
Fermions and bosons : excitons in strongly correlated materials
Rademaker, L.

Citation
Rademaker, L. (2013, December 11). Fermions and bosons : excitons in strongly correlated
materials. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/22839
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/22839
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/22839


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22839 holds various files of this Leiden University 
dissertation. 
 
Author: Rademaker, Louk 
Title: Fermions and bosons : excitons in strongly correlated materials 
Issue Date: 2013-12-11 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22839
https://openaccess.leidenuniv.nl/handle/1887/1�


1
Introduction: Quantum Matters

Einstein’s explanation of the photoelectric effect is often quoted as the birthplace of
quantum mechanics, the theory used in this thesis. I think it is misleading to take the thus-
proposed quantization, which was already apparent in experiments, as the starting point of
the quantum. Instead, in my opinion, we should start with Planck’s theory of blackbody
radiation. On 14 December 1900 Max Planck presented his idea that electromagnetic
radiation can only be emitted in quantized form in order to explain the relation between
temperature, frequency and intensity. Without the ability to detect the postulated quantum
directly, the idea of quantization is truly revolutionary.

Figure 1.1: A crystal solid can
be viewed as atoms connec-
ted by springs. In the quan-
tum theory of a solid, the
springs can only vibrate at
fixed frequencies. This quant-
ization of vibrational modes
explains the low-temperature
behavior of solids.

Similarly, the Einstein and Debye theories of the low temperat-
ure anomalies in the specific heat of crystalline solids proposed
the quantization of vibrational energy. What these theories have in
common is that they combine both quantization of energy levels
with a large number of degrees of freedom. The in popular culture
so frequently mentioned ’uncertainty’ associated with quantum
mechanics is completely irrelevant for these quantum statistical
systems,1 such as the complex materials studied in this thesis.

1 More on quantum statist-
ics can be found in Lif-
shitz and Pitaevskii, 1980, Ab-
rikosov et al., 1965, Mahan,
2000, Wen, 2007 and Cole-
man, 2013.

When it comes to statistics it is relevant, however, that energy
quanta are indistinguishable. Indistinguishable can be best ex-
plained by the following coin-flipping example. If I flip two coins
elementary probability theory will tell you that the chance of
two heads is 25%. However, as Bose famously discovered while
making an error during a lecture, if the two coins are fundament-
ally indistinguishable the probability is 33%. This is the case for
bosons and from there the Bose-Einstein distribution function

nBE(E) =
1

eE/kT − 1
(1.1)

directly follows. Bosons have the unique property that they want
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to do the same thing as other bosons around them, which can
already be inferred from the coin-flipping thought-experiment
where the probability of finding the same sides is greatly in-
creased.2

2 Dirac, 1958
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Figure 1.2: An ensemble
of particles is distributed
among a set of energy levels.
Classical particles obey the
Maxwell-Boltzmann distribu-
tion. Relative to that the con-
formist bosons tend to cluster
together in the lowest energy
state. Fermions, on the other
hand, have an exclusion prin-
ciple that limits the number
of particles per state.

This is in stark contrast to electrons in atomic orbitals. There the
Pauli exclusion principle dictates that no more than two electrons
can be in one orbital. Hence a second species of particles must
exist that go by the name of fermions, described by the Fermi-
Dirac distribution

nFD(E) =
1

eE/kT + 1
. (1.2)

The Pauli exclusion principle applied to electrons in a crystal
immediately suggests that electrons have a very high energy. The
lowest energy state of a collection of electrons amounts to filling
up energy levels up to the Fermi level EF, which is typically
several electronvolts. Therefore, even at low temperatures the
average kinetic energy per electron is huge. In fact, it equals 3

5 EF

whereas such a kinetic energy per particle in a classical gas is only
obtained at a temperature of thousands of Kelvins. Indeed, the
Pauli exclusion principle implies that the seemingly boring Fermi
sea is in fact a hot boiling active soup of electrons.

The electron band theory that thus originated laid the foun-
dations for our understanding of electrons in metals, insulators
and last-but-not-least semiconductors. The latter class of materials
have revolutionized our modern world: basically everybody on
every corner of the world carries semiconductor technology in
her or his pockets. To me this shows that investing in funda-
mental physics (in this case quantum statistics) leads to practical
applications, albeit in a completely different form than Pauli and
colleagues would have imagined.

We just saw that there are two quantum species: the bosonic
conformist particle and the fermionic individualistic particle, see
figure 1.2. However, this is not the whole story: additionally the
fermions have a weird property called ‘anticommutativity’, which
means that creating first particle A and then particle B is equal
to ‘minus’ creating them in the opposite order. In the language
of second quantization3 one explicitly sees the appearance of a

3 ‘Second’ quantization
means that all quantum oper-
ators are expressed in terms
of creation and annihilation
operators of (fermionic or
bosonic) particles.

minus sign,

c†
Ac†

B = −c†
Bc†

A, (1.3)
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Figure 1.3: The high tem-
perature superconductors are
ill understood strongly cor-
related materials, and they
are a prime example of quan-
tum matter. Here the author
is shown levitating a piece
of superconducting YBCO at
the Twente University.

which causes mathematical problems when describing a large
set of fermions. Often this anticommutativity, or fermion sign
problem as it is sometimes called, does not pose a problem, when
the quantum mechanical wavefunction of a system can be written
as a product state of simpler constituents.

The first example of a product state is the non-interacting Fermi
gas,

|Φ〉FG =
kF

∏
kσ

c†
kσ|vac〉 (1.4)

where c†
kσ is the creation operator of an electron with momentum

k and spin σ. The product now runs over all momentum states up
to the Fermi momentum. Product states also arise in the case of
the formation of some kind of long-range order via spontaneous
symmetry breaking. Examples are (anti)ferromagnets, crystal-
line solids, Bose condensates and superconductors; the latter is
described by the BCS wavefunction4 4 Bardeen et al., 1957; and

De Gennes, 1999

|Φ〉BCS = ∏
kσ

(
uk + vkc†

k↑c
†
−k↓

)
|vac〉 (1.5)

with uk, vk some momentum dependent parameters. Any quan-
tum system that can be written as a product state can be effectively
described as a classical system, corrected with the proper Fermi-
Dirac or Bose-Einstein statistics. The ordered product states are
called classical condensates.5 5 See Anderson, 1984 and

Zaanen, 1996.There is, however, a class of materials that cannot be simply
written as a product state, usually due to strong electron-electron
interactions6 and the resulting macroscopic entanglement. For

6 Imada et al., 1998; and Lee
et al., 2006

these materials the quantum fermion signs do matter and the



10 fermions and bosons: excitons in strongly correlated materials

weird non-locality (as Wen, 2007 calls it) of fermions plays an
important role. It has become customary to denote all these highly
entangled materials ‘quantum matter’, since no classical analogue
or theory exists.
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Figure 1.4: Generic phase
diagram of a cuprate mater-
ial such as La2−xSrxCuO4.
Upon doping away from
half-filling the antiferro-
magnetic order is reduced,
and the poorly understood
pseudogap and strange
metal appear.

Strongly correlated electron systems are an example of quantum
matter. While the observation that there exist materials that do not
obey band theory was already made in the 50s by Van Vleck, Mott
and others, a revived interest in Mott insulators sparked after
the discovery of high-temperature superconductivity in cuprates
(figure 1.3). Embarrassingly enough, there are still no theories
that provide a satisfactory explanation of the many phenomena
observed in the cuprates, from the fate of the Mott insulating state
upon doping, to the pseudogap, the strange metal, the proposed
electronic nematicity, etcetera, see figure 1.4. The main reason for
this lack of understanding lies in the aforementioned ‘weirdness’
of fermionic excitations in cuprates.
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Figure 1.5: A heterostructure
consisting of a hole layer and
an electron layer separated by
an insulator. Interlayer ex-
citons can form as the bound
state of an electron and a
hole.

Whilst doped Mott insulators are little understood, rapid pro-
gress is made in materials where the dominant excitations are
bosons. The simplest way to make a bosonic system is to couple
two electrons together, as is done in the BCS theory of supercon-
ductivity. Similarly, one can couple electrons and holes together
into excitons. While the binding of an electron and a hole into an
exciton has the advantage of the much stronger Coulomb attrac-
tion, the possible recombination and annihilation of an exciton
prevents the practical realization of a so-called exciton condensate.
However, if one is able to spatially separate the electrons and holes
into separate layers, as shown in figure 1.5, annihilation can be
suppressed7 and an equilibrium density of excitons can be created.7 Shevchenko, 1976; and Lo-

zovik and Yudson, 1976 Over the last decade such bilayer systems came experimentally
within reach, first in quantum Hall bilayers8 and more recently in8 Eisenstein and MacDonald,

2004; and Huang et al., 2012 systems without magnetic field.9
9 High et al., 2012 In this thesis I combine the field of strongly correlated materials

with the bilayer exciton community. No-one in their right mind
would mix those two fields, unless driven by experiments. My
theoretical pursuits are therefore rooted in the rapid technological
revolution that has occurred in the fabrication of nanomaterials.
Using for example pulsed laser deposition (PLD) one can make
material ’sandwiches’ where the chemical composition of each
separate atomic layer is controlled independently. My theoretical
research is in close collaboration with the experimental Interfaces
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in Correlated Electron systems group of Hans Hilgenkamp at the
University of Twente, where they possess such technologies.

The ill-understood Mott materials, together with bilayer exciton
ideas and the technological nanorevolution form the basis for this
research. My main research questions are thus: Can we make an
exciton condensate in a strongly correlated bilayer? And what are the
observable properties of such a condensate? Given these concrete re-
search questions, we hope to understand more about the complex
interplay between fermions and bosons in quantum matter.

Outline

The research on excitons in strongly correlated materials addresses
the interplay between fermionic and bosonic excitations. Many
properties of a system, however, do not depend on the microscopic
mechanisms involved, therefore we start with a phenomenolo-
gical description of exciton condensates in chapter 2. Using a
Ginzburg-Landau theory we show that an exciton condensate
exhibits a flux quantization property.

After that we dive into the microscopic degrees of freedom.
The starting point is the fermionic Hubbard model, introduced
in chapter 3. Weak coupling mean field theory and numerical
analysis of the Hubbard model do give us some answers, however,
the fermion sign problem plagues the theory.

On the other hand, in the strong coupling limit one can rewrite
the fermionic Hubbard model into a purely bosonic exciton t− J
model. In chapter 4 we introduce this new model and discuss its
properties. There we find the dynamical frustration of a single
exciton in a Mott insulating antiferromagnet. Chapter 5 discusses
the properties of the strongly correlated exciton condensate, where
we find spin-exciton cooperation. Indeed, the exciton condensate
can exist, but only if the kinetic energy of the excitons exceeds
their dipole-dipole repulsion. The influence of this dipole-dipole
repulsion on possible ordering phenomena is discussed in chapter
6.

Core concepts, like the Hubbard model or strong coupling per-
turbation theory, are best introduced in the context of the research
findings instead of in a separate introductory chapter. Hence,
whenever necessary background information will be included in
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the text or in references in the remaining chapters.
Finally, theoretical research should always be addressing ‘ac-

tually existing materials’. The main challenge in this regard is to
couple down-to-earth computations with insights in general phys-
ical concepts. In the concluding chapter 7 we put our findings on
strongly correlated bilayers into a broader context and relate it to
experimental progress, thereby addressing future directions in the
theory of quantum matter.


