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Abstract 
 
A resolution enhancing post-processing technique called super-resolution 
reconstruction (SRR) has recently been demonstrated to improve visualization and 
localization of micro-structures in small animal MRI. In such cases, however, the 
size of the animal under investigation relative to the size of the structures of 
interest can be very large. This results in high-resolution images of tens of millions 
of voxels. In such cases, solving the SRR problem becomes very expensive, in terms 
of both computation time and memory requirements. In this paper we introduce 
local SRR to overcome these problems. We present a novel method that combines 
state-of-the-art image processing techniques from the areas of articulated atlas-
based segmentation, planar reformation and SRR and allows researchers to 
efficiently capture both global and local scales in whole-body small animal MRI. 
The approach is validated in two case studies involving CT, BLI and MRI data of 
bone and kidney tumors in a mouse model. Using only a few low-resolution images, 
and a total acquisition time compatible with in vivo experiments, we have produced 
SRR MR images from which detailed information about the metastases can be 
inferred. We show that local SRR MRI is a computationally efficient 
complementary imaging modality for the precise description of tumor metastases, 
and that it provides a high-resolution alternative to conventional MRI. 
 
 

5.1 Introduction 
 
In pre-clinical small animal research on skeletal complications of cancer, imaging 
modalities like bioluminescence (BLI), CT, and MRI are conventionally used. Such 
imaging techniques allow non-invasive studies on the metastatic behavior of 
tumors [1]. BLI gives an indication of metastatic tumor growth anywhere in the 
body (e.g. bones, liver and lungs), but the spatial resolution is not sufficient to 
distinguish between lesions located in close proximity to each other and to actually 
localize all individual metastatic processes in an organ. CT gives excellent contrast 
in calcified tissue and can be used to study tumor-induced changes in the bone, but 
due to lack of soft tissue contrast it is less suitable to image organs such as liver and 
lungs. MRI is the preferred imaging modality for imaging liver and lung metastases 
as it gives sufficient anatomical detail and good contrast between the organs and 
tumor masses. So, whereas BLI can be used to indicate the total tumor burden in 
an organ, MRI will give information on the exact location, size and number or 
metastatic lesions in that organ. Together, CT, MRI and BLI provide a 
comprehensive picture of the tumor and metastases development and spread in the 
entire body. 

The sensitivity of MRI for small lesions is, however, relatively low compared to BLI, 
and the most robust pre-clinical protocols are still 2D MRI experiments, with 
relatively thick slices. This slice thickness results in a large partial volume effect, 
making precise detection and localization of tumors difficult, especially for early 
stage tumors and micro tumors [2]. Recently, a resolution enhancing post-
processing technique called super-resolution reconstruction (SRR) has been 
demonstrated to improve visualization and localization of micro-structures in 
molecular MRI [3]. In a metastatic disease model, however, the size of the object 
under investigation (the mouse/rat) relative to the size of the structures of interest 
(the tumors) can be very large. When attempting to capture both global and local 
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scales in an image, this translates into a large field of view at high image resolution, 
resulting in images of tens of millions of voxels. In such cases, solving the SRR 
problem becomes very expensive, in terms of both computation time and memory 
requirements. Exploring large data sets in this way calls for conceptual new-
thinking. 

In this study, we overcome the computational issues of whole-body SRR by the 
combination of state-of-the-art methods from the areas of articulated atlas-based 
segmentation of whole-body small animal data [4–8], planar reformation [9], and 
SRR in MRI [3, 10]. We integrate these concepts into a novel localized approach to 
SRR that enables global-to-local exploration of e.g. whole-body mouse MRI data. 
The idea is similar to that of well-known web-based geographical maps, where it is 
possible, from a global overview image, to zoom in on a detail of interest. Guided by 
user interaction or by registration to images of higher sensitivity, such as BLI, local 
volumes of interest (VOIs) can be identified in the low-resolution MR image. From 
the global low-resolution overview these VOIs are then enhanced by SRR to show a 
higher level of detail. 

The aim of our study is thus to determine whether SRR-MRI is a feasible method 
for improving visualization of tumors in small animal imaging. By feasibility we 
refer to two aspects: 

(i) image quality: when the number of low-resolution images is constrained by 
acquisition times compatible with in vivo experiments, does our local SRR 
method improve the visualization of small anatomical details over 
conventional imaging methods? 

(ii) computational feasibility: can the local SRR computations be handled on a 
desktop machine in a close-to-real-time time frame? 

 
In the following sections, we first introduce our approach to local SRR in MRI. We 
briefly describe its components (for details we refer to previously published work in 
which each of the components has been thoroughly validated) and validate our 
approach in two case studies with bone and kidney tumor visualization, 
respectively. 
 
 

5.2 Materials and methods 
 
5.2.1 Experimental mouse model and imaging 
 
To test the SRR approach, BLI, CT and MRI were acquired in a mouse model of 
metastasizing breast cancer. One female, BALB/c nu/nu mouse of 19.5 g was used. 
At 7–8 weeks of age, the mouse was injected with 4T1-luc2 [11, 12] breast cancer 
cells (100 µl, 150,000 cells) into the left heart ventricle under 2% Isoflurane 
anesthesia. 

After 2–3 weeks BLI and CT scans were made in vivo. The anesthesia applied was 
Ketamine:RomPun:PBS (1:1:1), approximately 60 µl/20 g. This was followed by an 
ex vivo MRI scan. The mouse was euthanized to allow flexibility in the MRI 
experiments and test different acquisition parameters. 
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The mouse, lying on its belly, was taped to an in-house made PMMA holder that 
was used in all three scanners. For BLI imaging, the Xenogen™ VIVO Vision IVIS 
3D scanner (Alameda, CA, USA) was used. The acquisition was done at a range of 
wavelengths between 580–680 nm, at 20 nm intervals with an acquisition time of 
10 seconds per wavelength. One of the 8 BLI images is presented in Figure 5.1. 

CT data was acquired on a SkyScan™ 1076 in vivo X-Ray Microtomograph CT 
scanner (Aartselaar, Belgium) at a resolution of 35 µm. The acquisition was 
performed with a step size of 1.4 degrees over a trajectory of 360 degrees 
(Voltage = 49 kV, Current = 200 uA, Exposure time = 100 ms, Filter: AL. 0.5 mm, 
Frame averaging = 1). 

Several strategies can be adopted when acquiring MR data for an SRR experiment. 
By acquiring the low-resolution slice stacks with rotational increments around 
either the frequency or the phase encoding direction, as introduced in [13], a more 
effective sampling of k-space is achieved than by shifting the low-resolution images 
by sub-pixel distances along the slice selection direction [3]. In this fashion, a 
whole-body scan of the post mortem mouse was acquired on a 7T Bruker 
Pharmascan™ system using a fast spin echo (FSE) sequence. TR was 5300 ms, TE 
was 53.2 ms, with Navg = 4. The 2D slice stack consisted of 40 slices (0.5 mm thick), 
with a FOV of 70×45×20 mm, and a resulting resolution of 0.125×0.125×0.5 mm. 
The scan time per stack was 13 min. The slice stack was acquired at 4 angles with 
uniform increments of 180/4 degrees around the phase encoding direction. In this 
study, we performed SRR on subsets of two and four low-resolution images. In the 
subset of two images, the angular increment between them was 180/2 degrees. 

To compare the SRR results with a standard fast scan, an additional 2D scan of 5 
minutes was performed. A FSE sequence was used, with a slice stack that consisted 
of 40 slices (0.5 mm thick), with a FOV of 70×45×20 mm, a resolution of 
0.25×0.25×0.5 mm TR = 5300 ms, TE = 55.452 ms, Navg = 4. 

Animal experiments were approved by the local committee for animal health, ethics 
and research of Leiden University Medical Center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 A BLI image of the mouse imaged to validate the proposed approach. The arrows indicate 
the different tumor locations: humerus (red), femur (green), kidney (blue) 
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5.2.2 Interactive local SRR reconstruction 
 
The local SRR method integrates a series of processing and analysis steps, which 
depend on the available complementary data (CT, BLI, etc.) and vary in their level 
of user interaction. The overview of the presented method can be seen in the 
flowchart depicted in Figure 5.2: First, within of a set of low-resolution MRI images, 
potential VOIs are identified. In our approach this step is either based on user 
input or it is automated, as described below. Its output is one or more VOIs 
containing potentially relevant structures. One or more of these VOIs can now be 
selected for subsequent local SRR. 

The methods for segmentation and selection of VOIs are highly specific to the 
biological problem and to the available complementary data. In the following, we 
present two situations typical in small animal tumor imaging, in which BLI+CT 
(Case Study A) and BLI only (Case Study B) are used as complementary modalities 
to MRI (see Figure 5.2). Each situation presents a different level of automation and 
requires a different degree of user interaction. The way the relevant information is 
extracted differs with the choice of the imaging modalities for the study at hand. In 
Case Study A, the level of user intervention is minimal. The whole-body mouse is 
automatically segmented using an articulated atlas. Guided by the BLI, the user can 
then select the VOIs with tumors for further SRR reconstruction, visualize the 
results side-by-side with the CT data, and, in case a tumor is present near a bone on 
one side of the body, compare it to the contralateral side, where most likely there is 
no tumor. In Case Study B, user interaction is necessary to co-register the BLI to 
the MRI data to define the VOIs. After that, the user can select among the VOIs in 
which the BLI signal indicate the presence of tumors for SRR reconstruction and 
further high-resolution visualization and analysis. 
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Figure 5.2 Overview of the interactive local SRR of MRI mouse data. Our approach was validated with 
two case studies. A (bone metastases): After rigidly registering CT to MRI, articulated atlas-based 
segmentation is performed (A1). Subsequently, articulated planar reformation is applied to the 
segmented MRI and the data is visualized in the standardized atlas space (A2). The user can now 
interactively select any low-resolution bone of interest guided by the BLI images. A high-resolution SRR 
image of the humerus with a tumor is presented. B (kidney tumors): BLI+MRI mouse data are first 
co-registered (B1) to define the VOIs (B2) using the BLI. A VOI is interactively selected for performing 
SRR. A high-resolution SRR image of the kidney with metastases is presented. A global solution to three 
possible scenarios that takes into account the availability of complementary data was provided: (i) only 
MRI is available [8], (ii) MRI+BLI is available, (iii) MRI+CT+BLI is available 
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5.2.3 Case study A: MRI+CT+BLI 
 
This case study was set up to explore the value of SRR-MRI to image bone 
metastases as a complementary modality to CT, BLI and conventional MRI. In this 
section, we describe our approach to super-resolution bone MRI. 
 
Articulated atlas-based bone segmentation of CT and MRI mouse data 
First, rigid registration of the CT scan to one of the low-resolution MR images was 
performed [6, 14]. Rigid registration was sufficient in this case because the mouse 
was fixated in the same animal bed during all imaging procedures and during 
transport between scanners. The bones were segmented in the CT image using the 
articulated MOBY mouse atlas [5, 15] (Figure 5.2.c). The fully automated approach 
presented in [4] was used for this purpose. To deal with the large articulations 
between bones and/or bone groups, the registration of the atlas to the CT data used 
a hierarchical model tree. First, a coarse alignment of the MOBY atlas to the CT 
skeleton was performed. This was followed by the stepwise alignment of the 
individual atlas bones to the CT data, using the ICP algorithm [16]: we started with 
the skull, after which each bone was accurately registered to the correspondent 
bone in the data. Given the CT-to-MR registration parameters, the transform 
obtained in the segmentation of the whole-body CT data was propagated to the MR. 
Figures 5.2.b, c show the atlas fitted to the CT and MRI datasets, respectively. 
 
Articulated planar reformation of MRI data 
Using the obtained transformations between each bone in the atlas and the low-
resolution MR image, articulated planar reformation [9] can be applied to map the 
labeled data into a standardized atlas space. This method automatically creates a 
VOI for each bone, which is based on a principal component analysis of the bone 
shape. By constructing the VOIs in this manner, the final reformatted images are 
aligned with the principal axes of the bones [9]. 
 
Interactive selection of VOIs 
Upon segmentation and reformatting, the user is presented with a global view of 
the segmented bones, see Figure 5.2.d. Guided by the BLI signal, the user can now 
interactively select a bone for SRR reconstruction. 
 
5.2.4 Case study B: MRI+BLI 
 
This case study was set up to explore the value of SRR-MRI as a complementary 
modality to BLI and conventional MRI when CT data is not available for 
establishing anatomical correspondence. In practice, this is usually the case for soft 
tissue tumors, where bone metastases and bone resorption are not expected. In this 
section, we describe our approach to super-resolution MRI of kidney tumors. 
 
BLI-to-MRI mouse data registration 
After acquisition, the BLI images are registered to one of the low-resolution MR 
images using a landmark-based approach [6, 14]. A minimum of three landmarks is 
selected. The location of each landmark is indicated in one of the low-resolution 
MR images and in two separate BLI images at different angulations. Using the 
known angle between the two BLI images, back projection is used to find the 
corresponding point in the three-dimensional space. This point is then paired with 
the point in the MR image and registration is performed. Typical landmarks 
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include the snout and limbs because they are most easily identified in both 
modalities. 
 
BLI-based VOI localization and segmentation 
BLI-based VOIs can be localized by simple thresholding on the raw BLI signal. 
Once the coordinates of the VOIs in world space are known, the BLI-to-MRI 
registration transform is used to map the VOIs onto the chosen low-resolution MR 
image. The VOIs are then propagated to the remaining low-resolution MRI images 
using the transform parameters of these acquisitions. Finally, VOIs are extracted 
and can be used for SRR. 
 
5.2.5 Super-Resolution Reconstruction 
 
When a VOI has been selected and propagated to all rotated low-resolution MRI 
images, local SRR can be performed on the volume. 

SRR is the process of producing a single high-resolution image from a sequence of 
low-resolution images, where each low-resolution image transforms and samples 
the high-resolution scene in a distinct fashion. It is an inverse problem in which the 
acquisition process is modeled as a linear operator on the high-resolution image. 
When the high-resolution image is vectorized and put into a large vector ܠ, the 
acquisition of the low-resolution image k can be modeled as ܡ௞ ൌ ܠ௞ۯ ൅  ௞, whereܖ
 ௞ models the transform due to theۯ is Gaussian noise [17]. The linear operator ܖ
rotation of the field of view of the kth image as well as the point spread function of 
the acquisition. 

The objective in SRR is to find an ܠ that minimizes the difference between ܡ௞ and 
 for all k simultaneously [3]. In general, a direct solution of this objective is not ܠ௞ۯ
feasible since it involves many operations with all ۯ௞ ∈ ࣬௡ൈ௠, where ݊ and ݉ are 
the number of voxels in the reconstruction (ܠ) and in a low-resolution image (ܡ௞), 
respectively. Instead, the reconstruction is obtained by iterative methods such as 
the conjugate gradient method. In this study, we apply the method described in 
[10], which is a Tikhonov-regularized least-squares solver that implements ۯ and 
ࢀۯ  by an affine transformation scheme that minimizes aliasing and spectral 
distortion. The SRR method is extended with a bias-field correction step removing 
inhomogeneity over the images caused by variations in coil sensitivity. 
 
5.2.6 Software platform 
 
All computational experiments described beneath were implemented in MATLAB 
R2009b™ and performed on a 2.80 GHz Intel Xeon™ with 12 GB of RAM, 
Windows™ PC. 
 
 
 
 
 
 
 
 
 
 



 

69 

5 

5.3 Results 
 
5.3.1 Case study A: MRI+CT+BLI (bone tumors) 
 
Local SRR images of the right femur and humerus with metastases were 
reconstructed at different levels of quality using 2 and 4 low-resolution images, and 
compared with conventional MRI, BLI and CT. In addition, reconstruction times of 
individual bones were compared with that of the entire mouse. 

On BLI (Figure 5.1), three distinct signal areas were observed, the smallest one at 
the position of the right femur (green arrow). The user therefore manually selected 
the right femur for SRR of the MRI data, using 2 or 4 low-resolution images for the 
reconstruction SRR (2), and SRR (4) respectively (see Figure 5.3). The arrows in 
the BLI and the SRR (2) and SRR (4) images point to a tumor adjacent to the 
medial chondyle. This tumor is neither visible in the CT image, nor in the fast 
2D MRI or in the raw low resolution image (1 LR). When using 2 low-resolution 
images for SRR, the image quality increases and the tumor becomes discernible. 
Using 4 low-resolution images further improves the visibility of the tumor and its 
margins. 

BLI also showed a high intensity area at the location of the right humerus 
(Figure 5.1, red arrow). The tumor is not visible on CT. The fast conventional MRI 
scan does show the tumor, but, due to the relatively thick slices, the tumor margins 
are blurred, particularly in the transverse plane. As before, the image quality 
improves when using more low-resolution images, showing a clear delineation of 
the tumor, with SRR (4) being sharper and less noisy than SRR (2). 

Table 5.1 shows how the SRR reconstruction times scale approximately linearly 
with the size of the low-resolution dataset. Since one low-resolution image of the 
entire mouse contains approximately 20 million voxels, and a typical VOI contains 
around 250,000 voxels, we accelerate the reconstruction by approximately a factor 
80. From the table, it also follows that the SRR times scale approximately linearly 
with the number of low-resolution images used. While the entire mouse takes more 
than 40 minutes to reconstruct using 4 low-resolution images, the VOI can be 
reconstructed within 1–2 minutes.  

The segmentation and selection of VOIs steps described above, each take less than 
a minute to perform. 

 
5.3.2. Case study B: MRI+BLI (kidney tumors) 
 
BLI showed a single high signal intensity around the area of the right kidney 
(Figure 5.1, blue arrow). Local SRR images of this area were reconstructed at 
different levels of quality and compared with conventional MRI and BLI. Figure 5.5 
shows orthogonal slices of the kidney for the different image types (fast 2D MRI, 
one low-resolution image, and SRR on 2, and 4 low-resolution images). On the BLI 
in Figure 5.1, the spatial resolution is too low to determine whether multiple 
tumors are present, but on MRI one large tumor and several small metastases can 
be detected. Most of these are readily detectable on the fast 2D MRI, and the low 
resolution (1 LR) image. However, the tumors appear blurred and cannot be clearly 
delineated. In such images, the smallest metastases will be lost due to partial 
volume effects, but will be recovered in the SRR (2) or SRR (4) images. The high 3D 



70 

resolution of the SRR scans also shows that most of these metastases are located in 
the renal cortex and medulla, whereas the renal pelvis is relatively clean. 

 

 2 low-resolution 4 low-resolution 

Femur 56 98 

Tibia-Fibula 38 75 

Pelvis 79 151 

Sternum 31 63 

Humerus 48 83 

Ulna-Radius 41 78 

Whole-Body 1282 2479 

 
Table 5.1 SRR times in seconds for each reconstructed right bone and the whole-body of the mouse, 
using 2 and 4 low-resolution images 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Right femur. From left to right: a CT scan, a fast MRI scan, one low-resolution image, and 
SRR reconstructions, each based on a different number of low-resolution images. Two orthogonal slices 
of the same VOI are shown to illustrate the effect of the SRR in a 3D volume. The orange dashed line 
indicates where the yz-slice (bottom) intersects the xy-slice (top). The red arrows points to the (micro) 
tumor in the knee. The green arrow points to another location, outside the tumor, at which recovery of 
the fine details is obvious. The CT and all the MR images are shown in the coordinate system associated 
with the principal axes of the bone, and Fast 2D and the low-resolution (1 LR) volumes are resampled to 
isotropic resolution beforehand. Image contrast on the MRI images was increased for visualization 
purposes 
 
 

CT                   Fast 2D                  1LR                  SRR (2)             SRR (4) 
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Figure 5.4 Right humerus. From left to right: a CT scan, a fast MRI scan, one low-resolution image, 
and SRR reconstructions each based on a different number of low-resolution images. Two orthogonal 
slices of the same VOI are shown to illustrate the effect of the SRR in a 3D volume. The orange dashed 
line indicates where the yz-slice (bottom) intersects the xy-slice (top). The red arrows point to the tumor. 
The green arrows point to some of the locations where recovery of the fine details is the most noticeable. 
The CT and all the MR images are shown in the coordinate system associated with the principal axes of 
the bone, and Fast 2D and the low-resolution (1 LR) volumes are resampled to isotropic resolution 
beforehand. Image contrast on the MRI images was increased for visualization purposes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 Right kidney. From left to right: a fast MRI scan, one low-resolution image, and SRR 
reconstructions each based on a different number of low-resolution images, of the right kidney. The red 
and yellow arrows point to two different tumors. Two orthogonal slices of the same VOI are shown to 
illustrate the effect of the SRR in a 3D volume. The green arrows point to other locations where the 
improvement in image quality is particularly noticeable. The orange dashed line indicates where the yz-
slice (bottom) intersects the xy-slice (top). In all the MR images, the xy-view is the in-plane direction of 
the scans. Note that the metastatic lesion seen in the BLI image (Figure 5.1, blue arrow) actually consists 
of numerous lesions as shown on MRI scans. For the Fast 2D and the low-resolution (1 LR) the selected 
views are resampled to isotropic resolution and the image contrast on the MRI images was increased for 
visualization purposes. Note that for the Fast 2D view the shown slices do not correspond exactly to the 
other three views due to high sparsity of that data set 

CT                   Fast 2D                  1LR                  SRR (2)             SRR (4) 

Fast 2D                        1LR                           SRR (2)                    SRR (4) 
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5.4 Discussion 
 
5.4.1 Relevance to tumor research and other biological applications 
 
Conventionally, bone resorption and metastases in soft tissues (such as kidney, 
lung and liver) are visualized using BLI+CT and BLI+MRI, respectively. In this 
study, we have explored the value of adding SRR-MRI t o improve soft tissue 
tumor detection. In two case studies, we have shown how an integrated approach, 
combining state-of-the-art technologies from the area of image processing with the 
use of multiple imaging modalities, can be used to detect and study bone and soft 
tissue metastases with much greater sensitivity than by the conventional methods. 

In Case Study A, we saw how BLI is a sensitive method to visualize luciferase-
positive tumors in a living animal. The BLI signal intensity is proportional to the 
size of a tumor mass, and BLI can thus be used to give a rough estimate of both size 
and localization of the lesion. In the case of bone metastases, the location and 
subsequent bone pathology are usually determined using CT [18]. However, in Case 
Study A there was no visible bone pathology in the CT scan. When local SRR-MRI 
was performed, guided by the BLI signal, these images provided the location, size 
and shape of tumors in the limbs of the animal and confirmed that these 
metastases were, indeed, soft tissue tumors located outside of the bone. In the 
conventional fast MRI of the femur, the tumor could not have been identified 
without the guidance of the BLI images. The SRR-MRI, on the other hand, clearly 
showed a nodular structure that could be identified as a tumor (Figure 5.3). In the 
humerus images, which contain a large tumor outside of the bone, it can be 
appreciated how the delineation of the tumor boundary becomes much sharper in 
the SRR-MRI than in the fast scan and the single low-resolution MR image (see 
Figure 5.4; note that the improvement in image quality is especially noticeable 
when using a high zooming factor). The method thus, has the potential to support 
detailed quantitative studies of e.g. metastases development and assessment of 
treatment response. 

In Case Study B of kidney metastases, CT was not used, as this modality gives 
insufficient soft tissue contrast without the use of contrast agents. BLI indicated the 
presence of a cancerous lesion in or around the kidney (Figure 5.1, blue arrow). 
MRI revealed numerous independent metastases in the kidney (Figure 5.5), which 
is not possible with BLI alone due to its limited spatial resolution. Moreover, SRR-
MRI allows the researcher to not only distinguish, but also to clearly delineate 
different tumors in close proximity. This cannot be achieved with conventional 
MRI, as illustrated in Figure 5.5. SRR-MRI can thus provide added value in studies 
where the number of metastases is an important parameter and where 
experimental treatment is used to intervene with the metastatic process. For 
instance, a researcher can differentiate between renal, adrenal and peri-renal 
cancerous lesions with SRR-MRI but not with BLI. 

BLI remains the preferred standard measurement for active tumor size as the 
signal originates only from living cells and not from a necrotic core or cells killed by 
a certain treatment. Light, however, only has a limited penetration in bone and the 
bone can thus mask the BLI signal coming from small tumors which grow on the 
inside the bone, making these tumors appear smaller than they actually are. Having 
an MRI dataset in which the tumor can be identified and measured clearly helps 
overcoming these limitations. 
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An additional point to be made is the possibility to use BLI with SRR-MRI as an 
alternative for the CT anatomical reference, particularly in longitudinal studies 
where the repeated exposure to radiation in a CT scan may become a confounding 
factor or cause adverse effects [19]. 

Apart from oncology, the presented work flow may be of value in many research 
areas that requires whole body examination for local ((sub-) slice-thickness sized) 
effects. Examples are the homing of labeled stem cells after systemic injection, or 
imaging of systemic inflammatory diseases. 
 
5.4.2 Post mortem to in vivo SRR-MRI 
 
In this study, we have applied our approach to post mortem image data. However, 
we have well-founded reasons to believe that our results translate to in vivo 
imaging. The SRR quality depends on the amount of artifacts induced by animal 
movement. Such artifact are reduced by fast LR acquisitions and accurate 
subsequent registrations. While accurate non-rigid registration of soft tissue 
structures, such as liver and kidney may be possible, SRR is expected to be most 
successful for relatively rigid structures, such as the brain, bone, and tissue 
surrounding bone: cases in which rigid registration will yield accurate alignment of 
the low-resolution images. In [3], we showed SRR reconstructions of an in vivo 
mouse brain, and several studies have validated the assumption of accurate motion 
estimation in applications of SRR in fetal brain MRI [20, 21]. 
 
5.4.3 Interactive local SRR 
 
One of the results of this work has been the development of an approach that 
integrates recent progress in the areas of articulated atlas-based segmentation of 
whole-body small animal data, planar reformation and SRR in MRI into a novel 
localized approach to SRR that enables global-to-local exploration of e.g. whole-
body mouse MRI data. Together with the preliminary results first published in [8], 
we have provided a global solution to three possible scenarios that takes into 
account the availability of complementary data: (i) only MRI is available [8], 
(ii) MRI+BLI is available, (iii) MRI+CT+BLI is available (Figure 5.2). From first to 
last scenario, the proposed approach decreases in the required level of user 
interaction to segment the data into possible VOIs. Depending on the biological 
problem, the more complementary data available, the higher the level of 
automation of the approach and the more data there is for the user to explore, i.e.: 
in the approach of Case Study B (MRI+BLI), the user can choose only among VOIs 
in which BLI signal is present, for a subsequent SRR reconstruction. Alternatively, 
(if CT is available) the user can select any bone for the SRR reconstruction and thus 
compare left with right, compare a bone with a tumor, with the same bone without 
a tumor on the contralateral side, etc. Naturally, the more complementary data 
available in a study, the more information one can extract. Thus, while in (i) only 
MRI information is available, in (iii) one can fully integrate the information 
provided by the BLI (which quickly locates tumor growth and indicates tumor 
burden) together with the anatomical information provided by the CT (used to 
study tumor induced changes in the bone—bone resorption) and the soft tissue 
information provided by MRI (which can provide the information about the size 
and the number of metastases). 
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5.4.4 Image quality vs imaging time 
 
A major constraint when applying SRR in small animal MRI is the limited 
acquisition time that in vivo experiments allow. Each of the low-resolution images 
takes a certain amount of time to acquire and acquisition of multiple such images 
may quickly exceed the time in which a mouse can be kept sedated. It was shown in 
[3], that relatively few images were necessary to achieve significant improvements 
in the image quality. In this study we have limited the number of low-resolution 
images to four, with a total acquisition time of 52 minutes, a realistic acquisition 
time for in vivo experiments. If the experimental setting allows it, the number of 
low-resolution images used can be extended at the expense of additional 
acquisition time. This will have some positive effect on the resolution. For an 
optimal coverage of k-space, the number of low-resolution images should be 
π/2ڿ ൈ Fۀ, where F is the anisotropy factor, i.e., the slice thickness relative to the in-
plane resolution. In our case, that would mean using 7 low-resolution images. 
Using more than this number of low-resolution images will not have a significant 
impact on the resolution but will increase the SNR slightly (for an in-depth study of 
these trade-offs, we refer the interested reader to [3]). 

The major advantage of SRR in small-animal MRI is that it enables obtaining 
isotropic images in scenarios where T2-weighted image contrast is desired, 
requiring long repetition times and therefore long scan times, particularly for a 3D 
acquisition. By combining a small number of relatively fast thick-slice acquisitions 
with SRR, an isotropic resolution close to the original in-plane resolution is 
obtained. For comparison, direct acquisition of a 3D fast spin echo image with the 
same resolution and acquisition parameters would take about 28 hours and thus is 
clearly infeasible. 
 
5.4.5 Reconstruction times 
 
For large datasets, the SRR method is limited by the memory available on the 
computer. For the conjugate gradient solver, up to 5 data structures, each the size 
of the final reconstructed image, and 2 additional data structures, each the size the 
total low-resolution data, must be kept in memory simultaneously. For large 3D 
data sets, this soon becomes impossible, even on a high-performance desktop 
computer. The interactive approach to locally reconstruct VOIs presented here, 
allows overcoming the time and memory limitations of the SRR technique. 
However, as shown in Table 5.1, the mean time for the best quality SRR result, i.e., 
using 4 low-resolution images, is still in the order of minutes—91.3 s. The mean 
time for SRR using 2 low-resolution images is 48.8 s. These results are still far from 
the real-time target for this approach. Since the results presented here were 
acquired on a MATLAB™ implemented prototype, the computation times will 
decrease by re-implementing the algorithm in a C/C++ and GPU programming 
environment combination. 
 
 
 
 
 
 
 



 

75 

5 

5.5 Conclusions 
 
By combining a number of state-of-the-art image processing techniques, we have 
enabled a global-to-local exploration of whole-body mouse MRI. We have shown 
that the SRR-MRI is a valuable complementary modality in studies of tumor 
metastases. Using only a few low-resolution images, and a total acquisition time 
compatible with in vivo experiments, we have reconstructed SRR MR images from 
which detailed information about soft tissue metastases, not available in 
conventional imaging modalities, can be inferred. This cannot be obtained from 
direct MR acquisition within a feasible acquisition time. 
 
 

Acknowledgments 
 
Financial support from Medical Delta is gratefully acknowledged. 
 
 

References 
 
[1]. Snoeks T. J., Khmelinskii A., Lelieveldt B. P. F. et al. Optical advances in 

skeletal imaging applied to bone metastases Bone 48(1): 106–114 2011 

[2]. Gauvain K. M., Garbow J. R., Song S. K. et al. MRI detection of early bone 
metastases in B16 mouse melanoma models Clinical & Experimental 
Metastasis 22: 403–411 2005 

[3]. Plenge E., Poot D. H. J., Bernsen M. et al. Super-Resolution Methods in 
MRI: Can They Improve the Trade-Off Between Resolution, Signal-to-Noise 
Ratio, and Acquisition Time? Magn Reson Med 68(6): 1983–1993 2012 

[4]. Baiker M., Milles J., Dijkstra J. et al. Atlas-based whole-body segmentation 
of mice from low-contrast micro-CT data Med Image Anal 14(6): 723–737 
2010 

[5]. Khmelinskii A., Baiker M., Chen X. J. et al. Articulated whole-body atlases 
for small animal image analysis: construction and applications Mol 
Imaging Biol 13(5): 898–910 2011 

[6]. Kok P., Dijkstra J., Botha C. P. et al. Integrated visualization of multi-angle 
bioluminescence imaging and micro CT Proc SPIE Medical Imaging 6509: 
1-10 2007 

[7]. Khmelinskii A., Baiker M., Chen X. J. et al. Atlas-based organ & bone 
approximation for ex-vivo µMRI mouse data: a pilot study IEEE Intl Symp 
on Biomedical Imaging 1197–1200 2010 

[8]. Khmelinskii A., Plenge E., Kok P. et al. Super-resolution reconstruction of 
whole-body MRI mouse data: an interactive approach IEEE Intl Symp on 
Biomedical Imaging 1723–1726 2012 



76 

[9]. Kok P., Baiker M., Hendriks E. et al. Articulated planar reformation for 
change visualization in small animal imaging IEEE T Vis Comput Gr 16(6): 
1396–1404 2010 

[10]. Poot D. H. J., Van Meir V., Sijbers J. General and efficient super-resolution 
method for multi-slice MRI Proc 13th MICCAI: Part I, 615–622 2010 

[11]. Kim J. B., Urban K, Cochran E. et al. Non-invasive detection of a small 
number of bioluminescent cancer cells in vivo PLoS One 5: e9364 2010 

[12]. Bolin C., Sutherland C., Tawara K. et al. Novel mouse mammary cell lines 
for in vivo bioluminescence imaging (BLI) of bone metastasis Biol Proced 
Online 14(6) doi:10.1186/1480-9222-14-6 2012 

[13]. Shilling R. Z., Robbie T. Q., Bailloeul T. et al. A super-resolution framework 
for 3-D high-dimensional and high-contrast imaging using 2-D multislice 
MRI IEEE Trans Med Imaging 28: 633–644 2009 

[14]. CVP: http://graphics.tudelft.nl/pkok/CVP/  

[15]. Segars W. P., Tsui B. M. W., Frey E. C. et al. Development of a 4-D digital 
mouse phantom for molecular imaging research Mol Imaging Biol 6(3): 
149–159 2004 

[16]. Besl P. J. and McKay N. D. A method for registration of 3D shapes IEEE T 
Pattern Anal 14(2): 239–256 1992 

[17]. Gudbjartsson H. and Patz S. The Rician distribution of noisy MRI data 
Magn Reson Med 34(6): 910–914 1995 

[18]. Baiker M., Snoeks T. J. A., Kaijzel E. L. et al. Automated Bone Volume and 
Thickness Measurements in Small Animal Whole-Body MicroCT Data Mol 
Imaging Biol 14(4): 420–430 2012 

[19]. Hindorf C., Rodrigues J., Boutaleb S. et al. Total absorbed dose to a mouse 
during microPET/CT imaging Eur J Nucl Med Mol Imaging 37: S274 2010 

[20]. Rousseau F., Kim K., Studholme C. et al. On super-resolution for fetal brain 
MRI Proc 13th MICCAI: Part II, 355–362 2010 

[21]. Gholipour A., Estroff J. and Warfield S. Robust super-resolution volume 
reconstruction from slice acquisitions: Application to fetal brain MRI IEEE 
Trans Med Imaging 29: 1739–1758 2010 




