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3
Fermionic models of correlated bilayers

Many properties of an exciton condensate can be deduced by considering the phenomen-
ological Ginzburg-Landau free energy. However, to find specific susceptibilities that match
experiments we need a microscopic model, starting with the basic constituents of a correlated
bilayer: electrons, holes, and their interactions.

We introduce the fermionic Hubbard model, a remarkably elegant model that still
torments many theoretical physicists. Within the mean field theory picture it is easy to
discover exciton condensation, as demonstrated in section 3.2. However, the cuprate family
that we study has strong interactions and mean-field theory is at best uncontrolled, and at
worst completely wrong. We therefore perform a numerical study using the Determinant
Quantum Monte Carlo approach, with limitations rooted in the fermion sign problem.

U

t

Figure 3.1: In the tight bind-
ing approximation the elec-
tron states are given by orbit-
als on an ionic lattice. The
dynamics of the electrons is
described by the Hubbard
model, with hopping t and
an onsite repulsion U.

3.1 The Hubbard model and its problems
A good introduction into the
Hubbard model can be found
in Zaanen, 1996 and Imada
et al., 1998.

Many metals and alloys such as the cuprates are crystalline solids,
for which most electronic properties can be derived using the
tight-binding approximation. There one assumes that the electron
wavefunctions are still atomic orbitals and electrons can ‘hop’ from
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Figure 3.2: Lattice structure
of electron and hole-doped
cuprates. The interesting
physics happens in copper
oxide planes, with rare earth
ions in between the layers.
Doping is obtained by chem-
ical changes in the rare earth
layers.

one orbital to the other. This process is described by a hopping
Hamiltonian

HK = −∑
ijσ

tijc†
iσcjσ (3.1)

where c†
iσ creates an electron at site i with spin σ and tij is the

overlap between two atomic orbitals. With the addition of a
chemical potential µ, which tunes the electron density, this model
represents the simple Fermi gas. A Fourier transformation turns
the Hamiltonian into a diagonal form in momentum space,

HFG = ∑
kσ

(εk − µ) c†
kσckσ (3.2)

where εk is the Fourier transform of tij and is called the dispersion.
We find that the ground state is an antisymmetrized product
state, which can be viewed as a marginal extension of the classical
condensates mentioned in the introduction.

Next to the hopping, which is associated with kinetic energy,
there exist interactions between the electrons.1 This is typically a1 There also exist ion-ion in-

teractions and electron-ion in-
teractions, which are com-
monly referred to as electron-
phonon coupling. We neglect
those in this thesis.

density-density interaction of the form V(r− r′)n(r)n(r′), where
V(r) is the (screened) Coulomb potential and n(r) = c†(r)c(r) is
the electron density. Landau2 famously showed that when one

2 Nozieres and Pines, 1999
slowly turns on these interactions, there remains a one-to-one cor-
respondence between the ground state and excitations of the Fermi
gas and the Fermi liquid. This principle of adiabatic continuation
allows us to neglect electron-electron interactions (or at most treat
them perturbatively) in most metals and semiconductors.
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However, there is a class of materials for which the interactions
are so strong that the picture of adiabaticity breaks down. This
is often the case when d- or f -orbitals are involved. Then the
simplest approach is to include the onsite Coulomb interaction

HU = U ∑
i

ni↑ni↓, (3.3)

which leads to the famous Hubbard model3 3 Anderson, 1959; and Hub-
bard, 1963

HH = −t ∑
〈ij〉σ

c†
iσcjσ − µ ∑

iσ
c†

iσcjσ + U ∑
i

ni↑ni↓, (3.4)

where we restricted the hopping to be nearest neighbor only.
Figure 3.1 illustrates the elementary physics described by such a
Hubbard model on a square lattice.

It is quite embarrassing that even today the physics of the
Hubbard model is not fully understood. The first reason lies in
the inherent competition between kinetic and potential energy. The
kinetic energy is diagonal in momentum space, which suggests we
should treat the electrons as waves. The potential energy, however,
is diagonal in real space, hence we should consider the electrons as
particles. The quantum mechanical particle-wave duality reaches
its apex of complexity when zt ≈ U.4 4 The factor z is the coordin-

ation number of the lattice,
thus zt is proportional to the
bandwidth or kinetic energy.

Another reason that the Hubbard model is so poorly under-
stood is the fermion sign problem. In numerical analysis this
means that one cannot map the model onto a classical probabil-
istic theory. Analytical progress is difficult since the sign problem
implies that wavefunctions are no longer simple product states
but rather complicated long-range entangled states.5 5 Liang et al., 1988

Despite these issues, we can construct a microscopic model of
a strongly correlated bilayer based on the Hubbard model. The
extended bilayer Hubbard model contains a kinetic part

HK = −t ∑
〈ij〉`σ

c†
i`σcj`σ −∑

i`
µ`ni` − t⊥∑

iσ
(c†

i1σci2σ + h.c.) (3.5)

where t is the intralayer hopping, t⊥ is the interlayer hopping and
µ` is the chemical potential per layer. We denote lattice sites by
their in-plane index i and their layer number ` = 1, 2. Next to the
kinetic part the model contains the onsite interaction

HU = U ∑
i`

ni`↑ni`↓ (3.6)
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Figure 3.3: The extended
bilayer Hubbard model (3.5)-
(3.7) describes two layers
with in-plane hopping t and
interlayer t⊥, onsite repul-
sion U and interlayer Cou-
lomb interaction V.

U

V

t

layer  1

layer  2
t

and the interlayer interaction

HV = ∑
ijσσ′

Vijni1σnj2σ′ . (3.7)

A graphic representation of the extended bilayer Hubbard model
is shown in figure 3.3.

The occurrence of interlayer excitons in this model can be
investigated in various limits. Whenever the interactions U and V
are relatively weak mean field theory is applicable, similar to how
BCS theory describes the pairing of electrons into Cooper pairs.66 Bardeen et al., 1957

This will be detailed in the next section.
Another limit is the Hubbard model on a bipartite and half-

filled7 lattice with strong interaction U. There the system unam-7 Bipartite means I can sub-
divide the lattice into two
sublattices, and every site is
only connected to sites on the
other sublattice. Half-filling
means that there is on aver-
age 1 electron per lattice site.

biguously becomes a Mott insulator.8 The electrons are localized

8 Mott, 1949; Anderson, 1952;
and Marshall, 1955

and only their spin degree of freedom remains, which in turn
order antiferromagnetically. The effective physics can then be
expressed in a bosonic spin language, which will be discussed in
chapter 4.

The final approach to the fermionic bilayer Hubbard model is
brute force. The Determinant Quantum Monte Carlo technique
allows exact computation of several interesting properties of the
bilayer Hubbard model, as we will show in section 3.3.

3.2 The BCS theory of electron-hole pairing

This section shows an elementary computation, similar to the vari-
ous mean field computations9 in the literature. Mean field theory,9 Amongst them most not-

ably the prediction of room-
temperature superfluidity in
Min et al., 2008.

however, grossly overestimates the tendency to form exciton con-
densates and it surely is not applicable to strongly correlated
bilayers. Keeping this in mind, let us now derive electron-hole
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pairing in the bilayer Hubbard model.
The idea of BCS theory is to single out the interactions being re-

sponsible for the expected order, which is in our case the interlayer
exciton condensate with order parameter (3.58). In momentum
space, the order parameter reads

∆k =
1
2 ∑

σ

〈c†
k1σck2σ〉 (3.8)

which is a spin singlet. The interaction that induces exciton con-
densation scatters excitons from momentum k to momentum k′.
Thus we need to focus on the interlayer interactions

HV,BCS = ∑
kk′σ

Vk−k′c
†
k1σck′1σc†

k′2σck2σ. (3.9)

The idea of mean field theory is to replace c†
k1σck2σ in the interac-

tion terms by ∆k + δ
(
c†

k1σck2σ

)
, and then neglect terms of order

δ2. The resulting mean field Hamiltonian is

HMF = ∑
k`σ

ξk`c†
k`σck`σ

−∑
kσ

(
t⊥ + ∑

k′
Vk−k′∆k′

)(
c†

1kσc2kσ + h.c.
)

+ ∑
kk′σ

Vk−k′∆k′∆k. (3.10)

We have introduced ξk` = εk` − µ` as the dispersion minus chem-
ical potential for each layer. This mean field Hamiltonian is quad-
ratic in the fermionic operators and can thus be solved exactly. The
dispersion of the quasiparticles depends on the order parameter ∆

ωk±(∆) =
1
2
(ξk1 + ξk2)

±

√√√√(1
2
(ξk1 − ξk2)

)2
+

(
t⊥ + ∑

k′
Vk−k′∆k′

)2

.

The corresponding mean field energy

E(∆) = ∑
k±σ

ωk±nFD(ωk±) + ∑
kk′σ

Vk−k′∆k′∆k (3.11)

needs to be minimized to find a solution for ∆k.
Up till here the mean field analysis is fairly general: we have

not specified the shape of the dispersions ξk` or the interaction
Vk. A simple choice is the free electron dispersion10 10 Lozovik and Yudson, 1976
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ξk =
(k− k0)2

2m
(3.12)

which can be modified to match any lattice, such as graphene’s
hexagonal lattice.11 Usually the dispersion is linearized11 Dillenschneider and Han,

2008

ξk = vF(k− k0) (3.13)

around the Fermi level to simplify the computations.12 One can12 Shevchenko, 1976; Lozovik
and Sokolik, 2008; Zhang and
Joglekar, 2008; Kharitonov
and Efetov, 2008; and Min
et al., 2008

also introduce spin-orbit coupling which is needed for exciton
condensates in topological insulator bilayers.13 In our case of

13 Seradjeh et al., 2009

bilayer cuprates we consider the dispersion generated by nearest
neighbor hopping on a square lattice,

ξk1 = −zt
1
2
(cos kx + cos ky)− µ, (3.14)

ξk2 = +zt
1
2
(cos kx + cos ky) + µ, (3.15)

see figure 3.4.

H0,ΠL HΠ,ΠL H0,0L

zt

-zt

Dispersions

Figure 3.4: Dispersion of the
electrons and holes in the
absence of any interactions.
The red thick line denotes the
electron band, the blue thick
line is the hole band. When
a finite t⊥ is included, a gap
opens up around the Fermi
surface, and the correspond-
ing upper and lower bands
are shown with dashed lines.

The type of interaction can be either nearest neighbor only,
screened Coulomb or normal Coulomb. Here we choose for sake
of simplicity the nearest neighbor interaction

Vk = V. (3.16)

With this choice of interaction it becomes reasonable to assume
that the order parameter becomes independent of momentum
∆k = ∆; this amounts to only local electron-hole pairing. The
mean-field energy at T = 0 now equals

E(∆) = 2V∆2 − 2
N ∑

k

√
ξ2

k + V2∆2 (3.17)

where ξk = 1
2 (ξk1 − ξk2). The minimization condition ∂E/∂∆ = 0

yields the gap equation1414 A convenient way to ex-
press the gap equation is to
replace the momentum sum
by an integral over energy,

1
V

=
∫ D(ε)dε

2
√

ε2 + V2∆2
,

where D(ε) is the density of
states.

1
V

=
1

2N ∑
k

1√
ξ2

k + V2∆2
. (3.18)

Let us pick some relevant parameters and solve the gap equa-
tion exactly. The typical hopping energy in cuprates is t ≈ 0.4 eV.
The interlayer hopping t⊥ is set to zero because of the insulating
layer that prevents exciton annihilation. A reasonable estimate for
the interaction strength is to take it equal to the hopping energy:
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0 100 200 300 400
Temperature (K)

0 0.2 0.4 0.6 0.8 1
Doping

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

At half-filling (zero doping)

At zero temperature

Figure 3.5: The exciton con-
densate order parameter ∆
in mean field theory, found
by the gap equation (3.18).
Left: ∆ at zero temperature
as a function of doping. Note
that zero doping equals half-
filling. Right: ∆ at half-filling
as a function of temperat-
ure. The exciton condens-
ate is stable up to Tc ≈ 385
Kelvin.

V ≈ t. Given these parameters we compute ∆ as a function of
particle density n at zero temperature, see figure 3.5.

The same minimization procedure can be obtained to find fi-
nite temperature behavior of the order parameter. At half-filling
(µ = 0) the density of states at the Fermi level is the highest,
such that we find there the strongest instability towards exciton
condensation. As shown in figure 3.5 the gap reduces with tem-
perature until it vanishes at Tc ≈ 385 K.

It is within this mean field approach quite easy to find a very
large critical temperature. The predictions of room-temperature
superfluidity15 in exciton systems are obtained in this way. One 15 Min et al., 2008

must bear in mind, however, that mean field theory in general
overestimates the tendency to order. On top of that, the fact that
we are dealing with relatively strong Coulomb interactions makes
the theory basically unreliable.

Besides the intrinsic problems that mean field theory has, the
applicability to strongly correlated bilayers is further reduced
because it does not take into account the strong onsite repulsion
U. This is an example of an interaction that is not involved in
the pairing mechanism, and can only be included perturbatively.
Since U > V a perturbative approach is unjustifiable.

We therefore need to resort to numerical approaches that treat
the interactions U and V on the same footing as the kinetic energy
t.

3.3 Numerical approach: Determinant Quantum Monte
Carlo

There are several numerical schemes available to study the Hub- This section is based on Rade-
maker et al., 2013c.bard model. The straightforward manner is exact diagonaliza-
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tion,16 whereby one explicitly constructs the Hamiltonian matrix16 Kaneko et al., 2013

on a finite size cluster. The problem is that the Hilbert space
size diverges exponentially with the system size: a simple 6× 6
lattice has already a 69 billion dimensional Hilbert space. The
Determinant Quantum Monte Carlo (DQMC)17 technique on the17 Blankenbecler et al., 1981;

White et al., 1989b; and White
et al., 1989a

other hand maps the fermionic Hubbard model onto a classical
statistical problem, which can then be sampled using standard
Monte Carlo methods.

Therefore we first rewrite the kinetic part of the bilayer Hubbard
model in a matrix form,

HK = ∑
ij``′σ

c†
i`σkσ

i`,j`′cj`′σ. (3.19)

If we have two layers of size N ≡ Nx × Ny, the matrix kσ is a
2N × 2N matrix. The partition sum and the Greens function can
now be exactly computed using this k-matrix,I2N is the 2N × 2N identity

matrix.

Z ≡ Tr
[
e−βHK

]
= det

[
I2N + e−βk↑

]
det

[
I2N + e−βk↓

]
(3.20)

and

Gσ
i`,j`′ ≡

1
Z

Tr
[
ci`σc†

j`′σe−βHK
]

=
[

I2N + e−βkσ
]−1

i`,j`′
(3.21)

Notice that the dimension of the k-matrix grows linearly with sys-
tem size, not exponentially as in the case of exact diagonalization.

To include the interaction terms we rewrite them such that
half-filling is always characterized by µ = 0. The onsite repulsion
becomes

HU = U ∑
i`

[
(ni`↑ −

1
2
)(ni`↓ −

1
2
)− 1

4

]
(3.22)

while the interlayer nearest neighbor repulsion reads

HV = V ∑
iσσ′

[
(ni1σ −

1
2
)(ni2σ′ −

1
2
)− 1

4

]
. (3.23)

Obviously, for the full partition Hamiltonian H = HK + HU + HV

we cannot use the result of (3.20). Therefore we need to perform
a Suzuki-Trotter decomposition. The inverse temperature β is
considered as a new dimension and we ‘chop up’ this imaginary
time axis into L pieces,

e−βH =
(

e−∆τH
)L

(3.24)
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such that β = L× ∆τ. At each imaginary time slice we split the
kinetic part from the interaction parts,

e−∆τH ≈ e−∆τHU e−∆τHV e−∆τHK (3.25)

which becomes exact in the limit ∆τ → 0. We then introduce a
discrete Hubbard-Stratonovich transformation. On each site and
time-slice for each type of interaction we introduce a Hubbard-
Stratonovich (HS) field s(i, τ) which can only take the values ±1.
As a result we decouple the onsite interactions

e−∆τU[(n̂↑− 1
2 )(n̂↓− 1

2 )− 1
4 ] =

1
2 ∑

s=±1
eλUs(n̂↑−n̂↓), (3.26)

where
λU = arccosh

(
e

1
2 U∆τ

)
. (3.27)

A similar decoupling can be formulated for the interlayer inter-
action V. For each in-plane coordinate i we have six different
HS fields sα(i, τ): in each layer one associated with the onsite The index α = 1, . . . , 6 counts

the specific type of HS field.repulsion U and the four possible interlayer interactions for V
depending on the particle spin.

The advantage of the HS transformation is that the interaction
terms have become quadratic. Just like we wrote the quadratic
kinetic Hamiltonian in terms of a matrix kσ, we can rewrite the
transformed interaction terms using a diagonal matrix vσ(τ) that
depends on the HS fields sα(i, τ). Each time slice is therefore
represented by the 2N × 2N matrix

Bσ
l = evσ(l∆τ)e−∆τkσ

, (3.28)

the product of which represents the full evolution among the
imaginary time axis

Mσ = I2N + Bσ
LBσ

L−1 · · · Bσ
2 Bσ

1 . (3.29)

The partition sum can be computed exactly by

Z =
1

26NL ∑
sα(i,τ)=±1

det M↑ det M↓. (3.30)

The equal-time Greens function can be computed by

Gσ
i`,j`′ =

1
Z

1
26NL ∑

sα(i,τ)=±1
[Mσ]−1

i`,j`′ det M↑ det M↓. (3.31)
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We have thus transformed the bilayer Hubbard model into a
Ising-like statistical physics problem. We have 6NL ‘sites’ with
±1 variables and each possible configuration is weighed by the
determinants of the Mσ-matrices.

There are too many configurations to compute (3.30) and (3.31)
exactly. Therefore we pick random configurations and compute
Z and G and this result will become exact when the number of
random configurations approaches infinity. However, one can still
do better, via the procedure of importance sampling. Thereby we
create a Markov chain of configurations, favoring configurations
with a larger weight. This is done in such a way that the weight of
a configuration is reflected in its occurrence in the Markov chain.
In a more precise language, importance sampling requires three
steps:

1. Start with a given configuration s.

2. Make a new configuration s′ based on the old one, in the
present case by randomly changing the six HS fields on a given
site and time-slice.

3. Accept this new configuration with a transition probability
T(s → s′). This probability must satisfy the detailed balance
condition

T(s→ s′)P(s) = T(s′ → s)P(s′) (3.32)

where P(s) is the statistical weight of configuration s. Addi-
tionally, the function T(s→ s′) must satisfy overall ergodicity,
which means that there is always a finite chance to get from
any initial configuration to any other configuration.

4. ‘Measure’ parameters of interest, such as the Greens function
[Mσ]−1

i`,j`′ , given the configuration at hand. Then go back to step
1 and repeat this sequence until enough measurement points
have been accumulated.

5. Do a simple average over the measurement points.

In the Metropolis algorithm the new configuration is accepted
with probability TM(s → s′) = min (1, P(s′)/P(s)). The heat
bath algorithm has the transition probability THB(s → s′) =
P(s′)/(P(s) + P(s′)). Since the importance sampling works best
when new configurations are accepted approximately 50% of
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the time, in our code we work with a mixture of heat bath and
Metropolis prescriptions,

T(s→ s′) = γ
P(s′)

P(s) + P(s′)
+ (1− γ) min

(
1,

P(s′)
P(s)

)
(3.33)

where γ is a parameter that we can tune to get the optimal accept-
ance probability.

3.3.1 DQMC and the sign problem

So what happened to the infamous fermion sign problem? The
product det M↑ det M↓ can be negative, which implies that we
cannot identify it as the weight of a configuration. Instead, we
need to define the weight by their absolute value,

P(s) =
∣∣∣det M↑ det M↓

∣∣∣ . (3.34)

We then need to measure the average sign

Sign = sgn
(

det M↑ det M↓
)

(3.35)

for each configuration that appears in the Markov chain. Addi-
tionally we need to multiply each measurement with the sign of
the configuration. In step 5, where we do averaging, we need to
divide the result by the average sign.

In the single layer Hubbard model at half-filling the particle-
hole symmetry leads to sign-cancellation, such that det M↑ det M↓

is always positive. However, away from half-filling at low tem-
peratures the average sign decreases rapidly. This causes an
exponential increase in the errors made since we are dividing by
a number that tends to zero. For example, at 15% doping the sign
problem prevents us from cooling below 1000 Kelvin: precisely
the range where the interesting physics happens.

In our bilayer case it is even worse: the protection guaranteed by
particle-hole symmetry is lost because of the interlayer interaction
V. Even at half-filling, there will be a sign problem. Our only
hope is that the interesting physics, such as exciton condensation,
will show up before the average sign drops below ∼ 0.2.

3.3.2 Numerical recipes

Before we proceed to the results of the DQMC for the bilayer
Hubbard model, we need to introduce some numerical tricks that
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are needed to make this method work.
For some physical parameters, such as conductivity or pair-

susceptibilities, one needs to compute the unequal time Greens
function

Gi`,j`′(τ, τ′) =
1
Z

Tr
[
ci`σ(τ)c†

j`′σ(τ′)e−βH
]

(3.36)

for τ > τ′. Given a configuration of HS fields we define τ = p∆τ,
τ′ = q∆τ and

Aσ
1 = Bσ

p Bσ
p−1 . . . Bσ

q+1 (3.37)

Aσ
2 = Bσ

q Bσ
q−1 . . . Bσ

p+1. (3.38)

so that the unequal time Greens function can be computed as

Gσ
i`,j`′(τ, τ′) =

[
(Aσ

1 )−1 + Aσ
2

]−1

i`,j`′
. (3.39)

A major problem in computing the A, M and G matrices lies in
the fact that matrix multiplication and inversion is a numerically
highly unstable process. One therefore needs to use carefully
developed matrix factorization algorithms. Whenever multiplica-
tions or inversions seem to become unstable, one needs to perform
a UDR decomposition18 of the matrix at hand: U is unitary, D is18 White et al., 1989b

diagonal and R is an upper triangular matrix with unity pivots.
The unstable part of the matrix is now cast in the diagonal part,
which needs to be treated carefully.

The construction of the Greens function matrix is in general
numerically costly. However, within the importance sampling
algorithm one can quickly change the Greens function of the ‘old’
configuration into the ‘new’ one. Start with a known Greens
Function for both spin species given the HS-fields sα(i, l∆τ) and
then change all the six HS fields at site and time-slice (i, l∆τ)
yielding a snew. Define

∆sα = sα,new(i, l∆τ)− sα,old(i, l∆τ) = ±2 or 0. (3.40)

Under this change, we note that1919 The equal-time Greens
function G(l∆τ, l∆τ) is given
by [I + Aσ ]−1. The explicit
l-dependence is dropped in
the following derivation.

Aσ = Bσ
l Bσ

l−1 · · · B
σ
1 Bσ

L · · · Bσ
l+1 (3.41)

→ Aσ ′ = [I + ∆σ] Aσ. (3.42)
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The matrix ∆σ has only two nonzero elements, namely

∆↑i1,i1 = exp [λU∆s1 + λV(∆s3 + ∆s4)]− 1 (3.43)

∆↓i1,i1 = exp [−λU∆s1 + λV(∆s5 + ∆s6)]− 1 (3.44)

∆↑i2,i2 = exp [λU∆s2 − λV(∆s3 + ∆s5)]− 1 (3.45)

∆↓i2,i2 = exp [−λU∆s2 − λV(∆s4 + ∆s6)]− 1. (3.46)

The ratio of weights between the new Mσ ′ and the old Mσ equals

Rσ =
det[I + Aσ ′]
det[I + Aσ ]

= det
[
(I + Aσ ′)Gσ

]
= det [I + ∆σ AσGσ]

= det [I + ∆σ(I − Gσ)]

=
[
1 + (1− Gσ

i1,i1)∆σ
i1,i1
] [

1 + (1− Gσ
i2,i2)∆σ

i2,i2
]

−Gσ
i2,i1Gσ

i1,i2∆σ
i1,i1∆σ

i2,i2. (3.47)

Using this formula, we can quickly decide whether we want to
accept a change or not, instead of explicitly recalculating the whole
determinant. If the change is accepted, we can use a similar trick
to update the Greens function. Recall that

Gσ → Gσ ′ = [1 + Aσ + ∆σ Aσ]−1 . (3.48)

Because the matrix ∆ is sparse (it has only two nonzero elements,
at i and i + N), we can use the Woodbury matrix identity to do
a fast update of the Greens function. In single layer DQMC one
uses the Sherman-Morrison matrix identity, but the interlayer cor-
relations force us to use a generalization. The Woodbury identity
amounts to

Gσ
ab → Gσ

ab −∑
`,`′

Gσ
a,i`∆σ

i`,i`(R−1)``′(1− Gσ)i`′ ,b (3.49)

where the spin-dependent R-matrix is given by

R``′ =

(
1 + (1− Gσ

i1,i1)∆σ
i1,i1 −Gσ

i1,i2∆σ
i2,i2

−Gσ
i2,i1∆σ

i1,i1 1 + (1− Gσ
i2,i2)∆σ

i2,i2

)
. (3.50)

Note that the determinant of the R-matrix equals the ratio as
defined in equation (3.47). Thus the inverse is trivially given by

(R−1)``′ =
1

Rσ

(
1 + (1− Gσ

i2,i2)∆σ
i2,i2 Gσ

i1,i2∆σ
i2,i2

Gσ
i2,i1∆σ

i1,i1 1 + (1− Gσ
i1,i1)∆σ

i1,i1

)
.

(3.51)
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Figure 3.6: The average sign
at half-filling for various in-
terlayer interactions V. When
V 6= 0 the average sign drops
rapidly. Parameters are U =
4t, t⊥ = 0.05t and µ = 0.
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These equations combined yield the full Woodbury update in the
case of a bilayer system with interlayer interactions.

The Woodbury identity requires that we consider the equal-time
Greens functions G(τ, τ) at different imaginary times. A simple
trick to get from one time-slice to the next is called wrapping,

Gσ(l + 1) =
[
I + Bσ

l+1Bσ
l · · · B

σ
l+2
]−1 (3.52)

= Bσ
l+1Gσ(l)[Bσ

l+1]
−1. (3.53)

So for a full update of the Greens function we start at the first
time slice. Then we update the HS fields at each site using the
importance sampling and the Woodbury identity. Once all sites
at a given time-slice are done, we use wrapping to get to the
next time-slice. This procedure is repeated until all time-slices are
updated. In the mean-time we perform various physically relevant
measurements, such as density, spin correlations, etcetera.

Finally we require a numerical recipe for the error analysis of
the results. A simple root mean-squared error of all configurations
is not a good measure.20 Additionally, the measurements should

20 For example: if we meas-
ure the energy, then the root
mean-squared of all inde-
pendent measurements gives
you the specific heat, not the
uncertainty in the average en-
ergy.

be independent which is clearly not the case for a Markov chain
of configurations. We therefore compute 8 independent Markov
chains in parallel, and the error bars are obtained as root mean-
squared errors over the averages of each Markov chain. This
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Figure 3.7: The average sign
versus density for increasing
interlayer interaction V. The
temperature is fixed at T =
0.221, other parameters are
U = 4t and t⊥ = 0.05t.

measures the degree to which two independent sampling chains
lead to the same average.

3.3.3 Results on the fermion sign problem

The applicability of the DQMC method just described is limited
by the measured average sign, which depends on the specific
model parameters such as temperature and interaction strength.
We therefore present first our results regarding the average sign,
both its value and the impact on the statistical errors on other
measurements.

As we briefly mentioned in section 3.3.1, in the absence of the
interlayer interaction V at half-filling the average sign is always
1 due to particle-hole symmetry. This can be understood by
considering the determinants of Mσ for both spin species. Since
the Hubbard-Stratonovich fields couple to both the up and down
spins, a change of sign in det M↑ is accompanied by the same
sign change in det M↓. Consequently, at half-filling for V = 0 all
weights det M↑ det M↓ are positive. One can directly infer that
this sign cancellation fails when V 6= 0, since there are now HS
fields that couple to only one type of spin. Indeed, as can be
seen in figure 3.6, inclusion of a nonzero interlayer interaction V
drastically reduces the sign.
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Figure 3.8: The average sign
versus density at various tem-
peratures. The interlayer in-
teraction is fixed at V = 0.75,
other parameters are U = 4t
and t⊥ = 0.05t. The sign is
lowest around 15− 20% dop-
ing.
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At finite densities, in the case of equal p-type and n-type dop-
ing of the two different layers, the average sign is further reduced.
Even in the absence of interlayer V, the sign drops so rapidly that
the physically interesting regime (with the pseudogap, d-wave
superconductivity, etc.) is inaccessible. Figure 3.7 displays how
the average sign depends on both doping and interlayer V for a
fixed temperature. It is worthwhile to note that the physical tem-
perature corresponding to these parameters is about 900 Kelvins,
still an order of magnitude higher than for example the onset
of superconductivity in the cuprates. In figure 3.8 we show the
average sign as a function of doping for a fixed interlayer coupling
V = 0.75.

In all cases the sign problem is the worst around 15− 20% p/n-
doping. Remember that we have one layer doped with holes and
another layer doped with the same number of electrons, relative to
half-filling. Inclusion of V does not change the qualitative doping
dependence of the average sign, it does reduce it significantly.

This is in stark contrast to the suggestion, made in the context of
the exciton t− J model of the next chapters,21 where we consider21 See Sheng et al., 1996; Wu

et al., 2008 and section 4.1.4. the limit V � t, that the sign problem could be reduced upon
increasing V. That is based on the idea that the increased interlayer
interaction makes it more likely that electrons and holes in the
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Figure 3.9: Average sign, dop-
ing, interlayer tunneling and
dc conductivity for V = 0.75
and Nx = 4 as a function of
temperature. Static measure-
ments, such as density and
interlayer tunneling, are still
reliable as long as the sign
> 0.1. The dynamic meas-
urements such as dc conduct-
ivity become unstable when
the sign < 0.5. For compar-
ison, both µ = 0 and µ = 0.8t
is shown.

two layers move simultaneously, so that the signs of the electrons
could be cancelled by the signs of the hole. Based on our DQMC
results, this is obviously not the case when the interlayer coupling
V is of the same order as t.

Whenever the average sign becomes low, the uncertainty of
measurements increases. Let us give a rough quantitative estim-
ate of what average sign is still acceptable. Therefore we need to
distinguish between two kinds of measurements. ‘Static’ meas-
urements, such as the doping and interlayer tunneling, involve
only the equal-time Greens function

Gσ
i`,j`′ = 〈ci`σc†

j`′σ〉 (3.54)

and are more stable than ‘dynamic’ measurements involving the
unequal-time Greens function

Gσ
i`,j`′(τ) = 〈Tτci`σ(τ)c†

j`′σ〉. (3.55)

In the latter category, we computed the dc conductivity based on
the current-current correlation function for each layer,

Λ`
xx(q, τ) = ∑

i
〈jx(ri`, τ)jx(0, 0)〉eiq·ri` (3.56)

Instead of performing the analytic continuation, we approximate
the dc conductivity by22 22 Trivedi et al., 1996
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Figure 3.10: Interlayer tunne-
ling at V = 0.75t for Nx =
4, relative to the V = 0
case. A clear enhancement
of the tunneling, which is
equal to the exciton condens-
ate order parameter, can be
seen around µ = 0.8, where
the doping level is approxim-
ately 15%.
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πσdc
β2 = Λ`

xx(q = 0, τ = β/2) (3.57)

which is valid as long as the density of states is not rapidly varying
around the Fermi surface.

In figure 3.9 we show the average sign dependence as a function
of temperature for V = 0.75, for µ = 0 and µ = 0.8, and relate it to
interlayer tunneling, doping and dc conductivity measurements.
As long as the average sign is above 0.5, all measurements are
statistically trustworthy. Below 0.5, the dc conductivity results
have statistical error bars more than half of σdc itself. Therefore we
limit our dynamical measurements to regions where the sign is
< 0.5. Similarly, the error bars on the static measurements suggest
that we cannot use static data when the average sign is < 0.1. This
implies that the window for which DQMC is applicable for all
doping levels is limited to about β < 5 and V < 1.

3.3.4 Exciton condensation

Our main goal is to investigate whether exciton condensation
might occur in the bilayer Hubbard model. Recall that the order
parameter of an interlayer exciton condensate is2323 See chapter 2, specifically

equation (2.1).

∆k = 〈c†
k1σck2σ〉. (3.58)
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Figure 3.11: Interlayer tunne-
ling for Nx = 4, relative to
the V = 0 case, for all densit-
ies and interaction V. A clear
enhancement of the tunne-
ling, which is equal to the ex-
citon condensate order para-
meter, can be seen around the
doping level of 15− 20%.

In the presence of strong local interactions excitons will be formed
locally as well, which means that the electron and hole are above
each other. The order parameter becomes independent of mo-
mentum and equals

∆ =
1
N ∑

i
〈c†

i1σci2σ〉. (3.59)

The condensate order parameter equals interlayer tunneling,24 24 Spielman et al., 2000; and
Eisenstein and MacDonald,
2004

which is directly measurable in experimental set-ups.
Within the DQMC method, the interlayer tunneling can be

directly read off from the Greens function constructed during the
algorithm. The ideal exciton condensate occurs when the interlayer
hopping is completely suppressed, t⊥ = 0. However, in that case
the order parameter calculated in DQMC is identically zero. We
need to include a finite t⊥, which acts as a symmetry breaking
field just like a magnetic field would induce magnetization. The
inclusion of a nonzero t⊥ requires us, however, to extrapolate
to the perfect t⊥ → 0 case. For this we propose two different
schemes.

First, we note that in the absence of an exciton pairing interac-
tion V the interlayer hopping t⊥ will automatically create a doping
dependence of the interlayer tunneling. Therefore we separate
the contribution to interlayer tunneling that arises due to exciton
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Figure 3.12: Interlayer tunne-
ling at V = 0.75t as a func-
tion of t⊥ for µ = 1 and
Nx = 4. The scaling for t⊥
suggests that there is no ex-
citon condensation.
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formation from the part that is already present at V = 0. In figure
3.10 we show how this relative interlayer tunneling depends on
temperature and chemical potential for fixed V = 0.75. There is
a clear enhancement of the interlayer tunneling around µ = 0.8,
which amounts to 15% doping.

At a given temperature of T = 0.221 we present the interlayer
tunneling as a function of p/n-doping and interlayer interaction
V in figure 3.11. The strongest tendency towards interlayer tun-
neling is at 15− 20% doping, for the largest values of interaction
V.

Our second strategy to determine the possibility of exciton
condensation is to look at the t⊥-dependence of the interlayer
tunneling. Following the standard BEC/BCS condensation theor-
ies,25 the exciton condensate is represented in the Hamiltonian by25 See section 3.2.

the symmetry breaking term

−V∆ ∑
iσ

(
c†

i1σci2σ + h.c.
)

(3.60)

which just adds to the interlayer hopping term t⊥. When U =
V = 0 we can compute the interlayer tunneling analytically which
yields

〈c†
i1σci2σ〉 ∼

t⊥ + V∆
t

. (3.61)



fermionic models of correlated bilayers 43

�0

�0.01

�0.02

�0.03

�0.04

�0.05

�0.06

�0.07

�0.08

�0.09

�0 �0.05 �0.1 �0.15 �0.2 �0.25 �0.3 �0.35 �0.4

D
C
�c
on
du
ct
iv
it
y

p/n-doping

DC�conductivity�at�T=0.221

V=0.25
V=0.5
V=0.75

Figure 3.13: The dc conduct-
ivity σdc following equations
(3.56)-(3.57) at T = 0.221 as a
function of doping and V for
Nx = 4. We only included
data points where the error
bar on the measurements is
less than 50% of σdc itself.
The dc conductivity is the
largest at a doping around
20%,

For finite U and V we therefore assume that the interlayer tun-
neling is a linear function of t⊥, and the order parameter can
be found by taking the limit t⊥ → 0. This is done for V = 0.75
and µ = 1, parameters for which the interlayer tunneling is the
largest, in figure 3.12. As the temperature is lowered the interlayer
tunneling increases. However, the scaling behavior as a func-
tion of t⊥ suggests that there is no exciton condensation present.
Unfortunately, due to the sign problem, we cannot go lower in
temperatures.

Next to direct measurements of the order parameter, one can
probe related properties of the exciton condensate. Since in an
exciton condensate the charge carriers are bound into charge neut-
ral excitons, it is expected that exciton condensates are insulating.
Let us therefore look at the conductivity measurements, which
are severely limited by the sign problem as pointed out in the
previous section. In figure 3.13 we display measurements on the
dc conductivity following equations (3.56)-(3.57). The conductivity
is largest at a p/n-doping of 15-20%, and fairly independent of
the interlayer coupling V.

Instead of the conductivity one can look at the density of states
at the Fermi level, which is approximated by G(r = 0, τ = β/2).26 26 Trivedi and Randeria, 1995;

and Nowadnick et al., 2012The density of states at the Fermi level indeed closely follows the
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Figure 3.14: The density of
states at the Fermi level, ap-
proximated by G(β/2), at
T = 0.221 for Nx = 4. The
density of states is highest
around 20% doping, inde-
pendent of the interlayer in-
teraction V.
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p/n-doping dependence of the dc conductivity. Counterintuitively,
the increase of conductivity occurs in the region where there is
also an increase in the interlayer tunneling. This, together with the
t⊥-scaling performed in figure 3.12, rules out exciton condensation
at the temperature that are attainable within the DQMC set-up.

In conclusion, we have found no evidence of exciton condens-
ation in the bilayer Hubbard model in the parameter regime
accessible by DQMC. However, the increased interlayer tunneling
suggests that exciton physics might be relevant for large V, around
15-20% p/n-doping and at temperatures lower than β = 5.

3.3.5 Magnetic measurements

Strong correlations can lead to the localization of electron degrees
of freedom, resulting in magnetic correlations. For the Hubbard
model on a square lattice this results in antiferromagnetic order
at half-filling.27 Experiments on the cuprates show that this anti-27 See chapter 4.

ferromagnetism quickly disappears upon doping.28 Next to the28 Imada et al., 1998

excitonic physics, we will therefore study the magnetic correla-
tions of the Hubbard bilayer.
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Figure 3.15: Antiferromag-
netic correlations at T =
0.175 for various V and dop-
ing. Only at half-filling (δ =
0) we find antiferromagnet-
ism in the thermodynamic
limit.

The antiferromagnetic structure factor in each layer is given by

S`(Q) =
1
N ∑

ij
eiQ·(ri−rj)〈

(
ni`↑ − ni`↓

) (
nj`↑ − nj`↓

)
〉 (3.62)

where Q = (π, π) is the antiferromagnetic wave vector. Spin
wave theory29 suggests that S(Q) scales with 1/Nx on a finite 29 Huse, 1988

cluster. The thermodynamic limit Nx → of S(Q) can be found
from a linear extrapolation of the Nx = 4 and Nx = 6 data, as is
done in figure 3.15. Indeed, the antiferromagnetic order is rapidly
destroyed as one dopes the layers. However, under the inclusion
of V the antiferromagnetic order remains up to V = 0.75.

Even though the antiferromagnetic order is rapidly destroyed,
the localization of electrons associated with the strong onsite
repulsion U is reduced less drastically by p/n-doping. The local
moment, which measures the degree of localization, is defined as

mi` = 〈
(
ni`↑ − ni`↓

)
〉. (3.63)

The site-averaged local moments are shown in figure 3.16. The
localization of electrons is for all intents and purposes independent
of the interlayer interaction strength V.
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Figure 3.16: The local mo-
ments as a function of V and
doping at T = 0.221 for Nx =
4. The localization of elec-
trons is the strongest at half-
filling, and almost independ-
ent of the interlayer interac-
tion V.
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3.3.6 Conclusion

The Determinant Quantum Monte Carlo is a brute-force technique
that is in principle able to exactly compute physical quantities
associated with the Hubbard model. However, the bilayer Hub-
bard model seems remarkablyunfi unfit for the DQMC approach.
Whereas several physical properties such as the conductivity and
the magnetic properties are almost independent of interlayer inter-
action V, the average sign rapidly reduces with increasing V. The
desired exciton condensation, measured by interlayer tunneling,
is therefore out of reach. Given our data for β < 5 and V < 1.25
we find the strongest tendency towards exciton condensation
around 15-20% doping and at large interaction strength V. In
the next chapter, therefore, we will approach the problem of con-
densation from the strong coupling limit.


