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5
Exciton condensation in the t− J
model

The bosonic exciton t − J model derived in the previous section allows for exciton
condensation. In this phase, a remarkable cooperation effect arises between the exciton
and spin dynamics. In section 5.1 we discuss this specific feature of the strongly correlated
exciton condensate. We conclude our study of the exciton t− J model by constructing the
full phase diagram in section 5.2.

Completely opposite to the frustration effect presented in sec-
tion 4.2 is the cooperation between excitons and spins that arises in
the context of a finite densities of excitons.1 Much effort has been 1 Ribeiro et al., 2006; and Mil-

lis and Schlom, 2010devoted to create equilibrium finite exciton densities using con-
ventional semiconductors,2 while exciton condensation has been 2 Moskalenko and Snoke,

2000demonstrated in coupled semiconductor 2DEGs.3 In strongly cor-
3 Eisenstein and MacDonald,
2004; Butov, 2007; and High
et al., 2012

related p/n heterostructures,4 however, formation of finite exciton

4 One can wonder whether
such physics is already at
work in the four-layer ma-
terial Ba2Ca3Cu4O8F2 where
self-doping effects occur cre-
ating simultaneously p and
n-doped layers, Chen et al.,
2006.

densities is still far from achieved, although recent developments
on oxide interfaces indicate exciting potential (see for example
Pentcheva et al., 2010). Besides the closely coupled p- and n-
doped conducting interface-layers in these SrTiO3-LaAlO3-SrTiO3

heterostructures, further candidates would be closely coupled p-
and n-doped cuprates, such as YBa2Cu3O7−x or La2−xSrxCuO4

with Nd2−xCexCuO4. The feasibility of this has already been
experimentally demonstrated, e.g. in Takeuchi et al., 1995, but the
exact interface effects need to be investigated in more detail, both
experimentally as well as theoretically.

The nontrivial cooperation effect between excitons and spins is
only visible in the exciton condensate phase doped into a Mott
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a. Quantum paramagnet c. Exciton condensate!
    (strong coupling,    =0.27)

b. Exciton condensate!
    (strong coupling,    =0.15)

k

E

Figure 5.1: The absorptive
part of the dynamical mag-
netic susceptibility χ′′(q, ω)
in a Mott insulating bilayer
(a) doped to become an ex-
citon condensate (b,c). a: The
spectrum of a Mott insulat-
ing bilayer with the same
gap as the exciton condens-
ates of figure b and c. The
bandwidth of the triplon
mode is of the order Jz. b.
In the presence of the ex-
citon condensate, the mag-
netic excitation spectrum con-
sists of propagating triplets.
Instead of the small O(Jz)
bandwidth, the triplet has
now an enhanced bandwidth
O(ztexρSF), proportional to
the superfluid density. This
result is computed using a
linear spin wave approxima-
tion, using model parameters
tex = 2, J = 0.125, α = 0.04
and ρ = 0.15. c. The same
result as in b, but now with
a higher exciton density ρ =
0.27. The triplet mode band-
width is seen to scale with the
exciton superfluid density.

insulating bilayer. The non-condensed electrons form a quan-
tum paramagnet, which has as elementary magnetic excitations
the triplet modes (triplons, see the book by Sachdev, 2011). One
expects that the bandwidth of the triplons is proportional to the
superexchange energy J. However, interlayer exciton condens-
ation now leads to a drastic increase of the triplon bandwidth.
In this section we show that this enhancement is rooted in the
triplons ’borrowing’ itineracy from the exciton condensate. The
resulting bandwidth turns out to be proportional to the superfluid
density, as is shown in figure 5.1. In principle, this enhancement
can be detected by measurements of the dynamical magnetic sus-
ceptibility. It appears unlikely that such bilayer exciton systems
can be manufactured in bulk form which is required for neutron
scattering, while there is a real potential to grow these using thin
layer techniques. Therefore the detection of the triplon bandwidth
enhancement forms a realistic challenge for resonant inelastic X-
ray scattering (RIXS)5 measurements with its claimed sensitivity

5 Ament et al., 2011

for interface physics.6

6 Dean et al., 2012

5.1 Enhanced spin itineracy in the exciton condensate

Let us now introduce the strongly correlated exciton condensate

This section 5.1 is based on
Rademaker et al., 2013a.

is somewhat more detail. As mentioned above, the exciton con-
densate is the result of the direct interlayer Coulomb attraction, in
stark contrast to the retarded phonon mediated electron-electron
pairing in superconductors. Consequently, the pairing mechanism
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is remarkably simple and in the absence of spin-orbit coupling
or magnetization the excitons are a singlet pair. The resulting
condensate wavefunction has the standard BCS-form,

|Ψ〉 = ∏
kσ

(
uk + vkc†

k1σck2σ

)
|Ψ0〉 (5.1)

where |Ψ0〉 is the ground state without excitons, c†
k1σ creates an

electron in the first layer and ck2σ creates a hole in the second
layer with opposite spin. The order parameter is independent of
spin

∆k = ukvk = 〈c†
k1σck2σ〉. (5.2)

Recall from section 2.1 that the anomalous interlayer tunneling
serves as a direct probe of the order parameter.7 7 Eisenstein and MacDonald,

2004The enhancement of the triplet mode is an effect that only oc-
curs in the regime of strong electron-electron interactions. The
realization of exciton condensates has been suggested to be pos-
sible in strongly correlated materials8 where the cuprates9 would 8 Ribeiro et al., 2006; and Mil-

lis and Schlom, 2010

9 Imada et al., 1998; and Lee
et al., 2006

serve as ideal candidate systems. In Mott insulators electrons loc-
alize due to interactions and only their spin remains as a degree
of freedom. Such bilayers (figure 4.1) are described by the bilayer
Heisenberg model10 introduced in section 4.1, defined by 10 Manousakis, 1991; and

Chubukov and Morr, 1995

HJ = J ∑
〈ij〉,`

si` · sj` + J⊥∑
i

si1 · si2. (5.3)

The operators si` denote the spin of a particle on site i in layer
`, and via this mechanism of superexchange spin excitations can
propagate. The superexchange parameters J are related to the bare
electron hopping t by the strong coupling perturbation theory of
section 4.1, recall J = 4t2/U and J⊥ = 4t2

⊥/U with U the onsite
repulsion. This model represents a paramagnet when J⊥ � J,
thus favoring singlet configurations on each interlayer rung. The
excitation spectrum consists of propagating triplet modes, with
a dispersion ωk = Jz

√
α(α− γk) where α = J⊥/Jz and z is the

lattice coordination number. Hence the bandwidth of these triplets
in the absence of exciton condensation is set by the superexchange
parameter J. We compute the interlayer dynamical magnetic
susceptibility11 11 Bruus and Flensberg, 2004

χij(τ) = 〈Tτ(s−i1(τ)− s−i2(τ))(s+
j1 − s+

j2)〉 (5.4)

using the well-tested linear spin wave theory.12 The imaginary

12 This is further elaborated
upon in section 5.2.4. See
also Manousakis, 1991 and
Chubukov and Morr, 1995.
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part χ′′, which describes the absorption, is in principle measurable
by RIXS13 and a typical spectrum is shown in figure 5.1a.13 Ament et al., 2011

As for the case of normal carriers in a doped Mott insulator, the
nature of the exciton system is drastically different from what is
found in uncorrelated semiconductors. The Mott insulator cannot
be described by band theory, and instead electron- and hole-
doping corresponds with the creation of double occupied sites
(doublons) and empty sites (holons), respectively. The doublons
and holons attract each other via the Coulomb attraction and
can thus form doublon-holon pairs: the strong coupling limit of
the exciton. Since in the Mott bilayer all interactions are strong,
the relevant case is to assume strong exciton binding such that
excitons can be treated as local pairs and the condensation occurs
in the BEC sense rather than in the weak coupling BCS sense.1414 The BCS theory of electron-

hole pairing is discussed in
section 3.2.

To describe such a doublon-holon pair in a Mott bilayer, we
can express the exciton hopping in terms of interlayer rung states:
the exciton |E〉 and the four possible interlayer spin states |s m〉.
Recall that the motion of an exciton is governed by1515 See section 4.1.

HK = −tex ∑
〈ij〉
|E〉j

(
∑
sm
|s m〉i〈s m|j

)
〈E|i. (5.5)

The exciton hopping energy tex can be related to the electron
hopping via perturbation theory, which gives tex = t2/V where V
equals the binding energy of an exciton.

The system describing coexistence of spins and excitons, given
by equations (5.3) and (5.5), is equivalent to a hard-core boson sys-
tem, reminiscent of attempts to describe cuprate superconductivity
using only bosons such as the SO(5) theory of the t− J model.1616 Zhang, 1997

In contrast to these theories, for the excitons in Mott bilayers the
mapping onto bosonic physics is fully controlled. The ground
state of the ‘exciton t− J model’ can straightforwardly be found
using a SU(5) coherent state. In the next section 5.2 we study this
in detail, finding that the dynamical frustration between excitons
and spins causes large parts of the phase diagram to be dominated
by phase separation. As long as the exciton hopping t is bigger
than the exciton-exciton repulsion we find an exciton superfluid
as the ground state, where the spins form interlayer singlets. In
principle there can be sign problems but these drop out rigorously
for this singlet ground state.

The strongly correlated exciton condensate wavefunction is
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now
|Ψ〉 = ∏

i

(√
ρ |E〉i +

√
1− ρ |0 0〉i

)
(5.6)

where |0 0〉 is the interlayer singlet spin configuration. Indeed,
when we set ∆k to be independent of momentum the earlier
wavefunction (5.1) reduces to the above equation.

Since we are dealing with hard-core bosons forming a mean
field ground state, the magnetic excitation spectrum can be com-
puted with linear spin wave theory. We employ the Heisenberg
equations of motion17 which are decoupled exploiting the ground 17 See section 5.2.4.

state expectation values.18 The resulting dynamical magnetic sus- 18 Zubarev, 1960; and Oles
et al., 2000ceptibilities χ′′(q, ω) are shown in figure 5.1, for two choices of

exciton density ρ = 0.15 and ρ = 0.27.
These figures illustrate the central result of this section: com-

pared to the undoped system (figure 5.1a) we find that the triplon
bandwidth is greatly enhanced (figures 5.1b and c). The mech-
anism is actually similar to that in slave-boson theories,19 where 19 Lee et al., 2006

four-operator products b†b f † f are decoupled as 〈b†〉〈b〉 f † f yield-
ing kinetic energy for the f -excitations. For Mott bilayers, we can
explicitly introduce Fock operators for the exciton e† = |E〉〈0|
and the triplet t† = |1m〉〈0|. This implies that the exciton-spin
interaction term (4.26) can be written as

−tex ∑
〈ij〉

e†
j eit†

i tj. (5.7)

This is a higher order exchange term, which at first sight seems
to be irrelevant for the bandwidth of the triplet. However, when
the exciton condensate sets in, the operator e† obtains an expect-
ation value 〈e†〉 = √ρSF, where ρSF is the condensate density.
Consequently this exchange term turns into an effective triplet
hopping term

−texρSF ∑
〈ij〉

t†
i tj. (5.8)

The explains why the bandwidth of the triplet excitations is in-
creased by an amount of order ztexρSF.

Surely, we made the argument that this effect leads to a dra-
matic increase of the bandwidth, for which we have implicitly
assumed that tex is larger than J. Now the exciton hopping energy
is related to the electron hopping by tex = t2/V, while the spin
superexchange satisfies J = 2t2/U where U is the onsite Coulomb
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Figure 5.2: The absorptive
part of the dynamical mag-
netic susceptibility χ′′(q, ω)
in the weak-coupling limit
of both the exciton binding
energy and electron-electron
interactions. a: The mag-
netic susceptibility is also
in the exciton condensate
phase dominated by the Lind-
hard continuum. This is
qualitatively different from
the triplons found in the
strong coupling limit of fig-
ure 5.1. Model parameters
are ξ1k = −ztγk − µ = −ξ2k,
t⊥ = 0.05zt, µ = −0.8zt
and ∆W = t. b: For com-
parison we computed the
χ′′(q, ω) in an electron-hole
bilayer without exciton con-
densation.

b. Electron-hole bilayera. Exciton condensate (weak c.)

k

E

repulsion. Since for obvious reasons U > V, we find that indeed
the dominant scale controlling the triplon bandwidth is ztexρSF

yielding the predicted bandwidth enhancement.
Since the exciton condensate ground state is independent of the

interaction strength, one can in principle adiabatically continue
the strong coupling results to the weak coupling limit. However,
in this limit the magnetic susceptibility as shown in figure 5.2 has
a fundamentally different origin. Only with strong interactions
the electrons are localized and a true spin degree of freedom arises.
This is not the case for weak coupling, where the spin response
is still dominated by the Lindhard continuum. The propagation
scale of the triplet excitations is now set just by the dispersion of
the noninteracting electrons.

To illustrate this point we compute the dynamic magnetic sus-
ceptibility for the weak coupling case where we depart from a
band structure of electrons and holes

HK = ∑
kσ

(
ξ1kc†

1kσc1kσ + ξ2kc†
2kσc2kσ

)
(5.9)

plus a weak interlayer tunneling

H⊥ = −t⊥∑
kσ

(
c†

1kσc2kσ + c†
2kσc1kσ

)
(5.10)

where ξ`k is the band structure of the holes or electrons, depending
on the layer. For simplicity, we take ξ1k = −ztγk − µ = −ξ2k on a
square lattice, so that in both layers there is an equal sized Fermi
surface with opposite Fermi velocities. The interlayer hopping
t⊥ � t is assumed to be small given the insulator in between the
layers. Both in-plane and the interlayer interactions are given by
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the Coulomb interaction

HV = ∑
ij`σσ′

Vijni`σnj`σ′ + ∑
ijσσ′

Wijni1σnj2σ′ , (5.11)

where Vij ∝ |ri − rj|−1 and the interlayer Coulomb includes the

interlayer distance d, hence Wij ∝
(
(ri − rj)2 + d2)−1/2. The effects

of these interactions are taken into account using the random
phase approximation (RPA).20 In the bilayer case, one needs to 20 Bruus and Flensberg, 2004

extend the usual RPA expression χ = χ0/(1− Vqχ0) to include
both intra- and interlayer interactions and bare susceptibilities χ0.

At some critical temperature the electron-hole bilayer has an
instability towards exciton condensation. Based on the standard
BCS theory21 we single out the interactions responsible for the 21 This is done extensively in

section 3.2. See also Bardeen
et al., 1957 and De Gennes,
1999.

singlet exciton pairing and perform a standard mean field de-
coupling using our earlier order parameter ansatz (5.2). Let us fix
the order parameter at a value of, say, ∆W = t. Using the afore-
mentioned RPA expansion we compute the resulting magnetic
excitation spectrum shown in figure 5.2a. This spectrum is reminis-
cent of our strong coupling results of figure 5.1. But instead of the
renormalization of the triplet bandwidth, the magnetic excitations
closely follow the Bogolyubov quasiparticle spectrum. In fact, the
dynamic magnetic susceptibility in the weak coupling limit can
be best understood as a gapped variation of the result in absence
of a condensate, shown in figure 5.2b. In weak coupling, the gross
features of the magnetic excitation spectrum therefore look similar
with or without the exciton condensate, whereas the dramatic
increase of the overall energy scale of the magnetic excitations is
only present in the strong correlations limit.

In conclusion, we have shown explicitly that in a Mott bilayer
the bandwidth of the magnetic excitations is strongly enhanced
by the presence of an exciton condensate. We emphasize that
this dynamic enhancement is quite unusual: the interplay between
magnetic and charge degrees of freedom most commonly leads
to frustration effects such as found in the previous section 4.2.
Paradoxically, this effect turns around dealing with excitons in
Mott insulators under the condition that they condense. This can
promote the propagation of spin.
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5.2 Finite exciton densities: the full phase diagram

To conclude our analysis of the bilayer exciton t − J model weThis section is based on Rade-
maker et al., 2013b. will now derive its full ground state phase diagram. This can be

done since both excitons and spins act as bosons, which is much
more tractable than the fermionic doped Mott insulator physics.
However, not all ‘fermion-like’ signs are eliminated: there are still
left-over signs of the phase-string type.22 In section 4.1.4 we show22 Weng, 2007

that collinear spin order is a sufficient condition for these signs
to cancel out, leaving a truly bosonic dynamics controlling the
ground state and long wavelength physics. This is very similar
to the ‘spin-orbital’ physics described by Kugel-Khomskii type
models,23 which can be viewed after all as describing d-d excitons23 Kugel and Khomskii, 1982

interacting with spins. Also the lattice implementations24 of the24 van Duin and Zaanen, 2000

SO(5) model25 for (cuprate) superconductivity are in this family25 Zhang, 1997

of bosonic theories.
Such bosonic problems can be handled with standard (semi-

classical) mean field theory. In most bilayer exciton set-ups, such
as the quantum Hall bilayers or the pumped systems, there is no
controllable equilibrium exciton density. In these cases one can
hardly speak of the exciton density as a conserved quantity, and
exciton condensation in the sense of spontaneously broken U(1)
symmetry is impossible.26 However, in Mott insulators the dopant26 Snoke, 2006

density per layer could be fixed by, for example, chemical doping.
The effective exciton chemical potential is then by definition large
compared to the recombination rate. Effectively, the excitons are
at finite density in equilibrium and hence true spontaneous U(1)
symmetry breaking is possible in the Mott insulating bilayer at
zero temperature.

Besides the exciton superfluid phase one anticipates a pleth-
ora of competing orders, as is customary in strongly correlated
materials. At zero exciton density the bilayer Heisenberg sys-
tem exhibits already interesting magnetic behavior. Departing
from the antiferromagnet for small rung coupling it turns via
an O(3)-QNLS quantum phase transition into an ‘incompressible
quantum spin liquid’ for larger rung couplings that can be viewed
as a continuation of pair singlets (‘valence bonds’) stacked on
the rungs.27 The natural competitor of the exciton superfluid at27 Chubukov and Morr, 1995

finite density is the exciton crystal and one anticipates due to the
strong lattice potential this will tend to lock in at commensurate
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densities forming exciton ‘Mott insulators’. We will wire this in
by taking also the exciton-exciton dipolar interaction into account
that surely promotes such orderings. In principle there is the inter-
esting possibility that all these orders may coexist microscopically
forming an ‘antiferromagnetic supersolid’.28 We find that at least 28 Zaanen, 1999

for the strongly coupled ‘small’ excitons assumed here this does
not happen. The reason is interesting. We already alluded to the
dynamical frustration associated with the exciton delocalizing in
the antiferromagnetic spin background in section 4.2. At finite
densities this turns into a tendency to just phase separate on a
macroscopic scale, in zero density antiferromagnets, exciton Mott
insulators and high density diamagnetic exciton superfluids. For
now we notice quickly that the exciton dipole repulsion is actually
long-ranged,29 instead of just the nearest neighbor repulsion dis- 29 Rademaker et al., 2013d

cussed in this chapter. This simplification rules out the occurrence
of frustrated phase separation as suggested for the electronic or-
der in cuprates.30 The influence of the long-range nature of the 30 Zaanen and Gunnarsson,

1989; Emery and Kivelson,
1993; Löw et al., 1994; Tran-
quada et al., 1995; and Zhang
and Henley, 2003

dipolar interaction is discussed in chapter 6.
It is disappointing that apparently in this system only conven-

tional ground states occur. However, this is actually to a degree
deceptive. The Hamiltonian describing the physics at the lattice
scale describes a physics where the exciton- and spin motions are
entangled: the way in which these subsystems communicate gets
beyond the notion of just being strongly coupled, since the motions
of the exciton motions and the spin dynamics cannot be separated.
By coarse graining this all the way to the static order parameters
(the mean fields) an effective disentanglement eventually results
as demonstrated by the product ground states. However, upon
going "off-shell" this spin-exciton entanglement becomes directly
manifest in the form of unexpected and rather counterintuitive
effects on the excitation spectrum. A simple example is the zero
exciton density antiferromagnet. From the relatively thorough
LSW-SCBA treatment of the one exciton problem31 we already 31 See section 4.2.

know that the resulting exciton spectrum can be completely dif-
ferent from that in a simple semiconductor. In this section we
compute the linearized excitations around the pure antiferromag-
net, recovering the LSW-SCBA result in the adiabatic limit where
the exciton hopping is small compared to the exchange energy
of the spin system, which leads to a strong enhancement of the
exciton mass. In the opposite limit of fast excitons, the energy



84 fermions and bosons: excitons in strongly correlated materials

scale is recovered but the Ising confinement ladder spectrum re-
vealed by the LSW-SCBA treatment is absent. The reason clear: in
the language of this section, the couplings between the exciton-
and spin-wave modes become very large and these ‘spin wave
interactions’ need to be resummed in order to arrive at an accurate
description of the exciton propagator.

The real novelty in this regard is revealed in the high density
exciton superfluid phase. As shown in the previous section, by
measuring the spin fluctuations one can in principle determine
whether the excitons are condensed in a superfluid.

As a reminder let us recall our point of departure: the Hamilto-
nian describing strongly bound excitons propagating through a
bilayer Heisenberg spin 1/2 system. This model is derived at
length in section 4.1 and here we just summarize the outcome.
Due to the strong electron-electron interactions the electronic de-
grees of freedom are reduced to spin operators sil governed by
the bilayer Heisenberg model3232 Manousakis, 1991; and

Chubukov and Morr, 1995

HJ = J ∑
〈ij〉,l

sil · sjl + J⊥∑
i

si1 · si2. (5.12)

The subscript denotes spin operators on site i in layer l = 1, 2. The
Heisenberg HJ is antiferromagnetic with J > 0 and J⊥ > 0. The
interlayer exciton can hop around, thereby interchanging places
with the spin background. In the strong-coupling limit of exciton
binding energies the exciton hopping process is described by the
Hamiltonian

Ht = −t ∑
〈ij〉
|Ej〉

(
|0 0〉i〈0 0|j + ∑

m
|1 m〉i〈1 m|j

)
〈Ei|. (5.13)

where |E〉 is the exciton state on an interlayer rung, and |s m〉
represent the rung spin states. Whenever an exciton hops, it
effectively exchanges the spin configuration on its neighboring
site. In order to study the system with a finite density of excitons,
we need to enrich the t− J model with two extra terms: a chemical
potential and an exciton-exciton interaction.

The chemical potential is given by

Hµ = −µ ∑
i
|Ei〉〈Ei| (5.14)

which is a rather trivial statement. The exciton-exciton interaction
requires some more thought. The bare interaction between two
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interlayer excitons results from their electric dipole moment. Since
all interlayer exciton dipole moments are pointing in the same
direction the full exciton-exciton interaction is described by a
repulsive 1/r3 interaction. The interaction strength decays so fast
that we consider it reasonable to only include the nearest-neighbor
repulsion,

HVI = VI ∑
〈ij〉

(|Ei〉〈Ei|)
(
|Ej〉〈Ej|

)
. (5.15)

Note that especially in the region where we expect phase separa-
tion, the long-range nature of the dipolar interaction will become
relevant.33 For now we set VI to be the energy scale associated 33 See chapter 6 for the in-

fluence of long-range interac-
tions.

with nearest neighbor exciton repulsion. This number can get
quite high: given a typical interlayer distance of 8 Å and an inter-
site distance of 4 Å34 the bare dipole interaction energy is 14

34 Imada et al., 1998

eV. In reality, we expect this energy to be lower due to quantum
corrections and screening effects. However, the exciton-exciton
interaction scale remains on the order of electronvolts and thus
larger than the estimated Heisenberg J and hopping t.

We must pause here for a while and reflect on the possibility of
interlayer hopping of electrons, which leads to the annihilation
of excitons,

Ht⊥ = −t⊥∑
i
|Ei〉〈0 0|i + h.c. (5.16)

This term explicitly breaks the U(1) symmetry, which is associated
with the conservation of excitons. While this term is almost
certainly present in any realistic system, it is a matter of numbers
whether it is relevant. In the present case the interlayer tunneling
can be incorporated using perturbation theory in a renormalisation
of the chemical potential µ. As a consequence we do not need to
include the t⊥ term in our model Hamiltonian.

The full model Hamiltonian describing a finite density of ex-
citons in a strongly correlated bilayer is thus

H = HJ + Ht + Hµ + HVI . (5.17)

5.2.1 Symmetries and an effective XXZ model

The Hamiltonian (5.17) has five model parameters: J, J⊥, t, VI and
µ. However, most properties of the excitons can be understood
by considering the simpler problem of hard-core bosons on a
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lattice. In this subsection we will argue that the exciton degrees of
freedom can be described by an effective XXZ model.

Before characterizing different phases of the model we need
to assess the algebraic structure of the exciton t− J model. The
set of all operators that act on the local Hilbert space form the
dynamical algebra, whereas the symmetries of the system are
grouped together in the symmetry algebra.

To derive the dynamical algebra, it is instructive to start with
the bilayer Heisenberg model which has, on each interlayer rung,
a SO(4) ∼= SU(2)× SU(2) dynamical algebra. Upon inclusion of
the exciton hopping term we need more operators, since now the
local Hilbert space on an interlayer rung is five-dimensional (four
spin states and the exciton). Consider the spin-to-exciton operator
E+

sm ≡ |E〉〈s m| and its conjugate E−sm = (E+
sm)†. Their commutator

reads

[E+
sm, E−sm] = |E〉〈E| − |s m〉〈s m| ≡ 2Ez

sm (5.18)

where we have introduced the operator Ez
sm to complete a SU(2)

algebraic structure. We could set up such a construction for each
of the four spin states |s m〉. Under these definitions the exciton
hopping term (5.13) can be rewritten in terms of an XY-model for
each spin state,

Ht = −t ∑
<ij>,sm

(
E+

sm,iE
−
sm,j + E−sm,iE

+
sm,j

)
(5.19)

= −2t ∑
<ij>,sm

(
Ex

sm,iE
x
sm,j + Ey

sm,iE
y
sm,j

)
(5.20)

where the sum over sm runs over the singlet and the three triplets.
Note that the exciton chemical potential (5.14) acts as an externally
applied magnetic field to this XY-model, and that the exciton-
exciton repulsion (5.15) can be rewritten as an antiferromagnetic
Ising term in the Ez

sm operators. The dynamical algebra therefore
contains four SU(2) algebras in addition to the SO(4) from the
bilayer Heisenberg part. The closure of such algebra is necessarily
SU(5), which is the largest algebra possible acting on the five-
dimensional Hilbert space. Hence we need a full SU(5) dynamical
algebra to describe the exciton t− J model at finite density.

From the XY-representation of the hopping term one can
already deduce that we have four distinct U(1) symmetries associ-
ated with spin-exciton exchange. The bilayer Heisenberg model
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contains two separate SU(2) symmetries, associated with in-phase
and out-phase interlayer magnetic order. Therefore the full sym-
metry algebra of the model is [SU(2)]2 × [U(1)]4.

Breaking of the SU(2) symmetry amounts to magnetic ordering,
which is most likely antiferromagnetic (and therefore also amounts
to a breaking of the lattice symmetry). Each of the U(1) algebras
can be broken leading to exciton condensation. Note that next
to possible broken continuous symmetries, there also might exist
phases with broken translation symmetry. The checkerboard phase
is an example of a phase where the lattice symmetry is broken
into two sublattices.

Above we showed that the exciton hopping terms are similar
to an XY-model. The main reason is that the excitons are, in fact,
hard-core bosons and thus allow for a mapping onto pseudospin
degrees of freedom. Viewed as such, the exciton-exciton interac-
tion (5.15) is similar to an antiferromagnetic Ising term and the
exciton chemical potential (5.14) amounts to an external magnetic
field in the z-direction. Together they form an XXZ-model with
external field, which has been investigated in quite some detail
before35 as well as in the context of exciton dynamics in cold atom 35 Néel, 1936; Fisher and

Nelson, 1974; Landau and
Binder, 1981; van Otterlo
et al., 1995; Kohno and Taka-
hashi, 1997; and Yunoki, 2002

gases.36

36 Kantian et al., 2007

In order to understand the basic competition between the check-
erboard phase and the superfluid phase of the excitons, it is worth-
while to neglect the magnetic degrees of freedom and study first
this effective XXZ-model for the excitons only. In this context
the transition between the checkerboard and superfluid phases
is known as the ‘spin flop’-transition.37 Whilst remembering 37 Néel, 1936

that the exciton degrees of freedom are mapped onto the XXZ
pseudospin degrees of freedom, we now quickly review the basics
of the XXZ Hamiltonian

H = −t ∑
〈ij〉

(
Ex

i Ex
j + Ey

i Ey
j

)
− µ ∑

i
Ez

i + VI ∑
〈ij〉

Ez
i Ez

j (5.21)

where E+ = |1〉〈0| = Ex + iEy creates a hard-core bosonic particle
|1〉 out of the vacuum |0〉. This model has a built-in competition
between t > 0, which favors a superfluid state, and VI > 0, which
favors a solid state where all particles are on one sublattice and the
other sublattice is empty. The external field or chemical potential
µ tunes the total particle density. The ground state can now be
found using mean field theory. It is known that for pseudospin



88 fermions and bosons: excitons in strongly correlated materials

S = 1
2 models in (2 + 1)d the quantum fluctuations are not strong

enough to defeat classical order, therefore we can rely on mean
field theory which is indeed supported by exact diagonalization
studies.3838 Kohno and Takahashi, 1997

To find the ground state we introduce a variational wavefunc-
tion describing a condensate of excitons,

|Ψ〉 = ∏
i

(
cos θieiψi |1〉i + sin θi|0〉i

)
. (5.22)

The mean-field approximation amounts to choosing ψi constant
and θi only differing between the two sublattices. We find the
following mean-field energy

E/N = −1
8

tz sin 2θA sin 2θB +
1
8

VIz cos 2θA cos 2θB

−1
4

µ (cos 2θA + cos 2θB) . (5.23)

Let’s rewrite this in terms of θ = θA + θB and ∆θ = θA − θB,

E/N =
z
8

(
(VI − t) cos2 ∆θ + (VI + t) cos2 θ

)
−1

2
µ cos ∆θ cos θ − VIz

8
. (5.24)

When |µ| ≥ 1
2 (VIz + zt) the ground state is fully polarized

in the z-direction. This means either zero particle density for
negative µ, or a ρ = 1 for the positive µ case. Starting from
the empty side, increasing µ introduces a smooth distribution
of particles. This phase amounts to the superfluid phase of the
excitons. The particle density on the two sublattices is equal and
the total density is given by

ρ = cos2 θ =
1
2
(
cos θ + 1

)
=

1
2

(
2µ

VIz + zt
+ 1
)

. (5.25)

Figure 5.3: Left: The ground
state phase diagram of the
XXZ model (5.21). The
graph shows the mean field
particle density 〈Ez〉 as a
function of µ, with model
parameters t = 1 and VI =
2t. One clearly distinguishes
the fully polarized phases
for large µ, the superfluid
phase with a linear 〈Ez〉 vs
µ dependence and the check-
erboard phase with 〈Ez〉 =
0. In between the check-
erboard and the superfluid
phase a non-trivial first or-
der transition exists, with a
variety of coexistence ground
states with the same ground
state energy. The insets show
how the (Ex , Ez)-vectors look
like in the different phases.
Right: Finite temperature
phase diagram of the XXZ
model with the same para-
meters. The background col-
oring corresponds to a semi-
classical Monte Carlo com-
putation of 〈Ez〉, the solid
lines are analytical mean field
results for the phase bound-
aries. We indeed see the
checkerboard phase and the
superfluid phase, as well
as a high-temperature non-
ordered ‘normal’ phase.
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At the critical value of the chemical potential given by

(µc)2 =
(

1
2

z
)2

(VI − t)(VI + t). (5.26)

a first order transition occurs towards the checkerboard phase: the
spin flop transition. In the resulting phase, which goes under vari-
ous names such as the antiferromagnetic,39 solid, checkerboard 39 If we associate the presence

of a particle with spin up,
and the absence with spin
down, then the solid phase
is identified with an Ising an-
tiferromagnet. However, one
should not confuse this with
the actual antiferromagnetism
present in the spin sector of
the full exciton t − J model.
To avoid confusion, from now
on we will use the term ’an-
tiferromagnetism’ only when
referring to the spin degrees
of freedom in the full exciton
t− J model.

or Wigner crystalline phase, the sublattice symmetry is broken.
The resulting ground state phase diagram is shown in figure 5.3,
where a graph of the particle density as a function of µ is given.

At finite temperatures in (2 + 1)d there can be algebraic long-
range order. At some critical temperature a Kosterlitz-Thouless
phase transition40 will destroy this long-range order. The topology

40 Kosterlitz and Thouless,
1973

of the phase diagram, however, can be obtained using the finite
temperature mean field theory for which we need to minimize the
mean field thermodynamic potential41

41 Yeomans, 1992

Φ/N = −kT log
(

2 cosh
(

βm
2

))
+

1
2

m tanh
(

βm
2

)
+

z
8

tanh2
(

βm
2

)
×
[
(VI − t) cos2 ∆θ + (VI + t) cos2 θ −VI

]
−µ

2
tanh

(
βm
2

)
cos ∆θ cos θ. (5.27)

Expectation values are now given in the form of

〈Sx
i∈A〉 =

1
2

sin 2θA tanh
(

βm
2

)
, (5.28)

and the parameter m needs to be determined self-consistently. The
resulting phase diagram is shown in figure 5.3, right, which is of
the form discussed by Fisher and Nelson, 1974.

The first order quantum critical point at µc turns out to be
non-trivial, a point which is usually overlooked in the literature.
A trivial first order transition occurs when there are two distinct
phases with exactly the same energy. In the case presented here,
there is a infinite set of mean field order parameters all yielding
different phases yet still having the same energy. A simple analytic
calculation shows that the energy of the ground state at the critical
point is Ec = −VIz/8. Now rewrite the mean field parameters ρA
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and ρB into a sum and difference parameter

ρ =
1
2
(ρA + ρB), (5.29)

∆ρ =
1
2
(ρA − ρB). (5.30)

For each value of ∆ρ with |∆ρ| ≤ (1/2) we can find a value of ρ

such that the mean field energy is exactly −VIz/8.
This has interesting consequences. If one can control the dens-

ity instead of the chemical potential around a first order transition,
in general phase separation would occur between the two com-
peting phases. From the mean field considerations above it is
unclear what would happen in a system described by the XXZ
Hamiltonian (5.21). All phases would be equally stable, at least
from an energy perspective, and every phase may occur in regions
of any size. Such a highly degenerate state may be very sensible to
small perturbations. We consider it an interesting open problem
to study the dynamics of such a highly degenerate system, and
whether this degeneracy may survive the inclusion of quantum
corrections.

Note that qualitatively a possible t⊥ term is irrelevant, which
can be seen in the XXZ pseudospin language where it takes the
form of a tilt of the magnetic field in the x-direction,

Ht⊥ = −t⊥∑
i

Ex
i . (5.31)

5.2.2 Ground state phase diagram: variational wavefunction

In the previous section we have seen that the effective XXZ model
predicts the existence of both a exciton superfluid phase and a
checkerboard phase, separated by a first order transition. Further
extending these results yields the ground state phase diagram for
the full exciton t− J model (5.17).

We will proceed along the same lines as in the previous section.
Hence we need a variational wavefunction, which we simulate
numerically to obtain an unbiased view on the possible ground
state phases. Based on the numerical results we apply mean field
theory, which is very reliable due to the hard-core bosonic nature
of excitons. The analytical mean field also allows us to characterize
the three distinct phases: the antiferromagnet, the superfluid and
the checkerboard. Finally, combining the numerical results and
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the analytical mean field results we obtain the ground state phase
diagram in figure 5.8.

Recall that the local Hilbert space consists of four spin states
|s m〉 and the exciton state |E〉. We therefore propose a variational
wavefunction consisting of a product state of superpositions all
five states on each rung. For the spin states we take the SO(4)
coherent state42 42 van Duin, 1999

|Ωi〉 = − 1√
2

sin χi sin θie−iφi |1 1〉i

+
1√
2

sin χi sin θieiφi |1 − 1〉i

+ sin χi cos θi|1 0〉i − cos χi|0 0〉i (5.32)

which needs to be superposed with the exciton state,

|Ψi〉 =
√

ρieiψi |Ei〉+
√

1− ρi|Ωi〉 (5.33)

to obtain the total variational wavefunction

|Ψ〉 = ∏
i
|Ψi〉. (5.34)

Given this wavefunction, the expectation value of a product of
operators on different sites decouples, 〈AiBj〉 = 〈Ai〉〈Bj〉. The
only nonzero expectation values of spin operators are for S̃i =
si1 − si2 and it equals

〈Ωi|S̃i|Ωi〉 = sin 2χi

sin θi cos φi

sin θi sin φi

cos θi

 = sin 2χi n̂i (5.35)

where n̂i is the unit vector described by the angles θ and φ. This
variational wavefunction therefore assumes interlayer Néel order
of magnitude sin 2χi, which enables us to correctly interpolate
between the perfect Néel order at χ = π/4 and the singlet phase
χ = 0 present in the bilayer Heisenberg model. The exciton
density at a rung i is trivially given by ρi.

Given the variational wavefunction, we can use simulated an-
nealing to develop an unbiased view on the possible ground state
phases. Therefore we start out with a lattice, on each lattice site
the variables θi, χi, φi, ψi and ρi and with periodic boundary
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conditions. The energy of a configuration is

E =
1
2

J ∑
<ij>

(1− ρi)(1− ρj) sin 2χi sin 2χj n̂i · n̂j

−J⊥∑
i
(1− ρi) cos2 χi − µ ∑

i
ρi + VI ∑

<ij>
ρiρj

−1
2

t ∑
<ij>

√
ρi(1− ρi)ρj(1− ρj) cos(ψi − ψj)

×
(
cos χi cos χj + sin χi sin χj n̂i · n̂j

)
(5.36)

We performed standard Metropolis Monte Carlo updates43 of43 See section 3.3 for a de-
tailed description of Monte
Carlo techniques.

the lattice with fixed total exciton density. The fixed total exciton
density is ensured as follows: if during an update the exciton
density ρi is changed, the exciton density on one of the neighbor-
ing sites is corrected such that the total exciton density remains
constant.

Figure 5.4: Results from the
semi-classical Monte Carlo
simulations. Here shown
are color plots, with on the
horizontal axes the exciton
density ρ and on the vertical
axes the hopping parameter
t (in eV). Other parameters
are fixed at J = 125 meV, α =
0.04 and VI = 2 eV. The five
measurements shown here
are the Néel order parameter
(5.37), the checkerboard or-
der parameter (5.38), the su-
perfluid density (5.39), the
phase coherence (5.40), and
the ratio signaling phase sep-
aration according to equa-
tion (5.42), 0 means complete
phase separation, 1 means no
phase separation. Notice that
the prominent line at ρ =
0.5 signals the checkerboard
phase.

The main results of the simulation are shown in figure 5.4, for
various values of the hopping parameter t and exciton density
ρ. We performed the computations on a 10× 10 lattice. Notice
that even though true long-range order does not exist in two
dimensions, the range of possible ordered phases is longer than
the size of our simulated lattice. The other parameters are fixed at
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J = 125 meV, α = 0.04 and VI = 2 eV. The Heisenberg couplings
J = 125 meV and α = 0.04 are obtained from measurements of
undoped YBCO-samples,44 which we consider to be qualitatively 44 Imada et al., 1998; and Tran-

quada et al., 1989indicative of all strongly correlated electron bilayers. The dipolar
coupling is estimated at 2 eV, following our discussion in the
introduction.

For each value of ρ and t we started at relatively high temperat-
ures T = 0.1 eV and then slowly reducing the temperature to 10−5

eV while performing a full update of the whole lattice 10 million
times. We expect that by such a slow annealing we obtain the
true ground state of (5.36) without any topological defects or false
vacua. Once arrived at the low temperature state, we performed
measurements over 200.000 full updates of the system.

We measured six different parameters of interest:

• The Néel order parameter defined by

Neel =

∣∣∣∣∣
∣∣∣∣∣ 1

N ∑
i
(−1)i(1− ρi) sin 2χin̂i

∣∣∣∣∣
∣∣∣∣∣ (5.37)

where we first sum over all spin vectors and then take the norm.

• The checkerboard order, defined as the difference in exciton
density between the sublattices divided by the maximal differ-
ence possible. The maximal difference possible equals Min(ρ, 1−
ρ), so

Checkerboard =
1
N ∑i(−1)iρi

Min(ρ, 1− ρ)
. (5.38)

• The superfluid density is given by the expectation value of the
exciton operator. Here we don’t make a distinction between
singlet exciton condensation or triplet exciton condensation.
Therefore

Superfluid density =
1
N ∑

i

√
ρi(1− ρi). (5.39)

• Now the superfluid density is not the only measure of the
condensate, we can also probe the rigidity of the phase ψ.
Therefore we sum up all the phase factors on all sites,

Phase average =

∣∣∣∣∣ 1
N ∑

i
eiψi

∣∣∣∣∣ . (5.40)
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Figure 5.5: Typical config-
urations for the exciton dens-
ity per site, obtained in the
Monte Carlo simulation on
a 16× 16 square lattice. The
color scale indicates the ex-
citon density. All five fig-
ures have model parameters
J = 125 meV, α = 0.04
and VI = 2 eV. a: Separ-
ation between the antiferro-
magnetic phase (without ex-
citons, hence shown black)
and the exciton condensate
with smooth exciton dens-
ity (ρ = 0.05, t = 2.3
eV). b: Separation between
checkerboard-like localized
excitons and an antiferro-
magnetic background (ρ =
0.1, t = 0.1 eV). c: Separ-
ation between the checker-
board phase and a low dens-
ity exciton condensate (ρ =
0.25, t = 2.3 eV). d: Sep-
aration between the checker-
board phase and a high dens-
ity exciton condensate (ρ =
0.75, t = 0.5 eV). e: The
region where antiferromag-
netic order, checkerboard or-
der and the exciton condens-
ate are all present (ρ = 0.3,
t = 1.5).

If the phase is disordered, this sum tends to zero. On the
other hand, complete phase coherence in the condensate phase
implies that this quantity equals one.

• Finally, we considered a measure of phase separation between
the checkerboard phase and the superfluid phase. If the exciton
condensate and the checkerboard phase are truly coexisting,
then the maximal superfluid density attainable would be

Max SF density =
1
2

√
(ρ + ∆ρ)(1− ρ− ∆ρ)

−1
2

√
(ρ− ∆ρ)(1− ρ + ∆ρ) (5.41)

where ∆ρ = 1
N ∑i(−1)iρi. If there is phase separation, however,

the actual superfluid density is less than this maximal density.
Therefore we also measured the ratio

Ratio =
Superfluid density

Max SF density
(5.42)

to quantify the extent of phase separation. Now if this ratio is
less than 1, we have phase separation.

The results for a full scan for the range 0 < ρ < 1 and
0 < t < 2.5 eV are shown in figure 5.4. In figures 5.5 and 5.6
we have displayed typical exciton density configurations for vari-
ous points in the phase diagram. These results combined suggest
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Figure 5.6: Different exciton
configurations with their re-
spective energies on a 40× 40
lattice, to show whether there
is macroscopic phase separ-
ation. The model paramet-
ers are t = 0.5 eV, J = 125
meV, α = 0.04, VI = 2 eV
and ρ = 0.06625. Yellow in-
dicates the presence of ex-
citons, and in the black re-
gions there is antiferromag-
netic order. a: The lowest
energy state is the one with
complete macroscopic phase
separation. b: More complic-
ated phase separation, such
as the halter form depicted
here, are higher in energy.
c: Starting at high temperat-
ures with the configuration a,
we slowly lowered the tem-
perature. The resulting con-
figuration shown here is a
local minimum. d: Using the
same slow annealing as for
c starting from configuration
b. The local energy minimum
obtained this way is lower
in energy than the configura-
tion c. We conclude that even
though macroscopic phase
separation has the lowest en-
ergy, there are many local en-
ergy minima without macro-
scopic phase separation.

that there are three main phases present in the system: the antifer-
romagnet at low exciton densities, the exciton superfluid at high
exciton hopping energies and the checkerboard around half-filling.
For most parts of the phase diagram, however, the competition
between the three phases results in phase separation.

Let us investigate the phase separation in somewhat more de-
tail. In section 4.2 we found that the motion of an exciton in
an antiferromagnetic background leads to dynamical frustration.
In other words: excitons do not want to be together with anti-
ferromagnetism. The introduction of a finite density of excitons
will therefore induce phase separation. For large t, we find mac-
roscopic phase separation between the antiferromagnet and the
exciton superfluid, see figure 5.5a. At low exciton kinetic energy
the excitons will be localized in a checkerboard pattern as can be
seen in figure 5.5b.

Close to half-filling the role of the dipole repulsion VI becomes
increasingly relevant. The first order ‘spin flop’ transition implies
that there will be phase separation between the superfluid and the
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checkerboard order. Figures 5.5c and d show this phase separation.
Finally there is a regime where the condensate, the checkerboard
order and the Néel order are all present. However, given the
dynamical frustration at one hand and the spin-flop transition
at the other hand, we again predict phase separation. A typical
exciton configuration is shown in figure 5.5e.

Phase separation is thus widespread, based on results obtained
by slow annealing starting at high temperatures. However, anneal-
ing can lead to the freezing in of defects, which prevents us from
reaching the true ground state. In order to investigate whether we
have frustrated or macroscopic phase separation, we construct
custom-made phase separated configurations and compare their
energies in figure 5.6. The lowest energy configuration (5.6a) has
macroscopic phase separation between the checkerboard and the
antiferromagnetic phase. Intermediate states with one blob of
excitons (5.6c) are slightly higher in energy than states with two
blobs of excitons (5.6d). However, even though macroscopic phase
separation has the lowest energy, configurations with more blobs
have more entropy. Consequently for any nonzero temperatures
complete macroscopic phase separation is not the most favorable
option. This is indeed picked up by the numerical simulations:
annealing leads to high-entropy states such as figure 5.6d rather
than to the lowest energy configuration.

We thus conclude that the dominant phases are the antiferro-
magnet, the superfluid and the checkerboard. The competition
between these three phases leads to phase separation in most
parts of the phase diagram. The unbiased Monte Carlo simu-
lations shows the direction in which further analytical research
should be directed: we will use mean field theory to characterize
the three phases more thoroughly.

5.2.3 Mean field theory and characterization of the phases

Given the fact that we are dealing with a hard-core boson problem,
we know that mean field theory is qualitatively correct. The only
open issue is whether one can tune the exciton chemical potential
rather than the exciton density in realistic experiments. Since we
are prescient about the many first-order phase transitions present,
we will perform the analysis with a fixed exciton density (the ca-
nonical ensemble). A transformation back to the grand-canonical
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ensemble can be made given the explicit µ vs. ρ relations.
Now the numerical simulations suggest that the mean field

parameters only need to depend on the sublattice,

ρi =

{
ρA i ∈ A
ρB i ∈ B

(5.43)

and so forth for χ, θ, ψ and φ. With this broken translational
symmetry we anticipate the antiferromagnetic and checkerboard
order. Evaluation of the energy E = 〈Ψ|H|Ψ〉 under the variational
wavefunction directly suggests that we can set θ = ψ = φ = 0
on all sites.45 We are left with four parameters ρA, ρB, χA and χB, 45 By setting θ = φ = 0 we

restrict the spin vectors to
be pointing in the ±z direc-
tion only. Since we anticipate
magnetic ordering we have
the freedom to choose the dir-
ection of the ordering. Sim-
ilar arguments hold for the
choice ψ = 0; when break-
ing the U(1) symmetry asso-
ciated with exciton condensa-
tion we are free to choose the
phase direction.

and as it turns out it will be more instructive to rewrite these in
terms of sum and difference variables,

ρ =
1
2
(ρA + ρB) (5.44)

∆ρ =
1
2
(ρA − ρB) (5.45)

χ = χA + χB (5.46)

∆χ = χA − χB (5.47)

The mean field energy per site is now given by

E/N =
1
8

Jz
(
(1− ρ)2 − ∆2

ρ

)
(cos 2∆χ − cos 2χ)

−1
2

J⊥
[
(1− ρ)(cos χ cos ∆χ + 1) + ∆ρ sin χ sin ∆χ

]
−1

4
zt
√

((1− ρ)2 − ∆2
ρ)(ρ2 − ∆2

ρ) cos ∆χ

−µρ +
1
2

zVI(ρ2 − ∆2
ρ). (5.48)

which needs to be minimized for a fixed average exciton density ρ

with the constraint |∆ρ| ≤ min(ρ, 1− ρ). The resulting mean field
phase diagram for typical values of J, J⊥ and VI , for various t, ρ,
is shown in figure 5.7.

As long as the exciton density is set to zero, the mean field
ground state is given by the same ground state as for the bilayer
Heisenberg model. That is the antiferromagnetic phase paramet-
rized by

ρ = 0, χ = 0 and cos ∆χ =
J⊥
Jz
≡ α. (5.49)
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The Néel order is given by

1
N ∑

i
(−1)i〈S̃z

i 〉 =
√

1− α2 (5.50)

and the energy of the antiferromagnetic state is

E = −1
4

Jz(1 + α)2. (5.51)

The introduction of excitons in an antiferromagnetic background
leads to dynamical frustration effects which disfavors the coex-
istence of excitons and antiferromagnetic order.46 In fact, the46 See section 4.2.

numerical simulations already ruled out coexistence of superfluid-
ity and antiferromagnetism.

For large exciton hopping energy t it becomes more favorable
to mix delocalized excitons into the ground state. Due to the
bosonic nature of the problem this automatically leads to exciton
condensation. The delocalized excitons completely destroy the
antiferromagnetic order and the exciton condensate is described
by a superposition of excitons and a singlet background,

|Ψ〉 = ∏
i

(√
ρ|Ei〉+

√
1− ρ|0 0〉i

)
. (5.52)

Here we wish to emphasize the ubiquitous coupling to light of
the superfluid. The dipole matrix element allows only zero spin
transitions, and since the exciton itself is also S = 0 the dipole
matrix element is directly related to the superfluid density,

〈∑
σ

c†
i1σci2σ〉 = 〈E|

(
c†

1↑c2↑ + c†
1↓c2↓

)
|0 0〉

=
1√
2

√
ρ(1− ρ)〈↑↓1 02|(

c†
1↑c2↑ + c†

1↓c2↓
)

(| ↑1 ↓2〉 − | ↓1 ↑2〉)

=
√

2ρ(1− ρ) (5.53)

The dipole matrix element thus acts as the order parameter as-
sociated with the superfluid phase. In most bilayer exciton con-
densates, such as the one in the quantum Hall regime,47 this order47 Eisenstein and MacDonald,

2004 parameter is also nonzero in the normal phase because of inter-
layer tunneling of electrons. One can therefore not speak strictly
about spontaneous breaking of U(1) symmetry in such systems;
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there is already explicit symmetry breaking due to the interlayer
tunneling. In strongly correlated electron systems the finite t⊥
can be incorporated as a virtual process since the energy scales
associated with the chemical potential are much larger than t⊥.
As discussed at the beginning of this section, the Mott insulating
bilayers now effectively allow for spontaneous U(1) symmetry
breaking, and the above dipole matrix element acts as a true order
parameter. Note that the irrelevance of interlayer hopping t⊥
implies that this order parameter is, unfortunately, not reflected
in photon emission or interlayer tunneling measurements.

The exciton condensate is in fact a standard two-dimensional
Bose condensate. The U(1) symmetry present in the XY-type
exciton hopping terms is spontaneously broken and we expect
a linearly dispersed Goldstone mode in the excitation spectrum,
reflecting the rigidity of the condensate.

The energy of the singlet exciton condensate is

E = −J⊥ −
(µ + 1

4 zt− J⊥)2

zt + 2VIz
(5.54)

and the exciton density is given by

ρ = 2
µ + 1

4 zt− J⊥
zt + 2VIz

. (5.55)

Whenever the exciton hopping is small, the introduction of
excitons into the system leads to the ‘spin flop’ transition towards
the checkerboard phase. As shown in the context of the XXZ
model, this phase implies that one sublattice is completely filled
with excitons and the other sublattice is completely empty. On the
empty sublattice, any nonzero J⊥ will guarantee that the singlet
spin state has the lowest energy. Hence the average exciton density
is here ρ = ∆ρ = 1/2 and the energy of the checkerboard phase is
given by

E = −1
2

J⊥ −
1
2

µ. (5.56)

It is interesting to note that the checkerboard phase is in fact
similar to a Bose Mott insulator: with the new doubled unit cell
we have one exciton per unit cell. The nearest neighbor dipole
repulsion now acts as the ‘on-site’ energy preventing extra excitons
per unit cell.
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The mean field theory also predicts, for a small region with
intermediate t and small exciton densities, the coexistence of anti-
ferromagnetism and the condensate. This is, however, an artifact
of the theory, since the numerical simulations show that here
phase separation between the three different phases is favorable.

Finally, when the exciton density is 1 we have a system com-
posed of excitons only. In the parlance of hard-core bosons this
amounts to a exciton Mott insulator. This rather featureless phase
is adiabatically connected to a standard electronic band insulator.
Namely, the system is now composed of two layers where each
layer has an even number of electrons per unit cell. The energy of
the exciton Mott insulator is

E = −µ +
1
2

VIz. (5.57)

In the mean field theory just described many phase transitions
were first order, in the sense that the exciton density varies dis-
continuously along the transition. The critical values of t/J or µ

along the second order transitions are

(t/J)c,AF→CO =
2Jz(1 + α)− 4µ

J⊥
(5.58)

(t/J)c,EC→CO = 1− 2µ

Jz
+

√
(1 + 8α) +

(
2µ

Jz

)2
− 4

(
3

µ

Jz
− 2VI

J
(1− α)

)
(5.59)

µc,EC→EI = J⊥ +
1
4

zt + VIz (5.60)

and the critical values for the first order transitions are

µc,AF→CB =
1
2

Jz(1 + α2) (5.61)

µc,CB→EI = VIz + J⊥ (5.62)

(t/J)c,AF→EC = 2(1 + α2)− 4
µ

Jz
+ 2

√
(1− α2)

(
4

µ

Jz
− (1 + α)2 − 2

VI
J

)
(5.63)

(t/J)c,CB→EC = 4

√(
µ

Jz
− α

)(
VI
J

+ α− µ

Jz

)
(5.64)

(t/J)c,CO→CB =
2α2

2 µ
Jz − 1

− 2α +

√√√√(1− α2

2 µ
Jz − 1

)(
2
(

VI
J

+ α− µ

Jz

)
− α2

2 µ
Jz − 1

)
. (5.65)
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Figure 5.7: The canonical
mean-field phase diagram
for typical values of J = 125
meV, α = 0.04 and VI = 2
eV whilst varying t and
the exciton density ρ. In
the absence of exciton, at
ρ = 0, we have the pure
antiferromagnetic Néel phase
(AF). Exactly at half-filling of
excitons (ρ = 1/2) and small
hoping energy t < 2VI we
find the checkerboard phase
(CB) where one sublattice
is filled with excitons and
the other sublattice is filled
with singlets. For large
values of t we find the singlet
exciton condensate (EC),
given by the wavefunction

∏i

(√
ρÊ+

00,i +
√

1− ρ
)
|0 0〉i .

The coexistence of antiferro-
magnetism and superfluidity
for small ρ and t is an
artifact of the mean field
theory. Conform the Monte
Carlo results of figure 5.4,
for most parts of the phase
diagram phase separation
(PS) is found. The analytical
mean field theory incorrectly
predicts coexistence of
antiferromagnetism and
superfluidity (CO).

Here the subscripts indicate the phases: antiferromagnetic phase
(AF), coexistence phase (CO), exciton condensate (EC), exciton
Mott insulator (EI), checkerboard phase (CB).

For any nonzero α the first order transitions from the antifer-
romagnetic or coexistence phase towards the checkerboard phase
are ‘standard’ in the sense that at the critical value of µ there are
only two mean field states with equal energy. This is also true for
the transitions from the antiferromagnet to the exciton condensate
except at a single point. At the tricritical point

tc = 2J
√

2VI/J − 1 (5.66)

µc = J⊥ −
1
4

zt +
1
2

Jz(1− α)
√

2VI/J + t/J (5.67)

separating the coexistence phase, the antiferromagnetic phase and
the exciton condensate, we can set the parameters χ = 0, ∆ρ = 0
and ∆χ given by the value in the coexistence phase. Now the
energy becomes independent of the exciton density ρ. Similarly,
at the critical value of

µc = J⊥ +
1
2

VIz±
1
4

√
(2VIz)2 − (zt)2 (5.68)

describing the transition between the checkerboard phase to the
singlet exciton condensate, we can choose the mean field paramet-
ers χ = 0, ∆χ = 0 and

∆ρ =
1√
2

√√√√(1− 2ρ + 2ρ2)− 2VI |1− 2ρ|√
4V2

I − t2
. (5.69)

With these parameters, the energy becomes independent of ρ.
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Figure 5.8: The canonical
ground state phase diagram
of the exciton t − J model,
which is a combination of the
semi-classical Monte Carlo
result and the mean field
computations. In the back-
ground we have put the
mean field phase diagram of
figure 5.7, whilst the lines
show the phase diagram as
obtained from the Monte
Carlo simulations. The dot-
ted area represents phase sep-
aration between the condens-
ate, antiferromagnetic and
checkerboard order. Further-
more: EC means exciton con-
densate, CB means check-
erboard phase, AF means
antiferromagnetism and PS
stands for phase separation.
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This implies that the mean field theory predicts highly degen-
erate states at the critical values of µ, similar to the one we found
in the XXZ model. The phase separation that thus occurs can be
between an infinite set of possible ground states that have all a dif-
ferent exciton density. Coincidentally, the numerical simulations
indicate that around the two ‘degenerate’ critical points indeed all
the three phases are present. And whilst macroscopic phase sep-
aration has probably the lowest energy, the analysis of figure 5.6
suggests that more complicated patterns of phase separation are
likely to occur. The degeneracy of the critical points in mean field
theory might be responsible for the rich physics in this regions of
the phase diagram.

We can combine the unbiased numerical simulations of figure
5.4 with the analytical mean field results of figure 5.7 to derive
the complete phase diagram of the exciton t− J model in figure
5.8. There are three main phases: the antiferromagnet at zero
exciton density, the checkerboard at ρ = 1/2 and the superfluid at
high hopping energy t. For most parts of the phase diagram, phase
separation between these three phases occurs in any combination
possible. The competition between these three phases leads in
general to macroscopic phase separation.

Finally, within the limitations of the semi-classical Monte Carlo
approach we can make a rough estimate of the transition temper-
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Figure 5.9: Finite temperat-
ure graph of the phase co-
herence in the exciton con-
densate region of the phase
diagram. Here t = 2.5 eV
and ρ = 0.18 and the other
parameters are the same as
in a. A clear transition is
observed at around 0.06 eV,
which amounts to a trans-
ition temperature of about
700 Kelvin.

ature towards the superfluid state. Given a typical point in the
phase diagram where the exciton condensate exists, at t = 2.5 eV
and ρ = 0.18, we find a Kosterlitz-Thouless transition temperature
of approximately 700 Kelvin, see figure 5.4c. This number should
be taken not too seriously, as the exciton t− J model might not be
applicable at such high temperatures given possible exciton disso-
ciation. Additionally, at high temperatures the electron-phonon
coupling becomes increasingly important which is something we
neglect in our exciton t − J model. Nonetheless, our estimate
suggests that exciton superfluidity may extend to quite high finite
temperatures.

5.2.4 The Heisenberg equations of motion method

In physical experiments one usually probes the elementary ex-
citations of a phase. The dispersion of these excitations can be
computed using the ‘equations of motion’-method based on the
work of Zubarev, 1960. The aim of this method is to find the
spectrum of excitations, building on the foundations given by the
mean field approximation. Let us now introduce this method, and
subsequently use it to derive the excitations of the three phases of
the exciton t− J model.

Given a full set of local operators A`
i , we can construct the

Heisenberg equations of motion

i∂tA`
i = [A`

i , H] (5.70)

which is in general impossible to solve. We employ the notation
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that i indicates the lattice site, and ` is the index denoting the
type of operator. The right hand side of this equation contains
products of operators at different lattice sites. Such products can
be decoupled within the mean field approximation as 4848 Zubarev, 1960; and Oles

et al., 2000

A`
iA`′

j → 〈A`
i 〉A`′

j + A`
i 〈A`′

j 〉 (5.71)

where i and j are different lattice sites. Upon Fourier transforming
lattice position into momentum and time into energy, we thus
obtain a set of linear equations for the operators,

ωqA`(q, ω) = M``′ (q)A`′ (q, ω). (5.72)

The spectrum of excitations is simply found by solving this eigen-
value equation for the matrix M(q).

In order to find the matrix elements 〈n|A`(q)|0〉 that enter in
susceptibilities we need the following scheme. Assume that the
Hamiltonian is of the form

H = ∑
qn

ωqn α†
qn αqn (5.73)

where the sum over q runs over momenta, and n indicates the
different excited states. Now α†

qn is a creation operator, and
irrespective of whether we are dealing with fermions or bosons
we have the following equations of motion

i∂t α†
qn = −ωqn α†

qn . (5.74)

That is: every eigenvector of M``′ (q) corresponding to a negative
eigenvalue can be identified as a creation operator for one of the
elementary excitations. However, the eigenvalue equation itself is
not enough because it does not yield the proper normalization of
α† . Since we have the eigenvector solution

α†
qn = U n`A`(q) (5.75)

we can write out the (anti)commutation relation for α†
qn in terms

of the (anti)commutation relations for the A`(q). Upon requiring
that on the mean field level the operators α†

qn obey canonical
commutation relations, that is for bosons

〈
[

αqn , α†
qn′

]
〉 = δnn′ , (5.76)
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we obtain a proper normalization for the new creation operators.
We can invert the normalized matrix U n` to express A`(q) in
terms of the creation operators α†

qn . Finally, using 〈n ′ |α†
qn |0〉 =

δnn′ we can compute the wanted matrix element for A`(q).
As an example of this technique we can compute the matrix

element |〈n|S+(q)|0〉|2 for the antiferromagnetic Heisenberg
model on a square lattice. The mean field ground state is the Néel
state, which leads to the following equations of motion,

i∂t

(
S+

qA

S+
qB

)
=

1
2

Jz

(
1 γq

−γq −1

) (
S+

qA

S+
qB

)
. (5.77)

where the subscript A and B denote the two different sublattices,
and γq = 1

2 (cos qx + cos qy). We quite easily infer that the
eigenvalues are

ωq = ± 1
2

Jz
√

1 − γ2
q (5.78)

and thus we have one eigenvector corresponding to a creation
operator, and one to an annihilation operator. If we define(

α†

β

)
= U

(
S+

qA

S+
qB

)
(5.79)

then the commutation relations tell us that the eigenvector matrix
U must satisfy

1 = 〈[α, α† ]〉 = −2u2
11〈Sz

A〉 − 2u2
12〈Sz

B〉 = −u2
11 + u2

12 . (5.80)

The initial S+
q operator, which enters in the spin susceptibility, can

be expressed in terms of the eigenvector matrix as

S+
q =

1√
2
(1 1) U−1

(
α†

β

)
. (5.81)

Some straightforward algebra now yields

∣∣〈n|S+(q)|0〉
∣∣2 =

1
2

√
1 − γq

1 + γq
(5.82)

which is the same susceptibility one can obtain by using the
Holstein-Primakoff linear spin wave approximation. The approx-
imation scheme we introduced here can therefore be viewed as a
generalization of the linear spin wave approximation.
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Let us now apply this technique to the XXZ model of section
5.2.1. The Heisenberg equations of motion are

i∂t E+
i = −t ∑

δ

Ez
i E+

i+δ + µE+
i − VI ∑

δ

E+
i Ez

i+δ , (5.83)

i∂t E−i = t ∑
δ

Ez
i E−i+δ − µE−i + VI ∑

δ

E+
i Ez

i+δ , (5.84)

i∂t Ez
i = − 1

2
t ∑

δ

(
E+

i E−i+δ − E−i E+
i+δ

)
, (5.85)

where δ runs over all nearest neighbors. These equations cannot
be solved exactly, hence we use an approximation based on the
mean field results. Products of operators on different sites are
replaced by4949 Zubarev, 1960; and Oles

et al., 2000 AiBj → 〈Ai〉Bj + Ai〈Bj〉 (5.86)

where 〈. . .〉 denotes the mean field expectation value. By such a
decoupling the Heisenberg equations of motion become a coupled
set of linear equations which can be solved easily. In the homo-
geneous phase we thus obtain, after Fourier transforming,

ωkE+
k = −1

2
tz
(
cos 2θγkE+

k + sin 2θEz
k
)
+ µE+

k

−1
2

VIz
(
cos 2θE+

k + sin 2θγkEz
k
)

(5.87)

ωkE−k =
1
2

tz
(
cos 2θγkE−k + sin 2θEz

k
)
− µE−k

+
1
2

VIz
(
cos 2θE−k + sin 2θγkEz

k
)

(5.88)

ωkEz
k = −1

4
tz sin 2θ(1− γk)

(
E+

k − E−k
)

. (5.89)

We can find an analytical expression for the excitations in the
superfluid phase,

ωk =
1
2

zt
√

1− γk

√
1− γk(1− 2ρ)2 +

4VI
t

γk(1− ρ)ρ

=
1
2

zt
√

ρ(1− ρ)(1 + VI/t) |k|+ . . . (5.90)

where γk = 1
2 (cos kx + cos ky). For small momenta this excitation

has a linear dispersion, conform to the Goldstone theorem requir-
ing a massless excitation as a result of the spontaneously broken
U(1) symmetry. Exactly at µ = µc the dispersion reduces to

ωk = zt
√

1− γ2
k , hence the gap at k = (π, π) closes thus signaling

a transition towards the checkerboard phase.
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At the critical point and in the checkerboard phase, we need
to take into account the fact that expectation values of operators
differ on the two sublattices. The Heisenberg equations of motion
now reduce to six (instead of three) linear equations. This is
technically more difficult but does not pose a real mathematical
challenge.

5.2.5 Collective modes and susceptibilities

Each phase of the excitons in a strongly correlated bilayer has
distinct collective modes, by which we can experimentally probe
the system. In order to obtain the dispersions of the collective
modes we employ the technique of the Heisenberg equations of
motion, introduced in the previous section 5.2.4. In the case of
the exciton t− J model, however, the set of equations is so large
that analytical solutions can in general not be obtained. Whenever
necessary, we compute the dispersions numerically.

The dispersions itself are not directly experimentally relevant:
one measures dynamical susceptibilities. Amongst others, we
are interested in the absorptive part of the dynamical magnetic
susceptibility, defined by

χ′′S(q, ω) = ∑
n
〈ψ0|S̃−(−q)|n〉〈n|S̃+(q)|ψ0〉δ(En −ω) (5.91)

Here |ψ0〉 is the ground state of the system and |n〉 are the excited
states with energy En. This spin susceptibility can be measured
with, for example, inelastic neutron scattering.50 Naturally we can 50 Coleman, 2013

thus define an exciton dynamical susceptibility

χ′′E(q, ω) = ∑
n
〈ψ0|E−00(−q)|n〉〈n|E+

00(q)|ψ0〉δ(En −ω). (5.92)

We use the operator E00(q) because this amounts to the interlayer
dipole matrix element, which is detectable using RIXS,51 EELS52 51 Ament et al., 2011

52 Schnatterly, 1979or optical absorption (the latter only for q = 0).53

53 Basov and Timusk, 2005The three dominant phases we encountered in our mean field
analysis will have distinct magnetic and optical responses. Starting
with the antiferromagnetic phase shown in figures 5.10 to 5.12,
we observe that this limit of vanishing exciton density has been
studied in a far greater detail in section 4.2. This allows us to
compare the results of the equations-of-motion method with a full
resummation of spin-exciton interactions using the SCBA. In the
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condensate phase the interplay between excitonic and magnetic
degrees of freedom reaches it climax, which was discussed in
section 5.1. Here we discuss some remaining details and the
checkerboard phase.

Throughout the following discussion, the model parameters
are J = 125 meV, α = 0.04, VI = 2 eV and a varying t and ρ. In
order to visualize the susceptibilities we have convoluted χ ′′ with
a Lorentzian of width 0.04 eV. The color scale in the susceptibility
plots is on an arbitrary scale.

Figure 5.10: The spin wave
dispersions (a.) and the dy-
namical magnetic susceptib-
ility (b.) in the antiferromag-
netic phase. In this phase, the
spin wave dispersions are not
influenced by exciton dynam-
ics. As is known from pre-
vious studies, there are two
transversal spin waves and
two longitudinal spin waves
(Chubukov and Morr, 1995;
Rademaker et al., 2012b). The
transversal spin waves are
gapless around either Γ (solid
red line) or the M point (dot-
ted blue line). The longitud-
inal spin waves, which are as-
sociated with interlayer fluc-
tuations (solid green line),
are nearly flat and have a
gap of order Jz. The dy-
namic magnetic susceptibil-
ity (b.) only shows one trans-
versal spin wave. These res-
ults and all subsequent fig-
ures are obtained using J =
125 meV and α = 0.04, as
is expected for the undoped
bilayer cuprate YBCO (Tran-
quada et al., 1989).

Antiferromagnetic phase: a single exciton In the limit of
zero exciton density we recover the well-known bilayer Heisen-
berg physics. As discussed in section 4.2.1, the spins tend to
order antiferromagnetically. The excitations spectrum thus con-
tains a Goldstone spin wave with linear dispersion around Γ and
a similar mode centered around (π, π). In addition, the bilayer
nature is reflected in the presence of two longitudinal spin waves
with a gap of order Jz and a narrow bandwidth of order J⊥. The
excitation spectrum and the corresponding magnetic dynamical
susceptibility is shown in figure 5.10.

The dynamics of an exciton in an antiferromagnetic background
has been studied extensively by means of a linear spin-wave
self-consistent Born approximation technique (LSW-SCBA) in
section 4.2.2. The non-interacting equations of motion method
used in this section is certainly less accurate than the full LSW-
SCBA computation. However, the mere existence of LSW-SCBA
results allows us to compare it with our current non-interacting
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Figure 5.11: The exciton
modes in the antiferromag-
netic phase in the adiabatic
regime t � J. Here we have
chosen t = 0.1 eV, J = 125
meV and α = 0.04. Within
the equations of motion pic-
ture there are four exciton
modes (a.), which come in
pairs of two with a small in-
terlayer splitting. Due to the
antiferromagnetic order the
exciton bands are renormal-
ized with respect to a free
hard-core boson (b.). The sus-
ceptibility corresponding to
the free exciton motion (c.)
is verified by the fully inter-
acting LSW-SCBA results (d.).
This is to be expected: in
the adiabatic regime spins re-
act much faster than the ex-
citon motion and the exciton
still moves freely dressed by
a spin polaron, reducing its
bandwidth to order t2/J.

calculations.
The equations-of-motion method ignores the interaction cor-

rections such as dynamical frustration. It treats the excitons as
well-defined quasiparticles. As such we can already guess be-
forehand that the non-interacting results will only be reliable in
the adiabatic regime t � J. Indeed, in the equations-of-motion
method we find four exciton modes corresponding to either the
singlet E+

00 or m = 0 triplet exciton E+
10 operator, just as in the LSW-

SCBA. When α→ 0 we can write out an analytical expression for
the non-interacting dispersions,

ωk,± = µ± 1
2

√
(Jz)2 +

(
1
2

ztγk

)2
. (5.93)

where each branch is twofold degenerate. This degeneracy is
lifted when α 6= 0, leading to a splitting of order α which is largest
around Γ and M.
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Figure 5.12: The ex-
citon modes in the antiferro-
magnetic phase in the anti-
adiabatic regime t� J. Here
we have chosen t = 2 eV,
J = 125 meV and α = 0.04.
Just like in figure 5.11 we
find four exciton bands (a.),
renormalized with respect to
the free hard-core boson res-
ults (b.). However, upon in-
clusion of the interaction the
free susceptibility (c.) gets
extremely renormalized (d.).
The large exciton kinetic en-
ergy together with the re-
latively spin dynamics cre-
ate an effective potential for
the exciton: the exciton be-
comes localized and the con-
finement generates a ladder
spectrum. Note that thus in
the anti-adiabatic regime the
free results (a., c.) cannot be
trusted.

In the limit of t� J the dispersions (5.93) indeed result in an
effective exciton bandwidth of order t2/J, conform the LSW-SCBA
as can be seen in figure 5.11. The natural question then arises:
how is it possible that in the present non-interacting theory the
exciton bandwidth depends on the spin parameter J? For sure,
the effective exciton model introduced in section 5.2.1 has no such
renormalisation as is shown in figure 5.11. There the exciton
bandwidth fully depends on zt.

However, it is important to realize that the exciton operators
E+

s0,i do not commute with the antiferromagnetic order parameter
operator S̃z

i . As a result the mean field energy of exciting an
exciton is shifted either up or down (depending on the sublattice)
yielding a gap between the two exciton branches of O(Jz). Now
for small t, propagation of the exciton requires that one has to ’pay’
the energy shift Jz to move through both sublattices. As a result
the effective hopping is reduced by a factor t/J. Therefore the
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exciton bandwidth renormalisation, seen in the full LSW-SCBA,
is already present at the mean field level.

For large t/J, however, we will pay a price for the convenience
of the non-interacting equations of motion method. At mean field
level one still expects the dispersions to be (5.93), however, upon
inclusion of the interaction corrections this picture breaks down
completely. The bandwidth of the non-interacting exciton is of
order zt, whereas in the interacting theory an incoherent ladder
spectrum of the same width arises. Thus for large t/J the non-
interacting results cannot be trusted. However, this only applies
to the antiferromagnetic phase due to the presence of dynamical
frustration. In general one can say that the non-interacting results
are qualitatively correct in the absence of gapless modes that need
to be excited in order for an exciton to move. This condition is
naturally met for the other two phases, and hence we expect that
exciton-spin interactions only lead to qualitative changes in the
antiferromagnetic phase.

By simple selection rules one can already conclude that the
singlet exciton mode couples to light. As a consequence this is the
mode that is visible in the susceptibility, as seen in figures 5.11d
(for t < J) and 5.12d (for t > J).

Finally, note that at the transition from the antiferromagnetic
phase to the checkerboard phase the gap in the exciton spectrum
vanishes at (π, π).

Superfluid phase The mode spectrum of superfluid phase,
shown in figures 5.13 and 5.14, is characterized by a linearly dis-
persing Goldstone mode associated with the broken U(1) sym-
metry. This superfluid phase mode has vanishing energy at the Γ
point, where we find the inescapable linear dispersion relation

ωk =
1

4
√

2
zt
√

(1− ρ)ρ (1 + 2VI/t) |k|+ . . . (5.94)

The speed of the superfluid phase mode is the same as for the
XXZ model in equation (5.90) up to a rescaling of the t and VI

parameters. Indeed, this speed is proportional to the superfluid
density

√
ρSF =

√
ρ(1− ρ). This mode can be seen in the ex-

citon susceptibility, figures 5.13e and f. The Goldstone mode has
a gap at (π, π) which decreases monotonically with increasing
exciton density. Precisely at the first order transition towards the
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checkerboard phase this gap closes.
Next to the Goldstone mode there are two triplet excitations,

shown in figure 5.14, each one three-fold degenerate. The de-
generacy obviously arises from the standard triplet degeneracy
m = −1, 0, +1. The two branches, however, distinguish between
exciton-dominated modes and spin-dominated modes, let us dis-
cuss them separately.

The spin-dominated modes have a gap of order ∆S = Jz√
α(1 + α− ρ), which is similar to the triplet gap in the bilayer

Heisenberg model for large α. However, the bandwidth of these
excitations scales with t rather than with J, as would be customary
in a system without exciton condensation (see figures 5.14a and
b). We discussed these modes in great detail in section 5.1, so let
us continue onto the other branch of triplets.

The other branch of triplet excitations is dominated by triplet
excitons, and is therefore barely visible in the spin susceptibility
and not visible in the exciton susceptibility (which only shows
singlet excitons). That it is indeed dominated by triplet excitons
can be inferred from computing the matrix elements of the oper-
ator E1m, as is done in figures 5.14g and h. Furthermore, the gap
∆E = (VIz + tz)ρ− µ is a function of exciton model parameters
only. The bandwidth of this mode is of order O(zt), relatively in-
dependent of the exciton density. As a result, for large superfluid
densities the exciton-dominated modes cross the spin-dominated
triplet modes. One can directly see this in the excitation spectrum
for ρ = 0.27 as shown in figure 5.14d.

We can compare the triplet spectrum to the mode spectrum of
the singlet phase of the bilayer Heisenberg model. When J⊥ � J
the ground state consists of only rung singlets. The excitation
towards a triplet state, shown in figures 5.14a and b, has a gap
Jz
√

α(α− 1) and a bandwidth of order Jz, which is considerably
smaller than the O(zt) bandwidth in the condensate. However,
because the topology of the triplet mode is the same we expect that
the effect of the spin-exciton interactions is the same in the bilayer
Heisenberg model as for the superfluid. Since earlier LSW-SCBA
showed no changes in the spectrum due to interactions, we infer
that the non-interacting results for the superfluid are reliable.

To conclude our review of the excitations of the superfluid
phase we want to discuss the influence of the interlayer tunne-
ling. In the context of the XXZ model we noticed that interlayer
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Figure 5.13: Dispersions and
susceptibility of the Gold-
stone mode associated with
the exciton condensate. We
have set t = VI = 2 eV, J =
125 meV and α = 0.04, and
the exciton density is either
ρ = 0.15 (left column) or
ρ = 0.27 (right column). a,
b. In the simple hard-core
boson model the condensate
phase clearly show the su-
perfluid phase mode, linear
at small momenta. c,d. In
the full t− J model the Gold-
stone mode has a similar dis-
persion as in the XXZ model.
The speed of the mode scales
with the superfluid density.
At higher densities the mode
softens around (π, π), and
when this gap closes a first or-
der transition to the checker-
board phase sets in. e,f. The
absorptive part of the exciton
susceptibility, which can be
measured with for example
EELS or RIXS.
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Figure 5.14: Dispersions and
magnetic susceptibilities of
the exciton condensate. We
have set t = VI = 2 eV,
J = 125 meV and α = 0.04,
and the exciton density is
either ρ = 0.15 (left column)
or ρ = 0.27 (right column).
a,b. As the exciton condens-
ate is spin singlet, we assume
that the excitation spectrum
is governed by propagating
triplet modes. These modes
have a gap of order J⊥ and a
bandwidth of order Jz. c,d.
In contrast to the simple
Heisenberg results, the ac-
tual triplet modes have en-
hanced kinetics, see section
5.1. The modes are split in a
spin-dominated branch with
small gap and large band-
width proportional to the su-
perfluid density (e,f.); and
an exciton-dominated branch
with a large gap and a small
bandwidth (g,h.).
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tunneling has no qualitative influence on the phase diagram itself.
However, the presence of a weak interlayer tunneling may act
as phase pinning54 which opens a gap in the superfluid phase 54 See section 2.2.2 and Rade-

maker et al., 2011.mode spectrum of order O(
√

t⊥(VI + t)). Persistent currents can
still exist, but one needs to overcome this gap in order to get the
exciton supercurrent flowing.

Figure 5.15: The excita-
tion spectrum of the checker-
board phase. a. In the simple
hard-core boson model there
are two exciton modes associ-
ated with the ’doublon’ and
the ’holon’ excitation. b. The
spin modes are decoupled
from the exciton modes in the
full t− J model. There is only
one possible spin excitation:
changing the singlet ground-
state into a non-propagating
triplet. c. The exciton modes,
on the other hand, can still
propagate. The excitation
of removing an exciton can
propagate through the check-
erboard. d. The propagat-
ing mode that changes an ex-
citon into a singlet is detect-
able by optical means and
thus shows up in the exciton
susceptibility.

Checkerboard phase The third homogeneous phase of the ex-
citon t− J model is the checkerboard phase. In this phase the unit
cell is effectively doubled with one exciton per unit cell. This state
is analogous to a Bose Mott insulator. The trivial excitations are
then the doublon and the holon: create two bosons per unit cell
which costs an energy VIz− µ or to remove the boson. The latter
will generate a propagating exciton mode, with dispersion

ωk,pm =
1
2

±VIz +

√
(VIz)2 ±

(
1
2

ztγk

)2
∓ µ± J⊥. (5.95)
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There are two such propagating modes: one associated with the
singlet exciton and one with the triplet exciton. Precisely at
the transition towards the superfluid phase, one of these exciton
waves becomes gapless. Note that the arguments that lead to the
bandwidth renormalisation in the antiferromagnetic phase also
apply here, leading to an exciton bandwidth of order t2/VI . The
dispersions and the corresponding exciton susceptibility can be
seen in figure 5.15.

In the spin sector one can excite a localized spin triplet on the
empty sublattice. The triplet gap is set by the interlayer energy J⊥,
and the dispersion is flat because this triplet cannot propagate, as
can be seen in figure 5.15b.


