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4
Exciton-spin dynamics in the Mott
insulating state

Two fermions form a boson, which is precisely what happens when an electron and a hole
bind together into an exciton. A completely different way to find emergent bosonic physics
is to have strong electron-electron interactions near half-filling. In the Mott insulating state,
the effective degrees of freedom are bosonic spin waves.

Whenever the electron-electron and electron-hole interactions are strong, which we expect
in the case of cuprates, we can model the system in terms of bosons only: spins and
excitons. In this chapter we derive the corresponding exciton t− J model. Close to the Mott
insulating state the insertion of excitons leads to frustration, as is described in section 4.2.
The full phase diagram of the exciton t− J model is discussed in the next chapter.

	  

Exciton 

V

Figure 4.1: Naive real space
picture of an exciton in a
strongly correlated bilayer, as
viewed from the side. Two
square lattices (blue balls) are
placed on top of each other.
The red arrows denote the
spin ordering, which forms
a perfect Néel state. The ex-
citon consists of a bound pair
of a double occupied and a
vacant site on an interlayer
rung. The energy required
to break this doublon-holon
pair is V. The magnetic or-
dering is governed by the in-
plane Heisenberg J and the
interlayer J⊥, as described by
the Hamiltonian (4.12).

4.1 Strong coupling limit and the t− J model

When the onsite Coulomb repulsion in the Hubbard model (3.4) is
much larger than the kinetic energy, U � t, it becomes impossible
for two electrons to occupy the same orbital. At half-filling this
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results in a traffic jam of electrons: on each lattice site there is one
electron, unable to move due to the restraint on double occupancy.
This is the Mott insulator.11 Mott, 1949; Anderson, 1952;

and Marshall, 1955

4.1.1 The Mott insulating state and the t− J model

The Mott insulating phase is thus characterized by a large in-
teraction U and the corresponding localization of electrons at
half-filling.2 Due to this localization only the spin degree of free-2 This is in stark contrast

with the band theory pic-
ture, where electrons are
completely delocalized.

dom remains. A perturbation method by Kato, 1949 has been
applied to the Hubbard model3 to obtain an effective low energy

3 Klein and Seitz, 1973; Taka-
hashi, 1977; and Chao et al.,
1977

model for the spins: the t− J model.
The key to this strong coupling perturbation theory is that we

project out the states that contain double occupied sites.4 The4 On the electron doped side
of half-filling we project out
states with more double oc-
cupied sites than necessary,
which is equivalent to project-
ing out the empty sites.

hopping terms Ht are treated as a perturbation on the exactly
solvable interaction term HU ,

Hλ = HU + λHt. (4.1)

We introduce a projection operator P0 that projects onto the ei-
genspace U0 of HU with eigenvalue E0 associated with a fixed
number of double occupied sites. The hopping term is then adia-
batically turned on, that is λ→ 1. Introduce an operator Pλ that
projects onto the eigenspace U that is adiabatically connected to
the eigenspace U0. This operator is expressed in terms a contour
integral over the resolvent operator,

Pλ =
1

2πi

∮
C

dz
z− Hλ

(4.2)

where the contour C goes around the eigenvalue E0 but not around
any other eigenvalues of HU . A series expansion of the resolvent
operator yields

Pλ = P0 + λ

[
P0Ht

(
1− P0

E0 − HU

)
+
(

1− P0

E0 − HU

)
HtP0

]
+O(λ2).

(4.3)
Now an effective Hamiltonian on the eigenspace U exists, with
exactly the same spectrum as the full Hλ, given by

Heff = P0(Hλ − E0)PλP0, (4.4)

which can be constructed using the expansion of Pλ. At zeroth or-
der in λ the effective Hamiltonian consists of the electron hopping
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term with the no double occupancy constraint,

H(0)
eff = P0HtP0. (4.5)

From now on the projection P0 is included as implicit constraint
on the double occupancy.

The first order correction in λ is given by

H(1)
eff = − 1

U
P0Ht(1− P0)HtP0. (4.6)

It contains two-hopping processes, where the intermediate state
contains an additional double occupied state as shown in table 4.1.
The remaining Hamiltonian can be expressed in spin operators
only, which are

sz
i =

1
2

(
c†

i↑ci↑ − c†
i↓ci↓

)
, (4.7)

s+
i = c†

i↑ci↓, (4.8)

s−i = c†
i↓ci↑. (4.9)

Since the virtual exchange processes can only occur when neigh-
boring spins are opposite, the Hamiltonian now equals the anti-
ferromagnetic Heisenberg model with J = t2

4U ,

H(1)
eff = J ∑

〈ij〉
si · sj. (4.10)

The hopping term (4.5) together with the superexchange term
(4.10) form the famous t− J model.5 It is a low-energy description

5 Strictly speaking, the per-
turbation series at first order
in λ also contains a density-
density interaction and a
three-site hopping process.
Those are usually neglected
(Imada et al., 1998).

of the Hubbard model close to half-filling and in the limit of large
U. Note that now the concept of doping near this Mott insulating
state has a different meaning than in standard semiconductors.
The addition of electrons, known as electron-doping or n-doping,
leads to extra double occupied sites which are called doublons.
Similarly the removal of an electron (hole-doping or p-doping)
introduces vacant sites which are called holons.

Table 4.1: The first order
in λ processes in the strong
coupling perturbation series
for the Mott insulating state,
given by P0 Ht(1 − P0)HtP0.
The initial and final states
cannot have double occupied
sites.

Initial state Intermediate states Final states Process
(with double occupied site) (in units of t2)

· · · ↑i↓j · · · · · · ↑↓i oj · · · · · · ↑i↓j · · · 2n̂iσ n̂jσ = −4sz
i sz

j + 1
· · · oi ↑↓j · · · · · · ↓i↑j · · · 2ĉ†

jσ ĉiσ ĉ†
iσ ĉjσ = −2s±i s∓j
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4.1.2 The p- and n-doped bilayer

Heterostructures of p- and n-doped cuprates can be typically
described by a bilayer t− J model: two single-layer t− J models
together with interlayer interactions. The hopping of electrons in
each layer is given by

Ht = −te ∑
〈ij〉σ`

c†
i`σcj`σ + h.c. (4.11)

with the double occupancy constraint left implicit. The undoped
Mott insulating state is described by the bilayer Heisenberg model

HJ = J ∑
〈ij〉`

si` · sj` + J⊥∑
i

si1 · si2. (4.12)

Here c†
ilσ and sil denote the electron and spin operators respect-

ively on site i in layer l = 1, 2. The Heisenberg HJ is antiferromag-
netic with J > 0 and 0 < J⊥ < J.

Additionally we need to include the interlayer Coulomb at-
traction between a vacant site (holon) and double-occupied site
(doublon) on the same rung, described by

HV = V ∑
i

ni1ni2. (4.13)

This is the force that binds interlayer excitons. Without loss of
generality, we assume that layer ’1’ contains the excess electrons
with the constraint ∑σ c†

i1σci1σ ≥ 1 and layer ’2’ has the constraint
∑σ c†

i2σci2σ ≤ 1. In other words: we have n- and p-type doping in
layer ’1’ and ’2’, respectively.

The full bilayer t− J model

Hbt−J = Ht + HJ + HV (4.14)

is the large U limit of the extended bilayer Hubbard model (3.7).
Understanding the bilayer Heisenberg model (4.12) will be an
important step towards analyzing physics of a p/n-doped bilayer.

The bilayer Heisenberg Hamiltonian has been studied quite
extensively using Quantum Monte Carlo (QMC) methods,6 dimer

6 Sandvik et al., 1995; and
Sandvik and Scalapino, 1994

expansions7 and the closely related bond operator theory,8 the

7 Weihong, 1997; Gelfand,
1996; and Hida, 1992

8 Matsushita et al., 1999; and
Yu et al., 1999

nonlinear sigma model9 and spin wave theory.10 All results in-

9 van Duin and Zaanen, 1997;
and Chakravarty et al., 1989

10 Miyazaki et al., 1996; Millis
and Monien, 1993; Matsuda
and Hida, 1990; and Hida,
1990

dicate a O(3) quantum nonlinear sigma model universality class
quantum phase transition at a critical value of J⊥/J from an anti-
ferromagnetically ordered to a disordered state, see figure 4.2. A
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naive mean field picture of the antiferromagnetic ground state is
provided by the Néel state, in which each of the sublattices are
occupied by either spin up or spin down electrons as shown in fig-
ure 4.1. However, the exact ground state is scrambled by spin flip
interactions reducing the Néel order parameter to about 60% of
its mean field value.11 A finite interlayer coupling J⊥ generically 11 Manousakis, 1991

reduces the antiferromagnetic order further. In the limit of infinite
J⊥, the electrons will form a valence bond solid of pair-singlets
living on the interlayer rungs, destroying the antiferromagnetic
order.
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Figure 4.2: Zero temperature
phase diagram of the bilayer
Heisenberg model as a func-
tion of interlayer coupling
strength α = J⊥

4J on the ho-
rizontal axis. At a critical
value αc a quantum phase
transition exists from the an-
tiferromagnetic to the sing-
let phase. The vertical axis
shows the Néel order para-
meter signaling antiferromag-
netism. Note that even at
α = 0 the Néel order para-
meter is reduced from the
mean field value 1

2 to approx-
imately 0.3 due to spin flip
interactions. (Adapted from
Chubukov and Morr, 1995.)

Standard linear spin wave theories cannot quite account for the
critical value of J⊥/J ∼ 2.5 found in QMC and series expansion
studies. This discrepancy between numerical results and the
spin wave theory has a physical origin. Chubukov and Morr,
1995 pointed out that standard spin wave theories do not take
into account the longitudinal (that is, the interlayer) spin modes.
By incorporating such longitudinal spin waves one can derive
analytically the right phase diagram.12Another correct method 12 Sommer et al., 2001

is to introduce an auxiliary interaction which takes care of the
hard-core constraint on the spin modes.13 13 Kotov et al., 1998

If one wants to study the doped bilayer antiferromagnet how-
ever, one needs explicit expressions of how a moving dopant (be
it a hole, electron or exciton) interacts with the spin excitations.
Even though the Néel state is just an approximation to the anti-
ferromagnetic ground state, it provides an intuitive explanation
for the major role spins play in the dynamics of any dopant. As
can be seen in figure 4.3, a moving exciton causes a mismatch in
the previously perfect Néel state. Consequently, the motion of an
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Figure 4.3: Exciton motion in
a naive real space picture. In
a perfect Néel state, the mo-
tion of an exciton (with re-
spect to the situation in fig-
ure 4.1) causes a mismatch
in the spin ordering. The kin-
etic energy gained by moving
the exciton is proportional to
the energies of the doublon te
and holon th divided by the
exciton binding energy V.

	  

Moved exciton Spin mismatch 

exciton is greatly hindered and a full understanding of possible
spin wave interactions is needed to describe the exciton dynamics.
This is of course similar to the motion of a single hole in a single
Mott insulator layer.14 It is also similar to the works of Vojta and14 Schmitt-Rink et al., 1988;

and Kane et al., 1989 Becker, 1999, who have computed the spectral function of a single
hole in the Heisenberg bilayer. Therefore a rung linear spin wave
approximation15 is needed to obtain the expressions for the spin15 Sommer et al., 2001

waves in terms of single site spin operators. Let us, however, first
focus on the exciton properties of the p/n-doped bilayer.

4.1.3 The exciton t− J model

Figure 4.4: For small exciton
coupling the spectrum of an
exciton is obtained by the
ladder diagram approxima-
tion from the spectrum of the
single doped hole. The χ′′0
and χ′0 are respectively the
imaginary and real part of
the bare exciton susceptibil-
ity. The χ′′ is the imaginary
part of the full exciton sus-
ceptibility obtained in the lad-
der diagram approximation
(4.15). Besides the continu-
ous particle-hole spectrum
above the gap, there can only
be a single exciton peak de-
termined by Vχ′0 = 1 in the
weak coupling limit.

The bilayer t − J model (4.14) describes generally the p/n-
doped bilayer antiferromagnet. The behavior of a bound exciton,
however, depends on the magnitude of the Coulomb force V in
HV , equation (4.13). If this Coulomb repulsion is relatively weak,
the motion of holons and doublons will be rather independent
of each other and the HV can be treated as a perturbation on
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Ht + HJ . The full exciton-susceptibility χ(ω) can be obtained
from the bare susceptibility χ0(ω) in the absence of the Coulomb
force using the ladder diagram approximation,

χ(ω) =
χ0(ω)

1−Vχ0(ω)
. (4.15)

Since the undoped state is a Mott insulator, there is a gap in the
imaginary part of the bare susceptibility χ′′0 . Above this gap there
is an onset of the particle-hole continuum. In the ladder diagram
approximation, there can only be a single delta function peak in
the full susceptibility at Vχ′0 = 1 signaling the formation of an
exciton. We conclude that in the weak coupling limit no special
exciton features other than a single delta function peak can appear
in the gap. Following our expectation that realistic materials are
in fact in the strong coupling limit we will henceforth focus our
attention to the strong coupling limit.

In the strong coupling limit (V � t), the hopping term Ht

can be treated as a perturbation on the unperturbed HV using the
perturbation method developed by Kato,16 in a manner similar to 16 Kato, 1949

the derivation of the t− J model from the Hubbard model in the
previous section 4.1.1.17 In the limit of strong V we consider the 17 Klein and Seitz, 1973; Taka-

hashi, 1977; and Chao et al.,
1977

interlayer Coulomb interaction HV , which has eigenvalues

EÑ = V(N − N0 + Ñ) = E0 + VÑ (4.16)

where N is the total number of sites, N0 is the number of dopants
per layer and Ñ is the number of double occupied sites that do
not lie above a vacant site. It is clear that the ground state of HV is
given by the state where all double occupied and vacant sites lie
above each other, as depicted in figure 4.1. As mentioned before
an exciton consists of a double occupied and a vacant site bound
on top of each other. Consequently, the ground state of HV is the
state where all dopants are bound into excitons.

The essence of Kato’s perturbation method is that we now
forbid all states with higher HV eigenvalues. This implies that
we forbid states such as the one depicted in figure 4.5 where the
double occupied site is not on top of the vacant site. In zeroth
order, hopping of electrons is forbidden since that would break
up an exciton state. Therefore the zeroth order Hamiltonian only
contains Heisenberg terms H(0)

eft = HJ .
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Figure 4.5: The motion of
the composite exciton can be
related to the motion of its
constituents via Kato’s per-
turbation method. In this
method a virtual intermedi-
ate breakup of the exciton is
in between the initial state
(figure 4.1) and the final state
(figure 4.3). The kinetic en-
ergy of the exciton is there-
fore the product of the kin-
etic energies of the holon
and doublon divided by the
energy of this virtual state,
tex = teth/V.

	  

Virtual break-up  
of exciton 

Spin mismatch 

In second order we consider intermediate processes that virtu-
ally break up excitons, as shown in figure 4.5. The corresponding
effective Hamiltonian is given by

− 1
2V

PeHt(1− Pe)HtPe (4.17)

where Pe is the operator that projects out states with unbound
dopants. Let us define the exciton operator in terms of electron
creation operators

E†
i = c†

i1↑c
†
i1↓(1− ρi2), (4.18)

where ρi2 = ∑σ c†
i2σci2σ is the density operator in the p-type layer.

The perturbation theory now yields an exciton hopping term,
which can be formulated as

Ht,ex = − teth
V ∑

<ij>σσ′
E†

j

[
c†

i1σ′c
†
i2σcj2σcj1σ′

]
Ei (4.19)

Note that in this Hamiltonian, no break-up of the exciton is re-
quired. The virtual process as described before enables us to
relate the single layer kinetic energies to the bilayer exciton kinetic
energy,

t =
teth
V

. (4.20)

Here te is the hopping energy for a single electron, th the hopping
energy for a single hole and t is the hopping energy for a bound
exciton. In addition to this hopping process there are also second
order processes that equal a shift in chemical potential of the
excitons.

Hence the strong coupling limit of HV describes the motion of
bound excitons in a Mott insulator double layer. The correspond-
ing Hamiltonian is

H = Ht,ex + HJ (4.21)
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We will refer to this model as the exciton t− J model.
The hopping term (4.19) represents an exciton Ei on site i

swapping places with the spin background cjpσcjnσ′ on site j. This
Hamiltonian is in the electron Fock state representation with the
background determined by the bilayer Heisenberg model (4.12).
Unlike the fermionic holes in the single layer case, the exciton is
composed of a fermionic doublon and holon in the same rung,
and hence is a bosonic particle. We can therefore rewrite the
Hamiltonian in terms of bosonic operators. The local Hilbert
space on each interlayer rung is five dimensional with a basis in
terms of five hard-core bosons: one interlayer exciton state |E〉i
and four different spin states. In the singlet-triplet basis, which
is valid for both the doped and undoped case, we cast the exciton
t− J model explicitly in a purely bosonic language. The four hard
core spin bosons are one singlet state and three triplet states,

|0 0〉i =
1√
2
(c†

i1↑c
†
i2↓ − c†

i1↓c
†
i2↑)|0〉 (4.22)

|1 0〉i =
1√
2
(c†

i1↑c
†
i2↓ + c†

i1↓c
†
i2↑)|0〉 (4.23)

|1 1〉i = c†
i1↑c

†
i2↑|0〉 (4.24)

|1 − 1〉i = c†
i1↑c

†
i2↑|0〉. (4.25)

The hopping term (4.19) can be re-expressed as:

Ht,ex = −t ∑
<ij>
|Ej〉

(
|0 0〉i〈0 0|j + ∑

m
|1 m〉i〈1 m|j

)
〈Ei|. (4.26)

We can introduce the total spin operator

Si = si1 + si2 (4.27)

and the spin difference operator

S̃ = si1 − si2. (4.28)

Explicitly in terms of singlet and triplet rung states for S = 1
2 , this

reads18 18 van Duin and Zaanen, 1997

Sz
i = |1 1〉〈1 1| − |1 − 1〉〈1 − 1| (4.29)

S+
i =

√
2 (|1 1〉〈1 0|+ |1 0〉〈1 − 1|) (4.30)

S̃z
i = −|0 0〉〈1 0| − |1 0〉〈0 0| (4.31)

S̃+
i =

√
2 (|1 1〉〈0 0| − |0 0〉〈1 − 1|) . (4.32)
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In general, we see that the operator Si conserves the total onsite
spin, while S̃ always changes the total spin number s by a unit. The
z-components of the spin operators do not change the magnetic
number m, while the ±-components of the spin operators change
the magnetic number by a unit. The bilayer Heisenberg model is
now written as

HJ =
J
2 ∑
〈ij〉

(
Si · Sj + S̃i · S̃j

)
+

J⊥
4 ∑

i

(
S2

i − S̃2
i

)
. (4.33)

From now on we will study the exciton t-J model in the singlet-
triplet basis, which is given by the hopping term (4.26) and the
Heisenberg terms (4.33).

4.1.4 Sign problem

Notice that the Hilbert space no longer contains fermionic degrees
of freedom. The question is whether the disappearance of the
fermionic structure also leads to the disappearance of the fermi-
onic sign structure, which causes so much difficulties in the single
layer t− J model.1919 Wu et al., 2008

The sign structure can be investigated by considering the off-
diagonal matrix elements of the Hamiltonian. At half-filling the
fermionic signs in the standard t − J model on a bipartite lat-
tice can be removed by a Marshall sign transformation.20 Upon20 Marshall, 1955

doping, signs reappear whenever a hole is exchanged with (for
example) a down spin. Which matrix elements of the Hamiltonian
become positive (and thus create a minus sign in the path integral
loop expansion) depends on the specific basis and on the specific
Marshall sign transformation.

For the double layer exciton model, define a spin basis state
with a built-in Marshall sign transformation of the form2121 Compare to Weng, 2007.

|φ〉 = (−1)N↓An+N↓Bp

∣∣∣∣∣· · · ↓ ↑↓ ↑↓ 0 ↓
· · ·
〉

(4.34)

where N↓An is the number of down spins on the A sublattice in
the n-layer and similarly we define N↓Bp. With these basis states
the Heisenberg terms are sign-free and the only positive matrix
elements come from the exchange of an exciton with a m = ±1
triplet.
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We conclude that, even though the model is purely bosonic, the
exciton t− J model is not sign-free and it is not possible to remove
this sign structure using a Marshall or similar transformation.22 22 We are not claiming that

the sign structure cannot be
removed. Of course, if we
would know the exact ei-
genstates of the Hamiltonian
there would be no sign prob-
lem. However, finding a basis
where the sign structure van-
ishes is in general a NP-hard
problem (Troyer and Wiese,
2005).

However, as will be further elaborated upon in section 4.2.2, for
both the antiferromagnetic and singlet ground states these signs
do cancel out. Therefore for such ordered bilayers the problem of
exciton motion turns out to be effectively bosonic.

4.2 Frustration of a single exciton in an antiferromagnet

	  

	   	  

	  

J 

Figure 4.6: A moving hole
in an antiferromagnet creates
a string of upturned spins.
With increasing distance the
energy associated with the
frustrated bonds increases,
which leads to confinement
of the hole to its initial po-
sition. Upon inclusion of
quantum JS+S− corrections,
the hole can still move, al-
beit with renormalized band-
width.

The discovery of high Tc superconductivity triggered a con-

This section is based on Rade-
maker et al., 2012a and Rade-
maker et al., 2012b.

certed theoretical effort aimed at understanding the physics of
doped Mott insulators.23 Although much is still in the dark, the

23 Imada et al., 1998; and Lee
et al., 2006

problem of an isolated carrier in the insulator is regarded as well
understood.24 It turned out to be a remarkable affair, rooted in

24 Bulaevskii et al., 1968;
Brinkman and Rice, 1970;
Schmitt-Rink et al., 1988;
Kane et al., 1989; Martinez
and Horsch, 1991; and Dag-
otto, 1994

the quantum-physical conflict between the antiferromagnetism
of the spin system and the delocalizing carrier. This conflict is
at its extreme dealing with a classical Ising spin system, where
a famous cartoon arises for the idea of confinement (see figure
4.6): the hopping causes a ‘magnetic string’ of overturned spins
between the delocalizing charge and the spin left at the origin
with an exchange energy increasing linearly in their separation. It
was realized that the quantummechanical nature of the S = 1/2
Heisenberg spin system changes this picture drastically. The quan-
tum spin-corrections repair efficiently this ‘confinement damage’
in the spin background and one finds a ‘spin-liquid polaron’ as
quasiparticle that propagates coherently through the lattice on a
scale set by the exchange constant. This physics can be reliably
addressed by parametrizing the spin system in terms of its linear
spin waves (LSW), while the strong coupling between the spin
waves and the propagating hole is well described in terms of the
self consistent Born approximation (SCBA). This turned out to be
accurate to a degree that the photoemission results in insulating
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cuprates were quantitatively explained in this framework.25

25 Damascelli et al., 2003

A related problem is the delocalization of an exciton (bound
electron-hole pair, or more exactly the bound state of a double oc-
cupied and vacant site) through the antiferromagnetic background.
It is easy to see that the propagation of an exciton in a single layer
is barely affected by the antiferromagnetism since the combined
motion of the electron and the hole neutralize the ‘damage’ in the
spin system.26 A problem of interest for this thesis is the exciton26 Zhang and Ng, 1998

formed in a bilayer, where the electron and the hole reside in the
different layers. Here we report the discovery that such bilayer
excitons couple extremely strongly through their quantum motion
to the spin system.

Figure 4.7: Exciton spectral
function for J = 0.2t and
α = 0.2. On top of the in-
coherent bump a strong lad-
der spectrum has developed,
signaling Ising confinement.
The exact Ising ladder spec-
trum is shown in green dot-
ted lines. The Ising peaks are
very weakly dispersive, with
bandwidth of order J.

In fact, when the interlayer exchange coupling is small and the
exciton hopping rate is large, one enters a regime that is similar to
the confinement associated with the Ising spins, although the spin
system is in the quantized Heisenberg regime. This is illustrated
by the exciton spectral function shown in figure 4.7 as computed
with the LSW-SCBA method, showing the non-dispersive ‘ladder
spectrum’ which is a fingerprint of confinement. Figure 4.3 depicts
a cartoon of the confinement mechanism: every time the exciton
hops it creates two spin flips in the different layers that can only be
repaired by quantum spin superexchange driven by the interlayer
exchange coupling. The rapid intralayer quantum spin flips are
now ineffective, because the restoration of the antiferromagnetism
requires quantum spin flips that occur simultaneously in the two
layers with a probability that is strongly suppressed.
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This confinement effect can be studied directly in experiment
by measuring the exciton spectrum in c-axis optical absorption of
the YBa2Cu3O6 (YBCO) insulating bilayer system. Using realistic
parameters we anticipate that this will look like figure 4.8: the
main difference with figure 4.7 is that the exciton hopping rate is
now of order of the exchange energy and in this adiabatic regime
the spectral weight in the ladder spectrum states is reduced.

Figure 4.8: Expected exciton
spectral function for the c-
axis charge-transfer exciton
in YBCO bilayers. We used
model parameters J = 0.125
eV, t = 0.1 eV and α =
0.04. The exciton quasi-
particle peak has a disper-
sion with bandwidth t2/J,
and the quasiparticle peak
is the most pronounced at
the line between (π, 0) and
(0, π). Following at a dis-
tance of zt(J/t)2/3, a second-
ary peak develops as a sign
of Ising confinement.

4.2.1 Undoped case: the bilayer Heisenberg model

As described in section 4.1, we need to derive a spin wave theory
for the bilayer Heisenberg model before considering the dynamics
of the exciton. Similar to the traditional Holstein-Primakoff spin-
wave theory, we need a classical reference state, i.e. the mean field
ground state of the bilayer Heisenberg model, and subsequently
develop the linear corrections of the spin wave theory from the
mean field ground state. The method we present here is similar to
the one presented in Sommer et al., 2001.

The singlet-triplet basis (4.33) of the bilayer Heisenberg model
is convenient for mean field theory. Mean field theory tells us that
for large ratio J⊥/J the ground state is the singlet configuration
|0 0〉. For small J⊥/J, we expect antiferromagnetic ordering,
which amounts to a staggered condensation of S̃z. By setting
〈S̃z〉 = (−1)im̃ we obtain a mean field Hamiltonian

HMF
J = ∑

i

[
1
4

Jzm̃2 +
J⊥
4

(
S2

i − S̃2
i

)
− 1

2
Jzm̃(−1)iS̃z

i

]
(4.35)
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which has a order-disorder transition point at

αc ≡
(

J⊥
Jz

)
c
=

4
3

S(S + 1) (4.36)

where S is the magnitude of spin of the spin operator on each
site.2727 A proof of this result can

be found in Rademaker et al.,
2012b.

The basic idea of a spin wave theory28 is to start from this
28 Anderson, 1952; Kubo,
1952; and Dyson, 1956

semiclassical (mean field) ground state and describe the local
excitations with respect to this ground state. One can immediately
infer why the Holstein-Primakoff or Schwinger approach to spin
wave theories fails for the bilayer Heisenberg model. First, the
mean field ground state is no longer a Néel state for finite α.
Secondly, while Holstein-Primakoff describes one, and Schwinger
describes two onsite spin excitations, the bilayer Heisenberg has
in fact three types of excitations. This has been pointed out by
Chubukov and Morr, 1995, who called the ’third’ excitation the
longitudinal mode.

With the mean field ground state as described by (4.35) we
can ’reach’ all states in the local Hilbert space with three types of
excitations: a longitudinal e† which keeps the magnetic quantum
number m constant, and two transversal b†

± who change m by ±1.
In the limit of large S these excitations tend to become purely
bosonic. We will take the mean field ground state of (4.35) and
these three excitations as the starting point for the linear spin wave
theory.
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Figure 4.9: Ground state ener-
gies of the bilayer Heisenberg
model, with the spin wave
corrections included. At α ≈
0.605 there is a phase trans-
ition from the antiferromag-
netic phase (in red) to the
singlet phase (in green).

We must mention the obvious flaw in the above reasoning.
Where we criticized earlier spin wave theories because they pre-
dicted the wrong critical value of J⊥/Jz, we now apparently adopt
such a ’wrong’ theory since (4.36) predicts αc = 1 for S = 1

2 !
Nevertheless, the presence of spin waves changes the ground state
energy which makes the disordered state more favorable even
below the mean field critical

(
J⊥
Jz

)
c

calculated in the above, see
figure 4.9. Hence, when the ground state energy shifts are taken
into account in linear order, one finds an accurate critical value
for α consistent with numerical calculations.

Let us now construct explicitly the spin wave theory described
in the above for S = 1

2 . First, one needs to find the ground state
according to equation (4.35). In the S = 1

2 case, this amounts to
a competition between the singlet state |s = 0, m = 0〉 and the
triplet |s = 1, m = 0〉. The mean field ground state on each rung
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is given by a linear superposition of those two,

|G〉i = ηi cos χ|0 0〉i − sin χ|1 0〉i, (4.37)

which interpolates between the Néel state (χ = π/4) and the
singlet state (χ = 0). The onset of antiferromagnetic order can
thus be viewed as the condensation of the triplet state in a singlet
background.29 With ηi = (−1)i alternating we have introduced 29 van Duin and Zaanen, 1997;

and Sommer et al., 2001a sign change between the two sublattices A and B. The angle χ

will be determined later by self-consistency conditions.
The three operators that describe excitations with respect to the

ground state are

e†
i = (ηi sin χ|0 0〉i + cos χ|1 0〉i) 〈G|i, (4.38)

b†
i+ = |1 1〉i〈G|i, (4.39)

b†
i− = |1 − 1〉i〈G|i. (4.40)

The e-operators will later turn out to represent the longitudinal
spin waves, whereas the b-operators represent the two possible
transversal spin waves.

The bilayer Heisenberg model can be rewritten in terms of
these operators. For completeness we include the parameter λ

that enables a comparison with the Ising limit (λ = 0) with the
Heisenberg limit (λ = 1),

S1 · S2 = Sz
1Sz

2 +
1
2

λ(S+
1 S−2 + S−1 S+

2 ). (4.41)

Given this, we can explicitly write down the spin operators in
terms of the new e and b operators,

Sz
iσ = b†

+iσb+iσ − b†
−iσb−iσ (4.42)

S+
iσ =

√
2
(
− sin χ(b†

+iσ + b−iσ) + cos χ(b†
+iσeiσ + e†

iσb−iσ)
)

(4.43)

S̃z
iσ = (−1)σi

(
sin 2χ(1−∑

±
b†
±iσb±iσ − 2e†

iσeiσ)− cos 2χ(e†
iσ + eiσ)

)
(4.44)

S̃+
iσ =

√
2(−1)σi

(
cos χ(b†

+iσ − b−iσ) + sin χ(b†
+iσeiσ − e†

iσb−iσ)
)

. (4.45)

From the requirement that the Hamiltonian does not contain
terms linear in spin wave operators we obtain the self-consistent
mean field condition for the ground state angle χ,

(cos 2χ− αλ) sin 2χ = 0 (4.46)
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which has two possible solutions: either χ = 0, which corresponds
to a singlet ground state configuration (the disordered phase), or
cos 2χ = αλ corresponding with an antiferromagnetic ordered
phase. These are indeed the two phases represented in figure 4.2.
Which of the two solutions ought to be chosen, depends on the
ground state energy competition. In figure 4.9 we compare the
ground state energy of both phases, from which we can deduce
that the critical point lies at αc ≈ 0.6, consistent with the numerical
literature.3030 Sandvik et al., 1995; and

Sandvik and Scalapino, 1994 The dispersion of the spin wave excitations can be found when
we consider only the quadratic terms in the Hamiltonian. This is
called the ‘linear’ spin wave approximation, and it amounts to
neglecting the cubic and quartic interaction terms. First take a
Fourier transform of the spin wave operators

e†
iσ =

√
2
N ∑

k
e†

kσeik·ri (4.47)

where the sum over k runs over the 2/N momentum points in the
domain [−π, π]× [−π, π] and σ = A, B represents the sublattice
index. A similar definition is used for the b-operators.

Upon Fourier transformation, we can decouple the spin waves
from the two sublattices A and B by introducing

e†
k,p =

1√
2
(e†

kA + pe†
kB) (4.48)

where p = ± stand for the phase of the spin mode. Modes with
p = −1 are out-of-phase and have the same dispersion as the
in-phase p = 1 modes but shifted over the antiferromagnetic
wavevector Q = (π, π). Similar considerations apply to the b
operators.

Next we perform the Bogolyubov transformation on the mag-
netic excitations,

e†
k,p = cosh ϕk,pζ†

k,p + sinh ϕk,pζ−k,p (4.49)

b†
k,p,+ = cosh θk,pα†

k,p + sinh θk,pβ−k,p (4.50)

b†
k,p,− = cosh θk,pβ†

k,p + sinh θk,pα−k,p (4.51)

The corresponding transformation angles are set by the require-
ment that the Hamiltonian becomes diagonal in the new operators
ζ (the longitudinal spin wave) and α, β (the transversal spin waves).
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In doing so, we introduced the ’ideal’ spin wave approximation
in which we assume that the spin wave operators obey bosonic
commutation relations.31 This assumption is exact in the large S 31 Dyson, 1956

limit. For S = 1
2 this approximation turns out to work extremely

well,32 since the corrections to the bosonic commutation relations 32 Manousakis, 1991

are expressed as higher order spin-wave interactions. The Bogoly-
ubov angles are given by

tanh 2ϕk,p =
−p 1

2 cos2 2χγk

sin2 2χ + λα cos 2χ− p 1
2 cos2 2χγk

, (4.52)

tanh 2θk,p =
pλγk

sin2 2χ + (1 + λ)α cos2 χ− pλ cos 2χγk
.(4.53)

The factor γk encodes for the lattice structure, and it equals for a
square lattice

γk =
1
z ∑

δ

eik·δ =
1
2
(
cos kx + cos ky

)
(4.54)

where the sum runs over all nearest neighbor lattice sites δ. The
Bogolyubov angles still depend on χ, which characterizes the
ground state. In the antiferromagnetic phase cos 2χ = λα and for
the Heisenberg limit λ = 1 these angles reduce to

tanh 2ϕk,p =
−pα2γk

2− pα2γk
, (4.55)

tanh 2θk,p =
pγk

1 + α− pαγk
. (4.56)

We can distinguish between the longitudinal and transversal spin
excitations, with their dispersions given by

εL
k,p = Jz

√
1− pα2γk (4.57)

εT
k,p =

1
2

Jz
√

(1 + α(1− pγk))2 − γ2
k (4.58)

The longitudinal spin wave is gapped and becomes in the limit
where the layers are decoupled (α = 0) completely non-dispersive,
while the transversal spin wave is always linear for small mo-
mentum k. This type of spectrum is similar to a phonon spectrum,
which contains a linear k-dependent acoustic mode and a gapped
flat optical mode. This correspondence between spin waves and
phonons enables us to use techniques from electron-phonon inter-
action studies for the exciton-spin wave interactions.
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Figure 4.10: Dispersion of
the bilayer Heisenberg spin
waves for different values of
α. The top row has α = 0.04
and α = 0.4, the bottom row
α = 0.9 and α = 1.1. In
the antiferromagnetic phase
(first three pictures) there is a
clear distinction between the
longitudinal spin waves (long
dashed lines in green) and
the transversal spin waves
(solid line in blue; and the
short dashed in red). The
first is gapped, whilst the
latter is zero at either k =
(0, 0) or (π, π) with a linear
energy-momentum depend-
ence. In the singlet phase,
all spin waves are gapped
triplet excitations (depicted
as solid blue line and dashed
red line). On the other hand, in the singlet phase (α > 1) one has trivially

three identical triplet spin excitations. The Bogolyubov angles
are given by

tanh 2ϕk,p = − tanh 2θk,p =
−pγk

2α− pγk
(4.59)

and the dispersion of the triplet spin waves is

εk,p = Jz
√

α(α− pγk). (4.60)

These dispersions correspond to earlier numerical and series ex-
pansions results.33 In fact, these results are exactly equal to the33 Kotov et al., 1998; Wei-

hong, 1997; Gelfand, 1996;
and Chubukov and Morr,
1995

dispersions obtained in the non-linear sigma model.34

34 van Duin and Zaanen, 1997

The above derivation adds to earlier studies of the bilayer Heis-
enberg model in that we now found explicit expressions of how
the spin waves are related to local spin flips, equations (4.49)-(4.53).
This microscopic understanding of the magnetic excitations of the
system enables us in the next section to derive how magnetic
interactions influence the dynamics of excitons.

4.2.2 A single exciton in a correlated bilayer

We are now in the position to derive the dynamics of a single
exciton in the undoped bilayer. Note that in the thermodynamic
limit a single exciton will not change the ground state. Following
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the exciton hopping Hamiltonian (4.26) we can express the dy-
namics of the exciton upon interaction with the spin wave modes.
A single exciton can be physically realized by either exciting a
interlayer charge-transfer exciton in the undoped bilayer, or by
infinitesimal small chemical doping of layered structures.

Similar to the single layer case,35 we consider the mean field 35 Schmitt-Rink et al., 1988

state |G〉 as the vacuum state and from there we write the effective
hopping Hamiltonian for a single exciton as

Ht,ex = t ∑
〈ij〉

E†
j Ei

[
cos 2χ(1− e†

i ej) + sin 2χ(e†
i + ej)−∑

σ

b†
iσbjσ

]
+ h.c.. (4.61)

The dynamics of a single exciton are contained in the dressed
Greens function, formally written as

Gp(k, ω) = 〈ψ0|Ek,p
1

ω− H + iε
E†

k,p|ψ0〉 (4.62)

where E†
k,p is the Fourier transformed exciton creation operator,

and p indicates the same phase index as used for the spin waves
in equation (4.48). The |ψ0〉 denotes the ground state that arises
from the spin wave approximation,36 hence |ψ0〉 is defined by the 36 Manousakis, 1991

conditions
ζk,p|ψ0〉 = αk,p|ψ0〉 = βk,p|ψ0〉 = 0 (4.63)

for all k, p. Note that |ψ0〉 is not equal to the mean field ground
state |G〉 defined in equation (4.37).

The Greens function cannot be solved exactly and one needs
to develop a diagrammatic expansion in the parameter t. For this
purpose, we have derived the corresponding Feynman rules of the
exciton t− J model, see appendix D of Rademaker et al., 2012b.

Using Dyson’s equation one can rephrase the diagrammatic
expansion in terms of the self-energy Σp(k, ω) such that

Gp(k, ω) =
1

ω− ε
p
0 (k)− Σp(k, ω) + iε

(4.64)

where ε
p
0 (k) is the dispersion in the absence of spin excitations

for the exciton with phase p. The self-energy can be computed
by summing all one-particle irreducible Feynman diagrams. The
degree to which exciton motion contains a free part grows with α,
and indeed the free dispersion is

ε
p
0 (k) = p zt cos 2χ γk (4.65)
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where cos 2χ equals αλ in the antiferromagnetic phase and equals
1 in the singlet phase.

As we noted before, the spin wave spectrum resembles a
phonon spectrum. Hence we can compute the exciton self-energy
using the Self-Consistent Born Approximation (SCBA),37 an ap-37 Schmitt-Rink et al., 1988;

and Kane et al., 1989 proximation scheme developed for electron-phonon interactions
but subsequently successfully applied to the single layer t − J
model.

The SCBA is based on two assumptions: 1) that one can neg-
lect vertex corrections and 2) one uses only the bare spin wave
propagators. The first assumption is motivated by an extension of
Migdal’s theorem. For electron-phonon interaction, higher order
vertex corrections are of order m

M where m is the electron mass
and M is the ion mass. This justifies that for electron-phonon
interactions the SCBA is right.38 Comparisons between the SCBA38 Fetter and Walecka, 2003

and exact diagonalization methods for the single layer t− J model
have shown that it is justified to neglect the vertex correction there
as well.39 The second assumption is motivated by the linear spin39 Martinez and Horsch, 1991

wave approximation. Consequently, all remaining diagrams are
of the ’rainbow’ type which can be summed over using a self-
consistent equation. The assumption that the vertex corrections
are irrelevant allows us to completely resum Feynman diagrams
up to all orders in t. The SCBA is therefore not a perturbation
series expansion and consequently t does not necessarily has to
be a small parameter.

For the exciton t− J model, the SCBA amounts to computing
the self-energy for the in-phase exciton, as shown diagrammatic-
ally in figure 4.11. The usual Feynman rules dictate that we need
to integrate over all intermediate frequencies of the virtual spin
waves. However, under the linear spin wave approximation the
spin wave propagator is i/(ω′ − ε(k) + iε) which amounts to a
Dirac delta function in the frequency domain integration.40 For40 Schmitt-Rink et al., 1988

example, the first diagram of figure 4.11 is reduced as follows,

1
N ∑

q,p

∫ ∞

−∞

dω′

π
M2

k,qGp(k− q, ω−ω′)

[
i

ω′ − εL
k,p + iε

]

=
1
N ∑

q,p
M2

k,qGp(k− q, ω− εL
q,p), (4.66)

where Mk,q is the vertex contribution and Gp(k, ω) is the exciton
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propagator. Emission (or absorption) of a spin wave by an exciton
can thus be incorporated by changing the momentum and energy
of the exciton propagator. Analytically we write for the in-phase
exciton self-energy,

Σ+(k, ω) =
z2t2

N
sin2 2χ ∑

q,p

(
γk−q cosh ϕq,p + pγk sinh ϕq,p

)2
Gp(k− q, ω− εL

q,p)

+
z2t2

N2 cos2 2χ ∑
q,q′

∑
±,p

(
γk+q′ cosh ϕq,p sinh ϕq′ ,±p ± γk+q cosh ϕq′ ,±p sinh ϕq,p

)2

×G±
(

k− q− q′, ω− εL
q,p − εL

q′ ,±p

)
+

z2t2

N2 ∑
q,q′

∑
±,p

(
γk−q cosh θq,p sinh θq′ ,±p ± γk−q′ cosh θq′ ,±p sinh θq,p

)2

×G±
(

k− q− q′, ω− εT
q,p − εT

q′ ,±p

)
(4.67)

which depends on the exciton propagator and the Bogolyubov
angles derived in the previous section. A similar formula to (4.67)
applies to Σ−. However, it is easily verified that

Σ−(k, ω) = Σ+(k + (π, π), ω) (4.68)

since γk+(π,π) = −γk. In general the SCBA (4.67) cannot be solved
analytically, and hence we have obtained the exciton spectral
function

A(k, ω) = − 1
π

Im [G(k, ω)] (4.69)

using an iterative procedure with Monte Carlo integration over
the spin wave momenta discretized on a 32 × 32 momentum grid.
We start with Σ = 0 and after approximately 20 iterations the
spectral function converged. The results for typical values of α, J
and t are shown in figures 4.12 to 4.15.

We start from the situation with α > 1 where the magnetic back-
ground is a disordered phase with all spin singlet configuration in

! !!!

Figure 4.11: Feynman dia-
gram representation of the
Self-Consistent Born Approx-
imation (SCBA) of equation
(4.67). The self-energy of
the exciton depends self-
consistently on ’rainbow’ dia-
grams where it emits and ab-
sorbs either one or two spin
waves. The left two diagrams
contain interaction with the
longitudinal spin wave (solid
green wavy propagators with
ζ labels). The diagram
to the right contains the
interaction with the trans-
versal spin waves; where the
dotted (blue, upper, wavy)
propagator denotes the α
spin wave and the dashed
(red, lower, wavy) propag-
ator denotes the β spin wave.
The definitions of ζ, α and β
are given in equations (4.49)-
(4.51). Note that vertex cor-
rections are neglected in the
SCBA.
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Figure 4.12: Exciton spectral
function for parameters J = t
and α = 1.4. The only rel-
evant feature is the strong
quasiparticle peak with dis-
persion equal to 8t, where t
is the hopping energy of the
exciton. The horizontal axis
describes energy, the vertical
axis is the spectral function
in arbitrary units.
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the same rung. In this case, the free dispersion of the exciton with
bandwidth proportional to t survives because all the magnetic
triplet excitations are gapped, with a gap energy of Jz

√
α(α− 1).

For t < J, the exciton-magnetic interactions will barely change the
free dispersion while for t > J such exciton-magnetic interactions
can still occur, leading to a small ’spin polaron’ effect where the
exciton quasiparticle (QP) peak is diminished and spectral weight
is transferred to a polaronic bump at a higher energy than the
quasiparticle peak. For most values of t/J this effect is, however,
negligible already for α just above the critical point. The exciton
spectral function for t = J and α = 1.4 can be seen in figure 4.12.

As α decreases towards the quantum critical point at α = 1,
the gap of the triplet excitations also decreases. The effect of
the exciton-magnetic interactions become more significant, which
leads to an increasing transfer of spectral weight from the free
coherent peak to the incoherent parts. When α hits the quantum
critical point the gap to all spin excitations vanishes. There the
motion of the exciton is strongly scattered by the spin excitations,
completely destroying the coherent peak and leading to an in-
coherent critical hump in the spectrum as shown in figure 4.13.
When α further decreases to values α < 1, the magnetic back-
ground becomes antiferromagnetically ordered with two gapless
transverse modes and one gapped longitudinal mode. In this case,
the motion of the exciton is still strongly scattered with the spin
excitations leaving a footprints in the exciton spectrum.

A most striking phenomenon happens at α = 0, when the two
layers are effectively decoupled and we would expect a similar be-
havior for an interlayer exciton as for a hole or electron in a single
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Figure 4.13: Exciton spectral
function at the quantum crit-
ical point, for J = 0.2t and
α = 1. No distinct quasi-
particle peak is observable,
and at all momenta a broad
critical bump appears in the
spectrum.

Figure 4.14: A qualitative
overview of zero momentum
exciton spectral functions
A(k = 0, ω) for various para-
meters of t/J and small in-
terlayer coupling α. For
α identically zero, the ratio
t/J determines the amount
of excited spin waves. In
the adiabatic limit t � J
no spin waves can be ex-
cited by and the exciton is
localized with a clear quasi-
particle peak. Upon increase
of t/J more and more spec-
tral weight is transferred to
higher order spin wave peaks,
which in the anti-adiabatic
limit t � J leads to the
formation of a broad inco-
herent spectrum. The inclu-
sion of a small nonzero in-
terlayer coupling α reduces
the incoherence of this spec-
trum, see equation (4.71). As
a result the Ising-like lad-
der spectrum becomes more
pronounced. Here we only
show the zero momentum
spectra, in figures 4.7, 4.8,
4.12, and 4.13 the momentum
dependence of these spectra
is shown.

layer. Indeed conform with the single hole in the t− J model41

41 Schmitt-Rink et al., 1988;
and Kane et al., 1989

we find that a moving exciton causes spin frustration with an
energy proportional to J. In the limit where J � t the kinetic
energy of the exciton becomes too small for it to propagate coher-
ently through the magnetic background. Therefore, we expect a
localization of the exciton which is reflected in the spectral data
by an almost non-dispersive quasiparticle peak. This peak has a
bandwidth proportional to t2/J and carries most of the spectral
weight, 1−O(t2/J2). The remaining spectral weight is carried by
a second peak, at an energy Jz above the main peak.

More complex behavior at α = 0 arises in the anti-adiabatic
limit t � J, where the kinetic energy of the exciton is large
compared to the energy required to excite (and absorb) spin waves.
Consequently, many spin waves are excited as the exciton moves
and the exciton becomes ’overdressed’ with multiple spin waves.
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At nonzero J, however, a very small quasiparticle peak remains
with a bandwidth of order J. Nonetheless the majority of spectral
weight is carried in the incoherent many-spin wave part.

However, realistic physical systems are expected to have a
small nonzero value of α and an intermediate value of t/J. What
happens here? A simple extrapolation of the two aforementioned
cases yields that the bandwidth of the quasiparticle peak will
reach its maximum value at J ≈ t. Similar extrapolations suggest
that about half of the spectral weight will be carried by the QP
peak. However, inclusion of a finite value of α is not so trivial on
an analytical level. Numerical results are therefore needed, and
an overview of spectral functions for different ratios of t/J and
small values of α is given in figure 4.14.

4.2.3 The mechanism of Ising-like confinement

Upon the inclusion of a small nonzero interlayer coupling α a
ladder spectrum seems to appear, reminiscent of the spectrum of
a single hole in a Ising antiferromagnet. Physically, this can be
understood as follows. In the α = 0 limit, the magnetic interactions
are dominated by the transverse excitations which are just single
layer spin waves. For any finite α > 0 the (interlayer) longitudinal
spin waves become increasingly relevant. To understand their
effect on the exciton spectral function, consider the SCBA equation
(4.67), neglect the diagrams involving transversal spin waves and
expand the self-energy up to first order in α. Only the single spin
wave diagram contributes and it equals

Σ+(k, ω) =
z2t2

N ∑
q,±

γ2
k−qG±(k− q, ω− Jz) (4.70)

from which we deduce, observing that Σ− = Σ+ and shifting the
momentum summation, that the self-energy must be momentum-
independent and given by the self-consistent equation

Σ(ω) =
1
2 z2t2

ω− Jz− Σ(ω− Jz)
. (4.71)

This self-energy is exactly the same as the self-energy of a single
dopant moving through an Ising antiferromagnet.42 In fact,42 Kane et al., 1989

in any system where a moving particle automatically excites a
gapped and flat mode the self-consistent equation (4.71) applies.
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As described in Kane et al., 1989, a hole in an Ising antifer-
romagnet is effectively confined by the surrounding magnetic
texture. Each hop away from its initial point increases the energy,
thus creating a linear potential well for the hole. In such a lin-
ear confinement potential a ladder spectrum appears where the
energy distance between the to lowest peaks scales as t(J/t)2/3.
The spectral weight carried by higher order peaks vanishes as
t/J → 0.43 43 Kane et al., 1989

The Ising-like features in the exciton spectral function are ex-
plicitly visible in the numerically computed dispersions shown
in figures 4.7 and 4.14. We indeed conclude that the visibility
of the ladder spectrum is actually enhanced in the bilayer case
presented here relative to the hole in the single layer due to the
nondispersive interlayer spin excitations.

Of course the exciton ladder spectrum in figure 4.7 is not exactly
sharp. By the above analysis, we can infer that the incoherent
broadening of peaks is due to interactions with the transversal
spin waves. Indeed, the transversal spin waves can be viewed as
the equivalent of the single layer spin waves. Therefore for small α

the effect of transversal spin waves is to mildly quantize the Ising
limit, and the results become reminiscent of a single hole in the
t− J model, including the quasiparticle peak broadening.

4.2.4 Relation to experiment

The formation of kinetically frustrated bound exciton states can be
experimentally verified by measurements of the dielectric function
or any other charge-excitation measurements. One particular
example is electron energy loss spectroscopy (EELS), showing for
instance clear signatures of the in-plane charge transfer excitons
in cuprates.44 The EELS cross-section is directly related to the 44 Wang et al., 1996; and

Zhang and Ng, 1998dielectric function45 via the dynamical structure factor S(q, ω),
45 Schnatterly, 1979

dσ ∝
1
q4 S(q, ω) ∝

1
q2 Im

[
−1

ε(q, ω)

]
(4.72)

with the dynamical structure factor defined as

S(q, ω) =
1
N

∫ dt
2π

e−ε|t|∑
λ

〈ψ0|∑
i

e−iq·ri ei(ω−H)t|λ〉

×〈λ|∑
j

eiq·rj |ψ0〉 (4.73)
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where the sum λ runs over all intermediate states, and |ψ0〉 is the
initial state of the system. We use the dipole expansion such that

eiqri = 1 + i~q ·~ri + . . . (4.74)

where the electron position operator can be expanded in terms of
the possible electron wave functions in the tight binding approx-
imation,

∑
i
~ri = ∑

ijσ
c†

iσcjσ〈φi|~r|φj〉 (4.75)

where |φi〉 are the Wannier wave functions of the electron on site
i. The z component of 〈φi|~r|φj〉 is proportional to the interlayer
hopping energy t⊥, which in turn is equal to the the creation
operator of an exciton,

rz ∝ t⊥∑
iσ

c†
inσcipσ + h.c. (4.76)

∝ t⊥∑
i

(
E†

i + Ei

)
(4.77)

We recognize the Fourier transform of the k = 0 excitonic state, so
that we find

S(qz, ω) ∝ (qzt⊥)2
∫ dt

2π
e−ε|t|∑

λ

〈ψ0|Ek=0 ei(ω−H)t|λ〉

×〈λ| E†
k=0|ψ0〉. (4.78)

We have introduced the term e−ε|t| to ensure convergence of the
integral so that we can integrate over t. We find that the dynamic
structure factor is directly related to the exciton spectral function

S(qz, ω) ∝ (qzt⊥)2〈ψ0|Ek=0

(
i

ω− H + iε
−

i
ω− H − iε

)
E†

k=0|ψ0〉

∝ (qzt⊥)2 A(k = 0, ω) (4.79)

or in other words

Im
[
ε−1(qz, ω)

]
∼ (t⊥)2 A(k = 0, ω). (4.80)

Consequently, one expects the bound exciton states to show up in
EELS measurements when probing the z-axis excitations. In addi-
tion to the bound exciton states, a broad electron-hole continuum
will show up at high energies.
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0 0.2 0.4 eV-0.2-0.4

2nd Ising peak
distance: zt (J/t)2/3 ~ 0.4 eV

e-h continuum
distance: V ~ 1.5 eV

Figure 4.15: Expected zero-
momentum exciton spectral
function for the c-axis charge-
transfer exciton in YBCO
bilayers. We used model
parameters J = 0.125 eV,
t = 0.1 eV and α = 0.04.
A pronounced quasiparticle
peak is followed at a distance
of zt(J/t)2/3 by a secondary
peak as a sign of Ising con-
finement. The electron-hole
continuum sets in at an en-
ergy V ∼ 1.5 eV above the
center of this spectrum. The
momentum dependence of
this spectrum is shown in fig-
ure 4.8.

Another possible way to detect interlayer excitons is to use
optical probes. The optical conductivity σ(q, ω) of a material is
related to the dielectric function46 by

46 Bruus and Flensberg, 2004

ε−1(q, ω) = 1− i
q2

ω
Vc(q)σ(q, ω), (4.81)

where Vc(q) is the Fourier transform of the Coulomb potential
1

ε0|r−r′ | . The real part of the c-axis optical conductivity is therefore
proportional to the exciton spectral function. Similar consider-
ations hold when one measures the Resonant Inelastic X-ray
Scattering (RIXS)47 spectrum. 47 Ament et al., 2011

When comparing the dielectric function with the computed
spectral functions in figures 4.12-4.15, do bear in mind that the
latter are shifted over an energy E0 required to excite an interlayer
exciton. This energy is of the order of electron volts. For example,
along the ab-plane in cuprates charge-transfer excitons are ob-
served in the range of 1-2 eV.48 Since the energy required for a 48 Basov and Timusk, 2005

charge-transfer excitation is largely dependent on the onsite repul-
sion, we expect that the c-axis exciton will be visible at comparable
energy scales.

How would then the exciton spectrum look like for a realistic
material, such as the bilayer cuprate YBa2Cu3O7−δ (YBCO)? Fol-
lowing earlier neutron scattering experiments49 one can deduce 49 Imada et al., 1998; and Tran-

quada et al., 1989that the effective J = 125± 5 meV and J⊥ = 11± 2 meV, which
corresponds to an effective value of α = 0.04αc where αc is the
critical value of α.50 The question remains what a realistic estimate 50 Chubukov and Morr, 1995

of the exciton binding energy is. The planar excitons are known
to be strongly bound51 with binding energy of the order of 1-2 51 Zhang and Ng, 1998

eV. Since the Coulomb repulsion scales as V ∼ (εr)−1, we can
relate the binding energy of the interlayer excitons to that of the
planar excitons. The distance between the layers is about twice
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the in-plane distance between nearest neighbor copper and oxy-
gen atoms, but simultaneously we expect the dielectric constant
εc along the c-axis to be smaller than εab due to the anisotropy
in the screening. Combining these two effects, we consider it a
reasonable assumption that the interlayer exciton binding energy
is comparable to the in-plane binding energy. The hopping energy
for electrons is approximately te = 0.4 eV which yields, together
with a Coulomb repulsion estimate of V ∼ 1.5 eV, an effective
exciton hopping energy of t ∼ 0.1 eV. Note that these estimates of
V/t justify our use of the strong coupling limit in section 4.1.3.

The spectral function corresponding to these parameters is
shown in figure 4.15. Since t ∼ J the ladder spectrum is strongly
suppressed compared to the aforementioned anti-adiabatic limit.
However, the Ising confinement still shows its signature in a
small ‘second ladder peak’ at 0.4 eV energy above the exciton
quasiparticle peak. To the best of our knowledge and to our
surprise, the c-axis optical conductivity of YBCO has not been
measured before in the desired regime with energies above 1

eV.52 Detection of this second ladder peak in future experiments

52 Confirmed in private com-
munications with D. van der
Marel. In addition, stand-
ard review articles on optical
absorption in cuprates (such
as Basov and Timusk, 2005)
indeed only show infrared
measurements (< 1000 cm−1)
of the c-axis optical absorp-
tion in insulating cuprates.

would suggest that indeed the interlayer excitons in cuprates are
frustrated by the spin texture.


