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7
Conclusions and outlook

Our study of excitons in strongly correlated bilayers has yielded
several experimentally testable predictions.

• Using phenomenological Ginzburg-Landau theory we predict
that an exciton condensate must exhibit flux quantization.1 1 Section 2.2.

• The fermionic Hubbard model can describe strongly correl-
ated bilayers. An unreliable mean field theory predicts room-
temperature superfluidity.2 The numerical Determinant Quan- 2 Section 3.2.

tum Monte Carlo suggests that exciton condensation might oc-
cur around 15-20% doping, but the applicability of this method
is severely limited by the sign problem.3 3 Section 3.3.

• We derive a low energy bosonic model4 called the exciton t− J 4 Section 4.1.

model. For most parts of the phase diagram there is phase
separation between the superfluid, the exciton solid and the
antiferromagnet.5 5 Section 5.2.

• In the limit of low exciton density, there is frustration between
moving excitons and the antiferromagnetic background leading
to Ising confinement. This can be seen in optical experiments
of for example undoped YBCO bilayers.6 6 Section 4.2.

• Exciton condensation within the t − J model exists at large
exciton kinetic energies. There the magnetic triplet excitations
‘borrow’ kinetic energy from the exciton which is visible in a
large triplon bandwidth, proportional to the superfluid dens-
ity.7 7 Section 5.1.

• The long-range dipolar interaction might cause the formation of
complex ordered phases, such as generalized Wigner crystals
or stripe phases.8 8 Chapter 6.
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Despite these several predictions, the theory related to excitons
in strongly correlated bilayers is far ahead of the experimental
progress. This poses a limitation on further theoretical progress,
since questions must always be driven by experiments. Neverthe-
less, there are a few interesting open theoretical questions which
are worth mentioning.

Most of our predictions were obtained in the strong coupling
limit, where the electron and hole are tightly bound into a boson.
It is then natural to ask what happens at intermediate exciton
coupling. Most likely the excitons will be spatially broadened, re-
introducing the complicated fermion sign structure. The inclusion
of finite temperatures puts forward the issue of dissociation of
the excitons into separate holes and electrons. This can be viewed
as the extreme limit of spatial broadening. The broadening and
formation of excitons is certainly the most interesting open prob-
lem regarding the cuprate bilayers, but the fermion sign problem
stands in the way of simple answers.

Another possible theoretical direction is to study exciton-media-
ted superconductivity. Superconductivity in the BCS sense9 re-9 See section 3.2.

quires a bosonic glue to form Cooper pairs, and excitons could
play this role.10 Though this proposal is quite old, there are as of10 Allender et al., 1973; and

Inkson and Anderson, 1973 yet no known exciton-mediated superconductors. Condensation
of the excitons themselves, especially in the case of imbalanced
electron-hole densities, could increase the probability of electron-
electron pairing. Whether exciton-mediated superconductivity is
truly possible is still an open debate, especially within the cuprate
family.

Besides the two major theoretical proposals one can extend the
analysis of this thesis to similar systems. For example, we can
consider different interlayer couplings. In 214 systems such as
La2−xSrxCuO4 the copper atoms in nearest neighbor layers do
not lie directly above each other. Consequently, instead of an
interlayer antiferromagnetic coupling one finds a Dzyaloshinskii-
Moriya interaction. In addition to different interlayer couplings we
could also study different lattice structures, such as the hexagonal
lattice.11 The choice of different lattices and interactions, however,11 Meng et al., 2010

should be guided by actually existing materials that are expected
to have these properties.

Let us therefore discuss the experimental progress on cuprate
bilayers. The main practical difficulty lies in the fabrication of both
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Gold contacts

Bottom layer
NCCO

Top layer
LSCO

Ramp junction

Graphic design of ramp junction

Electron microscope image of sample Figure 7.1: In Twente ramp
contacts combining p and n-
type cuprates were construc-
ted. On the left the design
is shown. On the right an
electron microscope image of
the actual sample is shown.
Both layers are visible, and
the junction in between them.

p and n-type cuprates in a single sample. Marcel Hoek, Francesco
Coneri and Hans Hilgenkamp at the University of Twente are cur-
rently making heterostructures of the hole-doped La2−xSrxCuO4

(LSCO) and electron-doped Nd2−xCex CuO4 (NCCO), see figure
3.2 for their crystal structure. This is done by pulsed laser depos-
ition (PLD). This technique involves focussing a high power laser
on a target in a vacuum chamber, which results in a plasma plume
of the target material. The plume deposits on a substrate as a
thin film. By tuning the amount of laser pulses, one can construct
heterostructures one unit cell layer at a time. The problem is,
however, that p- and n-type cuprates need different growth condi-
tions in the PLD process. To obtain superconducting LSCO one
needs to anneal the substrate in oxygen, whereas NCCO usually
requires annealing in vacuum. The Twente group has managed to
successfully create NCCO layers under the growth conditions of
LSCO.

Subsequently they have fabricated p/n heterostructures with
both LSCO and NCCO in a single sample. The strategy thereby is
to first deposit NCCO layers and on top of that an insulator such
as SrTiO3. A ramp edge is etched and on top of that a LSCO layer
is deposited. This results in a ramp contact as shown in figure 7.1.

The p/n contacts are of extreme importance within semicon-
ductor technology. Such p/n junctions consisting of Mott insu-
lators have been little studied.12 One might for example wonder 12 Manousakis, 2010

whether a Josephson current between n and p-type supercon-
ductors is possible. Back-of-the-envelope theory predicts that
p/n-Josephson junctions might behave qualitatively different from
normal Josephson junctions. Transport measurements on these
p/n ramp contacts are on the way. At the same time RIXS meas-
urements similar to the one proposed in section 5.1 are started on
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p/n heterostructures.

charge balance requires that electrons are transferred from
the IP to OP. Thus, electrons are doped into each of the two
OPs with approximately Ne!OP" # 0:06–0:08 because the
hole doping level at the IP is anticipated to be Nh!OP" #
0:13–0:15. According to neutron scattering measurements
on electron-doped Nd2$xCexCuO4 [22], the electron-
doped CuO2 plane with Ne # 0:08 is in an AFM metallic
state with M# 0:3!B. In fact, since M!OP" # 0:29!B is
the same for the trilayered 0223F(2.0) and the four-layered
0234F(2.0), Ne!OP" # 0:06–0:08 is probably also the same
for both. Therefore, Nh!IP" # 0:06–0:08 is estimated for
the four-layered 0234F(2.0). As a consequence, it is con-
cluded that both compounds with apical F$1 ions are self-
doped high-Tc superconductors having electron doping
and hole doping in one and the same compound. All these
results make it clear that the self-doping, i.e., the transfer of
electrons from the IP to OP, takes place in both com-
pounds, as summarized in Fig. 5. We can therefore under-
stand why Tc % 55 K in 0234F(2.0) increases to
Tc % 76 K in 0223F(2.0) because Nh!IP" # 0:13–0:15 for
the latter is twice as large as Nh!IP" # 0:06–0:08 in
0234F(2.0). Further, the reason why long-range AFM order
was absent in 0223F(2.0) may be because the supercon-
ducting IP with Nh!IP" # 0:13–0:15 suppresses the mag-
netic coupling between the OPs with M!OP" # 0:29!B.
Here we note that our results are consistent with the band
calculations by Hamada who suggested that OP is electron-
doped when F$1 is substituted for the apical O$2 [23]. In
combination with the result from ARPES, which revealed
that the Fermi surfaces consist of electron- and hole-doped
sheets with the SC gap on the former sheets twice that on
the latter one [14], the present work shows that 0234F(2.0)
is a self-doped AFM high-Tc superconductor with TN %
100 K and Tc % 55 K.

In conclusion, 19F- and 63;65Cu-NMR studies have re-
vealed that the four-layered 0234F(2.0) with apical fluorine
F$1 is an AFM high-temperature superconductor with
TN % 100 K and Tc % 55 K. Along with the results on
the trilayered 0223F(2.0) with Tc % 76 K, it has been
demonstrated that electrons are transferred from the IP to
OP in the multilayered cuprates with apical fluorine F$1

ions, confirming on a microscopic level a new concept of
‘‘self-doping’’ that was recently pointed out by ARPES
[14]. We remark that the OPs and the IPs in 0234F(2.0)
have M!OP" % 0:29!B with electron doping Ne!OP" #
0:06–0:08 and M!IP" % 0:16!B with hole doping
Nh!IP" # 0:06–0:08, respectively. Most notable from the
present work is the fact that the uniform mixing of AFM
and HTSC takes place in the under-doped regimes for both
electron and hole doping as illustrated in Fig. 5(b). A
remaining underlying issue is why the SC gap on the
Fermi sheet with the electron-doped OP is twice as large
as that with the hole-doped IP.
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FIG. 5 (color online). Illustrations of magnetic properties with
electron-doped OPs and hole-doped IPs for (a) 0223F(2.0) and
(b) 0234F(2.0). Thanks to the results from ARPES for
0234F(2.0), which have revealed that the Fermi surfaces consist
of electron- and hole-doped sheets with their respective SC gaps
[14], it is concluded that the uniform mixing of AFM and SC
realizes both in the hole-doped IPs and the electron-doped OPs.
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Figure 7.2: In the four-
layer cuprate F0234 selfdop-
ing yields electron- and hole-
type layers close to each other.
From Shimizu et al., 2007.

Still, the experimental progress in LSCO/NCCO heterostruc-
tures is far away from the p/n bilayers studied in this thesis.
Probably the closest connection with experiment this thesis has,
lies in cuprates that themselves are bi- or multilayered. In section
4.2 we showed that we expect the dynamical frustration to occur
also in the undoped bilayered YBCO, for which experiments are
underway.

Another Mott compound, Ba2Ca3Cu4O8F2 or F0234, shows the
unique property of selfdoping.13 In F0234 the CuO2 layers come

13 Chen et al., 2006

in groups of four. The outer two layers are electron doped and
the inner two layers are hole doped (see figure 7.2). One might
wonder whether the physics of the exciton t− J model is already at
work. Following the phase diagram of figure 5.8, one might expect
that F0234 should exhibit microscopic phase separation between
antiferromagnetism and exciton superfluidity. Whereas the latter
is not observed (nor excluded), NMR studies14 clearly show the14 Shimizu et al., 2007

coexistence of superconductivity and antiferromagnetism. A study
of the magnetic excitations, following the work of chapter 4, would
further elucidate the interlayer properties in F0234.

Finally, we mention the novel area of interface conductance
in oxide insulators, which entails intriguing prospects to realize
closely coupled p- and n-type conductors. An example has been
provided by Pentcheva et al., 2010 for the case of 2 unit cells of
LaAlO3 and 1 unit cell of SrTiO3 grown epitaxially on a TiO2-
terminated SrTiO3 substrate. This research-area also extends to in-
terfaces with Mott insulator compounds such as LaVO3/SrTiO3.1515 Hotta et al., 2007

Despite the considerable distance between theory and exper-
iment, the exciton t− J model gives room for many interesting
theoretical advances. Microscopic phase separation, frustration,
strongly correlated physics: these are effects that are usually
associated with fermions. Now that we find such complicated
phenomena in a purely bosonic setting one can investigate the
relevance of fermion signs in quantum matter.

7.1 Propositions on quantum matter

In this thesis we studied properties of a strongly correlated bilayer,
a material that is commonly categorized as ’quantum matter’.16

16 See the introductory
chapter 1.
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Following the wide variety of quantum theories (phenomenologic-
ally, fermionic and bosonic) that were presented in this thesis we
are now in the position to state some open questions regarding
the research field of quantum matter.

At first glance the ‘quantum’ distinguishes itself from classical
phenomena only through the concept of superposition. However,
not all superpositions necessarily exclude a classical description.
Any macroscopic object such as a coffee mug or an airplane is in a
superposition of many of its momentum eigenstates - nonetheless
they are clearly classical objects.

One must therefore be more precise in separating the classical
from the quantum, by which we now imply superpositions that
cannot be untwined into classical objects. Those states are called
entangled, and the simplest example of an entangled state is two
electrons in a singlet state,

|Ψ〉 =
1√
2

(| ↑1 ⊗ ↓2〉 − | ↓1 ⊗ ↑2〉) . (7.1)

This state has no classical analogue, as is shown by the famous
Einstein-Podolsky-Rosen experiment.17 17 Einstein et al., 1935; and As-

pect et al., 1982Observe that the singlet state (7.1) describes two indistinguish-
able particles: we cannot say which of the two particles is in the
spin up state, and which is in the spin down state. In fact, there is
a close connection between indistinguishability and entanglement.
The requirement of indistinguishability implies that the wavefunc-
tion of a collection of quantum particles is highly entangled. In the
case of fermions the wavefunctions can be written as a Slater de-
terminant, thus correctly incorporating the fermion minus signs.
For example, three indistinguishable fermions occupying states
A, B and C are described by the wavefunction

|Ψ〉 =
1√
6

(|A1B2C3〉 − |A1C2B3〉+ |B1C2 A3〉

−|B1 A2C3〉+ |C1 A2B3〉 − |C1B2 A3〉) (7.2)

=
1√
3!

∣∣∣∣∣∣∣
|A1〉 |B1〉 |C1〉
|A2〉 |B2〉 |C2〉
|A3〉 |B3〉 |C3〉

∣∣∣∣∣∣∣ . (7.3)

It would be a grave misnomer, however, to classify this state
as a quantum material. By introducing anticommuting creation
operators, a procedure known as second quantization, this state
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is simply written as

|Ψ〉 = c†
Ac†

Bc†
C|0〉. (7.4)

What we have just described is the free (classical) Fermi gas, which
is not a quantum matter at all. Since basically all macroscopic
collections of quantum particles are entangled in the Einstein-
Podolsky-Rosen sense, we need yet again a different way to un-
derstand the difference between classical and quantum matter.

Therefore we will call the many-particle extension of state (7.4)
an antisymmetrized product state,18 since the wavefunction can18 For many-boson systems

this will become a symmet-
rized product state.

be fully untwined into separate single-particle wavefunctions. En-
tanglement is now limited to the antisymmetrization required by
the indistinguishability. The distinction thus introduced, between
states that can be written as (anti)symmetrized product state and
those who cannot, truly captures the difference between classical
and quantum states.

being fermions they are prevented from condensing into
the lowest energy state. Instead, they fill up successively
the sequence of lowest-lying energy states, until a maxi-
mum is reached and all CFs have been accommodated.
The process is equivalent to the filling of states by elec-
trons at B!0. Hence, from the point of view of CFs, the
!!1/2 state appears equivalent to the case for electrons
at B!0. In spite of the huge external magnetic field at
half filling of the Landau level, CFs are moving in a
similar fashion to electrons moving in zero field. This
has been directly observed in experiment. Flux quantum
attachment has transformed these earlier electrons and
they are propagating along straight trajectories in a high
magnetic field, where normal electrons would orbit on
very tight circles. The mass of a CF, usually considered
to be a property of the particle, is unrelated to the mass
of the underlying electron. Instead, the mass depends on
the magnetic field and only on the magnetic field. In
fact, it is a mass of purely many-particle origin, arising
solely from interactions, rather than being a property of
any individual particle. It is another one of these baffling
implications of e-e interactions in high magnetic fields.
The absence of condensation and the lack of an energy
gap prevents the !!1/2 state from showing a quantized
Hall resistance. Instead the Hall line is featureless, just
as it is for electrons around B!0 (see Fig. 18).

The difference between !!1/3 and !!1/2 is striking.
One is a Bose-condensed many-particle state showing a
quantized Hall effect and giving rise to fractionally
charged particles. The other is a Fermi sea, in spite of
the existence of a huge external field, and its particles
have a mass that arises from interactions. One flux quan-
tum per electron makes all the difference.

There are many fascinating open questions associated
with the !!1/2 state, such as: how does the mass vary
with energy for CFs? and what is the microscopic struc-
ture of the particles? Also, how does the electron spin
(which we were neglecting throughout this lecture) af-
fect CF formation? A beautiful picture of composite fer-
mions being tiny dipoles is emerging. While one of the
vortices is placed directly on the electron (Pauli prin-
ciple), the position of the second vortex is a bit displaced
from exact center, rendering the object an electric dipole
in the 2D plane. There is great promise for future dis-
covery and future theoretical insight.

All those other FQHE states

Bose condensation of CBs consisting of electrons and
an odd number of flux quanta rationalizes the appear-
ance of the FQHE at the primary fractions around
Landau-level filling factor !!i"1/q with quantized Hall
resistances RH!h/(v e2) and deep minima in the con-
comitant magnetoresistance R. However, a multitude of
other FQHE states have been discovered over the years.
Figure 18 shows one of the best of today’s experimental
traces on a specimen with a multimillion cm2/V sec mo-
bility. What is the origin of these other states? The com-
posite fermion model offers an extraordinarily lucid pic-
ture. We shall discuss it for the sequence of prominent
fractions 2/5, 3/7, 4/9, 5/11, . . . and 2/3, 3/5, 4/7, 5/9, . . .
(i.e., !!p/(2p"1), p!2,3,4 . . . ) around !!1/2.

At half filling the electron system has been trans-
formed into CFs consisting of electrons which carry two
magnetic flux quanta. All of the external magnetic field
has been incorporated into the particles and they reside
in an apparently field-free 2D plane. Since they are fer-
mions, the system of CFs at !!1/2 resembles a system of
electrons of the same density at B!0. What happens as
the magnetic field deviates from B!0? For electrons
their motion becomes quantized into electron-Landau
orbits. They fill up their electron-Landau levels, encoun-
ter the energy gaps, and exhibit the well-known
IQHE. CFs around !!1/2 follow the same route. As
the magnetic field deviates from exactly !!1/2, the mo-
tion of CFs becomes quantized into CF-Landau orbits.
They fill up their CF-Landau levels, encounter CF-
energy gaps, and exhibit an IQHE. However, this is not
an IQHE of electrons, but an IQHE of CFs. This IQHE
of CFs arises exactly at !!p/(2p"1), which are the
positions of the FQHE features. In fact, the oscillating
features in the magnetoresistance R of the FQHE
around !!1/2 closely resemble the oscillating features
in R around B!0 and, once they have been shifted from
B!0 to !!1/2, they coincide with their position. This is
very remarkable in several ways.

CFs ‘‘survive’’ the additional (effective) magnetic field
(away from !!1/2), and the orbits of these composite
particles mimic the orbits of electrons in the equivalent
magnetic field in the vicinity of B!0. The CFs remain
‘‘good’’ particles. In this way, a complex electron many-
particle problem at some rational fractional filling factor
has been reduced to a single-particle problem at integer

FIG. 18. The FQHE as it appears today in ultrahigh-mobility
modulation-doped GaAs/AlGaAs 2DESs. Many fractions are
visible. The most prominent sequence, !!p/(2p"1), con-
verges toward !!1/2 and is discussed in the text.

886 Horst L. Stormer: The fractional quantum Hall effect

Rev. Mod. Phys., Vol. 71, No. 4, July 1999

Figure 7.3: A two-
dimensional electron gas in
a perpendicular magnetic
field exhibits plateaus in its
Hall resistance. This effect,
known as the quantum
Hall effect, occurs either at
integer or fractional filling
fractions. Image from the
Nobel Lecture of Stormer,
1999.

A beautiful example of the latter is the Laughlin wavefunction19

19 Laughlin, 1983

that describes the ν = 1
3 fractional quantum Hall effect (FQHE),

ψ(z1 . . . zN) = ∏
j<k

(zj − zk)3e−
1
4 ∑` |z` |2 (7.5)

where zj = xj + iyj is the complex coordinate of the jth electron.
The single-particle states of an electron in a magnetic field are,
in the lowest Landau level, of the form ψ(z) ∼ zme−

1
4 |z|

2
. The

construction of an antisymmetrized product state out of these
single-particle states yields

ψ(z1 . . . zN) = ∏
j<k

(zj − zk)e−
1
4 ∑` |z` |2 , (7.6)

the wavefunction of the ν = 1 integer quantum Hall state. The
Laughlin state, however, can only be expressed as a superposition
of antisymmetrized product states. It is therefore considered to
be a true quantum liquid.

The concept of superposing different antisymmetrized states
can be taken further, starting with the singlet or valence bond20

20 In first quantization
language this state is given
by |ψ〉 = 4−1/2(|i ↑〉1 |j ↓〉2 −
|j ↓〉1 |i ↑〉2 − |i ↓〉1 |j ↑〉2 +
|j ↑〉1 |i ↓〉2).

|ψ〉 =
1√
2

(
c†

i↑c
†
j↓ − c†

i↓c
†
j↑

)
|0〉. (7.7)

The quantum paramagnetic phase of the bilayer Heisenberg model
consists of such singlets on each interlayer rung,21 and is therefore

21 See the phase diagram, fig-
ure 4.2, and equations (4.2)
and (4.37).
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called a valence bond solid. A macroscopically entangled exten-
sion is the resonating valence bond (RVB) state, which consists
of a superposition of all possible pairings of two particles into
a singlet state. When high Tc superconductivity was discovered,
Anderson proposed that the cuprates can in fact be described by a
long-range RVB state.22 22 Anderson, 1973; and An-

derson, 1987But is it truly a long-range quantum entangled state? The long-
range RVB state on a square lattice has a finite overlap with the
Néel state describing antiferromagnetism,23 23 Liang et al., 1988

|Ψ〉AF = | ↑1 ↓2 ↑3 · · · 〉 = ∏
i∈A

c†
i↑ ∏

j∈B
c†

j↓|0〉 (7.8)

where the lattice is broken into two sublattices A and B. The Néel
state, however, is a clearcut example of a product state. So is the
ground state of the Heisenberg model (4.10) a quantum state or a
classical state?

The antiferromagnetic long-range RVB state of Liang et al., 1988

is the currently best known approximation to the ground state of
the Heisenberg model. It satisfies the rule designed by Marshall,
1955, who proved that the ground state of the Heisenberg model
can be written as a superposition of spin configuration states C,

|Ψ〉0 = w1| ↑1 ↓2 ↑3 · · · 〉+ w2| ↓1 ↑2 ↑3 · · · 〉+ . . . (7.9)

≡ ∑
C

wC |C〉 (7.10)

where the sign of each weight wC is determined by the number of
up spins on the A sublattice,

wC = (−1)N↑A |wC |. (7.11)

With the sign structure thus imprinted into the set of basis kets,
the Heisenberg model on a square lattice at half-filling can be
described purely in terms of positive-definite weights. Similarly,
in the high-temperature expansion or Suzuki-Trotter decomposi-
tion24 of e−βH all statistical weights and/or matrix elements are 24 See section 3.3.

positive definite.
On a frustrated lattice such as the triangular lattice, however,

a short-range RVB state may be the lowest in energy.25 This might 25 Anderson, 1973

indeed constitute a realization of a quantum material. Another
obvious candidate is the ground state of the Hubbard model at
finite doping.26 26 See section 3.1.
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Summarizing, we defined quantum materials as a superposi-
tion of different antisymmetrized product states. However, once
the sign structure of this superposition is known one can relate the
apparent quantum state to a classical product state, as is shown
for the long-range RVB and Néel state. The main question there-
fore remains whether there exist macroscopic quantum (long-range
entangled) states which cannot be reduced to classical (antisymmetrized
product) states. In terms of the fermion sign problem language
we should ask whether there are superposition states with an
irreducible sign structure.

In the case of the exciton t− J model presented in this thesis,
we implicitly employed this reduction. Even though the model
has an as of yet unknown sign structure,27 variational mean field27 See section 4.1.4.

theory28 yields a product state that has finite overlap with the28 See section 5.2.

true ground state. Similarly the recent experimental detection
of ‘current loop order’ in cuprates29 suggests that in the end29 Varma, 1997; Shekhter

et al., 2013; and Zaanen, 2013 a quantum sign-full strongly correlated material might still be
represented by a classical product state.

Once the correct product state is found, the question arises
what the quantum corrections should be. A systematic way to
answer this is by means of spin wave theory: equation (4.63) in
section 4.2.1 shows how the ground state of the Heisenberg model
can be approximated by a superposition |ψ0〉 of the Néel state |G〉
and its quantum corrections. Many authors call these corrections
quantum fluctuations, but I perceive this as a misleading picture.
There is nothing fluctuating about a superposition. For example, saying
that the singlet state (7.1) is fluctuating between | ↑1↓2〉 and | ↓1↑2〉
fundamentally misunderstands the quantum nature of that state.3030 Note that the spin liquid

community uses the words
‘fluctuation’ and ‘superposi-
tion’ interchangeably, see the
review by Balents, 2010.

How a macroscopic superposition should be understood is
therefore an open question. Experimental realization of superpos-
itions of classically distinct configurations is being pursued by
several research groups. A superposition of two opposite circular
supercurrents in a SQUID is a prime example thereof.31 Following31 Friedman et al., 2000; and

van der Wal et al., 2000 the phase diagram of section 5.2 another suggestion is to consider
first order quantum phase transitions. At such a transition, there
are two macroscopically fundamentally different states with the
same energy which can therefore be put in a superposition. The
possibility of a superposition is competing with the more classical
first order effects of phase separation and the idea that the sys-
tem can actually be fluctuating between the two phases.32 First

32 As for example in super-
cooled water, where numer-
ics suggest ‘phase flipping’
between the high and low
density liquid. Kesselring
et al., 2012.



conclusions and outlook 143

order quantum phase transitions are therefore ideal candidate systems to
elucidate the notions of quantum superpositions and fluctuations.

Yet another way to combine two different phases of matter
is as a statistical mixture of states. This is done within the
thermal density matrix formalism. In general, a quantum sys-
tem at temperature T is believed to be described by the density
matrix ρ = e−H/kBT . However, in the case of spontaneous sym-
metry breaking ρ is at best ill-defined in the thermodynamic limit
and at worst incorrect: a magnet is never in a mixed state of its
different possible magnetization directions. The fact that an in-
finitesimal symmetry breaking field radically changes the density
matrix implies that ρ in zero field is singular. On top of that, the
thermal density matrix misses interesting superposition effects
such as in the aforementioned SQUID experiments.33 Therefore, a 33 Which can be viewed as a

magnet in a superposition of
two opposite magnetizations.

good understanding of quantum matter at finite temperature, specific-
ally regarding the role of macroscopic superpositions and entanglement,
requires a novel approach beyond the thermal density matrix.

In this thesis we have considered the existence of fermions as
fundamental. A completely different approach to quantum matter
discards this notion of fermions as being fundamental entities. Just
like phonons34 are emergent quantized particles, fermions could 34 Phonons are quantized lat-

tice vibrations.be emergent. Examples are the emergence of fermions in string-
net condensates35 or in complex weighted networks.36 Close to 35 Wen, 2007

36 Garlaschelli and Loffredo,
2009

the Mott state, the fermions might not even act as fermions due to
their localization constraint, leading to novel statistical effects.37

37 Zaanen and Overbosch,
2011In one-dimensional systems effects such as spin-charge separation

of fermions are well understood. Nevertheless, in higher dimensions
the breakdown or emergence of fermionic behavior deserves more research
attention.

Let us conclude that the mysteries of quantum mechanics be-
come increasingly relevant in the understanding of actually ex-
isting materials, such as cuprates. This presents the opportunity
to study basic quantum phenomena without the need of build-
ing billion-dollar accelerators or satellites. Instead, the greatest
mysteries of modern condensed matter can be held in one’s hand.
And hopefully, just like the specific heat anomaly experiments
paved the way for the development of quantum statistical theory,
the current stream of ill-understood experimental results will lead
to new fundamental insights into the laws of nature.




