are
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captured much faster inside the target material. Such a monochromatic beam
of positively charged, spin polarized surface muons is directed to the measure-
ment area where the muons are implanted into a sample to perform the actual
measurement. The energy of 4.1 MeV of these surface muons is sufficiently
low for measuring bulk samples, but the stopping profile (the implantation
depth distribution) is far too broad (about 0.1 to 1 mm) to investigate thin
films. For that, the energy needs to be lowered down to the keV range.

Moderating the muon energy

In the measurement area the incoming surface muons first arrive in the mod-
erator chamber, where a fraction of the muons become trapped into the mod-
eration shield. This shield is a thin layer of a condensed Van der Waals gas
(typically argon, neon or N2 cryosolids) deposited on a much thicker Alu-
minum foil (about 100 µm thick). In our experiment we used a Ar/N2 shield
with thicknesses of 10 nm and 1.2 nm respectively, at a temperature of 10 K
which is necessary for the stability of the shield. The purpose of this shield
is to lower the energy of the trapped surface muons down to about 10 eV.
The energy lowering mainly takes place in the (relative thick) Aluminum foil,
while the deposited Ar/N2 layer creates a minimum threshold value for the en-
ergy of the outgoing muons because of its insulating nature, with a bandgap
of 10 to 20 eV. Afterwards they get accelerated again and reach an energy
up to about 15 keV. The muon beam (which now consists of surface muons
and low energy muons) then gets focussed by an electrostatic Einzel lens onto
an electrostatic mirror. This mirror separates the low energy muons (about
15 keV) from the surface muons (about 4 MeV), since it only reflects muons
with energies up to few 10s of keV. Muons with higher energies pass straight
through it, and are absorbed by the fast muon MCP1 detector. The mirror
reflects the momentum, but not the spin of the muon, which remains pointing
into the initial direction.

The trigger chamber

The now monochromatic beam of low energy, positively charged, spin polar-
ized muons is focussed by a second electrostatic Einzel lens onto the trigger
detector. This detector contains a thin carbon web which emits some electrons
whenever a muon passes through and such trigger signals the start of a (new)
single measurement. This measurement is completed when a positron counter
detector (surrounding the sample space) counts the positron which is emitted
by the muon when it decays. The rate at which muons pass through the trig-
ger detector was about 750 per second during our experiments, which gives an
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approximate average time window of 1 ms between subsequent passing muons.
This is much larger than the muon life time (2.2 µs) so in most cases the sin-
gle measurement is complete before a new incoming muon is detected in the
trigger chamber. The waiting for the positron detection is actually aborted if
either a second muon passes the trigger detector or a time window of about
12.5 µs has passed, and the event is discarded.

The sample chamber

To focus the muons onto the sample, a final electrostatic Einzel lens is used.
The sample itself is mounted such that it is electrically insulated and can
be set to a high voltage (up to ±12 kV) in order to accelerate or decelerate
the muons before implantation. In this way the energy of the muons can
be fine-tuned and the appropriate stopping profile can be selected. Fig. 6.5
shows the stopping profile for the actual sample we measured, which was a
Si/Py(50)/Nb(50)/Py(20)/Nb(2) thin film, where numbers represent the layer
thickness in nm. The depth is measured starting from the top surface of Nb(2)
layer, meaning that the center of the Nb layer is at a depth of 47 nm. As can
be seen, a muon energy of 5 keV has the main peak just inside the Nb and
thus focusses on the interface region. Increasing the muon energy shifts and
broadens this main peak, such that for energies of 10 keV to 15 keV the full
Nb layer is probed, with a focus near the central part of the layer. The muon
energy thus takes the role of the spatial coordinate directed normal to the
surface, and ideally, the magnetic moments in the sample only vary along this
normal direction. The experiment is performed in the presence of an applied
magnetic field which is homogeneous across the sample space and parallel to
the sample plane. Fig. 6.6 shows a top-view of the sample space where the
incoming muon µ+ arrives from the left side (with momentum p and spin s).
The magnetic field bends the muon flight path through the Lorentz force it
exerts on them. This is compensated for by the transverse electrical field E
set by the high voltage potentials RAL and RAR. These voltages needs to be
fine-tuned such that the spot of the muon beam is at the center of the sample
and not towards one of the two positron detectors. In practice the spot is
always slightly more on one of the two sides such that the detector on that
side detects more then the other detector. This affects the asymmetry but that
can be corrected for (in the limit of small displacement error) by multiplying
one of the two counter detector signals to re-balance this difference. For our
experiments, this adjusting parameter α for the left counter detector was about
0.99, indicating a fairly good alignment of the muon beam. For the applied
magnetic field we used 10 mT directed along the vertical. This field sets a
base frequency of f = 1.35 MHz for the muon precession which comes down
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Figure 6.5: Calculated muon stopping profile for a Nb(2)/Py(20)/Nb(50)/Py(50)
layered sample (numbers representing the layer thickness in nanometer) for different
implantation energies. The depth = 0 is at the top surface of the Nb(2) layer.

to almost 3 rotations per τµ, making it a reasonable base frequency to follow.

Right Detector

Left Detector

RAR

RAL

µ beamline

BE

µ+

ps sample

Ag plate

Figure 6.6: Top-view schematic of the sample space showing the muon path of flight,
which is centered onto the sample by the electrical field E and induced magnetic field
B. RAL and RAR are high voltage potentials creating E.
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Implanting a muon

The muon is now adjusted for implantation energy and focussed at the sample
center. It penetrates the sample (or the Ag backing plate, because the spot is
slightly larger than the sample itself) and comes to rest at time t0, measured
with respect to the moment it passed the trigger chamber. Subsequently,
it starts precessing around the local field it experiences until the moment
it decays into a positron (and a muon antineutrino and electron neutrino).
The measurement stops when this positron is detected by any of the positron
counter detectors (which are outside the UHV area). The direction in which
the positron is emitted is preferentially along the momentary spin direction of
the muon, but its distribution is energy dependent with the energy-averaged
form given by Eq. 6.2. Due to the near monochromatic near 100 % polarized
muon beam, the initial spin and momentum state of all incoming muons are
practically identical, and all the single measurements (events) are thus coher-
ent and can be added. Typically several million of events are necessary to
obtain high enough statistics for further data analysis (i.e. for each depth
to be probed by enough muons to cover the spread in the positron emission
angle). The primary sources of decoherence of the muons are fluctuations in
the local field (changes to the sample) and the momentum spread of the beam
itself (changes to the muon), which is supposed to be some 10s of eV. The
field fluctuations disturb the precession frequency itself which directly leads
to decoherence if it is significant compared to the local (average) value. A
direct implication of the momentum spread of the beam is a spread in the
time-of-flight, resulting in a spread of some 10s of nanoseconds in the time
t0. The result is a sharp non-exponential decay of detector signal during the
first to 20 to 30 ns after t0. Therefore, data collected during these early times
are left out of the data analysis. The time resolution of the detection system
is close to 200 ps, which is the used size for the time bins. A valid positron
count adds 1 count to the time bin which contains the relative time of decay
(relative to the moment the muon was detected in the trigger detector). To
give an idea of the histogram filling, a time span of 2.2 µs (the muon life time)
is divided in 11000 time bins of 200 ps, and the full time window of the mea-
surement contains about 66000 time bins. Collecting 107 events (our typical
measurement statistics) then gives an average filling of about 75 events per
time bin per detector, which means about 450 events in the early time bins of
the detector (when taking an exponential decay with a characteristic time of
2.2 µs).
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6.3 Results

6.3.1 Experimental details

The sample used for the LE-µSR measurements is a Py(50)/Nb(50)/Py(20)
trilayer thin film, with the numbers representing the layer thickness in nm.
To cover a large fraction of the sample plate, 16 pieces of 1×1 cm2 were put
together forming a 4×4 cm2 mosaic (see Fig. 6.7). All pieces were made under
identical conditions, with the same deposition parameters as for the Py/Nb/Py
spin-valve devices (see Ch. 5). The pieces are glued to the sample plate with
conducting Ag-paste, all with the orientation of the easy axis aligned with the
applied field during the measurement. This conducting Ag-paste is also used
to electrically connect the top layers of the individual samples to ground them
to the sample plate (such that the final implantation energy of the muons can
be tweaked by setting a high potential). With this covering, it is expected

Ag Plate

1 cm

1 
cm

Figure 6.7: Sketch of the sample pieces forming a 4×4 mosaic, glued on the round
sample plate. White dots represent the conducting Ag-paste, electrically connecting
all pieces to the sample plate.

that around 90 % of the incoming muons will hit the sample [76]. The rest of
the muons gets implanted into the Ag backing plate, where only the external
field is probed. The sample plate is mounted into the sample chamber with
its surface perpendicular to the incoming muon beam. The sample pieces
are oriented such that the easy axis of the Py is aligned along the setup
vertical, which is parallel to the external field direction, which is significantly
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higher than the coercive fields of the thin Py films, which are close to 0 mT.
During the experiment the applied field was 10 mT directed from bottom
to top. The corresponding muon precession frequency is 1.35 MHz with a
anticlockwise rotation direction when looking from above. The rotation plane
is perpendicular to the field direction and the initial spin direction points
towards the left counter detector (see Fig. 6.6). Measurements were performed
at two different temperatures, either at T = 10 K (Nb in normal state) or
T = 4.5 K (Nb in superconducting state). For each temperature, the sample
is probed at eight different muon implantation energies, Emuon = 5, 5.5, 6, 6.5,
7, 7.5, 10 and 12 keV. The lowest muon energy has its stopping distribution
focussed near the S/F interface, while the highest two covers the full sample,
with a focussed near the center of the Nb layer. Furthermore, for T = 4.5 K
we did the measurements for both a ”field cooled (FC)” and ”zero field cooled
(ZFC)” treatment. For FC the applied field was kept on during cooldown
from normal state to superconducting state, for ZFC the fields was switched
off during cooldown. In total we thus have 24 data sets, where for each data set
we collected 107 counts (positron detections). In terms of pure measurement
time these 107 counts comes down to almost 4 hours of measuring (at a rate
of 750 incoming muons per second).

6.3.2 Fitting of the data

To obtain information about the magnetic profile we attempt to fit the mea-
sured detector signals (the real-time raw data) rather than analyzing the
Fourier transform of the asymmetry data (the frequency spectrum). An exam-
ple of a maxent analysis (Fourier transform of the asymmetry signal) is given
in Fig. 6.8, where the data is from a muon energy of 5 keV with T = 10 K. As
is clear from the graph, no outstanding features appear other than the main
peak which is centered at a field of 9.79 mT. This is the main reason why we fo-
cussed our data analysis on the real-time data. The strategy we applied starts
by making a best fit to the raw detector data using the Levenberg-Marquardt
alogrithm [77]. Including the spatial dependence of the magnetic profile is not
possible (each location should then be parameterized by an unknown preces-
sion frequency), instead a simple uniform profile is used.

The fit functions

The detector signals as derived before (Eq. 6.3) give the fractional chance
of counting the positron at time t. This is for a single muon at a fixed po-
sition. When adding these contributions from many (coherent) muons we
have to correct for decoherence (or dephasing). Taking a (standard) exponen-
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Figure 6.8: Probability distribution of the local fields in the Nb layer, for the data
set with muon energy of 5 keV and temperature of 10 K. Results are obtain using a
maximum entropy (maxent) analysis.

tial dephasing for the asymmetry with a characteristic time τθ, the fractional
counting probabilities become:

PR,L (t) =
β′

τµ

(
1∓A0 (t) e

− t
τθ

)
e
− t

τµ (6.5)

Furthermore, the incoming muon is implanted in one of the following 3 areas:
1) the Ag backing plate, 2) the Nb layer, or 3) the Py layer. Although we
cannot include a full spatial dependence into the fitting, it is rather straight-
forward to distinguish between these three areas, all characterized by a single
average field Bi, with i being the label of the area. These areas then all have
a different asymmetry function Ai

0 and a fractional chance for the muon to
stop in that area of Pi, with PAg + PNb + PPy = 1. The muons implanted in
the Ag backing plate and the Nb layer all experience a field equal to, or close
to the applied field and are expected to experience a very similar dephasing.
However, in the Py the internal field is orders of magnitude larger then the
applied field. In fact, it is far above the maximum detectable frequency of 50-
70 kHz of the LE-µSR setup, and thus can be treated as instantly dephased
(τθ → 0). Adding this the fractional chances become:

PR,L (t) =
β′

τµ

(
1∓

(
PAgA

Ag
0 (t) + PNbA

Nb
0 (t)

)
e
− t

τθ

)
e
− t

τµ (6.6)

In the correct case, the detector detect the positrons coming from the decay of
the muon under investigation. However, this signal is polluted by anomalies
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(like scattered positrons). This we model by adding a (small) time independent
probability of such fake events which turns out to work very well. The final
fit equations, the number of counted events as function of time, are obtained
by simply multiplying by the fractional numbers by a general amplitude N0

(which is not exactly equal to the total number of counted event due to re-
normalization).

NR (t) = N0β
′
(
1−

(
PAgA

Ag
0 (t) + PNbA

Nb
0 (t)

)
e
− t

τθ

)
e
− t

τµ + Nf,R

NL (t) = 1
αN0β

′
(
1 +

(
PAgA

Ag
0 (t) + PNbA

Nb
0 (t)

)
e
− t

τθ

)
e
− t

τµ + Nf,L

Ai
0 = − 1

6πβ′ (sin (φ (t)− πβ′)− sin (φ (t) + πβ′))

φ (t) = γµBit + φ0

(6.7)

Here Nf,R and Nf,L account for the pollution, and we incorporated the setup
alignment factor α to correct for the misalignment of the muon spot (see text
related to Fig. 6.6). When we subtract the linear offsets Nf,R and Nf,L, the
asymmetry signal becomes very simple:

A (t) =
αNL (t)−NR (t)
αNL (t) + NR (t)

=
(
PAgA

Ag
0 (t) + PNbA

Nb
0 (t)

)
e
− t

τθ (6.8)

Details of the fitting

The parameters to fit can be divided into the following groups: (i) PAg, β′,
τθ, α, the setup/system constants; (ii) BNb, PNb, φ0, the implantation energy
(and system temperature) dependent parameters; and (iii) N0, Nf,L, Nf,R, the
amplitudes of the signal. The parameter τµ = 2.197 µs is a natural constant
with a well determined value and for the applied field we use BAg = 9.79 mT,
which we found was the actual value of the applied field (see Fig. 6.8, which is
taken at low muon energy where the contribution of the background is dom-
inant over the sample contribution). The main strategy we follow is to first
determine the fit parameters of group (i) by stacking all data sets (to improve
the accuracy) and next to fix those values and fit the individual data sets to
determine the parameters of group (ii) as function of the implantation energy.
By fitting the stacked data, we also obtain values for the parameters of group
(ii); however, these values represent some average value for the different im-
plantation depth. The parameters of group (iii), although not depending on
the implantation energy, also have to be determined for each individual data
set because they directly depend on the number of counts, and this number is
close to 107, but not exactly the same for all sets.
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Before fitting we re-bin the original time bins with a factor of 32, such that
now each bin is approximately 6.4 ns. This we mainly do to smooth the raw
data. Furthermore, we adopted the convention for the fit functions to set the
time at the starting of the precession (t0) to zero. However, this time is not
precisely known and neither is it the same for different implantation energies.
This (small) time deviation leads to a small difference in the starting angle
φ0, which thus must be a free parameter during the fitting. For all fits, we
use the t = 650 ns after triggering as the t0 time, while we start the fitting at
t = 750 ns. All presented data have the time such that t = 0 is at the moment
of the trigger detection. The fitting follows an iterative process which min-
imizes the sum of the squared errors according to the Levenberg-Marquardt
algorithm. Let y (xi) be the measured data at discrete points xi, with an ex-
perimental error that can be approximated by a Gaussian distribution with
standard deviation σi. If the fit to this data is given by yfit (xi), then the sta-
tistical (total) error of the fit is given by Err = χ2/xN , with xN the number
of points to fit, and χ2 defined by:

χ2 =
∑

i

(yfit (xi)− y (xi))
2 /σi

2 (6.9)

With this definition of the total error, a value close to 1 means in general a
good fit. This is because in that case, the difference between the fit and the
real data is on average within the error of the experimental data itself.

Fitting the stacked data

Fig. 6.9 shows the fit result of the stacked detector data. Blue and red dots are
the measured right and left detector signals respectively and the fits to them
are the solid black lines. The inset shows a zoom-in of a part of the main plot
(numerical values along the axis are in the same units as the main plot). Also
shown in the inset are the values obtained of the fit parameters of group (i)
and the errors of the fits. The values of the parameter of group (ii) are not
shown here, instead they are slightly more accurately determined in a next fit-
ting shown in the Fig. 6.10. In general, all obtained values are very reasonable
and the quality of the fit is good. At t = 0 the muon is detected and the initial
flat part is the time it takes for the muon to get implanted. The contribution
to the signal coming from the Ag backing plate PAg = 20.2 % is a bit more
than the expected 10 %, which is likely due to our pieces not closing perfectly
and having several big silver-paste drops on top for the grounding. The value
of β implies an effective angular covering of about 70 %, the dephasing time is
close to 1 µs, which is equivalent to about 1.4 periods of a muon in the applied
field. A value of 0.988 for the correction parameter α means a well-centered
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Figure 6.9: Best fit for the stacked detector signals. Blue/red dots are the measured
right/left detector data, with the solid black lines the obtained best fits with errors
Err(R)/Err(L). The inset is a zoom-in and also shows the values of (part of) the fit
parameters (the ones independent on the muon implantation energy).

beam (about 1 % misalignment). These parameter values are from here on
fixed for all further fitting.

From the left and right detector signals the asymmetry signal is constructed
(see Eq. 6.8) and the fit results are given in Fig. 6.10, where an additional linear
offset is included to easy the fitting to correct for the remaining misalignment.
The red dots are the asymmetry signal with the fit given by the solid black
line. The values obtained for the fit parameters are given in the plot and
the most interesting one is BNb which apparently (on average) is lower than
the background field of 9.79 mT. An additional comparison fit (grey line) is
made with fixed BNb = BAg = 9.79 mT. Although the visible change is small,
the error of the fit has drastically worsened. The value for PNb seems very
reasonable comparing to the muon implantation profile and the value for φ0

corresponds to a starting angle of about 21o (which would take a muon pre-
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Figure 6.10: Asymmetry signal of Fig. 6.9. The solid black line is the best fit with
error and parameter values as given in the plot. A second fit (grey line) is made with
BNb = BAg from which only the error is given.

cessing in the applied field about 40 ns). These extracted values are averages
and we will make fits to the single data sets to obtain the muon-energy de-
pendence of these parameters, which correlates to the spatial dependence of
the parameters. In total, from the stacked fittings we have obtained:

setup constants
PAr = 20.2 %
τθ = 1.03 µs
β = 0.443 rad
α = 0.988

parameters to fit
(obtained averages)
〈PNb〉 = 36.6 %
〈BNb〉 = 9.64 mT
〈φ0〉 = 0.223 rad

Fitting the individual data sets

For each individual data set, fits are made to the asymmetry signals. For muon
energies of 5 keV and 10 keV, these fits are shown in Fig. 6.11, where from
top to bottom we have the T = 4.5 K (ZFC), T = 4.5 K (FC) and T = 10 K
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Figure 6.11: Fits to the asymmetry data with muon energies of 5 and 10 keV, taken
at temperatures of 10 K and (2x) 4.5 K, one with field cooled (FC) conditions and
one with zero field cooled (ZFC) conditions.

data sets. The results obtained for the parameters PNb and BNb are shown in
Fig. 6.12 and for φ0 and the total error in Fig. 6.13, all as function of the muon
energy. For all graphs the green lines are from the data at T = 10 K. The red
and blue lines are from the data at T = 4.5 K, with red for the FC treatment
and blue for the ZFC treatment. The results for PNb are in accordance with
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Figure 6.12: Fit parameters PNb and BNb as function of the implantation energy of
the muons, with green: T = 10 K, red: T = 4.5 K (field cooled) and blue: T = 4.5 K
(zero field cooled). Also shown is the value of the applied field of 9.79 mT
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the stopping profile showing a decrease for lower implantation energies. Also,
the three separate curves don’t vary much from one to another. The results for
BNb are the most interesting ones because it contains information about the
field profile which we try to unravel. It shows that the green (10 K data) and
blue (ZFC data) curve are about the same, while the red one (FC data) comes
down at the lowest energy. We believe that this decrease to a significantly
lower local field value observed for the lowest implantation energy (= closest
to the interface) is a signature of the reverse proximity effect. However, we
are left with several questions. Why do the ZFC data not show this lowering,
why are the all lines significantly below the background field of 9.79 mT, and
why do normal state data not really differ from the data taken in the super-
conducting state.

6.3.3 Discussion and conclusion

To start the discussion with the T > Tc data, it can be surmised that the
(global) stray fields coming from the F layers will curl into the Nb layer where
they are now directed anti-parallel to the applied field. They exit the Nb layer
at the opposing side and curl back into the F layer. This leads to a lowering
of the field in the Nb layer. Making a model calculation of the induced field
B coming from a homogeneously magnetized squared plate with surface area
L×L and thickness d ¿ L, we find that at a distance x0 ¿ L away from the
surface center (along the surface normal) B approximately is given by:

B (x0) ∼ µ0m0

π

(
arctan

(
x0√
2L

)
− arctan

(
x0+d√

2L

))
∼ −µ0m0

π
d√
2L

(6.10)

where m0 is the density of magnetic moments inside the plate (in units of A/m)
and µ0 = 4π 10−7 N/A2 the magnetic constant. The result is independent of
x0 and the minus sign means a direction opposite to the magnetic moments
in the F layer. Consequently, in our F/S/F devices we can expect a global
lowering of the field inside the Nb layer. However, inserting the numbers
L = 1 cm, d = 70 nm and m0 = 0.834 × 106 A/m (using an atom density of
0.899 1029 m−3 and an average moment per atom of 1.1µB), gives a value of
∼ 1.8 µT, which is significantly less than what we observed. For the T < Tc,
both the FC and ZFC data are not significantly different from the normal
state data for the higher energies. This indicates that no Meissner screening
is taking place in the superconducting state. Furthermore, in the ZFC case,
the magnetization in the F layer is inhomogeneous because the coercive field
for such macroscopic sample is very close to zero (of the order of 0.1 mT). A
complex domain state will appear with stray fields connecting the two F layers
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across the Nb layer. When such state is frozen during the cool down, it brings
vortices crossing the Nb layer, which might in turn pin the domain state in
the F layers. Essentially we now have created inhomogeneous magnetization
at the interface. This will reduce the polarization of the Cooper pairs and
is in line with the disappearance of the dip in the fit results. It stands to
reason therefore that only the FC state creates the circumstances in which
the inverse effect is to be found, and then only for the lowest implantation
energies. If there is any effect to see, it is close to the limit of the accuracy of
the measurements. Furthermore, it is only for the lowest implantation energy
that we are probing close enough to the interface to detect a possible inversion
effect. On the other hand, a consistent picture starts to form. In recent
works, by different measurement techniques, indications for the existence of
the reverse proximity effect have been observed as well [71, 72]. To claim
any real sign of the ”polarization of the Cooper pairs”, more data analysis is
needed, where special attention should be paid to the surface roughness of the
interface, which smears out the effect due to lateral inhomogeneity in the local
fields.



Chapter 7

Critical voltage of a mesoscopic

superconductor

This chapter was in a slightly different form published as ”Critical Voltage of a Meso-
scopic Superconductor, Phys. Rev. Lett. 96, 147002 (2006)”, with R. S. Keizer and M.
Flokstra as equally contributing first authors.
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7.1 Introduction

The energy distribution function of quasiparticles in a normal metal is under
equilibrium conditions given by the Fermi-Dirac distribution fFD = 1

e(βε)+1

with β ≡ 1/ (kBT ) and ε the energy of the quasiparticle measured with respect
to the Fermi energy. In recent years it has been demonstrated that in a voltage
(V )-biased mesoscopic wire (length L) a two-step non-equilibrium distribution
develops [78] with additional rounding by quasiparticle scattering due to spin-
flip and/or Coulomb interactions [79]. Figure 7.1a shows the distribution,
which resembles two shifted Fermi-Dirac functions:

f (x, ε) = (1− x) fFD (ε + eV/2) + xfFD (ε− eV/2) (7.1)

with x the coordinate along the wire. For strong enough relaxation (L À Lφ,
with Lφ the phase coherence length) and/or high temperatures (kBT À eV )
the distribution returns to a Fermi-Dirac distribution with a local effective
temperature.

eV/2-eV/2

ε

x

L

0

f(x,ε)

1

0

(b)

eV/2-eV
/2

ε

x

L

0

f(x,ε)

1

0

(a)

Figure 7.1: Quasiparticle distribution function f(x, ε) as function of energy ε and
position x for a normal wire (a) and a superconducting wire (b) between normal
metallic reservoirs for kBT ¿ eV < ∆0. The dashed line showing the two-step
distribution at a fixed location along the wire.

If the normal wire is replaced by a superconducting wire, the attractive in-
teraction between electrons leads to the superconducting state. The questions
we address here are how the distribution function inside the superconducting
wire is modified (for a typical result see Fig. 7.1b) and how this affects ob-
servable properties such as the current-voltage characteristics of the system
and the breakdown of the superconducting state. To relate the distribution
function to observable quantities, it is convenient to separate the symmetric
part fL (energy mode) from the asymmetric part fT (charge mode). Here, the
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Figure 7.2: An electron excitation in a normal metal created by (a) radiation (of
energy hω) and (b) a potential difference eV (from a connecting reservoir). The ex-
citation in (a) is symmetric in terms of electrons and holes and contributes to the
energy mode. The excitation in (b) is antisymmetric and contributes to the charge
mode. The insets in both graphs show how these two modes occupy states in the
excitation energy spectrum Ek of the superconductor. Here, Ek =

√
∆2 + ε2

k where
∆ is the gap energy and εk the energy of the single electron state with wave vector k.

symmetry is in terms of electrons versus holes. In a normal metal, an electron
that is excited above the Fermi level at energy ε leaves a hole below the Fermi
level at energy −ε. This contributes to the energy mode, and common sources
for such symmetric excitations are temperature and radiation (see Fig. 7.2a).
The charge mode is asymmetric in electrons and holes. It counts the number
of excess electrons or holes in the system. Such asymmetric excitations are
created by electrical potential differences (see Fig. 7.2b). The energy mode
and charge mode each have a different spatial and spectral form. The decom-
position of the typical result shown in Fig. 7.1b into the energy mode and
charge mode is shown in Fig. 7.3. The exchange of electrons between the
normal metal (reservoir) and the superconducting wire is for sub-gap energies
controlled by the Andreev reflection process. The question we thus address is
how fL and fT enter/behave in the superconductor, and how that changes its
transport properties. In particular, we investigate how the breakdown of the
superconducting state occurs.

The transport and spectral properties of dirty superconducting systems
(`e ¿ ξ0, with `e the elastic mean free path and ξ0 the superconducting
phase coherence length) are described by the quasiclassical Green functions
obeying the Usadel equation [19]. For out of equilibrium systems we use the
Keldysh technique in Nambu (particle-hole) space, neglecting spin dependent
interactions and assuming conventional superconductivity. Furthermore, we
ignore inelastic scattering in the wire and use the time independent formalism.
We assume this to be an acceptable simplification at temperatures far below
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Figure 7.3: Decomposition of the quasiparticle distribution function f(x, ε) as shown
in Fig. 7.1b into the energy mode fL and charge mode fT .

the critical temperature Tc, and for large enough wire cross section. In this
way the role of thermally activated and respectively quantum phase slips is
ruled out [80, 81].

7.1.1 Usadel equation using Keldysh technique

The Keldysh technique is based upon a special ordering of the Green functions,
and the main result is that the Green functions are split into three parts. The
retarded

(
ǦR

)
and advanced

(
ǦA

)
parts describe the propagation of particles

(electrons and holes) in respectively positive and negative time direction, while
the Keldysh

(
ǦK

)
part describes the non-equilibrium part of the system. As

long as a system is in equilibrium (i.e the quasiparticles are distributed like
a Fermi-Dirac distribution with an effective temperature), it is fully charac-
terized by the retarded Green functions, and we can calculate the density of
states, electrical current, etc. with the knowledge of the retarded Green func-
tions alone. This changes when the system is driven out of equilibrium, for
then we also need to know which energy states are accessible. In other words,
we need to know the non-equilibrium distribution function of the quasiparti-
cles. In that case we need to solve the Keldysh Green functions, for which in
turn we need both the retarded and advanced Green functions. The latter is
actually only necessary when the time symmetry of the system is broken, for
example, due to magnetic fields. Otherwise, it follows straightforwardly from
the retarded Green functions. Each of these three parts are Nambu⊗spin
space matrices (for their elements see Eq. 2.9 - 2.10), and can be collected
together into the Keldysh space effectively creating a matrix Green function
of dimension 8×8. This new matrix Green function then replaces the matrix
Green function in the Usadel equation, and the remaining Nambu⊗spin space
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matrices of the Usadel equation are projected onto the 2×2 unity matrix 1̂
in Keldysh space. However, in the absence of spin dependent interactions the
spin space effectively drops out of the equation and the retarded, advanced,
and Keldysh matrix Green function reduce to 2×2 matrices in Nambu space
(denoted by a hat). The time independent Usadel equation for an s-wave su-
perconductor (see Eq. 2.20) using the Keldysh technique then takes the form:

~D∇ (
Ǧ∇Ǧ

)
= −i

[
Ȟ, Ǧ

]
(7.2)

where D is the diffusion constant and ∇ is the spatial derivative [82]. Fur-
thermore, the spin-flip part vanished because we ignore spin-flip processes in
the wire. The elements of Ǧ and Ȟ are 2×2 matrices in Nambu space:

Ǧ =

(
ĜR ĜK

0 ĜA

)
, Ȟ =

(
Ĥ 0

0 Ĥ

)
with Ĥ =

(
ε −∆

∆∗ −ε

)
(7.3)

where the chosen gauge is such that the pair potential ∆ is in equilibrium a
real quantity, ∆ = ∆∗. Inserting these Keldysh space matrices into the Usadel
equation results in three equation:

~D∇(ĜR∇ĜR) = −i
[
Ĥ, ĜR

]

~D∇(ĜA∇ĜA) = −i
[
Ĥ, ĜA

]

~D∇(ĜR∇ĜK + ĜK∇ĜA) = −i
[
Ĥ, ĜK

]
(7.4)

The first two equations are the retarded and advanced part of the Usadel
equation. The third equation is the kinetic part of the Usadel equation, de-
scribing the non-equilibrium. The retarded, advanced and Keldysh matrix
Green functions are connected to each other by the normalization condition
for the matrix Green function in the Keldysh space: Ǧ2 = 1̌. Apart from this
condition, there is also a direct connection between the retarded and advanced
matrix Green function, which differ only in the time direction of the propaga-
tion of the particles. In the absence of time symmetry breaking, the two are
related through:

ĜA = −τ3

(
ĜR

)†
τ3 (7.5)

and thus finding the retarded Green functions is sufficient to know the ad-
vanced Green functions as well. From the normalization condition for Ǧ one
obtains ĜRĜR = ĜAĜA = 1̂ and ĜRĜK + ĜKĜA = 0̂. These two conditions
make that ĜK can be parameterized as:

ĜK = ĜRf̂ − f̂ ĜA (7.6)
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It was shown by Schmid and Schön [83], and Larkin and Ovchinnikov [84]
that f̂ can be chosen as the diagonal generalized distribution number matrix
of the quasiparticles in Nambu space: f̂ = fL (x, ε) τ0+fT (x, ε) τ3, with fL the
symmetric part (energy mode) and fT the antisymmetric part (charge mode)
of the quasiparticle distribution function. The full distribution function is
retained by: 2f (x, ε) = 1 − fL (x, ε) − fT (x, ε). For a bulk superconductor
in equilibrium, this distribution function equals the Fermi-Dirac distribution:
f (x, ε) = fFD (x, ε)

7.1.2 Working out the equations

The retarded matrix Green function in terms of the position and energy depen-
dent normal g (ε, x) and anomalous Fi (ε, x) Green functions is (see Eq. 2.21):

ĜR =

(
g(ε, x) F1(ε, x)

F2(ε, x) −g(ε, x)

)
(7.7)

where it was used that g = −g, which one obtains from the normaliza-
tion condition ĜRĜR = 1̂. The normalization condition also leads to g2 +
F1F2 = 1. Substituting all this in the retarded part of the Usadel equation:
~D∇(ĜR∇ĜR) = −i

[
Ĥ, ĜR

]
, we find the retarded Usadel equations:

~D
[
g∇2F1 − F1∇2g

]
= −2i∆g − 2iεF1

~D
[
F1∇2F2 − F2∇2F1

]
= 2i∆F2 + 2i∆∗F1

(7.8)

The second equation is essential when calculating the non-equilibrium prop-
erties of superconductors. Its left-hand-side is proportional to the divergence
of the spectral (energy-dependent) supercurrent, which is (compared to the
equilibrium case) no longer a conserved quantity.

Using the general relation between the advanced matrix Green function

and the retarded matrix Green function: ĜR = −τ3

(
ĜA

)†
τ3, the Keldysh

matrix Green function ĜK can be written entirely in terms of g, F1, F2, fL

and fT :

ĜK =

(
(g + g†)f+ F1f− − F †

2f+

F2f+ − F †
1f− −(g + g†)f−

)
(7.9)

where f± = fL ± fT . Working out the kinetic part of the Usadel equation:
~D∇(ĜR∇ĜK + ĜK∇ĜA) = −i

(
Ĥ, ĜK

)
we find (combining the diagonal
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components) the kinetic equations describing the non-equilibrium part:

~D∇jenergy = 0
~D∇jcharge = 2RLfL + 2RT fT

(7.10)

The various elements in Eq. 7.10 are given by:

jenergy = ΠL∇fL + ΠX∇fT + jεfT

jcharge = ΠT∇fT −ΠX∇fL + jεfL

ΠL = 1
4

(
2 + 2 |g|2 − |F1|2 − |F2|2

)

ΠT = 1
4

(
2 + 2 |g|2 + |F1|2 + |F2|2

)

ΠX = 1
4

(
|F1|2 − |F2|2

)

jε = 1
2<{F1∇F2 − F2∇F1}

RL = −1
2=

{
∆F2 + ∆F †

1

}

RT = −1
2=

{
∆F2 −∆F †

1

}

(7.11)

Equations 7.10 are two coupled diffusion equations for fL and fT , describing
the divergences in the spectral energy current and the spectral charge current.
The total charge current is given by J = 1

2eρ

∫
jchargedε with ρ the resistivity.

The terms ΠL and ΠT can be related to an effective diffusion constant for the
energy and charge mode respectively and ΠX as a ”cross-diffusion” between
them. jε is the spectral supercurrent and RL and RT describe the ”leakage”
of spectral current to different energies, where the total leakage-current ∝∫

(RLfL + RT fT ) dε is zero. In the small signal limit the terms ΠX , jε and
RL are small and can in many cases be neglected (linear approach), effectively
decoupling fL and fT . In this work, we go beyond this limit. The Usadel
equation is supplemented by a self-consistency relation:

Ĥ(1,2) =
N0Veff

4

∫ ~ωD

−~ωD

ĜK
(1,2)dε (7.12)

Here, N0 is the normal density of states around the Fermi energy, Veff the
effective attractive interaction and the integral limits are set by the Debye
energy ~ωD. The resulting equation for ∆ becomes:

∆ = −1
4
N0Veff

∫ ~ωD

−~ωD

(
(F1 − F †

2 )fL − (F1 + F †
2 )fT

)
dε. (7.13)
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To calculate spectral and transport properties, one needs to know the self-
consistent solution of ∆. In most practical cases, this has to be done numeri-
cally. A convenient solution scheme is to first find the Green functions of the
system by solving the retarded equations for a certain ∆, next to determine
the quasiparticle distribution functions by solving the kinetic equations and
then calculate a new ∆ using the self-consistency relation. This process has
to be repeated until ∆ converges. As a starting value for ∆ we use the BCS
form at zero temperature. A typical solution employs a grid of in the order
of 104 energies, 102 spatial coordinates, and 103 iterations of ∆. The stabil-
ity of the solution scheme was tested extensively by inserting different initial
values. At all the applied voltages self-consistent steady state solutions are
found. To simplify the calculations a parameterization is used that automati-
cally fulfills the normalization condition. It is convenient to take g = cosh(θ),
F1 = sinh(θ)eiχ and F2 = − sinh(θ)e−iχ, where θ and χ are position and energy
dependent (complex) variables. At the interfaces between the superconducting
wire and the normal metallic reservoirs we use the following boundary condi-
tions: θ = ∇χ = 0 (retarded equation) and fL,T = 1

2(tanh ε+eV
2kBT ± tanh ε−eV

2kBT )
(kinetic equation), where the latter are the usual reservoir distribution func-
tions.

7.1.3 Simulation on the NSN system

The transport properties of the NSN system (see Inset Fig. 7.4) can now be
calculated with the equations described above. In a previous analysis a finite
differential conductance was found at zero bias employing a linear response
calculation [85]. With the approach introduced here, the full current-voltage
relation can be obtained. The result at several temperatures is displayed in
Fig. 7.4, with the voltage normalized to ∆0(= ∆bulk,T=0) and the current
density normalized to the critical current density Jc ≈ 0.75 ∆0

ξ0ρe [86], with
ξ0 =

√
~D/∆0. At T = 0 we observe a linear resistance at low voltages

caused by the decay of fT (Fig. 7.3b), and a critical point (voltage) above
which the resistance is equal to the normal state resistance. At higher tem-
peratures (T = 0.5 Tc, 0.75 Tc) a linear approach would only give an adequate
approximation in a limited voltage range. We will argue below that the super-
conductor switches to the normal state by fL which is controlled by the voltage
and cannot be interpreted as a critical current. In Fig. 7.5 the electrostatic po-
tential φ =

∫∞
0 fT<{g}dε along the wire is shown at zero temperature prior to

(eV/∆0 = 0.013,0.646) and immediately after (eV/∆0 = 0.651) the transition.
The potential can be seen to drop to zero over a distance of the order of the
coherence length due to the normal- to supercurrent conversion. This mecha-
nism also gives rise to the finite zero bias resistance. The profile hardly changes
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Figure 7.4: The calculated current(J)-voltage(V ) relation of a superconducting wire
of length L = 8.5ξ0 between normal metallic reservoirs (see inset) at several temper-
atures, and for a wire of length 17ξ0 at T = 0. Jc is the critical current density, and
∆0 the bulk gap energy.

over the full range of voltages, until the critical value is reached, after which
the electrostatic potential drops in a linear fashion, indicating the system is in
the normal state. The minimal changes emphasize the limited influence of fT

on the superconducting state (i.e. on ∆). The current density at which the

φ
 /

 V

x / ξ0

eV/∆0 = 0.651 (N state)
eV/∆0 = 0.646 (S state)
eV/∆0 = 0.013 (S state)

-1

0
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0 2 4 6 8

Figure 7.5: The normalized electrostatic potential φ as a function of position x along
the superconducting wire for bias voltages prior to and immediately after the transi-
tion (at T = 0).

superconductor switches to the normal state (for T = 0) is much smaller than
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the critical current density in an infinitely long wire (J/Jc = 1). This excludes
the depairing mechanism as the (main) cause of the transition. Moreover, it is
acceptable to ignore the occurrence of phase slip centers [87], which are time-
dependent solutions that are energetically favorable when J ≈ Jc. Neither is
the transition triggered at the weaker superconducting edges as indicated by
the shape of the electrostatic potential profile in Fig. 7.5.

7.1.4 Simulation on the non-local system

The parameter that determines whether or not the superconducting state exist
is ∆, as follows from Eq. 7.13. The integral in this self-consistency equation
sums all pair states (either occupied by a Cooper pair, or empty). Fi gives the
Cooper pair density-of-states and fL and fT determine which of those states
are doubly occupied or doubly empty and which are singly occupied (broken)
due to the presence of quasiparticles. In equilibrium at T = 0, a switch to the
normal state can only be caused by reaching a critical phase gradient, entering
∆ via Fi. In the presence of quasiparticles, ∆ (and thus potentially the state
of the system) is also influenced by the distribution functions. It was noticed
above that the charge mode fT has a very limited influence on ∆. The effect
of the energy mode fL is examined below.

By a small modification of our system to a T-shaped geometry as shown
in Fig. 7.6, we can in a direct way disentangle the effects of fL and fT on
∆. This setup can be thought of as the connection of the superconducting
wire to the center of a normal wire. In the middle of such a wire fT is equal
to zero, but fL is not. The result for the pair potential at the edge of the
superconducting wire as a function of the voltage of the reservoirs is shown
in Fig. 7.6. Although there is no net current flowing through the supercon-
ductor, at a certain voltage the pair potential collapses. The voltage that is
necessary to trigger this transition to the normal state is very close to the
transition in Fig. 7.4 (where we used the two terminal setup). Apparently the
influence of fL is important, since it can cause the superconductor to switch
to the normal state irrespective of the value of the supercurrent. Clearly the
influence of fL on the state of the superconductor is larger than the influence
of the supercurrent on this same quantity.

The quantity that defines the possible states of the system is the free en-
ergy. Evidently the superconductor compares two states for the minimization
of this free energy: the first state is the superconducting state in which the
free energy remains constant as a function of voltage (and independent of the
shape of fL provided this shape does not change for energies larger than the
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Figure 7.6: Top: T-shaped geometry, bottom: pair potential ∆ in the S-wire as
function of (left) voltage at two different positions; (right) position at two different
voltages. The breakdown voltage is at eV/∆0 = 0.707. The wire length is 4.25 ξ0

gap). The second possible state is the normal state. At zero temperature, in
the absence of a bias voltage, the difference in free energy between the two
states is the condensation energy of the superconductor. When the voltage
is increased (but still eV < ∆), the free energy of the superconducting state
remains constant while the free energy of the normal state decreases since in
that case electrons occupy higher energy states due to the applied voltage.
To illustrate the effect, we calculate explicitly the (internal) energy differ-
ence between the superconducting state (ES) and normal state (EN) at zero
temperature for both a bulk superconductor (analytically) and the T-shaped
structure (numerically) as a function of voltage (which appears in fL) and
∆. From the analytical calculation for the bulk, following Bardeen [88], we
find that fL changes the energy in such a way that at eV = 1

2

√
2∆0 the su-

perconductor undergoes a first order phase transition. For the voltage range
1
2∆0 < eV < ∆0 the state of the system has two solutions (two minima). The
energy difference for the bulk superconductor is shown in Fig. 7.7. Numerical
results for the energy of the T-shaped geometry are shown as well (both as
function of position and as function of voltage). For long wires, the numerical
results approach the analytical (bulk) calculation. This indicates that the ef-
fect of the bias voltage can indeed be related to the existence of a first order
phase transition at zero temperature.

In conclusion, we have studied the role of the energy mode fL of the quasi-

Hysteretic behavior due to the first order transition is also present in the numerical
calculation, for clarity in Fig. 7.4 and 7.6 only the upsweeps are displayed.
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particle distribution on the properties of a superconducting nanowire. We
employ a numerical simulation of the Usadel equation in full-response and
find a non-thermal distribution for fL (caused by an applied bias voltage)
which drives a first order transition from the superconducting state to the
normal state irrespective of the current. A direct calculation on the internal
energy of a bulk superconductor confirms that the voltage indeed causes the
phase transition. In general, the significant role played by fL found in these
superconducting nanowires stresses the importance of treating fL and fT on
equal footing.
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Samenvatting

Dit proefschrift beschrijft een serie metingen en een theoretische analyse om
meer duidelijkheid te krijgen in de fundamentele werking van supergeleidende
systemen wanneer deze in contact worden gebracht met (ferro)magnetische
systemen, of wanneer deze zelf in een bijzondere niet-evenwichts situatie wordt
gebracht. De aandacht ligt hierbij op de (elektronische) transport eigenschap-
pen van dergelijke gekoppelde systemen, waarbij de werking van de afzonder-
lijke onderdelen ervan goed bekend is.

De wisselwerking tussen de elektronische toestanden in de supergeleider en
de ferromagneet zijn antagonistisch van aard. In de supergeleider vindt paar-
vorming van elektronen plaats (Cooper paren), waarbij de spins, en dus de
magnetisch momenten, van de twee elektronen antiparallel staan. In de ferro-
magneet is er juist een drijvende kracht om de elektron spins gelijk te richten.
Wanneer beide systeem gekoppeld worden ontstaat er aan het grensvlak een
competitie tussen beide elektron toestanden, met een nieuwe en niet-triviale
toestand als resultaat. Deze is vanuit fundamenteel oogpunt erg interessant,
maar biedt ook de mogelijkheid tot nieuwe toepassingen.

Eén van de systemen die de laatste jaren veel aandacht heeft gekregen
is de supergeleidende spin-switch (of: -schakelaar). In dit systeem worden
twee ferromagnetische lagen gekoppeld door een supergeleidende laag en is
de richting van de magnetisatie in de ferromagneten bepalend voor de mate
van onderdrukking van de supergeleiding in de tussenlaag. De theoretische
voorspelling is dat complete onderdrukking van de supergeleidende toestand
optreedt wanneer de magnetisatie in de ferromagneten parallel staat, terwijl in
de anti-parallele situatie er wel supergeleiding mogelijk is. Dit is de feitelijke
spin-switch: het aan/uit zetten van een (super)stroom door de supergeleider
door middel van een kleine manipulatie aan de ferromagneten. Experimenten
aan zwakke ferromagneten lijken de theorie te bevestigen, zij het met een heel
wat kleiner gemeten effect dan voorspeld, maar ook zijn experimenten met
sterke ferromagneten gerapporteerd die een omgekeerd effect laten zien. Wat
tot nu toe weinig aandacht kreeg is de invloed van magnetische domeinen.
Een groot deel van de hier beschreven experimenten gaat over de effecten van
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domein vorming op de wisselwerking tussen de supergeleider en de ferromag-
neet.

In hoofdstuk 4 en 5 onderzoeken we de effecten van magnetische domeinen
in dubbellagen en spin-switch geometrieën. In hoofdstuk 4 gebruiken we het
zwak ferromagnetische materiaal CuNi met Nb als supergeleider. In hoofd-
stuk 5 gebruiken we het sterk ferromagnetische materiaal NiFe, wederom met
Nb als supergeleider. We doen veld-afhankelijke weerstands metingen zowel
vlak boven als beneden de supergeleidende transitie temperatuur Tc van het
Nb, maar ook kritieke stroom metingen ver beneden Tc om te zien of de
gevonden effecten eveneens plaats vinden wanneer de supergeleider tot volle
sterkte is gekomen. Een hoofdconclusie is dat de effecten van de magnetische
domeinen minstens zo belangrijk zijn als de effecten beschreven in het stan-
daardmodel van de spin-switch, en dat ze ook de oorzaak zijn van de omkeer
van de werking van het systeem. In de spin-switch met zwakke ferromagneten
is de supergeleiding gebaat bij domein vorming doordat het feitelijk een minder
parallele magnetische toestand is, en daardoor minder onderdrukkend voor de
Cooper paren. In de spin-switch met sterke ferromagneten zorgt een bijeffect
van de domeinen, de dipool-strooivelden, er juist voor dat de supergeleider
sterker wordt onderdrukt.

In hoofdstuk 6 onderzoeken we de op NiFe gebaseerde sandwiches op een
ander voorspeld effect aan de grenslaag van supergeleider en ferromagneet,
namelijk mogelijke indringing van magnetisme in de supergeleider. Hiervoor
maken we gebruik van een geavanceerde meetopstelling waarin muonen (een
elementair deeltje wat enigszins lijkt op een zeer zwaar elektron) in het systeem
geschoten worden en die vervolgens het lokale magneetveld meten. Het expe-
riment toont inderdaad de aanwezigheid van magnetizatie aan de supergelei-
dende kant van het grensvlak aan, hoewel de data analyse bemoeilijkt wordt
doordat de grootte van de effecten tegen de gevoeligheid van het meetsysteem
aan zitten.

In Hoofdstuk 7 doen we een theoretisch onderzoek aan de werking van een
(mesoscopische) supergeleidende draad wanneer de elektronische toestanden in
een niet-thermisch evenwicht wordt gebracht door de draad aan weerszijden te
koppelen aan normaal metallische reservoirs en vervolgens over die reservoirs
een elektrisch spanning te plaatsen. Als functie van deze spanning, en de
daardoor opgewekte stroom, modelleren we de verandering van de elektroni-
sche toestanden in de supergeleider en het effect ervan op de supergeleider. Het
blijkt dat we niet de verwachte (standaard) kritische stroom vinden, waarbij
de supergeleider in de normale toestand wordt gedrukt doordat de Cooper
paren uit elkaar worden getrokken. In plaats daarvan vinden we dat, voordat
deze stroom bereikt wordt, de supergeleiding al door een heel ander effect
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onderdrukt wordt, namelijk door de niet-thermische verdelings functies van de
elektronen. Aangezien deze bepaald wordt door de spanning over de reservoirs
spreken we hier over een kritieke spanning.
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