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1
Introduction: Quantum Matters

Einstein’s explanation of the photoelectric effect is often quoted as the birthplace of
quantum mechanics, the theory used in this thesis. I think it is misleading to take the thus-
proposed quantization, which was already apparent in experiments, as the starting point of
the quantum. Instead, in my opinion, we should start with Planck’s theory of blackbody
radiation. On 14 December 1900 Max Planck presented his idea that electromagnetic
radiation can only be emitted in quantized form in order to explain the relation between
temperature, frequency and intensity. Without the ability to detect the postulated quantum
directly, the idea of quantization is truly revolutionary.

Figure 1.1: A crystal solid can
be viewed as atoms connec-
ted by springs. In the quan-
tum theory of a solid, the
springs can only vibrate at
fixed frequencies. This quant-
ization of vibrational modes
explains the low-temperature
behavior of solids.

Similarly, the Einstein and Debye theories of the low temperat-
ure anomalies in the specific heat of crystalline solids proposed
the quantization of vibrational energy. What these theories have in
common is that they combine both quantization of energy levels
with a large number of degrees of freedom. The in popular culture
so frequently mentioned ’uncertainty’ associated with quantum
mechanics is completely irrelevant for these quantum statistical
systems,1 such as the complex materials studied in this thesis.

1 More on quantum statist-
ics can be found in Lif-
shitz and Pitaevskii, 1980, Ab-
rikosov et al., 1965, Mahan,
2000, Wen, 2007 and Cole-
man, 2013.

When it comes to statistics it is relevant, however, that energy
quanta are indistinguishable. Indistinguishable can be best ex-
plained by the following coin-flipping example. If I flip two coins
elementary probability theory will tell you that the chance of
two heads is 25%. However, as Bose famously discovered while
making an error during a lecture, if the two coins are fundament-
ally indistinguishable the probability is 33%. This is the case for
bosons and from there the Bose-Einstein distribution function

nBE(E) =
1

eE/kT − 1
(1.1)

directly follows. Bosons have the unique property that they want
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to do the same thing as other bosons around them, which can
already be inferred from the coin-flipping thought-experiment
where the probability of finding the same sides is greatly in-
creased.2

2 Dirac, 1958
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Figure 1.2: An ensemble
of particles is distributed
among a set of energy levels.
Classical particles obey the
Maxwell-Boltzmann distribu-
tion. Relative to that the con-
formist bosons tend to cluster
together in the lowest energy
state. Fermions, on the other
hand, have an exclusion prin-
ciple that limits the number
of particles per state.

This is in stark contrast to electrons in atomic orbitals. There the
Pauli exclusion principle dictates that no more than two electrons
can be in one orbital. Hence a second species of particles must
exist that go by the name of fermions, described by the Fermi-
Dirac distribution

nFD(E) =
1

eE/kT + 1
. (1.2)

The Pauli exclusion principle applied to electrons in a crystal
immediately suggests that electrons have a very high energy. The
lowest energy state of a collection of electrons amounts to filling
up energy levels up to the Fermi level EF, which is typically
several electronvolts. Therefore, even at low temperatures the
average kinetic energy per electron is huge. In fact, it equals 3

5 EF

whereas such a kinetic energy per particle in a classical gas is only
obtained at a temperature of thousands of Kelvins. Indeed, the
Pauli exclusion principle implies that the seemingly boring Fermi
sea is in fact a hot boiling active soup of electrons.

The electron band theory that thus originated laid the foun-
dations for our understanding of electrons in metals, insulators
and last-but-not-least semiconductors. The latter class of materials
have revolutionized our modern world: basically everybody on
every corner of the world carries semiconductor technology in
her or his pockets. To me this shows that investing in funda-
mental physics (in this case quantum statistics) leads to practical
applications, albeit in a completely different form than Pauli and
colleagues would have imagined.

We just saw that there are two quantum species: the bosonic
conformist particle and the fermionic individualistic particle, see
figure 1.2. However, this is not the whole story: additionally the
fermions have a weird property called ‘anticommutativity’, which
means that creating first particle A and then particle B is equal
to ‘minus’ creating them in the opposite order. In the language
of second quantization3 one explicitly sees the appearance of a

3 ‘Second’ quantization
means that all quantum oper-
ators are expressed in terms
of creation and annihilation
operators of (fermionic or
bosonic) particles.

minus sign,

c†
Ac†

B = −c†
Bc†

A, (1.3)
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Figure 1.3: The high tem-
perature superconductors are
ill understood strongly cor-
related materials, and they
are a prime example of quan-
tum matter. Here the author
is shown levitating a piece
of superconducting YBCO at
the Twente University.

which causes mathematical problems when describing a large
set of fermions. Often this anticommutativity, or fermion sign
problem as it is sometimes called, does not pose a problem, when
the quantum mechanical wavefunction of a system can be written
as a product state of simpler constituents.

The first example of a product state is the non-interacting Fermi
gas,

|Φ〉FG =
kF

∏
kσ

c†
kσ|vac〉 (1.4)

where c†
kσ is the creation operator of an electron with momentum

k and spin σ. The product now runs over all momentum states up
to the Fermi momentum. Product states also arise in the case of
the formation of some kind of long-range order via spontaneous
symmetry breaking. Examples are (anti)ferromagnets, crystal-
line solids, Bose condensates and superconductors; the latter is
described by the BCS wavefunction4 4 Bardeen et al., 1957; and

De Gennes, 1999

|Φ〉BCS = ∏
kσ

(
uk + vkc†

k↑c
†
−k↓

)
|vac〉 (1.5)

with uk, vk some momentum dependent parameters. Any quan-
tum system that can be written as a product state can be effectively
described as a classical system, corrected with the proper Fermi-
Dirac or Bose-Einstein statistics. The ordered product states are
called classical condensates.5 5 See Anderson, 1984 and

Zaanen, 1996.There is, however, a class of materials that cannot be simply
written as a product state, usually due to strong electron-electron
interactions6 and the resulting macroscopic entanglement. For

6 Imada et al., 1998; and Lee
et al., 2006

these materials the quantum fermion signs do matter and the
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weird non-locality (as Wen, 2007 calls it) of fermions plays an
important role. It has become customary to denote all these highly
entangled materials ‘quantum matter’, since no classical analogue
or theory exists.

doping

te
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pe
ra
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re

Fermi liquid

strange metal

pseudo!
gap

supercond.

doped!
antiferromagnet

Figure 1.4: Generic phase
diagram of a cuprate mater-
ial such as La2−xSrxCuO4.
Upon doping away from
half-filling the antiferro-
magnetic order is reduced,
and the poorly understood
pseudogap and strange
metal appear.

Strongly correlated electron systems are an example of quantum
matter. While the observation that there exist materials that do not
obey band theory was already made in the 50s by Van Vleck, Mott
and others, a revived interest in Mott insulators sparked after
the discovery of high-temperature superconductivity in cuprates
(figure 1.3). Embarrassingly enough, there are still no theories
that provide a satisfactory explanation of the many phenomena
observed in the cuprates, from the fate of the Mott insulating state
upon doping, to the pseudogap, the strange metal, the proposed
electronic nematicity, etcetera, see figure 1.4. The main reason for
this lack of understanding lies in the aforementioned ‘weirdness’
of fermionic excitations in cuprates.

hole layer 

electron layer

exciton

d

a. b.

exciton

Figure 1.5: A heterostructure
consisting of a hole layer and
an electron layer separated by
an insulator. Interlayer ex-
citons can form as the bound
state of an electron and a
hole.

Whilst doped Mott insulators are little understood, rapid pro-
gress is made in materials where the dominant excitations are
bosons. The simplest way to make a bosonic system is to couple
two electrons together, as is done in the BCS theory of supercon-
ductivity. Similarly, one can couple electrons and holes together
into excitons. While the binding of an electron and a hole into an
exciton has the advantage of the much stronger Coulomb attrac-
tion, the possible recombination and annihilation of an exciton
prevents the practical realization of a so-called exciton condensate.
However, if one is able to spatially separate the electrons and holes
into separate layers, as shown in figure 1.5, annihilation can be
suppressed7 and an equilibrium density of excitons can be created.7 Shevchenko, 1976; and Lo-

zovik and Yudson, 1976 Over the last decade such bilayer systems came experimentally
within reach, first in quantum Hall bilayers8 and more recently in8 Eisenstein and MacDonald,

2004; and Huang et al., 2012 systems without magnetic field.9
9 High et al., 2012 In this thesis I combine the field of strongly correlated materials

with the bilayer exciton community. No-one in their right mind
would mix those two fields, unless driven by experiments. My
theoretical pursuits are therefore rooted in the rapid technological
revolution that has occurred in the fabrication of nanomaterials.
Using for example pulsed laser deposition (PLD) one can make
material ’sandwiches’ where the chemical composition of each
separate atomic layer is controlled independently. My theoretical
research is in close collaboration with the experimental Interfaces
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in Correlated Electron systems group of Hans Hilgenkamp at the
University of Twente, where they possess such technologies.

The ill-understood Mott materials, together with bilayer exciton
ideas and the technological nanorevolution form the basis for this
research. My main research questions are thus: Can we make an
exciton condensate in a strongly correlated bilayer? And what are the
observable properties of such a condensate? Given these concrete re-
search questions, we hope to understand more about the complex
interplay between fermions and bosons in quantum matter.

Outline

The research on excitons in strongly correlated materials addresses
the interplay between fermionic and bosonic excitations. Many
properties of a system, however, do not depend on the microscopic
mechanisms involved, therefore we start with a phenomenolo-
gical description of exciton condensates in chapter 2. Using a
Ginzburg-Landau theory we show that an exciton condensate
exhibits a flux quantization property.

After that we dive into the microscopic degrees of freedom.
The starting point is the fermionic Hubbard model, introduced
in chapter 3. Weak coupling mean field theory and numerical
analysis of the Hubbard model do give us some answers, however,
the fermion sign problem plagues the theory.

On the other hand, in the strong coupling limit one can rewrite
the fermionic Hubbard model into a purely bosonic exciton t− J
model. In chapter 4 we introduce this new model and discuss its
properties. There we find the dynamical frustration of a single
exciton in a Mott insulating antiferromagnet. Chapter 5 discusses
the properties of the strongly correlated exciton condensate, where
we find spin-exciton cooperation. Indeed, the exciton condensate
can exist, but only if the kinetic energy of the excitons exceeds
their dipole-dipole repulsion. The influence of this dipole-dipole
repulsion on possible ordering phenomena is discussed in chapter
6.

Core concepts, like the Hubbard model or strong coupling per-
turbation theory, are best introduced in the context of the research
findings instead of in a separate introductory chapter. Hence,
whenever necessary background information will be included in
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the text or in references in the remaining chapters.
Finally, theoretical research should always be addressing ‘ac-

tually existing materials’. The main challenge in this regard is to
couple down-to-earth computations with insights in general phys-
ical concepts. In the concluding chapter 7 we put our findings on
strongly correlated bilayers into a broader context and relate it to
experimental progress, thereby addressing future directions in the
theory of quantum matter.



2
Phenomenology of exciton bilayers

Without specific knowledge of microscopic details one can still describe to an amazing
accuracy a large set of physical properties of any system. This is rooted in the vastness of
degrees of freedom, so that statistical effects dominate the physics. An effective free energy
based on symmetry principles can then be constructed, explaining macroscopic phenomena.

This was initially done by Ginzburg and Landau to describe superconductivity in the
early 40s, based on the realisation that the order parameter relevant to superconductivity
is a (charged) complex field. In this chapter we will introduce the field of bilayer exciton
condensates in section 2.1, and use symmetry arguments to write down a phenomenological
theory of these systems. In section 2.2 we deduce its magnetic response and the prediction
of flux quantisation.

hole layer

electron layer

exciton

d

Figure 2.1: Excitons in
double layer devices. Double
layer devices consist of an
electron layer (in green) par-
allel to a hole layer (blue),
separated by an insulating
barrier (grey). Electron-hole
attraction leads to the form-
ation of excitons. At suffi-
ciently low temperatures the
excitons can form a Bose-
Einstein condensate.

2.1 Bilayer excitons and condensation

In a semiconductor the elementary charged excitations are particles
and holes, and naturally these two excitations attract each other
via the Coulomb force. A trivial non-charged excitation is there-
fore composed of both an electron and a hole: the exciton.
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Directly after the BCS theory of superconductivity it was sug-
gested that excitons, as they are in many regards comparable to
Cooper pairs, can also Bose condense and exhibit superfluidity.11 Blatt et al., 1962; Keldysh

and Kopaev, 1965; and
Moskalenko and Snoke, 2000

Whilst the Coulomb force that binds the exciton is indeed orders
of magnitude stronger than the phonon glue in Cooper pairs, the
major difficulty for exciton condensation lies in their finite lifetime.
That is, excitons annihilate when the electron and hole recombine.

Nonetheless, exciton annihilation can be suppressed by spatially
separating the electrons and holes. This is achieved by construct-
ing a heterostructure where one sandwiches an insulating layer in
between a two-dimensional electron gas and a two-dimensional
hole gas, see figure 2.1. The Coulomb attraction is, due to its
long-range nature, not substantially reduced and therefore elec-
trons and holes can still form bound states. This is called a bilayer
exciton, double layer exciton or interlayer exciton.

Figure 2.2: Interlayer tun-
neling in a quantum Hall
bilayer as a function of bias
voltage, for different mag-
netic fields. The enhance-
ment of the interlayer tunne-
ling at zero bias is the result
of the exciton condensation
and is a direct measurement
of the order parameter. From
Spielman et al., 2000.

At low enough temperatures these interlayer excitons form a
superfluid.2 Unlike many other superfluids, the bilayer nature2 Shevchenko, 1976; and Lo-

zovik and Yudson, 1976 allows one to directly probe the superfluid order parameter. The
exciton condensate order parameter reads

∆k = 〈c†
k1σck2σ〉. (2.1)

where c†
k1σ creates an electron in the first layer and ck2σ creates

a hole in the second layer. One directly observes that this order
parameter amounts to anomalous interlayer tunneling.3 The onset

3 Moon et al., 1995; Spielman
et al., 2000; and Eisenstein
and MacDonald, 2004

of condensation is therefore sparked by a dramatic increase of the
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interlayer tunneling, as is shown by the experimental results in
figure 2.2.

One can question, however, to what extent the system created
in this way is really a superfluid. Obviously, since excitons are
neutral, there cannot be an electric supercurrent in these systems.
However, since the electrons and holes are spatially separated
an interlayer exciton current amounts to two opposite but equal
countercurrents. By connecting the two layers in series one can
measure the resulting counterflow superfluidity4 as is shown in 4 Su and MacDonald, 2008;

and Finck et al., 2011figure 2.3.

Figure 2.3: Near-perfect
counterflow is observed in
quantum Hall bilayers in a
corbino geometry. A current
is induced in the top layer
(from 5 to 2) and measured in
the bottom layer (from 1 to 6).
The result Is ≈ I1 suggests
that in the bilayer the electric
current is carried by super-
fluid excitons. From Finck
et al., 2011.

As of 2013, the field of interlayer excitons is still restricted to
a small class of material systems: the quantum Hall bilayers of
figures 2.2, 2.3 and Huang et al., 2012; and laser-pumped quan-
tum wells.5 There are many other possible candidate materials 5 High et al., 2012

to realise interlayer condensation, such as graphene sheets6 or 6 Lozovik and Sokolik, 2008;
Zhang and Joglekar, 2008;
Dillenschneider and Han,
2008; Kharitonov and Efetov,
2008; and Min et al., 2008

topological insulators7. In this thesis we consider strongly cor-

7 Seradjeh et al., 2009

related electron bilayers as candidate materials,8 the microscopic

8 Pentcheva et al., 2010; and
Millis and Schlom, 2010

properties of which will be discussed in the next two chapters.
Besides different materials there are also different experimental

probes possible. The current experiments focus mainly on trans-
port properties. One can argue that these do not necessarily prove
the existence of an interlayer exciton condensate. To directly probe
the coherence associated with the superfluid, we propose a flux
quantisation effect.
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2.2 Ginzburg-Landau theory and flux quantisation
This section is based on Rade-
maker et al., 2011. We can find the flux quantisation and related magnetic properties

of an exciton bilayer condensate using Ginzburg-Landau theory.
This amounts to constructing a free energy functional F [Ψ] for
the order parameter field. In the case of interlayer excitons, the
order parameter must describe the bound state of an electron in
one layer and a hole in the other layer, as in equation (2.1). The
exciton is therefore charge neutral, but it does possess an electric
dipole moment. This dipole moment is the starting point for the
derivation of magnetic properties.

As the direction of this electric dipole is fixed, the exciton su-
perfluid is characterized by just a complex scalar order parameter
field Ψ(~x) ≡ |Ψ(~x)|eiφ(~x) along a 2D surface, the square of which
gives the superfluid density ρ(~x) = |Ψ(~x)|2. For a charged su-
perfluid/superconductor with boson charge q electromagnetism
is incorporated by replacing ordinary derivatives with covariant
derivatives ~D,

h̄~D = h̄~∇+ iq~A(~x) (2.2)

where ~A(~x) is the vector potential. In the charge-neutral exciton
superfluid the electron and hole constituents of an exciton form
an electric dipole e~d and consequently the covariant derivative
associated with exciton matter must equal99 Balatsky et al., 2004

h̄~D = h̄~∇+ ie
[
~A(~x + ~d/2)− ~A(~x− ~d/2)

]
(2.3)

where the electron is positioned at ~x − ~d/2 and the hole at ~x +
~d/2. For small interlayer distance ~d the vector potential can be
expanded in a Taylor series. In addition, since the vector potential
~A along the 2D superfluid surface is only sourced by in-plane
currents, we can impose that the gradient of the vector potential
component perpendicular to the surface is zero,

~∇′
(
~d · ~A(~x′)

)∣∣∣
~x′=~x

= 0. (2.4)

This implies that the above vector potential difference can be
written completely in terms of the ’real’ magnetic field

~A(~x + ~d/2)− ~A(~x− ~d/2) =

−~d×
∞

∑
k=0

1
(2k + 1)!

(
~d
2
· ~∇′

)2k

~B(~x′)

∣∣∣∣∣∣
~x′=~x

. (2.5)
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Up to first order the exciton covariant derivative turns into

h̄~D = h̄~∇− ie~d× ~B. (2.6)

This is an interesting structure viewed from a theoretical perspect-
ive. Equation (2.6) corresponds to the covariant derivatives of
a SU(2) gauge theory with gauge fields Aa

i = εiakBk. Here the
SU(2) gauge fields are actually physical fields fixed by Maxwell’s
equations. Using the above considerations we can write down a
general Ginzburg-Landau free energy

F [Ψ] =
∫

d2x

[
α|Ψ|2 +

1
2

β|Ψ|4 +
h̄2

2m∗
(∇|Ψ|)2

+
1

2m∗
[

h̄~∇φ− e~d× ~B
]2
|Ψ|2 + d

B2

2µ0

]
. (2.7)

The parameters α and β can be written formally as a function of the
superfluid density and the critical magnetic field Bc. Minimization
of the free energy assuming a constant order parameter yields

α = −d
B2

c
µρ

, (2.8)

β = −α

ρ
. (2.9)

2.2.1 Electromagnetic response

The direct coupling to physical fields changes the rules drastically
as compared to normal superconductors. We define the exciton
supercurrent as the standard Noether current10 ~j ≡ h̄ρ

m∗
~∇φ. Con- 10 Leggett, 2006

sequently, minimizing the free energy for a fixed applied magnetic
field ~B perpendicular to the dipole moment yields the exciton
supercurrent response

~j ≡ h̄ρ

m∗
~∇φ =

ρe
m∗

~d× ~B. (2.10)

This result is closely related to spin superfluids11 where a ’physical 11 Leurs et al., 2008

field’ SU(2) structure arises through spin-orbit coupling.12 The 12 Goldhaber, 1989

analogue of Eq. (2.10) is the spin Hall equation13 jij = σsεijkEk → 13 Murakami et al., 2003

~j = −σ~dm × ~E. We conclude that the spin-superfluid formed
from magnetic dipoles is the electromagnetic dual of the exciton
(electric dipole) superfluid.
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In the double layer system the electric charges forming the
exciton dipoles are confined in the separate layers. Hence the ex-
citon supercurrent can be decomposed into the separated electron
and hole surface currents. According to Ampère’s law, a surface
current induces a discontinuity in the magnetic field components
parallel to the surface,

∆~B(~x) = µ0~K(~x)× n̂, (2.11)

where n̂ is the normal vector to the surface and ~K(~x) is an electric
surface current density. Consequently, an exciton supercurrent
reduces the magnetic field in between the electron and hole layer.
The double layer therefore acts as a (non-perfect) diamagnet with
magnetic susceptibility

χm = − e2ρdµ0

m∗
. (2.12)

For typical parameters ρ = 0.4 nm−2, d = 20 nm and m∗ = 2me,
the magnetic susceptibility equals χm = −10−4, comparable to
what is found in good diamagnets like gold or diamond. In semi-
conductor quantum wells, the exciton mass is smaller than the free
electron mass me which enhances the diamagnetic susceptibility
even further.1414 Butov, 2003

2.2.2 Flux quantization

Imposing single-valuedness on the order parameter implies that
for any given contour C inside a superfluid

∮
C

~∇φ · ~dl =
∮

C
~j · ~dl =

2πn where n is an integer. Therefore, circular supercurrents
must be quantised, which can be seen by topological defects in
the dipolar superfluid.15 In general, metastability of superflows15 Babaev, 2008; Seradjeh

et al., 2008; and Leurs et al.,
2008

requires a nontrivial topology of the superfluid.16 Unlike in other
16 Leggett, 2006

superfluids, the SU(2) structure of dipolar superfluids implies
the possibility of more complicated topologies which cannot be
obtained by creating defects in the superfluid.

Consider a cylindrical device of radius r consisting of two
concentric layers as shown in figure 2.4 with the electric dipole
moment ~d of the excitons pointing in the radial direction. For this
geometry the current-dependent term in the free energy can be
written as

F [Ψ] ∼
∮

dθ

[
h
e

∂θφ− Bz2πrd
]2

(2.13)
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hole layer
electron layer

magnetic field B

flux in between layersf

circular current

Figure 2.4: Flux trapping in a
cylindrical exciton superfluid.
The proposed device consists
of a concentric ring struc-
ture of radius r, composed of
an electron layer (green) and
hole layer (blue). Due to the
macroscopic coherence of the
exciton superfluid the angu-
lar current must be quantised.
By application of an external
axial magnetic field one can
induce some number of cur-
rent quanta. In absence of
the external field, the current
quanta remain which induces
a magnetic field as shown
(red lines). The trapped mag-
netic flux in between the lay-
ers must be quantised accord-
ing to Φ = h

e χm n where χm
is defined in equation (2.12).

where
∮

C dθ∂θφ = 2πn with n integer valued and Bz is the external
magnetic field. Note that the flux going in between the two
layers equals up to first order Φ = Bz2πrd. Minimisation of
equation (2.13) shows that current quanta can be induced by an
axial magnetic field. In the absence of the external field, the current
~j ∼ n induces a magnetic flux in between the layers, according to
Ampère’s law (2.11), with a magnitude

Φ =
h
e

χm n ≡ Φ0 χm n. (2.14)

This is our central result: in the cylindrical double layer geometry,
the magnetic flux going in between the sample layers must be
quantised in units of χm times the fundamental flux quantum
Φ0 = h

e . Notice that this flux quantisation effect is quite different
from the one realised in superconductors. In the double layer
exciton condensate the supercurrent is induced by the magnetic
field ~B rather than the gauge field ~A as in the London equation,
while the quantised amount of flux equals d

∮
~B · ~dl instead of∮

~A · ~dl =
∫ ∫

Σ
~B · ~dΣ for superconductors. In combination these

two basic differences add up to an universal expression for the flux
quantisation Φ = h

e∗ χm n that applies to both superconductors
and exciton condensates, where e∗ = −2e and χm = −1 for
superconductors.
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Is the strength of the condensate actually sufficient to trap the
flux? When the external field is switched off the flux carrying state
is metastable and the system can return to the ground state by
locally destroying the condensate: the phase slip. The condensate
can only be destroyed over lengths greater than the Ginzburg-
Landau coherence length

ξ =
h̄√
|2m∗α|

(2.15)

and consequently the energy required to break the condensate
over a region ξ wide along a cylinder of length z is

δFb =
1
2

h̄z
(

d ρ

2m∗µ

)1/2
Bc. (2.16)

Locally destroying the condensate is only favourable if this energy
is lower than the energy stored in the magnetic field, which is
δFm = B2

2µ 2πrd. We conclude that a phase slip will not occur
as long as the trapped magnetic flux Φ = Φ0χmn stays below a
threshold value,

Φ2 <

(
|χm|

2

)1/2

Φ0Bc rd. (2.17)

where Bc is the critical magnetic field. With the typical parameters
stated above and r = 100 µm, the critical field must exceed 5 nT to
trap one flux quantum. Since the critical magnetic field of bilayer
superfluids is proposed to lie in the orders of tens of Teslas17, a17 Balatsky et al., 2004

phase slip is improbable.
Another possible complication is that annihilation of excitons

by tunneling causes the phase to be pinned which introduces
a threshold for the formation of stable currents. Microscopic
tunneling can be incorporated via an extra term in the Ginzburg-
Landau free energy

Ft = −2t
∫

d2x
|Ψ|
L

cos φ, (2.18)

where L is the in-plane lattice constant and t is a microscopic
tunneling energy. This phase pinning lowers the energy of the
state where no flux is trapped, which introduces a threshold for
the trapping of magnetic flux quanta. It is only possible to trap n
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magnetic flux quanta if the microscopic tunneling energy t satisfies

2t < n2 h̄2

2m∗r2
√

ρL. (2.19)

This corresponds, given the typical parameters mentioned above,
to t < 0.3 peV (pico-electronvolt) for the first flux quantum.

In order to estimate a value for t, let us imagine that the
device is fabricated from copper-oxide layers. The hopping en-
ergy in cuprates between two adjacent CuO2 layers ranges from
approximately 10−1 eV for LSCO compounds to 10−3 eV for Bi-
based compounds18. Let us now assume that the hopping energy 18 Cooper and Gray, 1994;

and Clarke and Strong, 1997between more distant CuO2 layers falls off exponentially. A dis-
tance d = 20 nm between the hole and electron layer corresponds
roughly to 30 CuO2 layers, so that the tunneling energy equals
t ≈ e−3010−3 = 10−16 eV.19 This estimate lies well below the max- 19 The tunneling energy

might be viewed as a
transition rate: the lower this
energy the less electrons will
hop in a given time period.

imum value of t obtained in equation (2.19). However, the precise
value of t is highly sample specific and needs to be checked for
each separate sample.

The experimental protocol to test the flux quantization is as
follows: apply an axial magnetic field of magnitude Bext above
the critical temperature Tc, and cool the device below Tc such that
a circular current quantum is frozen in. The magnitude of the
current is determined by the strength of the applied flux: if Φext <
1
2 Φ0 no current is induced, for 1

2 Φ0 < Φext < 3
2 Φ0 one current

quantum is induced, etc. The magnetic field corresponding to 1
2 Φ0

is typically Bext = 0.2 mT. Upon removing the external magnetic
field, a trapped flux equal to Φ0χmn remains, corresponding to a
field strength of 50 nT. These numbers do not pose a problem of
principle for the experimental realisation of such a flux trapping
device.

Based on existing technology, one can envision various practical
realisations of the concentric p-n doped ring geometry, while it
is anticipated that further technology developments will create
additional opportunities. Using p- and n-doped complex oxide
compounds, such as cuprate perovskites, multilayer thin film
structures can be fabricated in the desired ring geometry. Using
the proven edge-junction technology20 the structure sketched in 20 Gao et al., 1990; and Hilgen-

kamp et al., 2003figure 2.5 can readily be fabricated, by e.g., pulsed laser deposition
and Ar-ion beam etching. As a barrier layer SrTiO3 can be used,
with a typical thickness of 10-100 nm, or another insulating oxide
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hole layer
electron layeree

exciton

hole layer
electron layer

Figure 2.5: Schematic rep-
resentations of possible prac-
tical realisations of the con-
centric ring geometry com-
prised of p- and n-doped lay-
ers. Left: Using epitaxially
grown complex oxide thin
films. Right: Using doubly-
gated graphene double lay-
ers.

that grows epitaxially on top of the etched base electrode. To
guarantee an epitaxial growth of all the layers, the angle α is best
kept below about 25

◦, but this does not fundamentally alter the
physics of the flux quantisation as presented in this chapter.

A second possible practical realisation is based on double-side
gated, double layer graphene. Recently, the growth of large area
graphene films has been demonstrated on Cu foils, using a high
temperature chemical vapor deposition process.21 Interestingly,

21 Li et al., 2009

a continuous growth was achieved over grain boundaries and
surface steps. From this it is feasible to expect that one can also
grow a closed graphene tube around a copper cylinder, which
would basically be a carbon nanotube with predetermined ra-
dius. Covering this with an appropriate epitaxial barrier layer, e.g.
10 nm of Al2O3 and a second graphene sheet, which may also
be grown by physical or chemical vapor deposition-techniques,
would then result in the desired concentric cylinder configuration.
Subsequently, the copper can be etched away and the concentric
cylinder can be transferred to an appropriate carrier, which can
even be made out of plastic.22 This would straightforwardly allow22 Bae et al., 2010

realizing a doubly gated configuration as depicted in figure 2.5.



3
Fermionic models of correlated bilayers

Many properties of an exciton condensate can be deduced by considering the phenomen-
ological Ginzburg-Landau free energy. However, to find specific susceptibilities that match
experiments we need a microscopic model, starting with the basic constituents of a correlated
bilayer: electrons, holes, and their interactions.

We introduce the fermionic Hubbard model, a remarkably elegant model that still
torments many theoretical physicists. Within the mean field theory picture it is easy to
discover exciton condensation, as demonstrated in section 3.2. However, the cuprate family
that we study has strong interactions and mean-field theory is at best uncontrolled, and at
worst completely wrong. We therefore perform a numerical study using the Determinant
Quantum Monte Carlo approach, with limitations rooted in the fermion sign problem.

U

t

Figure 3.1: In the tight bind-
ing approximation the elec-
tron states are given by orbit-
als on an ionic lattice. The
dynamics of the electrons is
described by the Hubbard
model, with hopping t and
an onsite repulsion U.

3.1 The Hubbard model and its problems
A good introduction into the
Hubbard model can be found
in Zaanen, 1996 and Imada
et al., 1998.

Many metals and alloys such as the cuprates are crystalline solids,
for which most electronic properties can be derived using the
tight-binding approximation. There one assumes that the electron
wavefunctions are still atomic orbitals and electrons can ‘hop’ from
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Figure 3.2: Lattice structure
of electron and hole-doped
cuprates. The interesting
physics happens in copper
oxide planes, with rare earth
ions in between the layers.
Doping is obtained by chem-
ical changes in the rare earth
layers.

one orbital to the other. This process is described by a hopping
Hamiltonian

HK = −∑
ijσ

tijc†
iσcjσ (3.1)

where c†
iσ creates an electron at site i with spin σ and tij is the

overlap between two atomic orbitals. With the addition of a
chemical potential µ, which tunes the electron density, this model
represents the simple Fermi gas. A Fourier transformation turns
the Hamiltonian into a diagonal form in momentum space,

HFG = ∑
kσ

(εk − µ) c†
kσckσ (3.2)

where εk is the Fourier transform of tij and is called the dispersion.
We find that the ground state is an antisymmetrized product
state, which can be viewed as a marginal extension of the classical
condensates mentioned in the introduction.

Next to the hopping, which is associated with kinetic energy,
there exist interactions between the electrons.1 This is typically a1 There also exist ion-ion in-

teractions and electron-ion in-
teractions, which are com-
monly referred to as electron-
phonon coupling. We neglect
those in this thesis.

density-density interaction of the form V(r− r′)n(r)n(r′), where
V(r) is the (screened) Coulomb potential and n(r) = c†(r)c(r) is
the electron density. Landau2 famously showed that when one

2 Nozieres and Pines, 1999
slowly turns on these interactions, there remains a one-to-one cor-
respondence between the ground state and excitations of the Fermi
gas and the Fermi liquid. This principle of adiabatic continuation
allows us to neglect electron-electron interactions (or at most treat
them perturbatively) in most metals and semiconductors.
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However, there is a class of materials for which the interactions
are so strong that the picture of adiabaticity breaks down. This
is often the case when d- or f -orbitals are involved. Then the
simplest approach is to include the onsite Coulomb interaction

HU = U ∑
i

ni↑ni↓, (3.3)

which leads to the famous Hubbard model3 3 Anderson, 1959; and Hub-
bard, 1963

HH = −t ∑
〈ij〉σ

c†
iσcjσ − µ ∑

iσ
c†

iσcjσ + U ∑
i

ni↑ni↓, (3.4)

where we restricted the hopping to be nearest neighbor only.
Figure 3.1 illustrates the elementary physics described by such a
Hubbard model on a square lattice.

It is quite embarrassing that even today the physics of the
Hubbard model is not fully understood. The first reason lies in
the inherent competition between kinetic and potential energy. The
kinetic energy is diagonal in momentum space, which suggests we
should treat the electrons as waves. The potential energy, however,
is diagonal in real space, hence we should consider the electrons as
particles. The quantum mechanical particle-wave duality reaches
its apex of complexity when zt ≈ U.4 4 The factor z is the coordin-

ation number of the lattice,
thus zt is proportional to the
bandwidth or kinetic energy.

Another reason that the Hubbard model is so poorly under-
stood is the fermion sign problem. In numerical analysis this
means that one cannot map the model onto a classical probabil-
istic theory. Analytical progress is difficult since the sign problem
implies that wavefunctions are no longer simple product states
but rather complicated long-range entangled states.5 5 Liang et al., 1988

Despite these issues, we can construct a microscopic model of
a strongly correlated bilayer based on the Hubbard model. The
extended bilayer Hubbard model contains a kinetic part

HK = −t ∑
〈ij〉`σ

c†
i`σcj`σ −∑

i`
µ`ni` − t⊥∑

iσ
(c†

i1σci2σ + h.c.) (3.5)

where t is the intralayer hopping, t⊥ is the interlayer hopping and
µ` is the chemical potential per layer. We denote lattice sites by
their in-plane index i and their layer number ` = 1, 2. Next to the
kinetic part the model contains the onsite interaction

HU = U ∑
i`

ni`↑ni`↓ (3.6)
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Figure 3.3: The extended
bilayer Hubbard model (3.5)-
(3.7) describes two layers
with in-plane hopping t and
interlayer t⊥, onsite repul-
sion U and interlayer Cou-
lomb interaction V.

U

V

t

layer  1

layer  2
t

and the interlayer interaction

HV = ∑
ijσσ′

Vijni1σnj2σ′ . (3.7)

A graphic representation of the extended bilayer Hubbard model
is shown in figure 3.3.

The occurrence of interlayer excitons in this model can be
investigated in various limits. Whenever the interactions U and V
are relatively weak mean field theory is applicable, similar to how
BCS theory describes the pairing of electrons into Cooper pairs.66 Bardeen et al., 1957

This will be detailed in the next section.
Another limit is the Hubbard model on a bipartite and half-

filled7 lattice with strong interaction U. There the system unam-7 Bipartite means I can sub-
divide the lattice into two
sublattices, and every site is
only connected to sites on the
other sublattice. Half-filling
means that there is on aver-
age 1 electron per lattice site.

biguously becomes a Mott insulator.8 The electrons are localized

8 Mott, 1949; Anderson, 1952;
and Marshall, 1955

and only their spin degree of freedom remains, which in turn
order antiferromagnetically. The effective physics can then be
expressed in a bosonic spin language, which will be discussed in
chapter 4.

The final approach to the fermionic bilayer Hubbard model is
brute force. The Determinant Quantum Monte Carlo technique
allows exact computation of several interesting properties of the
bilayer Hubbard model, as we will show in section 3.3.

3.2 The BCS theory of electron-hole pairing

This section shows an elementary computation, similar to the vari-
ous mean field computations9 in the literature. Mean field theory,9 Amongst them most not-

ably the prediction of room-
temperature superfluidity in
Min et al., 2008.

however, grossly overestimates the tendency to form exciton con-
densates and it surely is not applicable to strongly correlated
bilayers. Keeping this in mind, let us now derive electron-hole
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pairing in the bilayer Hubbard model.
The idea of BCS theory is to single out the interactions being re-

sponsible for the expected order, which is in our case the interlayer
exciton condensate with order parameter (3.58). In momentum
space, the order parameter reads

∆k =
1
2 ∑

σ

〈c†
k1σck2σ〉 (3.8)

which is a spin singlet. The interaction that induces exciton con-
densation scatters excitons from momentum k to momentum k′.
Thus we need to focus on the interlayer interactions

HV,BCS = ∑
kk′σ

Vk−k′c
†
k1σck′1σc†

k′2σck2σ. (3.9)

The idea of mean field theory is to replace c†
k1σck2σ in the interac-

tion terms by ∆k + δ
(
c†

k1σck2σ

)
, and then neglect terms of order

δ2. The resulting mean field Hamiltonian is

HMF = ∑
k`σ

ξk`c†
k`σck`σ

−∑
kσ

(
t⊥ + ∑

k′
Vk−k′∆k′

)(
c†

1kσc2kσ + h.c.
)

+ ∑
kk′σ

Vk−k′∆k′∆k. (3.10)

We have introduced ξk` = εk` − µ` as the dispersion minus chem-
ical potential for each layer. This mean field Hamiltonian is quad-
ratic in the fermionic operators and can thus be solved exactly. The
dispersion of the quasiparticles depends on the order parameter ∆

ωk±(∆) =
1
2
(ξk1 + ξk2)

±

√√√√(1
2
(ξk1 − ξk2)

)2
+

(
t⊥ + ∑

k′
Vk−k′∆k′

)2

.

The corresponding mean field energy

E(∆) = ∑
k±σ

ωk±nFD(ωk±) + ∑
kk′σ

Vk−k′∆k′∆k (3.11)

needs to be minimized to find a solution for ∆k.
Up till here the mean field analysis is fairly general: we have

not specified the shape of the dispersions ξk` or the interaction
Vk. A simple choice is the free electron dispersion10 10 Lozovik and Yudson, 1976
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ξk =
(k− k0)2

2m
(3.12)

which can be modified to match any lattice, such as graphene’s
hexagonal lattice.11 Usually the dispersion is linearized11 Dillenschneider and Han,

2008

ξk = vF(k− k0) (3.13)

around the Fermi level to simplify the computations.12 One can12 Shevchenko, 1976; Lozovik
and Sokolik, 2008; Zhang and
Joglekar, 2008; Kharitonov
and Efetov, 2008; and Min
et al., 2008

also introduce spin-orbit coupling which is needed for exciton
condensates in topological insulator bilayers.13 In our case of

13 Seradjeh et al., 2009

bilayer cuprates we consider the dispersion generated by nearest
neighbor hopping on a square lattice,

ξk1 = −zt
1
2
(cos kx + cos ky)− µ, (3.14)

ξk2 = +zt
1
2
(cos kx + cos ky) + µ, (3.15)

see figure 3.4.

H0,ΠL HΠ,ΠL H0,0L

zt

-zt

Dispersions

Figure 3.4: Dispersion of the
electrons and holes in the
absence of any interactions.
The red thick line denotes the
electron band, the blue thick
line is the hole band. When
a finite t⊥ is included, a gap
opens up around the Fermi
surface, and the correspond-
ing upper and lower bands
are shown with dashed lines.

The type of interaction can be either nearest neighbor only,
screened Coulomb or normal Coulomb. Here we choose for sake
of simplicity the nearest neighbor interaction

Vk = V. (3.16)

With this choice of interaction it becomes reasonable to assume
that the order parameter becomes independent of momentum
∆k = ∆; this amounts to only local electron-hole pairing. The
mean-field energy at T = 0 now equals

E(∆) = 2V∆2 − 2
N ∑

k

√
ξ2

k + V2∆2 (3.17)

where ξk = 1
2 (ξk1 − ξk2). The minimization condition ∂E/∂∆ = 0

yields the gap equation1414 A convenient way to ex-
press the gap equation is to
replace the momentum sum
by an integral over energy,

1
V

=
∫ D(ε)dε

2
√

ε2 + V2∆2
,

where D(ε) is the density of
states.

1
V

=
1

2N ∑
k

1√
ξ2

k + V2∆2
. (3.18)

Let us pick some relevant parameters and solve the gap equa-
tion exactly. The typical hopping energy in cuprates is t ≈ 0.4 eV.
The interlayer hopping t⊥ is set to zero because of the insulating
layer that prevents exciton annihilation. A reasonable estimate for
the interaction strength is to take it equal to the hopping energy:
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Temperature (K)
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0.04
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At half-filling (zero doping)

At zero temperature

Figure 3.5: The exciton con-
densate order parameter ∆
in mean field theory, found
by the gap equation (3.18).
Left: ∆ at zero temperature
as a function of doping. Note
that zero doping equals half-
filling. Right: ∆ at half-filling
as a function of temperat-
ure. The exciton condens-
ate is stable up to Tc ≈ 385
Kelvin.

V ≈ t. Given these parameters we compute ∆ as a function of
particle density n at zero temperature, see figure 3.5.

The same minimization procedure can be obtained to find fi-
nite temperature behavior of the order parameter. At half-filling
(µ = 0) the density of states at the Fermi level is the highest,
such that we find there the strongest instability towards exciton
condensation. As shown in figure 3.5 the gap reduces with tem-
perature until it vanishes at Tc ≈ 385 K.

It is within this mean field approach quite easy to find a very
large critical temperature. The predictions of room-temperature
superfluidity15 in exciton systems are obtained in this way. One 15 Min et al., 2008

must bear in mind, however, that mean field theory in general
overestimates the tendency to order. On top of that, the fact that
we are dealing with relatively strong Coulomb interactions makes
the theory basically unreliable.

Besides the intrinsic problems that mean field theory has, the
applicability to strongly correlated bilayers is further reduced
because it does not take into account the strong onsite repulsion
U. This is an example of an interaction that is not involved in
the pairing mechanism, and can only be included perturbatively.
Since U > V a perturbative approach is unjustifiable.

We therefore need to resort to numerical approaches that treat
the interactions U and V on the same footing as the kinetic energy
t.

3.3 Numerical approach: Determinant Quantum Monte
Carlo

There are several numerical schemes available to study the Hub- This section is based on Rade-
maker et al., 2013c.bard model. The straightforward manner is exact diagonaliza-
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tion,16 whereby one explicitly constructs the Hamiltonian matrix16 Kaneko et al., 2013

on a finite size cluster. The problem is that the Hilbert space
size diverges exponentially with the system size: a simple 6× 6
lattice has already a 69 billion dimensional Hilbert space. The
Determinant Quantum Monte Carlo (DQMC)17 technique on the17 Blankenbecler et al., 1981;

White et al., 1989b; and White
et al., 1989a

other hand maps the fermionic Hubbard model onto a classical
statistical problem, which can then be sampled using standard
Monte Carlo methods.

Therefore we first rewrite the kinetic part of the bilayer Hubbard
model in a matrix form,

HK = ∑
ij``′σ

c†
i`σkσ

i`,j`′cj`′σ. (3.19)

If we have two layers of size N ≡ Nx × Ny, the matrix kσ is a
2N × 2N matrix. The partition sum and the Greens function can
now be exactly computed using this k-matrix,I2N is the 2N × 2N identity

matrix.

Z ≡ Tr
[
e−βHK

]
= det

[
I2N + e−βk↑

]
det

[
I2N + e−βk↓

]
(3.20)

and

Gσ
i`,j`′ ≡

1
Z

Tr
[
ci`σc†

j`′σe−βHK
]

=
[

I2N + e−βkσ
]−1

i`,j`′
(3.21)

Notice that the dimension of the k-matrix grows linearly with sys-
tem size, not exponentially as in the case of exact diagonalization.

To include the interaction terms we rewrite them such that
half-filling is always characterized by µ = 0. The onsite repulsion
becomes

HU = U ∑
i`

[
(ni`↑ −

1
2
)(ni`↓ −

1
2
)− 1

4

]
(3.22)

while the interlayer nearest neighbor repulsion reads

HV = V ∑
iσσ′

[
(ni1σ −

1
2
)(ni2σ′ −

1
2
)− 1

4

]
. (3.23)

Obviously, for the full partition Hamiltonian H = HK + HU + HV

we cannot use the result of (3.20). Therefore we need to perform
a Suzuki-Trotter decomposition. The inverse temperature β is
considered as a new dimension and we ‘chop up’ this imaginary
time axis into L pieces,

e−βH =
(

e−∆τH
)L

(3.24)
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such that β = L× ∆τ. At each imaginary time slice we split the
kinetic part from the interaction parts,

e−∆τH ≈ e−∆τHU e−∆τHV e−∆τHK (3.25)

which becomes exact in the limit ∆τ → 0. We then introduce a
discrete Hubbard-Stratonovich transformation. On each site and
time-slice for each type of interaction we introduce a Hubbard-
Stratonovich (HS) field s(i, τ) which can only take the values ±1.
As a result we decouple the onsite interactions

e−∆τU[(n̂↑− 1
2 )(n̂↓− 1

2 )− 1
4 ] =

1
2 ∑

s=±1
eλUs(n̂↑−n̂↓), (3.26)

where
λU = arccosh

(
e

1
2 U∆τ

)
. (3.27)

A similar decoupling can be formulated for the interlayer inter-
action V. For each in-plane coordinate i we have six different
HS fields sα(i, τ): in each layer one associated with the onsite The index α = 1, . . . , 6 counts

the specific type of HS field.repulsion U and the four possible interlayer interactions for V
depending on the particle spin.

The advantage of the HS transformation is that the interaction
terms have become quadratic. Just like we wrote the quadratic
kinetic Hamiltonian in terms of a matrix kσ, we can rewrite the
transformed interaction terms using a diagonal matrix vσ(τ) that
depends on the HS fields sα(i, τ). Each time slice is therefore
represented by the 2N × 2N matrix

Bσ
l = evσ(l∆τ)e−∆τkσ

, (3.28)

the product of which represents the full evolution among the
imaginary time axis

Mσ = I2N + Bσ
LBσ

L−1 · · · Bσ
2 Bσ

1 . (3.29)

The partition sum can be computed exactly by

Z =
1

26NL ∑
sα(i,τ)=±1

det M↑ det M↓. (3.30)

The equal-time Greens function can be computed by

Gσ
i`,j`′ =

1
Z

1
26NL ∑

sα(i,τ)=±1
[Mσ]−1

i`,j`′ det M↑ det M↓. (3.31)
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We have thus transformed the bilayer Hubbard model into a
Ising-like statistical physics problem. We have 6NL ‘sites’ with
±1 variables and each possible configuration is weighed by the
determinants of the Mσ-matrices.

There are too many configurations to compute (3.30) and (3.31)
exactly. Therefore we pick random configurations and compute
Z and G and this result will become exact when the number of
random configurations approaches infinity. However, one can still
do better, via the procedure of importance sampling. Thereby we
create a Markov chain of configurations, favoring configurations
with a larger weight. This is done in such a way that the weight of
a configuration is reflected in its occurrence in the Markov chain.
In a more precise language, importance sampling requires three
steps:

1. Start with a given configuration s.

2. Make a new configuration s′ based on the old one, in the
present case by randomly changing the six HS fields on a given
site and time-slice.

3. Accept this new configuration with a transition probability
T(s → s′). This probability must satisfy the detailed balance
condition

T(s→ s′)P(s) = T(s′ → s)P(s′) (3.32)

where P(s) is the statistical weight of configuration s. Addi-
tionally, the function T(s→ s′) must satisfy overall ergodicity,
which means that there is always a finite chance to get from
any initial configuration to any other configuration.

4. ‘Measure’ parameters of interest, such as the Greens function
[Mσ]−1

i`,j`′ , given the configuration at hand. Then go back to step
1 and repeat this sequence until enough measurement points
have been accumulated.

5. Do a simple average over the measurement points.

In the Metropolis algorithm the new configuration is accepted
with probability TM(s → s′) = min (1, P(s′)/P(s)). The heat
bath algorithm has the transition probability THB(s → s′) =
P(s′)/(P(s) + P(s′)). Since the importance sampling works best
when new configurations are accepted approximately 50% of
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the time, in our code we work with a mixture of heat bath and
Metropolis prescriptions,

T(s→ s′) = γ
P(s′)

P(s) + P(s′)
+ (1− γ) min

(
1,

P(s′)
P(s)

)
(3.33)

where γ is a parameter that we can tune to get the optimal accept-
ance probability.

3.3.1 DQMC and the sign problem

So what happened to the infamous fermion sign problem? The
product det M↑ det M↓ can be negative, which implies that we
cannot identify it as the weight of a configuration. Instead, we
need to define the weight by their absolute value,

P(s) =
∣∣∣det M↑ det M↓

∣∣∣ . (3.34)

We then need to measure the average sign

Sign = sgn
(

det M↑ det M↓
)

(3.35)

for each configuration that appears in the Markov chain. Addi-
tionally we need to multiply each measurement with the sign of
the configuration. In step 5, where we do averaging, we need to
divide the result by the average sign.

In the single layer Hubbard model at half-filling the particle-
hole symmetry leads to sign-cancellation, such that det M↑ det M↓

is always positive. However, away from half-filling at low tem-
peratures the average sign decreases rapidly. This causes an
exponential increase in the errors made since we are dividing by
a number that tends to zero. For example, at 15% doping the sign
problem prevents us from cooling below 1000 Kelvin: precisely
the range where the interesting physics happens.

In our bilayer case it is even worse: the protection guaranteed by
particle-hole symmetry is lost because of the interlayer interaction
V. Even at half-filling, there will be a sign problem. Our only
hope is that the interesting physics, such as exciton condensation,
will show up before the average sign drops below ∼ 0.2.

3.3.2 Numerical recipes

Before we proceed to the results of the DQMC for the bilayer
Hubbard model, we need to introduce some numerical tricks that
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are needed to make this method work.
For some physical parameters, such as conductivity or pair-

susceptibilities, one needs to compute the unequal time Greens
function

Gi`,j`′(τ, τ′) =
1
Z

Tr
[
ci`σ(τ)c†

j`′σ(τ′)e−βH
]

(3.36)

for τ > τ′. Given a configuration of HS fields we define τ = p∆τ,
τ′ = q∆τ and

Aσ
1 = Bσ

p Bσ
p−1 . . . Bσ

q+1 (3.37)

Aσ
2 = Bσ

q Bσ
q−1 . . . Bσ

p+1. (3.38)

so that the unequal time Greens function can be computed as

Gσ
i`,j`′(τ, τ′) =

[
(Aσ

1 )−1 + Aσ
2

]−1

i`,j`′
. (3.39)

A major problem in computing the A, M and G matrices lies in
the fact that matrix multiplication and inversion is a numerically
highly unstable process. One therefore needs to use carefully
developed matrix factorization algorithms. Whenever multiplica-
tions or inversions seem to become unstable, one needs to perform
a UDR decomposition18 of the matrix at hand: U is unitary, D is18 White et al., 1989b

diagonal and R is an upper triangular matrix with unity pivots.
The unstable part of the matrix is now cast in the diagonal part,
which needs to be treated carefully.

The construction of the Greens function matrix is in general
numerically costly. However, within the importance sampling
algorithm one can quickly change the Greens function of the ‘old’
configuration into the ‘new’ one. Start with a known Greens
Function for both spin species given the HS-fields sα(i, l∆τ) and
then change all the six HS fields at site and time-slice (i, l∆τ)
yielding a snew. Define

∆sα = sα,new(i, l∆τ)− sα,old(i, l∆τ) = ±2 or 0. (3.40)

Under this change, we note that1919 The equal-time Greens
function G(l∆τ, l∆τ) is given
by [I + Aσ ]−1. The explicit
l-dependence is dropped in
the following derivation.

Aσ = Bσ
l Bσ

l−1 · · · B
σ
1 Bσ

L · · · Bσ
l+1 (3.41)

→ Aσ ′ = [I + ∆σ] Aσ. (3.42)
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The matrix ∆σ has only two nonzero elements, namely

∆↑i1,i1 = exp [λU∆s1 + λV(∆s3 + ∆s4)]− 1 (3.43)

∆↓i1,i1 = exp [−λU∆s1 + λV(∆s5 + ∆s6)]− 1 (3.44)

∆↑i2,i2 = exp [λU∆s2 − λV(∆s3 + ∆s5)]− 1 (3.45)

∆↓i2,i2 = exp [−λU∆s2 − λV(∆s4 + ∆s6)]− 1. (3.46)

The ratio of weights between the new Mσ ′ and the old Mσ equals

Rσ =
det[I + Aσ ′]
det[I + Aσ ]

= det
[
(I + Aσ ′)Gσ

]
= det [I + ∆σ AσGσ]

= det [I + ∆σ(I − Gσ)]

=
[
1 + (1− Gσ

i1,i1)∆σ
i1,i1
] [

1 + (1− Gσ
i2,i2)∆σ

i2,i2
]

−Gσ
i2,i1Gσ

i1,i2∆σ
i1,i1∆σ

i2,i2. (3.47)

Using this formula, we can quickly decide whether we want to
accept a change or not, instead of explicitly recalculating the whole
determinant. If the change is accepted, we can use a similar trick
to update the Greens function. Recall that

Gσ → Gσ ′ = [1 + Aσ + ∆σ Aσ]−1 . (3.48)

Because the matrix ∆ is sparse (it has only two nonzero elements,
at i and i + N), we can use the Woodbury matrix identity to do
a fast update of the Greens function. In single layer DQMC one
uses the Sherman-Morrison matrix identity, but the interlayer cor-
relations force us to use a generalization. The Woodbury identity
amounts to

Gσ
ab → Gσ

ab −∑
`,`′

Gσ
a,i`∆σ

i`,i`(R−1)``′(1− Gσ)i`′ ,b (3.49)

where the spin-dependent R-matrix is given by

R``′ =

(
1 + (1− Gσ

i1,i1)∆σ
i1,i1 −Gσ

i1,i2∆σ
i2,i2

−Gσ
i2,i1∆σ

i1,i1 1 + (1− Gσ
i2,i2)∆σ

i2,i2

)
. (3.50)

Note that the determinant of the R-matrix equals the ratio as
defined in equation (3.47). Thus the inverse is trivially given by

(R−1)``′ =
1

Rσ

(
1 + (1− Gσ

i2,i2)∆σ
i2,i2 Gσ

i1,i2∆σ
i2,i2

Gσ
i2,i1∆σ

i1,i1 1 + (1− Gσ
i1,i1)∆σ

i1,i1

)
.

(3.51)
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Figure 3.6: The average sign
at half-filling for various in-
terlayer interactions V. When
V 6= 0 the average sign drops
rapidly. Parameters are U =
4t, t⊥ = 0.05t and µ = 0.
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These equations combined yield the full Woodbury update in the
case of a bilayer system with interlayer interactions.

The Woodbury identity requires that we consider the equal-time
Greens functions G(τ, τ) at different imaginary times. A simple
trick to get from one time-slice to the next is called wrapping,

Gσ(l + 1) =
[
I + Bσ

l+1Bσ
l · · · B

σ
l+2
]−1 (3.52)

= Bσ
l+1Gσ(l)[Bσ

l+1]
−1. (3.53)

So for a full update of the Greens function we start at the first
time slice. Then we update the HS fields at each site using the
importance sampling and the Woodbury identity. Once all sites
at a given time-slice are done, we use wrapping to get to the
next time-slice. This procedure is repeated until all time-slices are
updated. In the mean-time we perform various physically relevant
measurements, such as density, spin correlations, etcetera.

Finally we require a numerical recipe for the error analysis of
the results. A simple root mean-squared error of all configurations
is not a good measure.20 Additionally, the measurements should

20 For example: if we meas-
ure the energy, then the root
mean-squared of all inde-
pendent measurements gives
you the specific heat, not the
uncertainty in the average en-
ergy.

be independent which is clearly not the case for a Markov chain
of configurations. We therefore compute 8 independent Markov
chains in parallel, and the error bars are obtained as root mean-
squared errors over the averages of each Markov chain. This
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Figure 3.7: The average sign
versus density for increasing
interlayer interaction V. The
temperature is fixed at T =
0.221, other parameters are
U = 4t and t⊥ = 0.05t.

measures the degree to which two independent sampling chains
lead to the same average.

3.3.3 Results on the fermion sign problem

The applicability of the DQMC method just described is limited
by the measured average sign, which depends on the specific
model parameters such as temperature and interaction strength.
We therefore present first our results regarding the average sign,
both its value and the impact on the statistical errors on other
measurements.

As we briefly mentioned in section 3.3.1, in the absence of the
interlayer interaction V at half-filling the average sign is always
1 due to particle-hole symmetry. This can be understood by
considering the determinants of Mσ for both spin species. Since
the Hubbard-Stratonovich fields couple to both the up and down
spins, a change of sign in det M↑ is accompanied by the same
sign change in det M↓. Consequently, at half-filling for V = 0 all
weights det M↑ det M↓ are positive. One can directly infer that
this sign cancellation fails when V 6= 0, since there are now HS
fields that couple to only one type of spin. Indeed, as can be
seen in figure 3.6, inclusion of a nonzero interlayer interaction V
drastically reduces the sign.
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Figure 3.8: The average sign
versus density at various tem-
peratures. The interlayer in-
teraction is fixed at V = 0.75,
other parameters are U = 4t
and t⊥ = 0.05t. The sign is
lowest around 15− 20% dop-
ing.
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At finite densities, in the case of equal p-type and n-type dop-
ing of the two different layers, the average sign is further reduced.
Even in the absence of interlayer V, the sign drops so rapidly that
the physically interesting regime (with the pseudogap, d-wave
superconductivity, etc.) is inaccessible. Figure 3.7 displays how
the average sign depends on both doping and interlayer V for a
fixed temperature. It is worthwhile to note that the physical tem-
perature corresponding to these parameters is about 900 Kelvins,
still an order of magnitude higher than for example the onset
of superconductivity in the cuprates. In figure 3.8 we show the
average sign as a function of doping for a fixed interlayer coupling
V = 0.75.

In all cases the sign problem is the worst around 15− 20% p/n-
doping. Remember that we have one layer doped with holes and
another layer doped with the same number of electrons, relative to
half-filling. Inclusion of V does not change the qualitative doping
dependence of the average sign, it does reduce it significantly.

This is in stark contrast to the suggestion, made in the context of
the exciton t− J model of the next chapters,21 where we consider21 See Sheng et al., 1996; Wu

et al., 2008 and section 4.1.4. the limit V � t, that the sign problem could be reduced upon
increasing V. That is based on the idea that the increased interlayer
interaction makes it more likely that electrons and holes in the
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Figure 3.9: Average sign, dop-
ing, interlayer tunneling and
dc conductivity for V = 0.75
and Nx = 4 as a function of
temperature. Static measure-
ments, such as density and
interlayer tunneling, are still
reliable as long as the sign
> 0.1. The dynamic meas-
urements such as dc conduct-
ivity become unstable when
the sign < 0.5. For compar-
ison, both µ = 0 and µ = 0.8t
is shown.

two layers move simultaneously, so that the signs of the electrons
could be cancelled by the signs of the hole. Based on our DQMC
results, this is obviously not the case when the interlayer coupling
V is of the same order as t.

Whenever the average sign becomes low, the uncertainty of
measurements increases. Let us give a rough quantitative estim-
ate of what average sign is still acceptable. Therefore we need to
distinguish between two kinds of measurements. ‘Static’ meas-
urements, such as the doping and interlayer tunneling, involve
only the equal-time Greens function

Gσ
i`,j`′ = 〈ci`σc†

j`′σ〉 (3.54)

and are more stable than ‘dynamic’ measurements involving the
unequal-time Greens function

Gσ
i`,j`′(τ) = 〈Tτci`σ(τ)c†

j`′σ〉. (3.55)

In the latter category, we computed the dc conductivity based on
the current-current correlation function for each layer,

Λ`
xx(q, τ) = ∑

i
〈jx(ri`, τ)jx(0, 0)〉eiq·ri` (3.56)

Instead of performing the analytic continuation, we approximate
the dc conductivity by22 22 Trivedi et al., 1996
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Figure 3.10: Interlayer tunne-
ling at V = 0.75t for Nx =
4, relative to the V = 0
case. A clear enhancement
of the tunneling, which is
equal to the exciton condens-
ate order parameter, can be
seen around µ = 0.8, where
the doping level is approxim-
ately 15%.
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πσdc
β2 = Λ`

xx(q = 0, τ = β/2) (3.57)

which is valid as long as the density of states is not rapidly varying
around the Fermi surface.

In figure 3.9 we show the average sign dependence as a function
of temperature for V = 0.75, for µ = 0 and µ = 0.8, and relate it to
interlayer tunneling, doping and dc conductivity measurements.
As long as the average sign is above 0.5, all measurements are
statistically trustworthy. Below 0.5, the dc conductivity results
have statistical error bars more than half of σdc itself. Therefore we
limit our dynamical measurements to regions where the sign is
< 0.5. Similarly, the error bars on the static measurements suggest
that we cannot use static data when the average sign is < 0.1. This
implies that the window for which DQMC is applicable for all
doping levels is limited to about β < 5 and V < 1.

3.3.4 Exciton condensation

Our main goal is to investigate whether exciton condensation
might occur in the bilayer Hubbard model. Recall that the order
parameter of an interlayer exciton condensate is2323 See chapter 2, specifically

equation (2.1).

∆k = 〈c†
k1σck2σ〉. (3.58)
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Figure 3.11: Interlayer tunne-
ling for Nx = 4, relative to
the V = 0 case, for all densit-
ies and interaction V. A clear
enhancement of the tunne-
ling, which is equal to the ex-
citon condensate order para-
meter, can be seen around the
doping level of 15− 20%.

In the presence of strong local interactions excitons will be formed
locally as well, which means that the electron and hole are above
each other. The order parameter becomes independent of mo-
mentum and equals

∆ =
1
N ∑

i
〈c†

i1σci2σ〉. (3.59)

The condensate order parameter equals interlayer tunneling,24 24 Spielman et al., 2000; and
Eisenstein and MacDonald,
2004

which is directly measurable in experimental set-ups.
Within the DQMC method, the interlayer tunneling can be

directly read off from the Greens function constructed during the
algorithm. The ideal exciton condensate occurs when the interlayer
hopping is completely suppressed, t⊥ = 0. However, in that case
the order parameter calculated in DQMC is identically zero. We
need to include a finite t⊥, which acts as a symmetry breaking
field just like a magnetic field would induce magnetization. The
inclusion of a nonzero t⊥ requires us, however, to extrapolate
to the perfect t⊥ → 0 case. For this we propose two different
schemes.

First, we note that in the absence of an exciton pairing interac-
tion V the interlayer hopping t⊥ will automatically create a doping
dependence of the interlayer tunneling. Therefore we separate
the contribution to interlayer tunneling that arises due to exciton
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Figure 3.12: Interlayer tunne-
ling at V = 0.75t as a func-
tion of t⊥ for µ = 1 and
Nx = 4. The scaling for t⊥
suggests that there is no ex-
citon condensation.
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formation from the part that is already present at V = 0. In figure
3.10 we show how this relative interlayer tunneling depends on
temperature and chemical potential for fixed V = 0.75. There is
a clear enhancement of the interlayer tunneling around µ = 0.8,
which amounts to 15% doping.

At a given temperature of T = 0.221 we present the interlayer
tunneling as a function of p/n-doping and interlayer interaction
V in figure 3.11. The strongest tendency towards interlayer tun-
neling is at 15− 20% doping, for the largest values of interaction
V.

Our second strategy to determine the possibility of exciton
condensation is to look at the t⊥-dependence of the interlayer
tunneling. Following the standard BEC/BCS condensation theor-
ies,25 the exciton condensate is represented in the Hamiltonian by25 See section 3.2.

the symmetry breaking term

−V∆ ∑
iσ

(
c†

i1σci2σ + h.c.
)

(3.60)

which just adds to the interlayer hopping term t⊥. When U =
V = 0 we can compute the interlayer tunneling analytically which
yields

〈c†
i1σci2σ〉 ∼

t⊥ + V∆
t

. (3.61)
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Figure 3.13: The dc conduct-
ivity σdc following equations
(3.56)-(3.57) at T = 0.221 as a
function of doping and V for
Nx = 4. We only included
data points where the error
bar on the measurements is
less than 50% of σdc itself.
The dc conductivity is the
largest at a doping around
20%,

For finite U and V we therefore assume that the interlayer tun-
neling is a linear function of t⊥, and the order parameter can
be found by taking the limit t⊥ → 0. This is done for V = 0.75
and µ = 1, parameters for which the interlayer tunneling is the
largest, in figure 3.12. As the temperature is lowered the interlayer
tunneling increases. However, the scaling behavior as a func-
tion of t⊥ suggests that there is no exciton condensation present.
Unfortunately, due to the sign problem, we cannot go lower in
temperatures.

Next to direct measurements of the order parameter, one can
probe related properties of the exciton condensate. Since in an
exciton condensate the charge carriers are bound into charge neut-
ral excitons, it is expected that exciton condensates are insulating.
Let us therefore look at the conductivity measurements, which
are severely limited by the sign problem as pointed out in the
previous section. In figure 3.13 we display measurements on the
dc conductivity following equations (3.56)-(3.57). The conductivity
is largest at a p/n-doping of 15-20%, and fairly independent of
the interlayer coupling V.

Instead of the conductivity one can look at the density of states
at the Fermi level, which is approximated by G(r = 0, τ = β/2).26 26 Trivedi and Randeria, 1995;

and Nowadnick et al., 2012The density of states at the Fermi level indeed closely follows the
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Figure 3.14: The density of
states at the Fermi level, ap-
proximated by G(β/2), at
T = 0.221 for Nx = 4. The
density of states is highest
around 20% doping, inde-
pendent of the interlayer in-
teraction V.
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p/n-doping dependence of the dc conductivity. Counterintuitively,
the increase of conductivity occurs in the region where there is
also an increase in the interlayer tunneling. This, together with the
t⊥-scaling performed in figure 3.12, rules out exciton condensation
at the temperature that are attainable within the DQMC set-up.

In conclusion, we have found no evidence of exciton condens-
ation in the bilayer Hubbard model in the parameter regime
accessible by DQMC. However, the increased interlayer tunneling
suggests that exciton physics might be relevant for large V, around
15-20% p/n-doping and at temperatures lower than β = 5.

3.3.5 Magnetic measurements

Strong correlations can lead to the localization of electron degrees
of freedom, resulting in magnetic correlations. For the Hubbard
model on a square lattice this results in antiferromagnetic order
at half-filling.27 Experiments on the cuprates show that this anti-27 See chapter 4.

ferromagnetism quickly disappears upon doping.28 Next to the28 Imada et al., 1998

excitonic physics, we will therefore study the magnetic correla-
tions of the Hubbard bilayer.
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Figure 3.15: Antiferromag-
netic correlations at T =
0.175 for various V and dop-
ing. Only at half-filling (δ =
0) we find antiferromagnet-
ism in the thermodynamic
limit.

The antiferromagnetic structure factor in each layer is given by

S`(Q) =
1
N ∑

ij
eiQ·(ri−rj)〈

(
ni`↑ − ni`↓

) (
nj`↑ − nj`↓

)
〉 (3.62)

where Q = (π, π) is the antiferromagnetic wave vector. Spin
wave theory29 suggests that S(Q) scales with 1/Nx on a finite 29 Huse, 1988

cluster. The thermodynamic limit Nx → of S(Q) can be found
from a linear extrapolation of the Nx = 4 and Nx = 6 data, as is
done in figure 3.15. Indeed, the antiferromagnetic order is rapidly
destroyed as one dopes the layers. However, under the inclusion
of V the antiferromagnetic order remains up to V = 0.75.

Even though the antiferromagnetic order is rapidly destroyed,
the localization of electrons associated with the strong onsite
repulsion U is reduced less drastically by p/n-doping. The local
moment, which measures the degree of localization, is defined as

mi` = 〈
(
ni`↑ − ni`↓

)
〉. (3.63)

The site-averaged local moments are shown in figure 3.16. The
localization of electrons is for all intents and purposes independent
of the interlayer interaction strength V.
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Figure 3.16: The local mo-
ments as a function of V and
doping at T = 0.221 for Nx =
4. The localization of elec-
trons is the strongest at half-
filling, and almost independ-
ent of the interlayer interac-
tion V.

�0.5

�0.55

�0.6

�0.65

�0.7

�0.75

�0.8

�0 �0.05 �0.1 �0.15 �0.2 �0.25 �0.3 �0.35 �0.4

Lo
ca
l�m
om
en
t

p/n-doping

Local�moments�at�T=0.221

V=0
V=0.5
V=1.0

3.3.6 Conclusion

The Determinant Quantum Monte Carlo is a brute-force technique
that is in principle able to exactly compute physical quantities
associated with the Hubbard model. However, the bilayer Hub-
bard model seems remarkablyunfi unfit for the DQMC approach.
Whereas several physical properties such as the conductivity and
the magnetic properties are almost independent of interlayer inter-
action V, the average sign rapidly reduces with increasing V. The
desired exciton condensation, measured by interlayer tunneling,
is therefore out of reach. Given our data for β < 5 and V < 1.25
we find the strongest tendency towards exciton condensation
around 15-20% doping and at large interaction strength V. In
the next chapter, therefore, we will approach the problem of con-
densation from the strong coupling limit.



4
Exciton-spin dynamics in the Mott
insulating state

Two fermions form a boson, which is precisely what happens when an electron and a hole
bind together into an exciton. A completely different way to find emergent bosonic physics
is to have strong electron-electron interactions near half-filling. In the Mott insulating state,
the effective degrees of freedom are bosonic spin waves.

Whenever the electron-electron and electron-hole interactions are strong, which we expect
in the case of cuprates, we can model the system in terms of bosons only: spins and
excitons. In this chapter we derive the corresponding exciton t− J model. Close to the Mott
insulating state the insertion of excitons leads to frustration, as is described in section 4.2.
The full phase diagram of the exciton t− J model is discussed in the next chapter.

	
  

Exciton 

V

Figure 4.1: Naive real space
picture of an exciton in a
strongly correlated bilayer, as
viewed from the side. Two
square lattices (blue balls) are
placed on top of each other.
The red arrows denote the
spin ordering, which forms
a perfect Néel state. The ex-
citon consists of a bound pair
of a double occupied and a
vacant site on an interlayer
rung. The energy required
to break this doublon-holon
pair is V. The magnetic or-
dering is governed by the in-
plane Heisenberg J and the
interlayer J⊥, as described by
the Hamiltonian (4.12).

4.1 Strong coupling limit and the t− J model

When the onsite Coulomb repulsion in the Hubbard model (3.4) is
much larger than the kinetic energy, U � t, it becomes impossible
for two electrons to occupy the same orbital. At half-filling this
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results in a traffic jam of electrons: on each lattice site there is one
electron, unable to move due to the restraint on double occupancy.
This is the Mott insulator.11 Mott, 1949; Anderson, 1952;

and Marshall, 1955

4.1.1 The Mott insulating state and the t− J model

The Mott insulating phase is thus characterized by a large in-
teraction U and the corresponding localization of electrons at
half-filling.2 Due to this localization only the spin degree of free-2 This is in stark contrast

with the band theory pic-
ture, where electrons are
completely delocalized.

dom remains. A perturbation method by Kato, 1949 has been
applied to the Hubbard model3 to obtain an effective low energy

3 Klein and Seitz, 1973; Taka-
hashi, 1977; and Chao et al.,
1977

model for the spins: the t− J model.
The key to this strong coupling perturbation theory is that we

project out the states that contain double occupied sites.4 The4 On the electron doped side
of half-filling we project out
states with more double oc-
cupied sites than necessary,
which is equivalent to project-
ing out the empty sites.

hopping terms Ht are treated as a perturbation on the exactly
solvable interaction term HU ,

Hλ = HU + λHt. (4.1)

We introduce a projection operator P0 that projects onto the ei-
genspace U0 of HU with eigenvalue E0 associated with a fixed
number of double occupied sites. The hopping term is then adia-
batically turned on, that is λ→ 1. Introduce an operator Pλ that
projects onto the eigenspace U that is adiabatically connected to
the eigenspace U0. This operator is expressed in terms a contour
integral over the resolvent operator,

Pλ =
1

2πi

∮
C

dz
z− Hλ

(4.2)

where the contour C goes around the eigenvalue E0 but not around
any other eigenvalues of HU . A series expansion of the resolvent
operator yields

Pλ = P0 + λ

[
P0Ht

(
1− P0

E0 − HU

)
+
(

1− P0

E0 − HU

)
HtP0

]
+O(λ2).

(4.3)
Now an effective Hamiltonian on the eigenspace U exists, with
exactly the same spectrum as the full Hλ, given by

Heff = P0(Hλ − E0)PλP0, (4.4)

which can be constructed using the expansion of Pλ. At zeroth or-
der in λ the effective Hamiltonian consists of the electron hopping
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term with the no double occupancy constraint,

H(0)
eff = P0HtP0. (4.5)

From now on the projection P0 is included as implicit constraint
on the double occupancy.

The first order correction in λ is given by

H(1)
eff = − 1

U
P0Ht(1− P0)HtP0. (4.6)

It contains two-hopping processes, where the intermediate state
contains an additional double occupied state as shown in table 4.1.
The remaining Hamiltonian can be expressed in spin operators
only, which are

sz
i =

1
2

(
c†

i↑ci↑ − c†
i↓ci↓

)
, (4.7)

s+
i = c†

i↑ci↓, (4.8)

s−i = c†
i↓ci↑. (4.9)

Since the virtual exchange processes can only occur when neigh-
boring spins are opposite, the Hamiltonian now equals the anti-
ferromagnetic Heisenberg model with J = t2

4U ,

H(1)
eff = J ∑

〈ij〉
si · sj. (4.10)

The hopping term (4.5) together with the superexchange term
(4.10) form the famous t− J model.5 It is a low-energy description

5 Strictly speaking, the per-
turbation series at first order
in λ also contains a density-
density interaction and a
three-site hopping process.
Those are usually neglected
(Imada et al., 1998).

of the Hubbard model close to half-filling and in the limit of large
U. Note that now the concept of doping near this Mott insulating
state has a different meaning than in standard semiconductors.
The addition of electrons, known as electron-doping or n-doping,
leads to extra double occupied sites which are called doublons.
Similarly the removal of an electron (hole-doping or p-doping)
introduces vacant sites which are called holons.

Table 4.1: The first order
in λ processes in the strong
coupling perturbation series
for the Mott insulating state,
given by P0 Ht(1 − P0)HtP0.
The initial and final states
cannot have double occupied
sites.

Initial state Intermediate states Final states Process
(with double occupied site) (in units of t2)

· · · ↑i↓j · · · · · · ↑↓i oj · · · · · · ↑i↓j · · · 2n̂iσ n̂jσ = −4sz
i sz

j + 1
· · · oi ↑↓j · · · · · · ↓i↑j · · · 2ĉ†

jσ ĉiσ ĉ†
iσ ĉjσ = −2s±i s∓j



50 fermions and bosons: excitons in strongly correlated materials

4.1.2 The p- and n-doped bilayer

Heterostructures of p- and n-doped cuprates can be typically
described by a bilayer t− J model: two single-layer t− J models
together with interlayer interactions. The hopping of electrons in
each layer is given by

Ht = −te ∑
〈ij〉σ`

c†
i`σcj`σ + h.c. (4.11)

with the double occupancy constraint left implicit. The undoped
Mott insulating state is described by the bilayer Heisenberg model

HJ = J ∑
〈ij〉`

si` · sj` + J⊥∑
i

si1 · si2. (4.12)

Here c†
ilσ and sil denote the electron and spin operators respect-

ively on site i in layer l = 1, 2. The Heisenberg HJ is antiferromag-
netic with J > 0 and 0 < J⊥ < J.

Additionally we need to include the interlayer Coulomb at-
traction between a vacant site (holon) and double-occupied site
(doublon) on the same rung, described by

HV = V ∑
i

ni1ni2. (4.13)

This is the force that binds interlayer excitons. Without loss of
generality, we assume that layer ’1’ contains the excess electrons
with the constraint ∑σ c†

i1σci1σ ≥ 1 and layer ’2’ has the constraint
∑σ c†

i2σci2σ ≤ 1. In other words: we have n- and p-type doping in
layer ’1’ and ’2’, respectively.

The full bilayer t− J model

Hbt−J = Ht + HJ + HV (4.14)

is the large U limit of the extended bilayer Hubbard model (3.7).
Understanding the bilayer Heisenberg model (4.12) will be an
important step towards analyzing physics of a p/n-doped bilayer.

The bilayer Heisenberg Hamiltonian has been studied quite
extensively using Quantum Monte Carlo (QMC) methods,6 dimer

6 Sandvik et al., 1995; and
Sandvik and Scalapino, 1994

expansions7 and the closely related bond operator theory,8 the

7 Weihong, 1997; Gelfand,
1996; and Hida, 1992

8 Matsushita et al., 1999; and
Yu et al., 1999

nonlinear sigma model9 and spin wave theory.10 All results in-

9 van Duin and Zaanen, 1997;
and Chakravarty et al., 1989

10 Miyazaki et al., 1996; Millis
and Monien, 1993; Matsuda
and Hida, 1990; and Hida,
1990

dicate a O(3) quantum nonlinear sigma model universality class
quantum phase transition at a critical value of J⊥/J from an anti-
ferromagnetically ordered to a disordered state, see figure 4.2. A
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naive mean field picture of the antiferromagnetic ground state is
provided by the Néel state, in which each of the sublattices are
occupied by either spin up or spin down electrons as shown in fig-
ure 4.1. However, the exact ground state is scrambled by spin flip
interactions reducing the Néel order parameter to about 60% of
its mean field value.11 A finite interlayer coupling J⊥ generically 11 Manousakis, 1991

reduces the antiferromagnetic order further. In the limit of infinite
J⊥, the electrons will form a valence bond solid of pair-singlets
living on the interlayer rungs, destroying the antiferromagnetic
order.
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Figure 4.2: Zero temperature
phase diagram of the bilayer
Heisenberg model as a func-
tion of interlayer coupling
strength α = J⊥

4J on the ho-
rizontal axis. At a critical
value αc a quantum phase
transition exists from the an-
tiferromagnetic to the sing-
let phase. The vertical axis
shows the Néel order para-
meter signaling antiferromag-
netism. Note that even at
α = 0 the Néel order para-
meter is reduced from the
mean field value 1

2 to approx-
imately 0.3 due to spin flip
interactions. (Adapted from
Chubukov and Morr, 1995.)

Standard linear spin wave theories cannot quite account for the
critical value of J⊥/J ∼ 2.5 found in QMC and series expansion
studies. This discrepancy between numerical results and the
spin wave theory has a physical origin. Chubukov and Morr,
1995 pointed out that standard spin wave theories do not take
into account the longitudinal (that is, the interlayer) spin modes.
By incorporating such longitudinal spin waves one can derive
analytically the right phase diagram.12Another correct method 12 Sommer et al., 2001

is to introduce an auxiliary interaction which takes care of the
hard-core constraint on the spin modes.13 13 Kotov et al., 1998

If one wants to study the doped bilayer antiferromagnet how-
ever, one needs explicit expressions of how a moving dopant (be
it a hole, electron or exciton) interacts with the spin excitations.
Even though the Néel state is just an approximation to the anti-
ferromagnetic ground state, it provides an intuitive explanation
for the major role spins play in the dynamics of any dopant. As
can be seen in figure 4.3, a moving exciton causes a mismatch in
the previously perfect Néel state. Consequently, the motion of an
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Figure 4.3: Exciton motion in
a naive real space picture. In
a perfect Néel state, the mo-
tion of an exciton (with re-
spect to the situation in fig-
ure 4.1) causes a mismatch
in the spin ordering. The kin-
etic energy gained by moving
the exciton is proportional to
the energies of the doublon te
and holon th divided by the
exciton binding energy V.

	
  

Moved exciton Spin mismatch 

exciton is greatly hindered and a full understanding of possible
spin wave interactions is needed to describe the exciton dynamics.
This is of course similar to the motion of a single hole in a single
Mott insulator layer.14 It is also similar to the works of Vojta and14 Schmitt-Rink et al., 1988;

and Kane et al., 1989 Becker, 1999, who have computed the spectral function of a single
hole in the Heisenberg bilayer. Therefore a rung linear spin wave
approximation15 is needed to obtain the expressions for the spin15 Sommer et al., 2001

waves in terms of single site spin operators. Let us, however, first
focus on the exciton properties of the p/n-doped bilayer.

4.1.3 The exciton t− J model

Figure 4.4: For small exciton
coupling the spectrum of an
exciton is obtained by the
ladder diagram approxima-
tion from the spectrum of the
single doped hole. The χ′′0
and χ′0 are respectively the
imaginary and real part of
the bare exciton susceptibil-
ity. The χ′′ is the imaginary
part of the full exciton sus-
ceptibility obtained in the lad-
der diagram approximation
(4.15). Besides the continu-
ous particle-hole spectrum
above the gap, there can only
be a single exciton peak de-
termined by Vχ′0 = 1 in the
weak coupling limit.

The bilayer t − J model (4.14) describes generally the p/n-
doped bilayer antiferromagnet. The behavior of a bound exciton,
however, depends on the magnitude of the Coulomb force V in
HV , equation (4.13). If this Coulomb repulsion is relatively weak,
the motion of holons and doublons will be rather independent
of each other and the HV can be treated as a perturbation on



exciton-spin dynamics in the mott insulating state 53

Ht + HJ . The full exciton-susceptibility χ(ω) can be obtained
from the bare susceptibility χ0(ω) in the absence of the Coulomb
force using the ladder diagram approximation,

χ(ω) =
χ0(ω)

1−Vχ0(ω)
. (4.15)

Since the undoped state is a Mott insulator, there is a gap in the
imaginary part of the bare susceptibility χ′′0 . Above this gap there
is an onset of the particle-hole continuum. In the ladder diagram
approximation, there can only be a single delta function peak in
the full susceptibility at Vχ′0 = 1 signaling the formation of an
exciton. We conclude that in the weak coupling limit no special
exciton features other than a single delta function peak can appear
in the gap. Following our expectation that realistic materials are
in fact in the strong coupling limit we will henceforth focus our
attention to the strong coupling limit.

In the strong coupling limit (V � t), the hopping term Ht

can be treated as a perturbation on the unperturbed HV using the
perturbation method developed by Kato,16 in a manner similar to 16 Kato, 1949

the derivation of the t− J model from the Hubbard model in the
previous section 4.1.1.17 In the limit of strong V we consider the 17 Klein and Seitz, 1973; Taka-

hashi, 1977; and Chao et al.,
1977

interlayer Coulomb interaction HV , which has eigenvalues

EÑ = V(N − N0 + Ñ) = E0 + VÑ (4.16)

where N is the total number of sites, N0 is the number of dopants
per layer and Ñ is the number of double occupied sites that do
not lie above a vacant site. It is clear that the ground state of HV is
given by the state where all double occupied and vacant sites lie
above each other, as depicted in figure 4.1. As mentioned before
an exciton consists of a double occupied and a vacant site bound
on top of each other. Consequently, the ground state of HV is the
state where all dopants are bound into excitons.

The essence of Kato’s perturbation method is that we now
forbid all states with higher HV eigenvalues. This implies that
we forbid states such as the one depicted in figure 4.5 where the
double occupied site is not on top of the vacant site. In zeroth
order, hopping of electrons is forbidden since that would break
up an exciton state. Therefore the zeroth order Hamiltonian only
contains Heisenberg terms H(0)

eft = HJ .
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Figure 4.5: The motion of
the composite exciton can be
related to the motion of its
constituents via Kato’s per-
turbation method. In this
method a virtual intermedi-
ate breakup of the exciton is
in between the initial state
(figure 4.1) and the final state
(figure 4.3). The kinetic en-
ergy of the exciton is there-
fore the product of the kin-
etic energies of the holon
and doublon divided by the
energy of this virtual state,
tex = teth/V.

	
  

Virtual break-up  
of exciton 

Spin mismatch 

In second order we consider intermediate processes that virtu-
ally break up excitons, as shown in figure 4.5. The corresponding
effective Hamiltonian is given by

− 1
2V

PeHt(1− Pe)HtPe (4.17)

where Pe is the operator that projects out states with unbound
dopants. Let us define the exciton operator in terms of electron
creation operators

E†
i = c†

i1↑c
†
i1↓(1− ρi2), (4.18)

where ρi2 = ∑σ c†
i2σci2σ is the density operator in the p-type layer.

The perturbation theory now yields an exciton hopping term,
which can be formulated as

Ht,ex = − teth
V ∑

<ij>σσ′
E†

j

[
c†

i1σ′c
†
i2σcj2σcj1σ′

]
Ei (4.19)

Note that in this Hamiltonian, no break-up of the exciton is re-
quired. The virtual process as described before enables us to
relate the single layer kinetic energies to the bilayer exciton kinetic
energy,

t =
teth
V

. (4.20)

Here te is the hopping energy for a single electron, th the hopping
energy for a single hole and t is the hopping energy for a bound
exciton. In addition to this hopping process there are also second
order processes that equal a shift in chemical potential of the
excitons.

Hence the strong coupling limit of HV describes the motion of
bound excitons in a Mott insulator double layer. The correspond-
ing Hamiltonian is

H = Ht,ex + HJ (4.21)
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We will refer to this model as the exciton t− J model.
The hopping term (4.19) represents an exciton Ei on site i

swapping places with the spin background cjpσcjnσ′ on site j. This
Hamiltonian is in the electron Fock state representation with the
background determined by the bilayer Heisenberg model (4.12).
Unlike the fermionic holes in the single layer case, the exciton is
composed of a fermionic doublon and holon in the same rung,
and hence is a bosonic particle. We can therefore rewrite the
Hamiltonian in terms of bosonic operators. The local Hilbert
space on each interlayer rung is five dimensional with a basis in
terms of five hard-core bosons: one interlayer exciton state |E〉i
and four different spin states. In the singlet-triplet basis, which
is valid for both the doped and undoped case, we cast the exciton
t− J model explicitly in a purely bosonic language. The four hard
core spin bosons are one singlet state and three triplet states,

|0 0〉i =
1√
2
(c†

i1↑c
†
i2↓ − c†

i1↓c
†
i2↑)|0〉 (4.22)

|1 0〉i =
1√
2
(c†

i1↑c
†
i2↓ + c†

i1↓c
†
i2↑)|0〉 (4.23)

|1 1〉i = c†
i1↑c

†
i2↑|0〉 (4.24)

|1 − 1〉i = c†
i1↑c

†
i2↑|0〉. (4.25)

The hopping term (4.19) can be re-expressed as:

Ht,ex = −t ∑
<ij>
|Ej〉

(
|0 0〉i〈0 0|j + ∑

m
|1 m〉i〈1 m|j

)
〈Ei|. (4.26)

We can introduce the total spin operator

Si = si1 + si2 (4.27)

and the spin difference operator

S̃ = si1 − si2. (4.28)

Explicitly in terms of singlet and triplet rung states for S = 1
2 , this

reads18 18 van Duin and Zaanen, 1997

Sz
i = |1 1〉〈1 1| − |1 − 1〉〈1 − 1| (4.29)

S+
i =

√
2 (|1 1〉〈1 0|+ |1 0〉〈1 − 1|) (4.30)

S̃z
i = −|0 0〉〈1 0| − |1 0〉〈0 0| (4.31)

S̃+
i =

√
2 (|1 1〉〈0 0| − |0 0〉〈1 − 1|) . (4.32)
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In general, we see that the operator Si conserves the total onsite
spin, while S̃ always changes the total spin number s by a unit. The
z-components of the spin operators do not change the magnetic
number m, while the ±-components of the spin operators change
the magnetic number by a unit. The bilayer Heisenberg model is
now written as

HJ =
J
2 ∑
〈ij〉

(
Si · Sj + S̃i · S̃j

)
+

J⊥
4 ∑

i

(
S2

i − S̃2
i

)
. (4.33)

From now on we will study the exciton t-J model in the singlet-
triplet basis, which is given by the hopping term (4.26) and the
Heisenberg terms (4.33).

4.1.4 Sign problem

Notice that the Hilbert space no longer contains fermionic degrees
of freedom. The question is whether the disappearance of the
fermionic structure also leads to the disappearance of the fermi-
onic sign structure, which causes so much difficulties in the single
layer t− J model.1919 Wu et al., 2008

The sign structure can be investigated by considering the off-
diagonal matrix elements of the Hamiltonian. At half-filling the
fermionic signs in the standard t − J model on a bipartite lat-
tice can be removed by a Marshall sign transformation.20 Upon20 Marshall, 1955

doping, signs reappear whenever a hole is exchanged with (for
example) a down spin. Which matrix elements of the Hamiltonian
become positive (and thus create a minus sign in the path integral
loop expansion) depends on the specific basis and on the specific
Marshall sign transformation.

For the double layer exciton model, define a spin basis state
with a built-in Marshall sign transformation of the form2121 Compare to Weng, 2007.

|φ〉 = (−1)N↓An+N↓Bp

∣∣∣∣∣· · · ↓ ↑↓ ↑↓ 0 ↓
· · ·
〉

(4.34)

where N↓An is the number of down spins on the A sublattice in
the n-layer and similarly we define N↓Bp. With these basis states
the Heisenberg terms are sign-free and the only positive matrix
elements come from the exchange of an exciton with a m = ±1
triplet.
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We conclude that, even though the model is purely bosonic, the
exciton t− J model is not sign-free and it is not possible to remove
this sign structure using a Marshall or similar transformation.22 22 We are not claiming that

the sign structure cannot be
removed. Of course, if we
would know the exact ei-
genstates of the Hamiltonian
there would be no sign prob-
lem. However, finding a basis
where the sign structure van-
ishes is in general a NP-hard
problem (Troyer and Wiese,
2005).

However, as will be further elaborated upon in section 4.2.2, for
both the antiferromagnetic and singlet ground states these signs
do cancel out. Therefore for such ordered bilayers the problem of
exciton motion turns out to be effectively bosonic.

4.2 Frustration of a single exciton in an antiferromagnet

	
  

	
   	
  

	
  

J 

Figure 4.6: A moving hole
in an antiferromagnet creates
a string of upturned spins.
With increasing distance the
energy associated with the
frustrated bonds increases,
which leads to confinement
of the hole to its initial po-
sition. Upon inclusion of
quantum JS+S− corrections,
the hole can still move, al-
beit with renormalized band-
width.

The discovery of high Tc superconductivity triggered a con-

This section is based on Rade-
maker et al., 2012a and Rade-
maker et al., 2012b.

certed theoretical effort aimed at understanding the physics of
doped Mott insulators.23 Although much is still in the dark, the

23 Imada et al., 1998; and Lee
et al., 2006

problem of an isolated carrier in the insulator is regarded as well
understood.24 It turned out to be a remarkable affair, rooted in

24 Bulaevskii et al., 1968;
Brinkman and Rice, 1970;
Schmitt-Rink et al., 1988;
Kane et al., 1989; Martinez
and Horsch, 1991; and Dag-
otto, 1994

the quantum-physical conflict between the antiferromagnetism
of the spin system and the delocalizing carrier. This conflict is
at its extreme dealing with a classical Ising spin system, where
a famous cartoon arises for the idea of confinement (see figure
4.6): the hopping causes a ‘magnetic string’ of overturned spins
between the delocalizing charge and the spin left at the origin
with an exchange energy increasing linearly in their separation. It
was realized that the quantummechanical nature of the S = 1/2
Heisenberg spin system changes this picture drastically. The quan-
tum spin-corrections repair efficiently this ‘confinement damage’
in the spin background and one finds a ‘spin-liquid polaron’ as
quasiparticle that propagates coherently through the lattice on a
scale set by the exchange constant. This physics can be reliably
addressed by parametrizing the spin system in terms of its linear
spin waves (LSW), while the strong coupling between the spin
waves and the propagating hole is well described in terms of the
self consistent Born approximation (SCBA). This turned out to be
accurate to a degree that the photoemission results in insulating
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cuprates were quantitatively explained in this framework.25

25 Damascelli et al., 2003

A related problem is the delocalization of an exciton (bound
electron-hole pair, or more exactly the bound state of a double oc-
cupied and vacant site) through the antiferromagnetic background.
It is easy to see that the propagation of an exciton in a single layer
is barely affected by the antiferromagnetism since the combined
motion of the electron and the hole neutralize the ‘damage’ in the
spin system.26 A problem of interest for this thesis is the exciton26 Zhang and Ng, 1998

formed in a bilayer, where the electron and the hole reside in the
different layers. Here we report the discovery that such bilayer
excitons couple extremely strongly through their quantum motion
to the spin system.

Figure 4.7: Exciton spectral
function for J = 0.2t and
α = 0.2. On top of the in-
coherent bump a strong lad-
der spectrum has developed,
signaling Ising confinement.
The exact Ising ladder spec-
trum is shown in green dot-
ted lines. The Ising peaks are
very weakly dispersive, with
bandwidth of order J.

In fact, when the interlayer exchange coupling is small and the
exciton hopping rate is large, one enters a regime that is similar to
the confinement associated with the Ising spins, although the spin
system is in the quantized Heisenberg regime. This is illustrated
by the exciton spectral function shown in figure 4.7 as computed
with the LSW-SCBA method, showing the non-dispersive ‘ladder
spectrum’ which is a fingerprint of confinement. Figure 4.3 depicts
a cartoon of the confinement mechanism: every time the exciton
hops it creates two spin flips in the different layers that can only be
repaired by quantum spin superexchange driven by the interlayer
exchange coupling. The rapid intralayer quantum spin flips are
now ineffective, because the restoration of the antiferromagnetism
requires quantum spin flips that occur simultaneously in the two
layers with a probability that is strongly suppressed.
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This confinement effect can be studied directly in experiment
by measuring the exciton spectrum in c-axis optical absorption of
the YBa2Cu3O6 (YBCO) insulating bilayer system. Using realistic
parameters we anticipate that this will look like figure 4.8: the
main difference with figure 4.7 is that the exciton hopping rate is
now of order of the exchange energy and in this adiabatic regime
the spectral weight in the ladder spectrum states is reduced.

Figure 4.8: Expected exciton
spectral function for the c-
axis charge-transfer exciton
in YBCO bilayers. We used
model parameters J = 0.125
eV, t = 0.1 eV and α =
0.04. The exciton quasi-
particle peak has a disper-
sion with bandwidth t2/J,
and the quasiparticle peak
is the most pronounced at
the line between (π, 0) and
(0, π). Following at a dis-
tance of zt(J/t)2/3, a second-
ary peak develops as a sign
of Ising confinement.

4.2.1 Undoped case: the bilayer Heisenberg model

As described in section 4.1, we need to derive a spin wave theory
for the bilayer Heisenberg model before considering the dynamics
of the exciton. Similar to the traditional Holstein-Primakoff spin-
wave theory, we need a classical reference state, i.e. the mean field
ground state of the bilayer Heisenberg model, and subsequently
develop the linear corrections of the spin wave theory from the
mean field ground state. The method we present here is similar to
the one presented in Sommer et al., 2001.

The singlet-triplet basis (4.33) of the bilayer Heisenberg model
is convenient for mean field theory. Mean field theory tells us that
for large ratio J⊥/J the ground state is the singlet configuration
|0 0〉. For small J⊥/J, we expect antiferromagnetic ordering,
which amounts to a staggered condensation of S̃z. By setting
〈S̃z〉 = (−1)im̃ we obtain a mean field Hamiltonian

HMF
J = ∑

i

[
1
4

Jzm̃2 +
J⊥
4

(
S2

i − S̃2
i

)
− 1

2
Jzm̃(−1)iS̃z

i

]
(4.35)
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which has a order-disorder transition point at

αc ≡
(

J⊥
Jz

)
c
=

4
3

S(S + 1) (4.36)

where S is the magnitude of spin of the spin operator on each
site.2727 A proof of this result can

be found in Rademaker et al.,
2012b.

The basic idea of a spin wave theory28 is to start from this
28 Anderson, 1952; Kubo,
1952; and Dyson, 1956

semiclassical (mean field) ground state and describe the local
excitations with respect to this ground state. One can immediately
infer why the Holstein-Primakoff or Schwinger approach to spin
wave theories fails for the bilayer Heisenberg model. First, the
mean field ground state is no longer a Néel state for finite α.
Secondly, while Holstein-Primakoff describes one, and Schwinger
describes two onsite spin excitations, the bilayer Heisenberg has
in fact three types of excitations. This has been pointed out by
Chubukov and Morr, 1995, who called the ’third’ excitation the
longitudinal mode.

With the mean field ground state as described by (4.35) we
can ’reach’ all states in the local Hilbert space with three types of
excitations: a longitudinal e† which keeps the magnetic quantum
number m constant, and two transversal b†

± who change m by ±1.
In the limit of large S these excitations tend to become purely
bosonic. We will take the mean field ground state of (4.35) and
these three excitations as the starting point for the linear spin wave
theory.
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Figure 4.9: Ground state ener-
gies of the bilayer Heisenberg
model, with the spin wave
corrections included. At α ≈
0.605 there is a phase trans-
ition from the antiferromag-
netic phase (in red) to the
singlet phase (in green).

We must mention the obvious flaw in the above reasoning.
Where we criticized earlier spin wave theories because they pre-
dicted the wrong critical value of J⊥/Jz, we now apparently adopt
such a ’wrong’ theory since (4.36) predicts αc = 1 for S = 1

2 !
Nevertheless, the presence of spin waves changes the ground state
energy which makes the disordered state more favorable even
below the mean field critical

(
J⊥
Jz

)
c

calculated in the above, see
figure 4.9. Hence, when the ground state energy shifts are taken
into account in linear order, one finds an accurate critical value
for α consistent with numerical calculations.

Let us now construct explicitly the spin wave theory described
in the above for S = 1

2 . First, one needs to find the ground state
according to equation (4.35). In the S = 1

2 case, this amounts to
a competition between the singlet state |s = 0, m = 0〉 and the
triplet |s = 1, m = 0〉. The mean field ground state on each rung
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is given by a linear superposition of those two,

|G〉i = ηi cos χ|0 0〉i − sin χ|1 0〉i, (4.37)

which interpolates between the Néel state (χ = π/4) and the
singlet state (χ = 0). The onset of antiferromagnetic order can
thus be viewed as the condensation of the triplet state in a singlet
background.29 With ηi = (−1)i alternating we have introduced 29 van Duin and Zaanen, 1997;

and Sommer et al., 2001a sign change between the two sublattices A and B. The angle χ

will be determined later by self-consistency conditions.
The three operators that describe excitations with respect to the

ground state are

e†
i = (ηi sin χ|0 0〉i + cos χ|1 0〉i) 〈G|i, (4.38)

b†
i+ = |1 1〉i〈G|i, (4.39)

b†
i− = |1 − 1〉i〈G|i. (4.40)

The e-operators will later turn out to represent the longitudinal
spin waves, whereas the b-operators represent the two possible
transversal spin waves.

The bilayer Heisenberg model can be rewritten in terms of
these operators. For completeness we include the parameter λ

that enables a comparison with the Ising limit (λ = 0) with the
Heisenberg limit (λ = 1),

S1 · S2 = Sz
1Sz

2 +
1
2

λ(S+
1 S−2 + S−1 S+

2 ). (4.41)

Given this, we can explicitly write down the spin operators in
terms of the new e and b operators,

Sz
iσ = b†

+iσb+iσ − b†
−iσb−iσ (4.42)

S+
iσ =

√
2
(
− sin χ(b†

+iσ + b−iσ) + cos χ(b†
+iσeiσ + e†

iσb−iσ)
)

(4.43)

S̃z
iσ = (−1)σi

(
sin 2χ(1−∑

±
b†
±iσb±iσ − 2e†

iσeiσ)− cos 2χ(e†
iσ + eiσ)

)
(4.44)

S̃+
iσ =

√
2(−1)σi

(
cos χ(b†

+iσ − b−iσ) + sin χ(b†
+iσeiσ − e†

iσb−iσ)
)

. (4.45)

From the requirement that the Hamiltonian does not contain
terms linear in spin wave operators we obtain the self-consistent
mean field condition for the ground state angle χ,

(cos 2χ− αλ) sin 2χ = 0 (4.46)
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which has two possible solutions: either χ = 0, which corresponds
to a singlet ground state configuration (the disordered phase), or
cos 2χ = αλ corresponding with an antiferromagnetic ordered
phase. These are indeed the two phases represented in figure 4.2.
Which of the two solutions ought to be chosen, depends on the
ground state energy competition. In figure 4.9 we compare the
ground state energy of both phases, from which we can deduce
that the critical point lies at αc ≈ 0.6, consistent with the numerical
literature.3030 Sandvik et al., 1995; and

Sandvik and Scalapino, 1994 The dispersion of the spin wave excitations can be found when
we consider only the quadratic terms in the Hamiltonian. This is
called the ‘linear’ spin wave approximation, and it amounts to
neglecting the cubic and quartic interaction terms. First take a
Fourier transform of the spin wave operators

e†
iσ =

√
2
N ∑

k
e†

kσeik·ri (4.47)

where the sum over k runs over the 2/N momentum points in the
domain [−π, π]× [−π, π] and σ = A, B represents the sublattice
index. A similar definition is used for the b-operators.

Upon Fourier transformation, we can decouple the spin waves
from the two sublattices A and B by introducing

e†
k,p =

1√
2
(e†

kA + pe†
kB) (4.48)

where p = ± stand for the phase of the spin mode. Modes with
p = −1 are out-of-phase and have the same dispersion as the
in-phase p = 1 modes but shifted over the antiferromagnetic
wavevector Q = (π, π). Similar considerations apply to the b
operators.

Next we perform the Bogolyubov transformation on the mag-
netic excitations,

e†
k,p = cosh ϕk,pζ†

k,p + sinh ϕk,pζ−k,p (4.49)

b†
k,p,+ = cosh θk,pα†

k,p + sinh θk,pβ−k,p (4.50)

b†
k,p,− = cosh θk,pβ†

k,p + sinh θk,pα−k,p (4.51)

The corresponding transformation angles are set by the require-
ment that the Hamiltonian becomes diagonal in the new operators
ζ (the longitudinal spin wave) and α, β (the transversal spin waves).
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In doing so, we introduced the ’ideal’ spin wave approximation
in which we assume that the spin wave operators obey bosonic
commutation relations.31 This assumption is exact in the large S 31 Dyson, 1956

limit. For S = 1
2 this approximation turns out to work extremely

well,32 since the corrections to the bosonic commutation relations 32 Manousakis, 1991

are expressed as higher order spin-wave interactions. The Bogoly-
ubov angles are given by

tanh 2ϕk,p =
−p 1

2 cos2 2χγk

sin2 2χ + λα cos 2χ− p 1
2 cos2 2χγk

, (4.52)

tanh 2θk,p =
pλγk

sin2 2χ + (1 + λ)α cos2 χ− pλ cos 2χγk
.(4.53)

The factor γk encodes for the lattice structure, and it equals for a
square lattice

γk =
1
z ∑

δ

eik·δ =
1
2
(
cos kx + cos ky

)
(4.54)

where the sum runs over all nearest neighbor lattice sites δ. The
Bogolyubov angles still depend on χ, which characterizes the
ground state. In the antiferromagnetic phase cos 2χ = λα and for
the Heisenberg limit λ = 1 these angles reduce to

tanh 2ϕk,p =
−pα2γk

2− pα2γk
, (4.55)

tanh 2θk,p =
pγk

1 + α− pαγk
. (4.56)

We can distinguish between the longitudinal and transversal spin
excitations, with their dispersions given by

εL
k,p = Jz

√
1− pα2γk (4.57)

εT
k,p =

1
2

Jz
√

(1 + α(1− pγk))2 − γ2
k (4.58)

The longitudinal spin wave is gapped and becomes in the limit
where the layers are decoupled (α = 0) completely non-dispersive,
while the transversal spin wave is always linear for small mo-
mentum k. This type of spectrum is similar to a phonon spectrum,
which contains a linear k-dependent acoustic mode and a gapped
flat optical mode. This correspondence between spin waves and
phonons enables us to use techniques from electron-phonon inter-
action studies for the exciton-spin wave interactions.
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Figure 4.10: Dispersion of
the bilayer Heisenberg spin
waves for different values of
α. The top row has α = 0.04
and α = 0.4, the bottom row
α = 0.9 and α = 1.1. In
the antiferromagnetic phase
(first three pictures) there is a
clear distinction between the
longitudinal spin waves (long
dashed lines in green) and
the transversal spin waves
(solid line in blue; and the
short dashed in red). The
first is gapped, whilst the
latter is zero at either k =
(0, 0) or (π, π) with a linear
energy-momentum depend-
ence. In the singlet phase,
all spin waves are gapped
triplet excitations (depicted
as solid blue line and dashed
red line). On the other hand, in the singlet phase (α > 1) one has trivially

three identical triplet spin excitations. The Bogolyubov angles
are given by

tanh 2ϕk,p = − tanh 2θk,p =
−pγk

2α− pγk
(4.59)

and the dispersion of the triplet spin waves is

εk,p = Jz
√

α(α− pγk). (4.60)

These dispersions correspond to earlier numerical and series ex-
pansions results.33 In fact, these results are exactly equal to the33 Kotov et al., 1998; Wei-

hong, 1997; Gelfand, 1996;
and Chubukov and Morr,
1995

dispersions obtained in the non-linear sigma model.34

34 van Duin and Zaanen, 1997

The above derivation adds to earlier studies of the bilayer Heis-
enberg model in that we now found explicit expressions of how
the spin waves are related to local spin flips, equations (4.49)-(4.53).
This microscopic understanding of the magnetic excitations of the
system enables us in the next section to derive how magnetic
interactions influence the dynamics of excitons.

4.2.2 A single exciton in a correlated bilayer

We are now in the position to derive the dynamics of a single
exciton in the undoped bilayer. Note that in the thermodynamic
limit a single exciton will not change the ground state. Following
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the exciton hopping Hamiltonian (4.26) we can express the dy-
namics of the exciton upon interaction with the spin wave modes.
A single exciton can be physically realized by either exciting a
interlayer charge-transfer exciton in the undoped bilayer, or by
infinitesimal small chemical doping of layered structures.

Similar to the single layer case,35 we consider the mean field 35 Schmitt-Rink et al., 1988

state |G〉 as the vacuum state and from there we write the effective
hopping Hamiltonian for a single exciton as

Ht,ex = t ∑
〈ij〉

E†
j Ei

[
cos 2χ(1− e†

i ej) + sin 2χ(e†
i + ej)−∑

σ

b†
iσbjσ

]
+ h.c.. (4.61)

The dynamics of a single exciton are contained in the dressed
Greens function, formally written as

Gp(k, ω) = 〈ψ0|Ek,p
1

ω− H + iε
E†

k,p|ψ0〉 (4.62)

where E†
k,p is the Fourier transformed exciton creation operator,

and p indicates the same phase index as used for the spin waves
in equation (4.48). The |ψ0〉 denotes the ground state that arises
from the spin wave approximation,36 hence |ψ0〉 is defined by the 36 Manousakis, 1991

conditions
ζk,p|ψ0〉 = αk,p|ψ0〉 = βk,p|ψ0〉 = 0 (4.63)

for all k, p. Note that |ψ0〉 is not equal to the mean field ground
state |G〉 defined in equation (4.37).

The Greens function cannot be solved exactly and one needs
to develop a diagrammatic expansion in the parameter t. For this
purpose, we have derived the corresponding Feynman rules of the
exciton t− J model, see appendix D of Rademaker et al., 2012b.

Using Dyson’s equation one can rephrase the diagrammatic
expansion in terms of the self-energy Σp(k, ω) such that

Gp(k, ω) =
1

ω− ε
p
0 (k)− Σp(k, ω) + iε

(4.64)

where ε
p
0 (k) is the dispersion in the absence of spin excitations

for the exciton with phase p. The self-energy can be computed
by summing all one-particle irreducible Feynman diagrams. The
degree to which exciton motion contains a free part grows with α,
and indeed the free dispersion is

ε
p
0 (k) = p zt cos 2χ γk (4.65)



66 fermions and bosons: excitons in strongly correlated materials

where cos 2χ equals αλ in the antiferromagnetic phase and equals
1 in the singlet phase.

As we noted before, the spin wave spectrum resembles a
phonon spectrum. Hence we can compute the exciton self-energy
using the Self-Consistent Born Approximation (SCBA),37 an ap-37 Schmitt-Rink et al., 1988;

and Kane et al., 1989 proximation scheme developed for electron-phonon interactions
but subsequently successfully applied to the single layer t − J
model.

The SCBA is based on two assumptions: 1) that one can neg-
lect vertex corrections and 2) one uses only the bare spin wave
propagators. The first assumption is motivated by an extension of
Migdal’s theorem. For electron-phonon interaction, higher order
vertex corrections are of order m

M where m is the electron mass
and M is the ion mass. This justifies that for electron-phonon
interactions the SCBA is right.38 Comparisons between the SCBA38 Fetter and Walecka, 2003

and exact diagonalization methods for the single layer t− J model
have shown that it is justified to neglect the vertex correction there
as well.39 The second assumption is motivated by the linear spin39 Martinez and Horsch, 1991

wave approximation. Consequently, all remaining diagrams are
of the ’rainbow’ type which can be summed over using a self-
consistent equation. The assumption that the vertex corrections
are irrelevant allows us to completely resum Feynman diagrams
up to all orders in t. The SCBA is therefore not a perturbation
series expansion and consequently t does not necessarily has to
be a small parameter.

For the exciton t− J model, the SCBA amounts to computing
the self-energy for the in-phase exciton, as shown diagrammatic-
ally in figure 4.11. The usual Feynman rules dictate that we need
to integrate over all intermediate frequencies of the virtual spin
waves. However, under the linear spin wave approximation the
spin wave propagator is i/(ω′ − ε(k) + iε) which amounts to a
Dirac delta function in the frequency domain integration.40 For40 Schmitt-Rink et al., 1988

example, the first diagram of figure 4.11 is reduced as follows,

1
N ∑

q,p

∫ ∞

−∞

dω′

π
M2

k,qGp(k− q, ω−ω′)

[
i

ω′ − εL
k,p + iε

]

=
1
N ∑

q,p
M2

k,qGp(k− q, ω− εL
q,p), (4.66)

where Mk,q is the vertex contribution and Gp(k, ω) is the exciton
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propagator. Emission (or absorption) of a spin wave by an exciton
can thus be incorporated by changing the momentum and energy
of the exciton propagator. Analytically we write for the in-phase
exciton self-energy,

Σ+(k, ω) =
z2t2

N
sin2 2χ ∑

q,p

(
γk−q cosh ϕq,p + pγk sinh ϕq,p

)2
Gp(k− q, ω− εL

q,p)

+
z2t2

N2 cos2 2χ ∑
q,q′

∑
±,p

(
γk+q′ cosh ϕq,p sinh ϕq′ ,±p ± γk+q cosh ϕq′ ,±p sinh ϕq,p

)2

×G±
(

k− q− q′, ω− εL
q,p − εL

q′ ,±p

)
+

z2t2

N2 ∑
q,q′

∑
±,p

(
γk−q cosh θq,p sinh θq′ ,±p ± γk−q′ cosh θq′ ,±p sinh θq,p

)2

×G±
(

k− q− q′, ω− εT
q,p − εT

q′ ,±p

)
(4.67)

which depends on the exciton propagator and the Bogolyubov
angles derived in the previous section. A similar formula to (4.67)
applies to Σ−. However, it is easily verified that

Σ−(k, ω) = Σ+(k + (π, π), ω) (4.68)

since γk+(π,π) = −γk. In general the SCBA (4.67) cannot be solved
analytically, and hence we have obtained the exciton spectral
function

A(k, ω) = − 1
π

Im [G(k, ω)] (4.69)

using an iterative procedure with Monte Carlo integration over
the spin wave momenta discretized on a 32 × 32 momentum grid.
We start with Σ = 0 and after approximately 20 iterations the
spectral function converged. The results for typical values of α, J
and t are shown in figures 4.12 to 4.15.

We start from the situation with α > 1 where the magnetic back-
ground is a disordered phase with all spin singlet configuration in

! !!!

Figure 4.11: Feynman dia-
gram representation of the
Self-Consistent Born Approx-
imation (SCBA) of equation
(4.67). The self-energy of
the exciton depends self-
consistently on ’rainbow’ dia-
grams where it emits and ab-
sorbs either one or two spin
waves. The left two diagrams
contain interaction with the
longitudinal spin wave (solid
green wavy propagators with
ζ labels). The diagram
to the right contains the
interaction with the trans-
versal spin waves; where the
dotted (blue, upper, wavy)
propagator denotes the α
spin wave and the dashed
(red, lower, wavy) propag-
ator denotes the β spin wave.
The definitions of ζ, α and β
are given in equations (4.49)-
(4.51). Note that vertex cor-
rections are neglected in the
SCBA.
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Figure 4.12: Exciton spectral
function for parameters J = t
and α = 1.4. The only rel-
evant feature is the strong
quasiparticle peak with dis-
persion equal to 8t, where t
is the hopping energy of the
exciton. The horizontal axis
describes energy, the vertical
axis is the spectral function
in arbitrary units.
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the same rung. In this case, the free dispersion of the exciton with
bandwidth proportional to t survives because all the magnetic
triplet excitations are gapped, with a gap energy of Jz

√
α(α− 1).

For t < J, the exciton-magnetic interactions will barely change the
free dispersion while for t > J such exciton-magnetic interactions
can still occur, leading to a small ’spin polaron’ effect where the
exciton quasiparticle (QP) peak is diminished and spectral weight
is transferred to a polaronic bump at a higher energy than the
quasiparticle peak. For most values of t/J this effect is, however,
negligible already for α just above the critical point. The exciton
spectral function for t = J and α = 1.4 can be seen in figure 4.12.

As α decreases towards the quantum critical point at α = 1,
the gap of the triplet excitations also decreases. The effect of
the exciton-magnetic interactions become more significant, which
leads to an increasing transfer of spectral weight from the free
coherent peak to the incoherent parts. When α hits the quantum
critical point the gap to all spin excitations vanishes. There the
motion of the exciton is strongly scattered by the spin excitations,
completely destroying the coherent peak and leading to an in-
coherent critical hump in the spectrum as shown in figure 4.13.
When α further decreases to values α < 1, the magnetic back-
ground becomes antiferromagnetically ordered with two gapless
transverse modes and one gapped longitudinal mode. In this case,
the motion of the exciton is still strongly scattered with the spin
excitations leaving a footprints in the exciton spectrum.

A most striking phenomenon happens at α = 0, when the two
layers are effectively decoupled and we would expect a similar be-
havior for an interlayer exciton as for a hole or electron in a single
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Figure 4.13: Exciton spectral
function at the quantum crit-
ical point, for J = 0.2t and
α = 1. No distinct quasi-
particle peak is observable,
and at all momenta a broad
critical bump appears in the
spectrum.

Figure 4.14: A qualitative
overview of zero momentum
exciton spectral functions
A(k = 0, ω) for various para-
meters of t/J and small in-
terlayer coupling α. For
α identically zero, the ratio
t/J determines the amount
of excited spin waves. In
the adiabatic limit t � J
no spin waves can be ex-
cited by and the exciton is
localized with a clear quasi-
particle peak. Upon increase
of t/J more and more spec-
tral weight is transferred to
higher order spin wave peaks,
which in the anti-adiabatic
limit t � J leads to the
formation of a broad inco-
herent spectrum. The inclu-
sion of a small nonzero in-
terlayer coupling α reduces
the incoherence of this spec-
trum, see equation (4.71). As
a result the Ising-like lad-
der spectrum becomes more
pronounced. Here we only
show the zero momentum
spectra, in figures 4.7, 4.8,
4.12, and 4.13 the momentum
dependence of these spectra
is shown.

layer. Indeed conform with the single hole in the t− J model41

41 Schmitt-Rink et al., 1988;
and Kane et al., 1989

we find that a moving exciton causes spin frustration with an
energy proportional to J. In the limit where J � t the kinetic
energy of the exciton becomes too small for it to propagate coher-
ently through the magnetic background. Therefore, we expect a
localization of the exciton which is reflected in the spectral data
by an almost non-dispersive quasiparticle peak. This peak has a
bandwidth proportional to t2/J and carries most of the spectral
weight, 1−O(t2/J2). The remaining spectral weight is carried by
a second peak, at an energy Jz above the main peak.

More complex behavior at α = 0 arises in the anti-adiabatic
limit t � J, where the kinetic energy of the exciton is large
compared to the energy required to excite (and absorb) spin waves.
Consequently, many spin waves are excited as the exciton moves
and the exciton becomes ’overdressed’ with multiple spin waves.
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At nonzero J, however, a very small quasiparticle peak remains
with a bandwidth of order J. Nonetheless the majority of spectral
weight is carried in the incoherent many-spin wave part.

However, realistic physical systems are expected to have a
small nonzero value of α and an intermediate value of t/J. What
happens here? A simple extrapolation of the two aforementioned
cases yields that the bandwidth of the quasiparticle peak will
reach its maximum value at J ≈ t. Similar extrapolations suggest
that about half of the spectral weight will be carried by the QP
peak. However, inclusion of a finite value of α is not so trivial on
an analytical level. Numerical results are therefore needed, and
an overview of spectral functions for different ratios of t/J and
small values of α is given in figure 4.14.

4.2.3 The mechanism of Ising-like confinement

Upon the inclusion of a small nonzero interlayer coupling α a
ladder spectrum seems to appear, reminiscent of the spectrum of
a single hole in a Ising antiferromagnet. Physically, this can be
understood as follows. In the α = 0 limit, the magnetic interactions
are dominated by the transverse excitations which are just single
layer spin waves. For any finite α > 0 the (interlayer) longitudinal
spin waves become increasingly relevant. To understand their
effect on the exciton spectral function, consider the SCBA equation
(4.67), neglect the diagrams involving transversal spin waves and
expand the self-energy up to first order in α. Only the single spin
wave diagram contributes and it equals

Σ+(k, ω) =
z2t2

N ∑
q,±

γ2
k−qG±(k− q, ω− Jz) (4.70)

from which we deduce, observing that Σ− = Σ+ and shifting the
momentum summation, that the self-energy must be momentum-
independent and given by the self-consistent equation

Σ(ω) =
1
2 z2t2

ω− Jz− Σ(ω− Jz)
. (4.71)

This self-energy is exactly the same as the self-energy of a single
dopant moving through an Ising antiferromagnet.42 In fact,42 Kane et al., 1989

in any system where a moving particle automatically excites a
gapped and flat mode the self-consistent equation (4.71) applies.
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As described in Kane et al., 1989, a hole in an Ising antifer-
romagnet is effectively confined by the surrounding magnetic
texture. Each hop away from its initial point increases the energy,
thus creating a linear potential well for the hole. In such a lin-
ear confinement potential a ladder spectrum appears where the
energy distance between the to lowest peaks scales as t(J/t)2/3.
The spectral weight carried by higher order peaks vanishes as
t/J → 0.43 43 Kane et al., 1989

The Ising-like features in the exciton spectral function are ex-
plicitly visible in the numerically computed dispersions shown
in figures 4.7 and 4.14. We indeed conclude that the visibility
of the ladder spectrum is actually enhanced in the bilayer case
presented here relative to the hole in the single layer due to the
nondispersive interlayer spin excitations.

Of course the exciton ladder spectrum in figure 4.7 is not exactly
sharp. By the above analysis, we can infer that the incoherent
broadening of peaks is due to interactions with the transversal
spin waves. Indeed, the transversal spin waves can be viewed as
the equivalent of the single layer spin waves. Therefore for small α

the effect of transversal spin waves is to mildly quantize the Ising
limit, and the results become reminiscent of a single hole in the
t− J model, including the quasiparticle peak broadening.

4.2.4 Relation to experiment

The formation of kinetically frustrated bound exciton states can be
experimentally verified by measurements of the dielectric function
or any other charge-excitation measurements. One particular
example is electron energy loss spectroscopy (EELS), showing for
instance clear signatures of the in-plane charge transfer excitons
in cuprates.44 The EELS cross-section is directly related to the 44 Wang et al., 1996; and

Zhang and Ng, 1998dielectric function45 via the dynamical structure factor S(q, ω),
45 Schnatterly, 1979

dσ ∝
1
q4 S(q, ω) ∝

1
q2 Im

[
−1

ε(q, ω)

]
(4.72)

with the dynamical structure factor defined as

S(q, ω) =
1
N

∫ dt
2π

e−ε|t|∑
λ

〈ψ0|∑
i

e−iq·ri ei(ω−H)t|λ〉

×〈λ|∑
j

eiq·rj |ψ0〉 (4.73)
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where the sum λ runs over all intermediate states, and |ψ0〉 is the
initial state of the system. We use the dipole expansion such that

eiqri = 1 + i~q ·~ri + . . . (4.74)

where the electron position operator can be expanded in terms of
the possible electron wave functions in the tight binding approx-
imation,

∑
i
~ri = ∑

ijσ
c†

iσcjσ〈φi|~r|φj〉 (4.75)

where |φi〉 are the Wannier wave functions of the electron on site
i. The z component of 〈φi|~r|φj〉 is proportional to the interlayer
hopping energy t⊥, which in turn is equal to the the creation
operator of an exciton,

rz ∝ t⊥∑
iσ

c†
inσcipσ + h.c. (4.76)

∝ t⊥∑
i

(
E†

i + Ei

)
(4.77)

We recognize the Fourier transform of the k = 0 excitonic state, so
that we find

S(qz, ω) ∝ (qzt⊥)2
∫ dt

2π
e−ε|t|∑

λ

〈ψ0|Ek=0 ei(ω−H)t|λ〉

×〈λ| E†
k=0|ψ0〉. (4.78)

We have introduced the term e−ε|t| to ensure convergence of the
integral so that we can integrate over t. We find that the dynamic
structure factor is directly related to the exciton spectral function

S(qz, ω) ∝ (qzt⊥)2〈ψ0|Ek=0

(
i

ω− H + iε
−

i
ω− H − iε

)
E†

k=0|ψ0〉

∝ (qzt⊥)2 A(k = 0, ω) (4.79)

or in other words

Im
[
ε−1(qz, ω)

]
∼ (t⊥)2 A(k = 0, ω). (4.80)

Consequently, one expects the bound exciton states to show up in
EELS measurements when probing the z-axis excitations. In addi-
tion to the bound exciton states, a broad electron-hole continuum
will show up at high energies.
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ω→

A(k,ω)

→

QP peak

0 0.2 0.4 eV-0.2-0.4

2nd Ising peak
distance: zt (J/t)2/3 ~ 0.4 eV

e-h continuum
distance: V ~ 1.5 eV

Figure 4.15: Expected zero-
momentum exciton spectral
function for the c-axis charge-
transfer exciton in YBCO
bilayers. We used model
parameters J = 0.125 eV,
t = 0.1 eV and α = 0.04.
A pronounced quasiparticle
peak is followed at a distance
of zt(J/t)2/3 by a secondary
peak as a sign of Ising con-
finement. The electron-hole
continuum sets in at an en-
ergy V ∼ 1.5 eV above the
center of this spectrum. The
momentum dependence of
this spectrum is shown in fig-
ure 4.8.

Another possible way to detect interlayer excitons is to use
optical probes. The optical conductivity σ(q, ω) of a material is
related to the dielectric function46 by

46 Bruus and Flensberg, 2004

ε−1(q, ω) = 1− i
q2

ω
Vc(q)σ(q, ω), (4.81)

where Vc(q) is the Fourier transform of the Coulomb potential
1

ε0|r−r′ | . The real part of the c-axis optical conductivity is therefore
proportional to the exciton spectral function. Similar consider-
ations hold when one measures the Resonant Inelastic X-ray
Scattering (RIXS)47 spectrum. 47 Ament et al., 2011

When comparing the dielectric function with the computed
spectral functions in figures 4.12-4.15, do bear in mind that the
latter are shifted over an energy E0 required to excite an interlayer
exciton. This energy is of the order of electron volts. For example,
along the ab-plane in cuprates charge-transfer excitons are ob-
served in the range of 1-2 eV.48 Since the energy required for a 48 Basov and Timusk, 2005

charge-transfer excitation is largely dependent on the onsite repul-
sion, we expect that the c-axis exciton will be visible at comparable
energy scales.

How would then the exciton spectrum look like for a realistic
material, such as the bilayer cuprate YBa2Cu3O7−δ (YBCO)? Fol-
lowing earlier neutron scattering experiments49 one can deduce 49 Imada et al., 1998; and Tran-

quada et al., 1989that the effective J = 125± 5 meV and J⊥ = 11± 2 meV, which
corresponds to an effective value of α = 0.04αc where αc is the
critical value of α.50 The question remains what a realistic estimate 50 Chubukov and Morr, 1995

of the exciton binding energy is. The planar excitons are known
to be strongly bound51 with binding energy of the order of 1-2 51 Zhang and Ng, 1998

eV. Since the Coulomb repulsion scales as V ∼ (εr)−1, we can
relate the binding energy of the interlayer excitons to that of the
planar excitons. The distance between the layers is about twice
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the in-plane distance between nearest neighbor copper and oxy-
gen atoms, but simultaneously we expect the dielectric constant
εc along the c-axis to be smaller than εab due to the anisotropy
in the screening. Combining these two effects, we consider it a
reasonable assumption that the interlayer exciton binding energy
is comparable to the in-plane binding energy. The hopping energy
for electrons is approximately te = 0.4 eV which yields, together
with a Coulomb repulsion estimate of V ∼ 1.5 eV, an effective
exciton hopping energy of t ∼ 0.1 eV. Note that these estimates of
V/t justify our use of the strong coupling limit in section 4.1.3.

The spectral function corresponding to these parameters is
shown in figure 4.15. Since t ∼ J the ladder spectrum is strongly
suppressed compared to the aforementioned anti-adiabatic limit.
However, the Ising confinement still shows its signature in a
small ‘second ladder peak’ at 0.4 eV energy above the exciton
quasiparticle peak. To the best of our knowledge and to our
surprise, the c-axis optical conductivity of YBCO has not been
measured before in the desired regime with energies above 1

eV.52 Detection of this second ladder peak in future experiments

52 Confirmed in private com-
munications with D. van der
Marel. In addition, stand-
ard review articles on optical
absorption in cuprates (such
as Basov and Timusk, 2005)
indeed only show infrared
measurements (< 1000 cm−1)
of the c-axis optical absorp-
tion in insulating cuprates.

would suggest that indeed the interlayer excitons in cuprates are
frustrated by the spin texture.



5
Exciton condensation in the t− J
model

The bosonic exciton t − J model derived in the previous section allows for exciton
condensation. In this phase, a remarkable cooperation effect arises between the exciton
and spin dynamics. In section 5.1 we discuss this specific feature of the strongly correlated
exciton condensate. We conclude our study of the exciton t− J model by constructing the
full phase diagram in section 5.2.

Completely opposite to the frustration effect presented in sec-
tion 4.2 is the cooperation between excitons and spins that arises in
the context of a finite densities of excitons.1 Much effort has been 1 Ribeiro et al., 2006; and Mil-

lis and Schlom, 2010devoted to create equilibrium finite exciton densities using con-
ventional semiconductors,2 while exciton condensation has been 2 Moskalenko and Snoke,

2000demonstrated in coupled semiconductor 2DEGs.3 In strongly cor-
3 Eisenstein and MacDonald,
2004; Butov, 2007; and High
et al., 2012

related p/n heterostructures,4 however, formation of finite exciton

4 One can wonder whether
such physics is already at
work in the four-layer ma-
terial Ba2Ca3Cu4O8F2 where
self-doping effects occur cre-
ating simultaneously p and
n-doped layers, Chen et al.,
2006.

densities is still far from achieved, although recent developments
on oxide interfaces indicate exciting potential (see for example
Pentcheva et al., 2010). Besides the closely coupled p- and n-
doped conducting interface-layers in these SrTiO3-LaAlO3-SrTiO3

heterostructures, further candidates would be closely coupled p-
and n-doped cuprates, such as YBa2Cu3O7−x or La2−xSrxCuO4

with Nd2−xCexCuO4. The feasibility of this has already been
experimentally demonstrated, e.g. in Takeuchi et al., 1995, but the
exact interface effects need to be investigated in more detail, both
experimentally as well as theoretically.

The nontrivial cooperation effect between excitons and spins is
only visible in the exciton condensate phase doped into a Mott
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a. Quantum paramagnet c. Exciton condensate!
    (strong coupling,    =0.27)

b. Exciton condensate!
    (strong coupling,    =0.15)

k

E

Figure 5.1: The absorptive
part of the dynamical mag-
netic susceptibility χ′′(q, ω)
in a Mott insulating bilayer
(a) doped to become an ex-
citon condensate (b,c). a: The
spectrum of a Mott insulat-
ing bilayer with the same
gap as the exciton condens-
ates of figure b and c. The
bandwidth of the triplon
mode is of the order Jz. b.
In the presence of the ex-
citon condensate, the mag-
netic excitation spectrum con-
sists of propagating triplets.
Instead of the small O(Jz)
bandwidth, the triplet has
now an enhanced bandwidth
O(ztexρSF), proportional to
the superfluid density. This
result is computed using a
linear spin wave approxima-
tion, using model parameters
tex = 2, J = 0.125, α = 0.04
and ρ = 0.15. c. The same
result as in b, but now with
a higher exciton density ρ =
0.27. The triplet mode band-
width is seen to scale with the
exciton superfluid density.

insulating bilayer. The non-condensed electrons form a quan-
tum paramagnet, which has as elementary magnetic excitations
the triplet modes (triplons, see the book by Sachdev, 2011). One
expects that the bandwidth of the triplons is proportional to the
superexchange energy J. However, interlayer exciton condens-
ation now leads to a drastic increase of the triplon bandwidth.
In this section we show that this enhancement is rooted in the
triplons ’borrowing’ itineracy from the exciton condensate. The
resulting bandwidth turns out to be proportional to the superfluid
density, as is shown in figure 5.1. In principle, this enhancement
can be detected by measurements of the dynamical magnetic sus-
ceptibility. It appears unlikely that such bilayer exciton systems
can be manufactured in bulk form which is required for neutron
scattering, while there is a real potential to grow these using thin
layer techniques. Therefore the detection of the triplon bandwidth
enhancement forms a realistic challenge for resonant inelastic X-
ray scattering (RIXS)5 measurements with its claimed sensitivity

5 Ament et al., 2011

for interface physics.6

6 Dean et al., 2012

5.1 Enhanced spin itineracy in the exciton condensate

Let us now introduce the strongly correlated exciton condensate

This section 5.1 is based on
Rademaker et al., 2013a.

is somewhat more detail. As mentioned above, the exciton con-
densate is the result of the direct interlayer Coulomb attraction, in
stark contrast to the retarded phonon mediated electron-electron
pairing in superconductors. Consequently, the pairing mechanism
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is remarkably simple and in the absence of spin-orbit coupling
or magnetization the excitons are a singlet pair. The resulting
condensate wavefunction has the standard BCS-form,

|Ψ〉 = ∏
kσ

(
uk + vkc†

k1σck2σ

)
|Ψ0〉 (5.1)

where |Ψ0〉 is the ground state without excitons, c†
k1σ creates an

electron in the first layer and ck2σ creates a hole in the second
layer with opposite spin. The order parameter is independent of
spin

∆k = ukvk = 〈c†
k1σck2σ〉. (5.2)

Recall from section 2.1 that the anomalous interlayer tunneling
serves as a direct probe of the order parameter.7 7 Eisenstein and MacDonald,

2004The enhancement of the triplet mode is an effect that only oc-
curs in the regime of strong electron-electron interactions. The
realization of exciton condensates has been suggested to be pos-
sible in strongly correlated materials8 where the cuprates9 would 8 Ribeiro et al., 2006; and Mil-

lis and Schlom, 2010

9 Imada et al., 1998; and Lee
et al., 2006

serve as ideal candidate systems. In Mott insulators electrons loc-
alize due to interactions and only their spin remains as a degree
of freedom. Such bilayers (figure 4.1) are described by the bilayer
Heisenberg model10 introduced in section 4.1, defined by 10 Manousakis, 1991; and

Chubukov and Morr, 1995

HJ = J ∑
〈ij〉,`

si` · sj` + J⊥∑
i

si1 · si2. (5.3)

The operators si` denote the spin of a particle on site i in layer
`, and via this mechanism of superexchange spin excitations can
propagate. The superexchange parameters J are related to the bare
electron hopping t by the strong coupling perturbation theory of
section 4.1, recall J = 4t2/U and J⊥ = 4t2

⊥/U with U the onsite
repulsion. This model represents a paramagnet when J⊥ � J,
thus favoring singlet configurations on each interlayer rung. The
excitation spectrum consists of propagating triplet modes, with
a dispersion ωk = Jz

√
α(α− γk) where α = J⊥/Jz and z is the

lattice coordination number. Hence the bandwidth of these triplets
in the absence of exciton condensation is set by the superexchange
parameter J. We compute the interlayer dynamical magnetic
susceptibility11 11 Bruus and Flensberg, 2004

χij(τ) = 〈Tτ(s−i1(τ)− s−i2(τ))(s+
j1 − s+

j2)〉 (5.4)

using the well-tested linear spin wave theory.12 The imaginary

12 This is further elaborated
upon in section 5.2.4. See
also Manousakis, 1991 and
Chubukov and Morr, 1995.
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part χ′′, which describes the absorption, is in principle measurable
by RIXS13 and a typical spectrum is shown in figure 5.1a.13 Ament et al., 2011

As for the case of normal carriers in a doped Mott insulator, the
nature of the exciton system is drastically different from what is
found in uncorrelated semiconductors. The Mott insulator cannot
be described by band theory, and instead electron- and hole-
doping corresponds with the creation of double occupied sites
(doublons) and empty sites (holons), respectively. The doublons
and holons attract each other via the Coulomb attraction and
can thus form doublon-holon pairs: the strong coupling limit of
the exciton. Since in the Mott bilayer all interactions are strong,
the relevant case is to assume strong exciton binding such that
excitons can be treated as local pairs and the condensation occurs
in the BEC sense rather than in the weak coupling BCS sense.1414 The BCS theory of electron-

hole pairing is discussed in
section 3.2.

To describe such a doublon-holon pair in a Mott bilayer, we
can express the exciton hopping in terms of interlayer rung states:
the exciton |E〉 and the four possible interlayer spin states |s m〉.
Recall that the motion of an exciton is governed by1515 See section 4.1.

HK = −tex ∑
〈ij〉
|E〉j

(
∑
sm
|s m〉i〈s m|j

)
〈E|i. (5.5)

The exciton hopping energy tex can be related to the electron
hopping via perturbation theory, which gives tex = t2/V where V
equals the binding energy of an exciton.

The system describing coexistence of spins and excitons, given
by equations (5.3) and (5.5), is equivalent to a hard-core boson sys-
tem, reminiscent of attempts to describe cuprate superconductivity
using only bosons such as the SO(5) theory of the t− J model.1616 Zhang, 1997

In contrast to these theories, for the excitons in Mott bilayers the
mapping onto bosonic physics is fully controlled. The ground
state of the ‘exciton t− J model’ can straightforwardly be found
using a SU(5) coherent state. In the next section 5.2 we study this
in detail, finding that the dynamical frustration between excitons
and spins causes large parts of the phase diagram to be dominated
by phase separation. As long as the exciton hopping t is bigger
than the exciton-exciton repulsion we find an exciton superfluid
as the ground state, where the spins form interlayer singlets. In
principle there can be sign problems but these drop out rigorously
for this singlet ground state.

The strongly correlated exciton condensate wavefunction is
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now
|Ψ〉 = ∏

i

(√
ρ |E〉i +

√
1− ρ |0 0〉i

)
(5.6)

where |0 0〉 is the interlayer singlet spin configuration. Indeed,
when we set ∆k to be independent of momentum the earlier
wavefunction (5.1) reduces to the above equation.

Since we are dealing with hard-core bosons forming a mean
field ground state, the magnetic excitation spectrum can be com-
puted with linear spin wave theory. We employ the Heisenberg
equations of motion17 which are decoupled exploiting the ground 17 See section 5.2.4.

state expectation values.18 The resulting dynamical magnetic sus- 18 Zubarev, 1960; and Oles
et al., 2000ceptibilities χ′′(q, ω) are shown in figure 5.1, for two choices of

exciton density ρ = 0.15 and ρ = 0.27.
These figures illustrate the central result of this section: com-

pared to the undoped system (figure 5.1a) we find that the triplon
bandwidth is greatly enhanced (figures 5.1b and c). The mech-
anism is actually similar to that in slave-boson theories,19 where 19 Lee et al., 2006

four-operator products b†b f † f are decoupled as 〈b†〉〈b〉 f † f yield-
ing kinetic energy for the f -excitations. For Mott bilayers, we can
explicitly introduce Fock operators for the exciton e† = |E〉〈0|
and the triplet t† = |1m〉〈0|. This implies that the exciton-spin
interaction term (4.26) can be written as

−tex ∑
〈ij〉

e†
j eit†

i tj. (5.7)

This is a higher order exchange term, which at first sight seems
to be irrelevant for the bandwidth of the triplet. However, when
the exciton condensate sets in, the operator e† obtains an expect-
ation value 〈e†〉 = √ρSF, where ρSF is the condensate density.
Consequently this exchange term turns into an effective triplet
hopping term

−texρSF ∑
〈ij〉

t†
i tj. (5.8)

The explains why the bandwidth of the triplet excitations is in-
creased by an amount of order ztexρSF.

Surely, we made the argument that this effect leads to a dra-
matic increase of the bandwidth, for which we have implicitly
assumed that tex is larger than J. Now the exciton hopping energy
is related to the electron hopping by tex = t2/V, while the spin
superexchange satisfies J = 2t2/U where U is the onsite Coulomb
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Figure 5.2: The absorptive
part of the dynamical mag-
netic susceptibility χ′′(q, ω)
in the weak-coupling limit
of both the exciton binding
energy and electron-electron
interactions. a: The mag-
netic susceptibility is also
in the exciton condensate
phase dominated by the Lind-
hard continuum. This is
qualitatively different from
the triplons found in the
strong coupling limit of fig-
ure 5.1. Model parameters
are ξ1k = −ztγk − µ = −ξ2k,
t⊥ = 0.05zt, µ = −0.8zt
and ∆W = t. b: For com-
parison we computed the
χ′′(q, ω) in an electron-hole
bilayer without exciton con-
densation.

b. Electron-hole bilayera. Exciton condensate (weak c.)

k

E

repulsion. Since for obvious reasons U > V, we find that indeed
the dominant scale controlling the triplon bandwidth is ztexρSF

yielding the predicted bandwidth enhancement.
Since the exciton condensate ground state is independent of the

interaction strength, one can in principle adiabatically continue
the strong coupling results to the weak coupling limit. However,
in this limit the magnetic susceptibility as shown in figure 5.2 has
a fundamentally different origin. Only with strong interactions
the electrons are localized and a true spin degree of freedom arises.
This is not the case for weak coupling, where the spin response
is still dominated by the Lindhard continuum. The propagation
scale of the triplet excitations is now set just by the dispersion of
the noninteracting electrons.

To illustrate this point we compute the dynamic magnetic sus-
ceptibility for the weak coupling case where we depart from a
band structure of electrons and holes

HK = ∑
kσ

(
ξ1kc†

1kσc1kσ + ξ2kc†
2kσc2kσ

)
(5.9)

plus a weak interlayer tunneling

H⊥ = −t⊥∑
kσ

(
c†

1kσc2kσ + c†
2kσc1kσ

)
(5.10)

where ξ`k is the band structure of the holes or electrons, depending
on the layer. For simplicity, we take ξ1k = −ztγk − µ = −ξ2k on a
square lattice, so that in both layers there is an equal sized Fermi
surface with opposite Fermi velocities. The interlayer hopping
t⊥ � t is assumed to be small given the insulator in between the
layers. Both in-plane and the interlayer interactions are given by
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the Coulomb interaction

HV = ∑
ij`σσ′

Vijni`σnj`σ′ + ∑
ijσσ′

Wijni1σnj2σ′ , (5.11)

where Vij ∝ |ri − rj|−1 and the interlayer Coulomb includes the

interlayer distance d, hence Wij ∝
(
(ri − rj)2 + d2)−1/2. The effects

of these interactions are taken into account using the random
phase approximation (RPA).20 In the bilayer case, one needs to 20 Bruus and Flensberg, 2004

extend the usual RPA expression χ = χ0/(1− Vqχ0) to include
both intra- and interlayer interactions and bare susceptibilities χ0.

At some critical temperature the electron-hole bilayer has an
instability towards exciton condensation. Based on the standard
BCS theory21 we single out the interactions responsible for the 21 This is done extensively in

section 3.2. See also Bardeen
et al., 1957 and De Gennes,
1999.

singlet exciton pairing and perform a standard mean field de-
coupling using our earlier order parameter ansatz (5.2). Let us fix
the order parameter at a value of, say, ∆W = t. Using the afore-
mentioned RPA expansion we compute the resulting magnetic
excitation spectrum shown in figure 5.2a. This spectrum is reminis-
cent of our strong coupling results of figure 5.1. But instead of the
renormalization of the triplet bandwidth, the magnetic excitations
closely follow the Bogolyubov quasiparticle spectrum. In fact, the
dynamic magnetic susceptibility in the weak coupling limit can
be best understood as a gapped variation of the result in absence
of a condensate, shown in figure 5.2b. In weak coupling, the gross
features of the magnetic excitation spectrum therefore look similar
with or without the exciton condensate, whereas the dramatic
increase of the overall energy scale of the magnetic excitations is
only present in the strong correlations limit.

In conclusion, we have shown explicitly that in a Mott bilayer
the bandwidth of the magnetic excitations is strongly enhanced
by the presence of an exciton condensate. We emphasize that
this dynamic enhancement is quite unusual: the interplay between
magnetic and charge degrees of freedom most commonly leads
to frustration effects such as found in the previous section 4.2.
Paradoxically, this effect turns around dealing with excitons in
Mott insulators under the condition that they condense. This can
promote the propagation of spin.
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5.2 Finite exciton densities: the full phase diagram

To conclude our analysis of the bilayer exciton t − J model weThis section is based on Rade-
maker et al., 2013b. will now derive its full ground state phase diagram. This can be

done since both excitons and spins act as bosons, which is much
more tractable than the fermionic doped Mott insulator physics.
However, not all ‘fermion-like’ signs are eliminated: there are still
left-over signs of the phase-string type.22 In section 4.1.4 we show22 Weng, 2007

that collinear spin order is a sufficient condition for these signs
to cancel out, leaving a truly bosonic dynamics controlling the
ground state and long wavelength physics. This is very similar
to the ‘spin-orbital’ physics described by Kugel-Khomskii type
models,23 which can be viewed after all as describing d-d excitons23 Kugel and Khomskii, 1982

interacting with spins. Also the lattice implementations24 of the24 van Duin and Zaanen, 2000

SO(5) model25 for (cuprate) superconductivity are in this family25 Zhang, 1997

of bosonic theories.
Such bosonic problems can be handled with standard (semi-

classical) mean field theory. In most bilayer exciton set-ups, such
as the quantum Hall bilayers or the pumped systems, there is no
controllable equilibrium exciton density. In these cases one can
hardly speak of the exciton density as a conserved quantity, and
exciton condensation in the sense of spontaneously broken U(1)
symmetry is impossible.26 However, in Mott insulators the dopant26 Snoke, 2006

density per layer could be fixed by, for example, chemical doping.
The effective exciton chemical potential is then by definition large
compared to the recombination rate. Effectively, the excitons are
at finite density in equilibrium and hence true spontaneous U(1)
symmetry breaking is possible in the Mott insulating bilayer at
zero temperature.

Besides the exciton superfluid phase one anticipates a pleth-
ora of competing orders, as is customary in strongly correlated
materials. At zero exciton density the bilayer Heisenberg sys-
tem exhibits already interesting magnetic behavior. Departing
from the antiferromagnet for small rung coupling it turns via
an O(3)-QNLS quantum phase transition into an ‘incompressible
quantum spin liquid’ for larger rung couplings that can be viewed
as a continuation of pair singlets (‘valence bonds’) stacked on
the rungs.27 The natural competitor of the exciton superfluid at27 Chubukov and Morr, 1995

finite density is the exciton crystal and one anticipates due to the
strong lattice potential this will tend to lock in at commensurate
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densities forming exciton ‘Mott insulators’. We will wire this in
by taking also the exciton-exciton dipolar interaction into account
that surely promotes such orderings. In principle there is the inter-
esting possibility that all these orders may coexist microscopically
forming an ‘antiferromagnetic supersolid’.28 We find that at least 28 Zaanen, 1999

for the strongly coupled ‘small’ excitons assumed here this does
not happen. The reason is interesting. We already alluded to the
dynamical frustration associated with the exciton delocalizing in
the antiferromagnetic spin background in section 4.2. At finite
densities this turns into a tendency to just phase separate on a
macroscopic scale, in zero density antiferromagnets, exciton Mott
insulators and high density diamagnetic exciton superfluids. For
now we notice quickly that the exciton dipole repulsion is actually
long-ranged,29 instead of just the nearest neighbor repulsion dis- 29 Rademaker et al., 2013d

cussed in this chapter. This simplification rules out the occurrence
of frustrated phase separation as suggested for the electronic or-
der in cuprates.30 The influence of the long-range nature of the 30 Zaanen and Gunnarsson,

1989; Emery and Kivelson,
1993; Löw et al., 1994; Tran-
quada et al., 1995; and Zhang
and Henley, 2003

dipolar interaction is discussed in chapter 6.
It is disappointing that apparently in this system only conven-

tional ground states occur. However, this is actually to a degree
deceptive. The Hamiltonian describing the physics at the lattice
scale describes a physics where the exciton- and spin motions are
entangled: the way in which these subsystems communicate gets
beyond the notion of just being strongly coupled, since the motions
of the exciton motions and the spin dynamics cannot be separated.
By coarse graining this all the way to the static order parameters
(the mean fields) an effective disentanglement eventually results
as demonstrated by the product ground states. However, upon
going "off-shell" this spin-exciton entanglement becomes directly
manifest in the form of unexpected and rather counterintuitive
effects on the excitation spectrum. A simple example is the zero
exciton density antiferromagnet. From the relatively thorough
LSW-SCBA treatment of the one exciton problem31 we already 31 See section 4.2.

know that the resulting exciton spectrum can be completely dif-
ferent from that in a simple semiconductor. In this section we
compute the linearized excitations around the pure antiferromag-
net, recovering the LSW-SCBA result in the adiabatic limit where
the exciton hopping is small compared to the exchange energy
of the spin system, which leads to a strong enhancement of the
exciton mass. In the opposite limit of fast excitons, the energy
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scale is recovered but the Ising confinement ladder spectrum re-
vealed by the LSW-SCBA treatment is absent. The reason clear: in
the language of this section, the couplings between the exciton-
and spin-wave modes become very large and these ‘spin wave
interactions’ need to be resummed in order to arrive at an accurate
description of the exciton propagator.

The real novelty in this regard is revealed in the high density
exciton superfluid phase. As shown in the previous section, by
measuring the spin fluctuations one can in principle determine
whether the excitons are condensed in a superfluid.

As a reminder let us recall our point of departure: the Hamilto-
nian describing strongly bound excitons propagating through a
bilayer Heisenberg spin 1/2 system. This model is derived at
length in section 4.1 and here we just summarize the outcome.
Due to the strong electron-electron interactions the electronic de-
grees of freedom are reduced to spin operators sil governed by
the bilayer Heisenberg model3232 Manousakis, 1991; and

Chubukov and Morr, 1995

HJ = J ∑
〈ij〉,l

sil · sjl + J⊥∑
i

si1 · si2. (5.12)

The subscript denotes spin operators on site i in layer l = 1, 2. The
Heisenberg HJ is antiferromagnetic with J > 0 and J⊥ > 0. The
interlayer exciton can hop around, thereby interchanging places
with the spin background. In the strong-coupling limit of exciton
binding energies the exciton hopping process is described by the
Hamiltonian

Ht = −t ∑
〈ij〉
|Ej〉

(
|0 0〉i〈0 0|j + ∑

m
|1 m〉i〈1 m|j

)
〈Ei|. (5.13)

where |E〉 is the exciton state on an interlayer rung, and |s m〉
represent the rung spin states. Whenever an exciton hops, it
effectively exchanges the spin configuration on its neighboring
site. In order to study the system with a finite density of excitons,
we need to enrich the t− J model with two extra terms: a chemical
potential and an exciton-exciton interaction.

The chemical potential is given by

Hµ = −µ ∑
i
|Ei〉〈Ei| (5.14)

which is a rather trivial statement. The exciton-exciton interaction
requires some more thought. The bare interaction between two
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interlayer excitons results from their electric dipole moment. Since
all interlayer exciton dipole moments are pointing in the same
direction the full exciton-exciton interaction is described by a
repulsive 1/r3 interaction. The interaction strength decays so fast
that we consider it reasonable to only include the nearest-neighbor
repulsion,

HVI = VI ∑
〈ij〉

(|Ei〉〈Ei|)
(
|Ej〉〈Ej|

)
. (5.15)

Note that especially in the region where we expect phase separa-
tion, the long-range nature of the dipolar interaction will become
relevant.33 For now we set VI to be the energy scale associated 33 See chapter 6 for the in-

fluence of long-range interac-
tions.

with nearest neighbor exciton repulsion. This number can get
quite high: given a typical interlayer distance of 8 Å and an inter-
site distance of 4 Å34 the bare dipole interaction energy is 14

34 Imada et al., 1998

eV. In reality, we expect this energy to be lower due to quantum
corrections and screening effects. However, the exciton-exciton
interaction scale remains on the order of electronvolts and thus
larger than the estimated Heisenberg J and hopping t.

We must pause here for a while and reflect on the possibility of
interlayer hopping of electrons, which leads to the annihilation
of excitons,

Ht⊥ = −t⊥∑
i
|Ei〉〈0 0|i + h.c. (5.16)

This term explicitly breaks the U(1) symmetry, which is associated
with the conservation of excitons. While this term is almost
certainly present in any realistic system, it is a matter of numbers
whether it is relevant. In the present case the interlayer tunneling
can be incorporated using perturbation theory in a renormalisation
of the chemical potential µ. As a consequence we do not need to
include the t⊥ term in our model Hamiltonian.

The full model Hamiltonian describing a finite density of ex-
citons in a strongly correlated bilayer is thus

H = HJ + Ht + Hµ + HVI . (5.17)

5.2.1 Symmetries and an effective XXZ model

The Hamiltonian (5.17) has five model parameters: J, J⊥, t, VI and
µ. However, most properties of the excitons can be understood
by considering the simpler problem of hard-core bosons on a
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lattice. In this subsection we will argue that the exciton degrees of
freedom can be described by an effective XXZ model.

Before characterizing different phases of the model we need
to assess the algebraic structure of the exciton t− J model. The
set of all operators that act on the local Hilbert space form the
dynamical algebra, whereas the symmetries of the system are
grouped together in the symmetry algebra.

To derive the dynamical algebra, it is instructive to start with
the bilayer Heisenberg model which has, on each interlayer rung,
a SO(4) ∼= SU(2)× SU(2) dynamical algebra. Upon inclusion of
the exciton hopping term we need more operators, since now the
local Hilbert space on an interlayer rung is five-dimensional (four
spin states and the exciton). Consider the spin-to-exciton operator
E+

sm ≡ |E〉〈s m| and its conjugate E−sm = (E+
sm)†. Their commutator

reads

[E+
sm, E−sm] = |E〉〈E| − |s m〉〈s m| ≡ 2Ez

sm (5.18)

where we have introduced the operator Ez
sm to complete a SU(2)

algebraic structure. We could set up such a construction for each
of the four spin states |s m〉. Under these definitions the exciton
hopping term (5.13) can be rewritten in terms of an XY-model for
each spin state,

Ht = −t ∑
<ij>,sm

(
E+

sm,iE
−
sm,j + E−sm,iE

+
sm,j

)
(5.19)

= −2t ∑
<ij>,sm

(
Ex

sm,iE
x
sm,j + Ey

sm,iE
y
sm,j

)
(5.20)

where the sum over sm runs over the singlet and the three triplets.
Note that the exciton chemical potential (5.14) acts as an externally
applied magnetic field to this XY-model, and that the exciton-
exciton repulsion (5.15) can be rewritten as an antiferromagnetic
Ising term in the Ez

sm operators. The dynamical algebra therefore
contains four SU(2) algebras in addition to the SO(4) from the
bilayer Heisenberg part. The closure of such algebra is necessarily
SU(5), which is the largest algebra possible acting on the five-
dimensional Hilbert space. Hence we need a full SU(5) dynamical
algebra to describe the exciton t− J model at finite density.

From the XY-representation of the hopping term one can
already deduce that we have four distinct U(1) symmetries associ-
ated with spin-exciton exchange. The bilayer Heisenberg model
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contains two separate SU(2) symmetries, associated with in-phase
and out-phase interlayer magnetic order. Therefore the full sym-
metry algebra of the model is [SU(2)]2 × [U(1)]4.

Breaking of the SU(2) symmetry amounts to magnetic ordering,
which is most likely antiferromagnetic (and therefore also amounts
to a breaking of the lattice symmetry). Each of the U(1) algebras
can be broken leading to exciton condensation. Note that next
to possible broken continuous symmetries, there also might exist
phases with broken translation symmetry. The checkerboard phase
is an example of a phase where the lattice symmetry is broken
into two sublattices.

Above we showed that the exciton hopping terms are similar
to an XY-model. The main reason is that the excitons are, in fact,
hard-core bosons and thus allow for a mapping onto pseudospin
degrees of freedom. Viewed as such, the exciton-exciton interac-
tion (5.15) is similar to an antiferromagnetic Ising term and the
exciton chemical potential (5.14) amounts to an external magnetic
field in the z-direction. Together they form an XXZ-model with
external field, which has been investigated in quite some detail
before35 as well as in the context of exciton dynamics in cold atom 35 Néel, 1936; Fisher and

Nelson, 1974; Landau and
Binder, 1981; van Otterlo
et al., 1995; Kohno and Taka-
hashi, 1997; and Yunoki, 2002

gases.36

36 Kantian et al., 2007

In order to understand the basic competition between the check-
erboard phase and the superfluid phase of the excitons, it is worth-
while to neglect the magnetic degrees of freedom and study first
this effective XXZ-model for the excitons only. In this context
the transition between the checkerboard and superfluid phases
is known as the ‘spin flop’-transition.37 Whilst remembering 37 Néel, 1936

that the exciton degrees of freedom are mapped onto the XXZ
pseudospin degrees of freedom, we now quickly review the basics
of the XXZ Hamiltonian

H = −t ∑
〈ij〉

(
Ex

i Ex
j + Ey

i Ey
j

)
− µ ∑

i
Ez

i + VI ∑
〈ij〉

Ez
i Ez

j (5.21)

where E+ = |1〉〈0| = Ex + iEy creates a hard-core bosonic particle
|1〉 out of the vacuum |0〉. This model has a built-in competition
between t > 0, which favors a superfluid state, and VI > 0, which
favors a solid state where all particles are on one sublattice and the
other sublattice is empty. The external field or chemical potential
µ tunes the total particle density. The ground state can now be
found using mean field theory. It is known that for pseudospin
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S = 1
2 models in (2 + 1)d the quantum fluctuations are not strong

enough to defeat classical order, therefore we can rely on mean
field theory which is indeed supported by exact diagonalization
studies.3838 Kohno and Takahashi, 1997

To find the ground state we introduce a variational wavefunc-
tion describing a condensate of excitons,

|Ψ〉 = ∏
i

(
cos θieiψi |1〉i + sin θi|0〉i

)
. (5.22)

The mean-field approximation amounts to choosing ψi constant
and θi only differing between the two sublattices. We find the
following mean-field energy

E/N = −1
8

tz sin 2θA sin 2θB +
1
8

VIz cos 2θA cos 2θB

−1
4

µ (cos 2θA + cos 2θB) . (5.23)

Let’s rewrite this in terms of θ = θA + θB and ∆θ = θA − θB,

E/N =
z
8

(
(VI − t) cos2 ∆θ + (VI + t) cos2 θ

)
−1

2
µ cos ∆θ cos θ − VIz

8
. (5.24)

When |µ| ≥ 1
2 (VIz + zt) the ground state is fully polarized

in the z-direction. This means either zero particle density for
negative µ, or a ρ = 1 for the positive µ case. Starting from
the empty side, increasing µ introduces a smooth distribution
of particles. This phase amounts to the superfluid phase of the
excitons. The particle density on the two sublattices is equal and
the total density is given by

ρ = cos2 θ =
1
2
(
cos θ + 1

)
=

1
2

(
2µ

VIz + zt
+ 1
)

. (5.25)

Figure 5.3: Left: The ground
state phase diagram of the
XXZ model (5.21). The
graph shows the mean field
particle density 〈Ez〉 as a
function of µ, with model
parameters t = 1 and VI =
2t. One clearly distinguishes
the fully polarized phases
for large µ, the superfluid
phase with a linear 〈Ez〉 vs
µ dependence and the check-
erboard phase with 〈Ez〉 =
0. In between the check-
erboard and the superfluid
phase a non-trivial first or-
der transition exists, with a
variety of coexistence ground
states with the same ground
state energy. The insets show
how the (Ex , Ez)-vectors look
like in the different phases.
Right: Finite temperature
phase diagram of the XXZ
model with the same para-
meters. The background col-
oring corresponds to a semi-
classical Monte Carlo com-
putation of 〈Ez〉, the solid
lines are analytical mean field
results for the phase bound-
aries. We indeed see the
checkerboard phase and the
superfluid phase, as well
as a high-temperature non-
ordered ‘normal’ phase.
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At the critical value of the chemical potential given by

(µc)2 =
(

1
2

z
)2

(VI − t)(VI + t). (5.26)

a first order transition occurs towards the checkerboard phase: the
spin flop transition. In the resulting phase, which goes under vari-
ous names such as the antiferromagnetic,39 solid, checkerboard 39 If we associate the presence

of a particle with spin up,
and the absence with spin
down, then the solid phase
is identified with an Ising an-
tiferromagnet. However, one
should not confuse this with
the actual antiferromagnetism
present in the spin sector of
the full exciton t − J model.
To avoid confusion, from now
on we will use the term ’an-
tiferromagnetism’ only when
referring to the spin degrees
of freedom in the full exciton
t− J model.

or Wigner crystalline phase, the sublattice symmetry is broken.
The resulting ground state phase diagram is shown in figure 5.3,
where a graph of the particle density as a function of µ is given.

At finite temperatures in (2 + 1)d there can be algebraic long-
range order. At some critical temperature a Kosterlitz-Thouless
phase transition40 will destroy this long-range order. The topology

40 Kosterlitz and Thouless,
1973

of the phase diagram, however, can be obtained using the finite
temperature mean field theory for which we need to minimize the
mean field thermodynamic potential41

41 Yeomans, 1992

Φ/N = −kT log
(

2 cosh
(

βm
2

))
+

1
2

m tanh
(

βm
2

)
+

z
8

tanh2
(

βm
2

)
×
[
(VI − t) cos2 ∆θ + (VI + t) cos2 θ −VI

]
−µ

2
tanh

(
βm
2

)
cos ∆θ cos θ. (5.27)

Expectation values are now given in the form of

〈Sx
i∈A〉 =

1
2

sin 2θA tanh
(

βm
2

)
, (5.28)

and the parameter m needs to be determined self-consistently. The
resulting phase diagram is shown in figure 5.3, right, which is of
the form discussed by Fisher and Nelson, 1974.

The first order quantum critical point at µc turns out to be
non-trivial, a point which is usually overlooked in the literature.
A trivial first order transition occurs when there are two distinct
phases with exactly the same energy. In the case presented here,
there is a infinite set of mean field order parameters all yielding
different phases yet still having the same energy. A simple analytic
calculation shows that the energy of the ground state at the critical
point is Ec = −VIz/8. Now rewrite the mean field parameters ρA
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and ρB into a sum and difference parameter

ρ =
1
2
(ρA + ρB), (5.29)

∆ρ =
1
2
(ρA − ρB). (5.30)

For each value of ∆ρ with |∆ρ| ≤ (1/2) we can find a value of ρ

such that the mean field energy is exactly −VIz/8.
This has interesting consequences. If one can control the dens-

ity instead of the chemical potential around a first order transition,
in general phase separation would occur between the two com-
peting phases. From the mean field considerations above it is
unclear what would happen in a system described by the XXZ
Hamiltonian (5.21). All phases would be equally stable, at least
from an energy perspective, and every phase may occur in regions
of any size. Such a highly degenerate state may be very sensible to
small perturbations. We consider it an interesting open problem
to study the dynamics of such a highly degenerate system, and
whether this degeneracy may survive the inclusion of quantum
corrections.

Note that qualitatively a possible t⊥ term is irrelevant, which
can be seen in the XXZ pseudospin language where it takes the
form of a tilt of the magnetic field in the x-direction,

Ht⊥ = −t⊥∑
i

Ex
i . (5.31)

5.2.2 Ground state phase diagram: variational wavefunction

In the previous section we have seen that the effective XXZ model
predicts the existence of both a exciton superfluid phase and a
checkerboard phase, separated by a first order transition. Further
extending these results yields the ground state phase diagram for
the full exciton t− J model (5.17).

We will proceed along the same lines as in the previous section.
Hence we need a variational wavefunction, which we simulate
numerically to obtain an unbiased view on the possible ground
state phases. Based on the numerical results we apply mean field
theory, which is very reliable due to the hard-core bosonic nature
of excitons. The analytical mean field also allows us to characterize
the three distinct phases: the antiferromagnet, the superfluid and
the checkerboard. Finally, combining the numerical results and
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the analytical mean field results we obtain the ground state phase
diagram in figure 5.8.

Recall that the local Hilbert space consists of four spin states
|s m〉 and the exciton state |E〉. We therefore propose a variational
wavefunction consisting of a product state of superpositions all
five states on each rung. For the spin states we take the SO(4)
coherent state42 42 van Duin, 1999

|Ωi〉 = − 1√
2

sin χi sin θie−iφi |1 1〉i

+
1√
2

sin χi sin θieiφi |1 − 1〉i

+ sin χi cos θi|1 0〉i − cos χi|0 0〉i (5.32)

which needs to be superposed with the exciton state,

|Ψi〉 =
√

ρieiψi |Ei〉+
√

1− ρi|Ωi〉 (5.33)

to obtain the total variational wavefunction

|Ψ〉 = ∏
i
|Ψi〉. (5.34)

Given this wavefunction, the expectation value of a product of
operators on different sites decouples, 〈AiBj〉 = 〈Ai〉〈Bj〉. The
only nonzero expectation values of spin operators are for S̃i =
si1 − si2 and it equals

〈Ωi|S̃i|Ωi〉 = sin 2χi

sin θi cos φi

sin θi sin φi

cos θi

 = sin 2χi n̂i (5.35)

where n̂i is the unit vector described by the angles θ and φ. This
variational wavefunction therefore assumes interlayer Néel order
of magnitude sin 2χi, which enables us to correctly interpolate
between the perfect Néel order at χ = π/4 and the singlet phase
χ = 0 present in the bilayer Heisenberg model. The exciton
density at a rung i is trivially given by ρi.

Given the variational wavefunction, we can use simulated an-
nealing to develop an unbiased view on the possible ground state
phases. Therefore we start out with a lattice, on each lattice site
the variables θi, χi, φi, ψi and ρi and with periodic boundary
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conditions. The energy of a configuration is

E =
1
2

J ∑
<ij>

(1− ρi)(1− ρj) sin 2χi sin 2χj n̂i · n̂j

−J⊥∑
i
(1− ρi) cos2 χi − µ ∑

i
ρi + VI ∑

<ij>
ρiρj

−1
2

t ∑
<ij>

√
ρi(1− ρi)ρj(1− ρj) cos(ψi − ψj)

×
(
cos χi cos χj + sin χi sin χj n̂i · n̂j

)
(5.36)

We performed standard Metropolis Monte Carlo updates43 of43 See section 3.3 for a de-
tailed description of Monte
Carlo techniques.

the lattice with fixed total exciton density. The fixed total exciton
density is ensured as follows: if during an update the exciton
density ρi is changed, the exciton density on one of the neighbor-
ing sites is corrected such that the total exciton density remains
constant.

Figure 5.4: Results from the
semi-classical Monte Carlo
simulations. Here shown
are color plots, with on the
horizontal axes the exciton
density ρ and on the vertical
axes the hopping parameter
t (in eV). Other parameters
are fixed at J = 125 meV, α =
0.04 and VI = 2 eV. The five
measurements shown here
are the Néel order parameter
(5.37), the checkerboard or-
der parameter (5.38), the su-
perfluid density (5.39), the
phase coherence (5.40), and
the ratio signaling phase sep-
aration according to equa-
tion (5.42), 0 means complete
phase separation, 1 means no
phase separation. Notice that
the prominent line at ρ =
0.5 signals the checkerboard
phase.

The main results of the simulation are shown in figure 5.4, for
various values of the hopping parameter t and exciton density
ρ. We performed the computations on a 10× 10 lattice. Notice
that even though true long-range order does not exist in two
dimensions, the range of possible ordered phases is longer than
the size of our simulated lattice. The other parameters are fixed at
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J = 125 meV, α = 0.04 and VI = 2 eV. The Heisenberg couplings
J = 125 meV and α = 0.04 are obtained from measurements of
undoped YBCO-samples,44 which we consider to be qualitatively 44 Imada et al., 1998; and Tran-

quada et al., 1989indicative of all strongly correlated electron bilayers. The dipolar
coupling is estimated at 2 eV, following our discussion in the
introduction.

For each value of ρ and t we started at relatively high temperat-
ures T = 0.1 eV and then slowly reducing the temperature to 10−5

eV while performing a full update of the whole lattice 10 million
times. We expect that by such a slow annealing we obtain the
true ground state of (5.36) without any topological defects or false
vacua. Once arrived at the low temperature state, we performed
measurements over 200.000 full updates of the system.

We measured six different parameters of interest:

• The Néel order parameter defined by

Neel =

∣∣∣∣∣
∣∣∣∣∣ 1

N ∑
i
(−1)i(1− ρi) sin 2χin̂i

∣∣∣∣∣
∣∣∣∣∣ (5.37)

where we first sum over all spin vectors and then take the norm.

• The checkerboard order, defined as the difference in exciton
density between the sublattices divided by the maximal differ-
ence possible. The maximal difference possible equals Min(ρ, 1−
ρ), so

Checkerboard =
1
N ∑i(−1)iρi

Min(ρ, 1− ρ)
. (5.38)

• The superfluid density is given by the expectation value of the
exciton operator. Here we don’t make a distinction between
singlet exciton condensation or triplet exciton condensation.
Therefore

Superfluid density =
1
N ∑

i

√
ρi(1− ρi). (5.39)

• Now the superfluid density is not the only measure of the
condensate, we can also probe the rigidity of the phase ψ.
Therefore we sum up all the phase factors on all sites,

Phase average =

∣∣∣∣∣ 1
N ∑

i
eiψi

∣∣∣∣∣ . (5.40)
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Figure 5.5: Typical config-
urations for the exciton dens-
ity per site, obtained in the
Monte Carlo simulation on
a 16× 16 square lattice. The
color scale indicates the ex-
citon density. All five fig-
ures have model parameters
J = 125 meV, α = 0.04
and VI = 2 eV. a: Separ-
ation between the antiferro-
magnetic phase (without ex-
citons, hence shown black)
and the exciton condensate
with smooth exciton dens-
ity (ρ = 0.05, t = 2.3
eV). b: Separation between
checkerboard-like localized
excitons and an antiferro-
magnetic background (ρ =
0.1, t = 0.1 eV). c: Separ-
ation between the checker-
board phase and a low dens-
ity exciton condensate (ρ =
0.25, t = 2.3 eV). d: Sep-
aration between the checker-
board phase and a high dens-
ity exciton condensate (ρ =
0.75, t = 0.5 eV). e: The
region where antiferromag-
netic order, checkerboard or-
der and the exciton condens-
ate are all present (ρ = 0.3,
t = 1.5).

If the phase is disordered, this sum tends to zero. On the
other hand, complete phase coherence in the condensate phase
implies that this quantity equals one.

• Finally, we considered a measure of phase separation between
the checkerboard phase and the superfluid phase. If the exciton
condensate and the checkerboard phase are truly coexisting,
then the maximal superfluid density attainable would be

Max SF density =
1
2

√
(ρ + ∆ρ)(1− ρ− ∆ρ)

−1
2

√
(ρ− ∆ρ)(1− ρ + ∆ρ) (5.41)

where ∆ρ = 1
N ∑i(−1)iρi. If there is phase separation, however,

the actual superfluid density is less than this maximal density.
Therefore we also measured the ratio

Ratio =
Superfluid density

Max SF density
(5.42)

to quantify the extent of phase separation. Now if this ratio is
less than 1, we have phase separation.

The results for a full scan for the range 0 < ρ < 1 and
0 < t < 2.5 eV are shown in figure 5.4. In figures 5.5 and 5.6
we have displayed typical exciton density configurations for vari-
ous points in the phase diagram. These results combined suggest
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Figure 5.6: Different exciton
configurations with their re-
spective energies on a 40× 40
lattice, to show whether there
is macroscopic phase separ-
ation. The model paramet-
ers are t = 0.5 eV, J = 125
meV, α = 0.04, VI = 2 eV
and ρ = 0.06625. Yellow in-
dicates the presence of ex-
citons, and in the black re-
gions there is antiferromag-
netic order. a: The lowest
energy state is the one with
complete macroscopic phase
separation. b: More complic-
ated phase separation, such
as the halter form depicted
here, are higher in energy.
c: Starting at high temperat-
ures with the configuration a,
we slowly lowered the tem-
perature. The resulting con-
figuration shown here is a
local minimum. d: Using the
same slow annealing as for
c starting from configuration
b. The local energy minimum
obtained this way is lower
in energy than the configura-
tion c. We conclude that even
though macroscopic phase
separation has the lowest en-
ergy, there are many local en-
ergy minima without macro-
scopic phase separation.

that there are three main phases present in the system: the antifer-
romagnet at low exciton densities, the exciton superfluid at high
exciton hopping energies and the checkerboard around half-filling.
For most parts of the phase diagram, however, the competition
between the three phases results in phase separation.

Let us investigate the phase separation in somewhat more de-
tail. In section 4.2 we found that the motion of an exciton in
an antiferromagnetic background leads to dynamical frustration.
In other words: excitons do not want to be together with anti-
ferromagnetism. The introduction of a finite density of excitons
will therefore induce phase separation. For large t, we find mac-
roscopic phase separation between the antiferromagnet and the
exciton superfluid, see figure 5.5a. At low exciton kinetic energy
the excitons will be localized in a checkerboard pattern as can be
seen in figure 5.5b.

Close to half-filling the role of the dipole repulsion VI becomes
increasingly relevant. The first order ‘spin flop’ transition implies
that there will be phase separation between the superfluid and the
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checkerboard order. Figures 5.5c and d show this phase separation.
Finally there is a regime where the condensate, the checkerboard
order and the Néel order are all present. However, given the
dynamical frustration at one hand and the spin-flop transition
at the other hand, we again predict phase separation. A typical
exciton configuration is shown in figure 5.5e.

Phase separation is thus widespread, based on results obtained
by slow annealing starting at high temperatures. However, anneal-
ing can lead to the freezing in of defects, which prevents us from
reaching the true ground state. In order to investigate whether we
have frustrated or macroscopic phase separation, we construct
custom-made phase separated configurations and compare their
energies in figure 5.6. The lowest energy configuration (5.6a) has
macroscopic phase separation between the checkerboard and the
antiferromagnetic phase. Intermediate states with one blob of
excitons (5.6c) are slightly higher in energy than states with two
blobs of excitons (5.6d). However, even though macroscopic phase
separation has the lowest energy, configurations with more blobs
have more entropy. Consequently for any nonzero temperatures
complete macroscopic phase separation is not the most favorable
option. This is indeed picked up by the numerical simulations:
annealing leads to high-entropy states such as figure 5.6d rather
than to the lowest energy configuration.

We thus conclude that the dominant phases are the antiferro-
magnet, the superfluid and the checkerboard. The competition
between these three phases leads to phase separation in most
parts of the phase diagram. The unbiased Monte Carlo simu-
lations shows the direction in which further analytical research
should be directed: we will use mean field theory to characterize
the three phases more thoroughly.

5.2.3 Mean field theory and characterization of the phases

Given the fact that we are dealing with a hard-core boson problem,
we know that mean field theory is qualitatively correct. The only
open issue is whether one can tune the exciton chemical potential
rather than the exciton density in realistic experiments. Since we
are prescient about the many first-order phase transitions present,
we will perform the analysis with a fixed exciton density (the ca-
nonical ensemble). A transformation back to the grand-canonical
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ensemble can be made given the explicit µ vs. ρ relations.
Now the numerical simulations suggest that the mean field

parameters only need to depend on the sublattice,

ρi =

{
ρA i ∈ A
ρB i ∈ B

(5.43)

and so forth for χ, θ, ψ and φ. With this broken translational
symmetry we anticipate the antiferromagnetic and checkerboard
order. Evaluation of the energy E = 〈Ψ|H|Ψ〉 under the variational
wavefunction directly suggests that we can set θ = ψ = φ = 0
on all sites.45 We are left with four parameters ρA, ρB, χA and χB, 45 By setting θ = φ = 0 we

restrict the spin vectors to
be pointing in the ±z direc-
tion only. Since we anticipate
magnetic ordering we have
the freedom to choose the dir-
ection of the ordering. Sim-
ilar arguments hold for the
choice ψ = 0; when break-
ing the U(1) symmetry asso-
ciated with exciton condensa-
tion we are free to choose the
phase direction.

and as it turns out it will be more instructive to rewrite these in
terms of sum and difference variables,

ρ =
1
2
(ρA + ρB) (5.44)

∆ρ =
1
2
(ρA − ρB) (5.45)

χ = χA + χB (5.46)

∆χ = χA − χB (5.47)

The mean field energy per site is now given by

E/N =
1
8

Jz
(
(1− ρ)2 − ∆2

ρ

)
(cos 2∆χ − cos 2χ)

−1
2

J⊥
[
(1− ρ)(cos χ cos ∆χ + 1) + ∆ρ sin χ sin ∆χ

]
−1

4
zt
√

((1− ρ)2 − ∆2
ρ)(ρ2 − ∆2

ρ) cos ∆χ

−µρ +
1
2

zVI(ρ2 − ∆2
ρ). (5.48)

which needs to be minimized for a fixed average exciton density ρ

with the constraint |∆ρ| ≤ min(ρ, 1− ρ). The resulting mean field
phase diagram for typical values of J, J⊥ and VI , for various t, ρ,
is shown in figure 5.7.

As long as the exciton density is set to zero, the mean field
ground state is given by the same ground state as for the bilayer
Heisenberg model. That is the antiferromagnetic phase paramet-
rized by

ρ = 0, χ = 0 and cos ∆χ =
J⊥
Jz
≡ α. (5.49)
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The Néel order is given by

1
N ∑

i
(−1)i〈S̃z

i 〉 =
√

1− α2 (5.50)

and the energy of the antiferromagnetic state is

E = −1
4

Jz(1 + α)2. (5.51)

The introduction of excitons in an antiferromagnetic background
leads to dynamical frustration effects which disfavors the coex-
istence of excitons and antiferromagnetic order.46 In fact, the46 See section 4.2.

numerical simulations already ruled out coexistence of superfluid-
ity and antiferromagnetism.

For large exciton hopping energy t it becomes more favorable
to mix delocalized excitons into the ground state. Due to the
bosonic nature of the problem this automatically leads to exciton
condensation. The delocalized excitons completely destroy the
antiferromagnetic order and the exciton condensate is described
by a superposition of excitons and a singlet background,

|Ψ〉 = ∏
i

(√
ρ|Ei〉+

√
1− ρ|0 0〉i

)
. (5.52)

Here we wish to emphasize the ubiquitous coupling to light of
the superfluid. The dipole matrix element allows only zero spin
transitions, and since the exciton itself is also S = 0 the dipole
matrix element is directly related to the superfluid density,

〈∑
σ

c†
i1σci2σ〉 = 〈E|

(
c†

1↑c2↑ + c†
1↓c2↓

)
|0 0〉

=
1√
2

√
ρ(1− ρ)〈↑↓1 02|(

c†
1↑c2↑ + c†

1↓c2↓
)

(| ↑1 ↓2〉 − | ↓1 ↑2〉)

=
√

2ρ(1− ρ) (5.53)

The dipole matrix element thus acts as the order parameter as-
sociated with the superfluid phase. In most bilayer exciton con-
densates, such as the one in the quantum Hall regime,47 this order47 Eisenstein and MacDonald,

2004 parameter is also nonzero in the normal phase because of inter-
layer tunneling of electrons. One can therefore not speak strictly
about spontaneous breaking of U(1) symmetry in such systems;
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there is already explicit symmetry breaking due to the interlayer
tunneling. In strongly correlated electron systems the finite t⊥
can be incorporated as a virtual process since the energy scales
associated with the chemical potential are much larger than t⊥.
As discussed at the beginning of this section, the Mott insulating
bilayers now effectively allow for spontaneous U(1) symmetry
breaking, and the above dipole matrix element acts as a true order
parameter. Note that the irrelevance of interlayer hopping t⊥
implies that this order parameter is, unfortunately, not reflected
in photon emission or interlayer tunneling measurements.

The exciton condensate is in fact a standard two-dimensional
Bose condensate. The U(1) symmetry present in the XY-type
exciton hopping terms is spontaneously broken and we expect
a linearly dispersed Goldstone mode in the excitation spectrum,
reflecting the rigidity of the condensate.

The energy of the singlet exciton condensate is

E = −J⊥ −
(µ + 1

4 zt− J⊥)2

zt + 2VIz
(5.54)

and the exciton density is given by

ρ = 2
µ + 1

4 zt− J⊥
zt + 2VIz

. (5.55)

Whenever the exciton hopping is small, the introduction of
excitons into the system leads to the ‘spin flop’ transition towards
the checkerboard phase. As shown in the context of the XXZ
model, this phase implies that one sublattice is completely filled
with excitons and the other sublattice is completely empty. On the
empty sublattice, any nonzero J⊥ will guarantee that the singlet
spin state has the lowest energy. Hence the average exciton density
is here ρ = ∆ρ = 1/2 and the energy of the checkerboard phase is
given by

E = −1
2

J⊥ −
1
2

µ. (5.56)

It is interesting to note that the checkerboard phase is in fact
similar to a Bose Mott insulator: with the new doubled unit cell
we have one exciton per unit cell. The nearest neighbor dipole
repulsion now acts as the ‘on-site’ energy preventing extra excitons
per unit cell.
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The mean field theory also predicts, for a small region with
intermediate t and small exciton densities, the coexistence of anti-
ferromagnetism and the condensate. This is, however, an artifact
of the theory, since the numerical simulations show that here
phase separation between the three different phases is favorable.

Finally, when the exciton density is 1 we have a system com-
posed of excitons only. In the parlance of hard-core bosons this
amounts to a exciton Mott insulator. This rather featureless phase
is adiabatically connected to a standard electronic band insulator.
Namely, the system is now composed of two layers where each
layer has an even number of electrons per unit cell. The energy of
the exciton Mott insulator is

E = −µ +
1
2

VIz. (5.57)

In the mean field theory just described many phase transitions
were first order, in the sense that the exciton density varies dis-
continuously along the transition. The critical values of t/J or µ

along the second order transitions are

(t/J)c,AF→CO =
2Jz(1 + α)− 4µ

J⊥
(5.58)

(t/J)c,EC→CO = 1− 2µ

Jz
+

√
(1 + 8α) +

(
2µ

Jz

)2
− 4

(
3

µ

Jz
− 2VI

J
(1− α)

)
(5.59)

µc,EC→EI = J⊥ +
1
4

zt + VIz (5.60)

and the critical values for the first order transitions are

µc,AF→CB =
1
2

Jz(1 + α2) (5.61)

µc,CB→EI = VIz + J⊥ (5.62)

(t/J)c,AF→EC = 2(1 + α2)− 4
µ

Jz
+ 2

√
(1− α2)

(
4

µ

Jz
− (1 + α)2 − 2

VI
J

)
(5.63)

(t/J)c,CB→EC = 4

√(
µ

Jz
− α

)(
VI
J

+ α− µ

Jz

)
(5.64)

(t/J)c,CO→CB =
2α2

2 µ
Jz − 1

− 2α +

√√√√(1− α2

2 µ
Jz − 1

)(
2
(

VI
J

+ α− µ

Jz

)
− α2

2 µ
Jz − 1

)
. (5.65)
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Figure 5.7: The canonical
mean-field phase diagram
for typical values of J = 125
meV, α = 0.04 and VI = 2
eV whilst varying t and
the exciton density ρ. In
the absence of exciton, at
ρ = 0, we have the pure
antiferromagnetic Néel phase
(AF). Exactly at half-filling of
excitons (ρ = 1/2) and small
hoping energy t < 2VI we
find the checkerboard phase
(CB) where one sublattice
is filled with excitons and
the other sublattice is filled
with singlets. For large
values of t we find the singlet
exciton condensate (EC),
given by the wavefunction

∏i

(√
ρÊ+

00,i +
√

1− ρ
)
|0 0〉i .

The coexistence of antiferro-
magnetism and superfluidity
for small ρ and t is an
artifact of the mean field
theory. Conform the Monte
Carlo results of figure 5.4,
for most parts of the phase
diagram phase separation
(PS) is found. The analytical
mean field theory incorrectly
predicts coexistence of
antiferromagnetism and
superfluidity (CO).

Here the subscripts indicate the phases: antiferromagnetic phase
(AF), coexistence phase (CO), exciton condensate (EC), exciton
Mott insulator (EI), checkerboard phase (CB).

For any nonzero α the first order transitions from the antifer-
romagnetic or coexistence phase towards the checkerboard phase
are ‘standard’ in the sense that at the critical value of µ there are
only two mean field states with equal energy. This is also true for
the transitions from the antiferromagnet to the exciton condensate
except at a single point. At the tricritical point

tc = 2J
√

2VI/J − 1 (5.66)

µc = J⊥ −
1
4

zt +
1
2

Jz(1− α)
√

2VI/J + t/J (5.67)

separating the coexistence phase, the antiferromagnetic phase and
the exciton condensate, we can set the parameters χ = 0, ∆ρ = 0
and ∆χ given by the value in the coexistence phase. Now the
energy becomes independent of the exciton density ρ. Similarly,
at the critical value of

µc = J⊥ +
1
2

VIz±
1
4

√
(2VIz)2 − (zt)2 (5.68)

describing the transition between the checkerboard phase to the
singlet exciton condensate, we can choose the mean field paramet-
ers χ = 0, ∆χ = 0 and

∆ρ =
1√
2

√√√√(1− 2ρ + 2ρ2)− 2VI |1− 2ρ|√
4V2

I − t2
. (5.69)

With these parameters, the energy becomes independent of ρ.
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Figure 5.8: The canonical
ground state phase diagram
of the exciton t − J model,
which is a combination of the
semi-classical Monte Carlo
result and the mean field
computations. In the back-
ground we have put the
mean field phase diagram of
figure 5.7, whilst the lines
show the phase diagram as
obtained from the Monte
Carlo simulations. The dot-
ted area represents phase sep-
aration between the condens-
ate, antiferromagnetic and
checkerboard order. Further-
more: EC means exciton con-
densate, CB means check-
erboard phase, AF means
antiferromagnetism and PS
stands for phase separation.
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This implies that the mean field theory predicts highly degen-
erate states at the critical values of µ, similar to the one we found
in the XXZ model. The phase separation that thus occurs can be
between an infinite set of possible ground states that have all a dif-
ferent exciton density. Coincidentally, the numerical simulations
indicate that around the two ‘degenerate’ critical points indeed all
the three phases are present. And whilst macroscopic phase sep-
aration has probably the lowest energy, the analysis of figure 5.6
suggests that more complicated patterns of phase separation are
likely to occur. The degeneracy of the critical points in mean field
theory might be responsible for the rich physics in this regions of
the phase diagram.

We can combine the unbiased numerical simulations of figure
5.4 with the analytical mean field results of figure 5.7 to derive
the complete phase diagram of the exciton t− J model in figure
5.8. There are three main phases: the antiferromagnet at zero
exciton density, the checkerboard at ρ = 1/2 and the superfluid at
high hopping energy t. For most parts of the phase diagram, phase
separation between these three phases occurs in any combination
possible. The competition between these three phases leads in
general to macroscopic phase separation.

Finally, within the limitations of the semi-classical Monte Carlo
approach we can make a rough estimate of the transition temper-
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Figure 5.9: Finite temperat-
ure graph of the phase co-
herence in the exciton con-
densate region of the phase
diagram. Here t = 2.5 eV
and ρ = 0.18 and the other
parameters are the same as
in a. A clear transition is
observed at around 0.06 eV,
which amounts to a trans-
ition temperature of about
700 Kelvin.

ature towards the superfluid state. Given a typical point in the
phase diagram where the exciton condensate exists, at t = 2.5 eV
and ρ = 0.18, we find a Kosterlitz-Thouless transition temperature
of approximately 700 Kelvin, see figure 5.4c. This number should
be taken not too seriously, as the exciton t− J model might not be
applicable at such high temperatures given possible exciton disso-
ciation. Additionally, at high temperatures the electron-phonon
coupling becomes increasingly important which is something we
neglect in our exciton t − J model. Nonetheless, our estimate
suggests that exciton superfluidity may extend to quite high finite
temperatures.

5.2.4 The Heisenberg equations of motion method

In physical experiments one usually probes the elementary ex-
citations of a phase. The dispersion of these excitations can be
computed using the ‘equations of motion’-method based on the
work of Zubarev, 1960. The aim of this method is to find the
spectrum of excitations, building on the foundations given by the
mean field approximation. Let us now introduce this method, and
subsequently use it to derive the excitations of the three phases of
the exciton t− J model.

Given a full set of local operators A`
i , we can construct the

Heisenberg equations of motion

i∂tA`
i = [A`

i , H] (5.70)

which is in general impossible to solve. We employ the notation
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that i indicates the lattice site, and ` is the index denoting the
type of operator. The right hand side of this equation contains
products of operators at different lattice sites. Such products can
be decoupled within the mean field approximation as 4848 Zubarev, 1960; and Oles

et al., 2000

A`
iA`′

j → 〈A`
i 〉A`′

j + A`
i 〈A`′

j 〉 (5.71)

where i and j are different lattice sites. Upon Fourier transforming
lattice position into momentum and time into energy, we thus
obtain a set of linear equations for the operators,

ωqA`(q, ω) = M``′ (q)A`′ (q, ω). (5.72)

The spectrum of excitations is simply found by solving this eigen-
value equation for the matrix M(q).

In order to find the matrix elements 〈n|A`(q)|0〉 that enter in
susceptibilities we need the following scheme. Assume that the
Hamiltonian is of the form

H = ∑
qn

ωqn α†
qn αqn (5.73)

where the sum over q runs over momenta, and n indicates the
different excited states. Now α†

qn is a creation operator, and
irrespective of whether we are dealing with fermions or bosons
we have the following equations of motion

i∂t α†
qn = −ωqn α†

qn . (5.74)

That is: every eigenvector of M``′ (q) corresponding to a negative
eigenvalue can be identified as a creation operator for one of the
elementary excitations. However, the eigenvalue equation itself is
not enough because it does not yield the proper normalization of
α† . Since we have the eigenvector solution

α†
qn = U n`A`(q) (5.75)

we can write out the (anti)commutation relation for α†
qn in terms

of the (anti)commutation relations for the A`(q). Upon requiring
that on the mean field level the operators α†

qn obey canonical
commutation relations, that is for bosons

〈
[

αqn , α†
qn′

]
〉 = δnn′ , (5.76)
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we obtain a proper normalization for the new creation operators.
We can invert the normalized matrix U n` to express A`(q) in
terms of the creation operators α†

qn . Finally, using 〈n ′ |α†
qn |0〉 =

δnn′ we can compute the wanted matrix element for A`(q).
As an example of this technique we can compute the matrix

element |〈n|S+(q)|0〉|2 for the antiferromagnetic Heisenberg
model on a square lattice. The mean field ground state is the Néel
state, which leads to the following equations of motion,

i∂t

(
S+

qA

S+
qB

)
=

1
2

Jz

(
1 γq

−γq −1

) (
S+

qA

S+
qB

)
. (5.77)

where the subscript A and B denote the two different sublattices,
and γq = 1

2 (cos qx + cos qy). We quite easily infer that the
eigenvalues are

ωq = ± 1
2

Jz
√

1 − γ2
q (5.78)

and thus we have one eigenvector corresponding to a creation
operator, and one to an annihilation operator. If we define(

α†

β

)
= U

(
S+

qA

S+
qB

)
(5.79)

then the commutation relations tell us that the eigenvector matrix
U must satisfy

1 = 〈[α, α† ]〉 = −2u2
11〈Sz

A〉 − 2u2
12〈Sz

B〉 = −u2
11 + u2

12 . (5.80)

The initial S+
q operator, which enters in the spin susceptibility, can

be expressed in terms of the eigenvector matrix as

S+
q =

1√
2
(1 1) U−1

(
α†

β

)
. (5.81)

Some straightforward algebra now yields

∣∣〈n|S+(q)|0〉
∣∣2 =

1
2

√
1 − γq

1 + γq
(5.82)

which is the same susceptibility one can obtain by using the
Holstein-Primakoff linear spin wave approximation. The approx-
imation scheme we introduced here can therefore be viewed as a
generalization of the linear spin wave approximation.
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Let us now apply this technique to the XXZ model of section
5.2.1. The Heisenberg equations of motion are

i∂t E+
i = −t ∑

δ

Ez
i E+

i+δ + µE+
i − VI ∑

δ

E+
i Ez

i+δ , (5.83)

i∂t E−i = t ∑
δ

Ez
i E−i+δ − µE−i + VI ∑

δ

E+
i Ez

i+δ , (5.84)

i∂t Ez
i = − 1

2
t ∑

δ

(
E+

i E−i+δ − E−i E+
i+δ

)
, (5.85)

where δ runs over all nearest neighbors. These equations cannot
be solved exactly, hence we use an approximation based on the
mean field results. Products of operators on different sites are
replaced by4949 Zubarev, 1960; and Oles

et al., 2000 AiBj → 〈Ai〉Bj + Ai〈Bj〉 (5.86)

where 〈. . .〉 denotes the mean field expectation value. By such a
decoupling the Heisenberg equations of motion become a coupled
set of linear equations which can be solved easily. In the homo-
geneous phase we thus obtain, after Fourier transforming,

ωkE+
k = −1

2
tz
(
cos 2θγkE+

k + sin 2θEz
k
)
+ µE+

k

−1
2

VIz
(
cos 2θE+

k + sin 2θγkEz
k
)

(5.87)

ωkE−k =
1
2

tz
(
cos 2θγkE−k + sin 2θEz

k
)
− µE−k

+
1
2

VIz
(
cos 2θE−k + sin 2θγkEz

k
)

(5.88)

ωkEz
k = −1

4
tz sin 2θ(1− γk)

(
E+

k − E−k
)

. (5.89)

We can find an analytical expression for the excitations in the
superfluid phase,

ωk =
1
2

zt
√

1− γk

√
1− γk(1− 2ρ)2 +

4VI
t

γk(1− ρ)ρ

=
1
2

zt
√

ρ(1− ρ)(1 + VI/t) |k|+ . . . (5.90)

where γk = 1
2 (cos kx + cos ky). For small momenta this excitation

has a linear dispersion, conform to the Goldstone theorem requir-
ing a massless excitation as a result of the spontaneously broken
U(1) symmetry. Exactly at µ = µc the dispersion reduces to

ωk = zt
√

1− γ2
k , hence the gap at k = (π, π) closes thus signaling

a transition towards the checkerboard phase.
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At the critical point and in the checkerboard phase, we need
to take into account the fact that expectation values of operators
differ on the two sublattices. The Heisenberg equations of motion
now reduce to six (instead of three) linear equations. This is
technically more difficult but does not pose a real mathematical
challenge.

5.2.5 Collective modes and susceptibilities

Each phase of the excitons in a strongly correlated bilayer has
distinct collective modes, by which we can experimentally probe
the system. In order to obtain the dispersions of the collective
modes we employ the technique of the Heisenberg equations of
motion, introduced in the previous section 5.2.4. In the case of
the exciton t− J model, however, the set of equations is so large
that analytical solutions can in general not be obtained. Whenever
necessary, we compute the dispersions numerically.

The dispersions itself are not directly experimentally relevant:
one measures dynamical susceptibilities. Amongst others, we
are interested in the absorptive part of the dynamical magnetic
susceptibility, defined by

χ′′S(q, ω) = ∑
n
〈ψ0|S̃−(−q)|n〉〈n|S̃+(q)|ψ0〉δ(En −ω) (5.91)

Here |ψ0〉 is the ground state of the system and |n〉 are the excited
states with energy En. This spin susceptibility can be measured
with, for example, inelastic neutron scattering.50 Naturally we can 50 Coleman, 2013

thus define an exciton dynamical susceptibility

χ′′E(q, ω) = ∑
n
〈ψ0|E−00(−q)|n〉〈n|E+

00(q)|ψ0〉δ(En −ω). (5.92)

We use the operator E00(q) because this amounts to the interlayer
dipole matrix element, which is detectable using RIXS,51 EELS52 51 Ament et al., 2011

52 Schnatterly, 1979or optical absorption (the latter only for q = 0).53

53 Basov and Timusk, 2005The three dominant phases we encountered in our mean field
analysis will have distinct magnetic and optical responses. Starting
with the antiferromagnetic phase shown in figures 5.10 to 5.12,
we observe that this limit of vanishing exciton density has been
studied in a far greater detail in section 4.2. This allows us to
compare the results of the equations-of-motion method with a full
resummation of spin-exciton interactions using the SCBA. In the
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condensate phase the interplay between excitonic and magnetic
degrees of freedom reaches it climax, which was discussed in
section 5.1. Here we discuss some remaining details and the
checkerboard phase.

Throughout the following discussion, the model parameters
are J = 125 meV, α = 0.04, VI = 2 eV and a varying t and ρ. In
order to visualize the susceptibilities we have convoluted χ ′′ with
a Lorentzian of width 0.04 eV. The color scale in the susceptibility
plots is on an arbitrary scale.

Figure 5.10: The spin wave
dispersions (a.) and the dy-
namical magnetic susceptib-
ility (b.) in the antiferromag-
netic phase. In this phase, the
spin wave dispersions are not
influenced by exciton dynam-
ics. As is known from pre-
vious studies, there are two
transversal spin waves and
two longitudinal spin waves
(Chubukov and Morr, 1995;
Rademaker et al., 2012b). The
transversal spin waves are
gapless around either Γ (solid
red line) or the M point (dot-
ted blue line). The longitud-
inal spin waves, which are as-
sociated with interlayer fluc-
tuations (solid green line),
are nearly flat and have a
gap of order Jz. The dy-
namic magnetic susceptibil-
ity (b.) only shows one trans-
versal spin wave. These res-
ults and all subsequent fig-
ures are obtained using J =
125 meV and α = 0.04, as
is expected for the undoped
bilayer cuprate YBCO (Tran-
quada et al., 1989).

Antiferromagnetic phase: a single exciton In the limit of
zero exciton density we recover the well-known bilayer Heisen-
berg physics. As discussed in section 4.2.1, the spins tend to
order antiferromagnetically. The excitations spectrum thus con-
tains a Goldstone spin wave with linear dispersion around Γ and
a similar mode centered around (π, π). In addition, the bilayer
nature is reflected in the presence of two longitudinal spin waves
with a gap of order Jz and a narrow bandwidth of order J⊥. The
excitation spectrum and the corresponding magnetic dynamical
susceptibility is shown in figure 5.10.

The dynamics of an exciton in an antiferromagnetic background
has been studied extensively by means of a linear spin-wave
self-consistent Born approximation technique (LSW-SCBA) in
section 4.2.2. The non-interacting equations of motion method
used in this section is certainly less accurate than the full LSW-
SCBA computation. However, the mere existence of LSW-SCBA
results allows us to compare it with our current non-interacting
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Figure 5.11: The exciton
modes in the antiferromag-
netic phase in the adiabatic
regime t � J. Here we have
chosen t = 0.1 eV, J = 125
meV and α = 0.04. Within
the equations of motion pic-
ture there are four exciton
modes (a.), which come in
pairs of two with a small in-
terlayer splitting. Due to the
antiferromagnetic order the
exciton bands are renormal-
ized with respect to a free
hard-core boson (b.). The sus-
ceptibility corresponding to
the free exciton motion (c.)
is verified by the fully inter-
acting LSW-SCBA results (d.).
This is to be expected: in
the adiabatic regime spins re-
act much faster than the ex-
citon motion and the exciton
still moves freely dressed by
a spin polaron, reducing its
bandwidth to order t2/J.

calculations.
The equations-of-motion method ignores the interaction cor-

rections such as dynamical frustration. It treats the excitons as
well-defined quasiparticles. As such we can already guess be-
forehand that the non-interacting results will only be reliable in
the adiabatic regime t � J. Indeed, in the equations-of-motion
method we find four exciton modes corresponding to either the
singlet E+

00 or m = 0 triplet exciton E+
10 operator, just as in the LSW-

SCBA. When α→ 0 we can write out an analytical expression for
the non-interacting dispersions,

ωk,± = µ± 1
2

√
(Jz)2 +

(
1
2

ztγk

)2
. (5.93)

where each branch is twofold degenerate. This degeneracy is
lifted when α 6= 0, leading to a splitting of order α which is largest
around Γ and M.
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Figure 5.12: The ex-
citon modes in the antiferro-
magnetic phase in the anti-
adiabatic regime t� J. Here
we have chosen t = 2 eV,
J = 125 meV and α = 0.04.
Just like in figure 5.11 we
find four exciton bands (a.),
renormalized with respect to
the free hard-core boson res-
ults (b.). However, upon in-
clusion of the interaction the
free susceptibility (c.) gets
extremely renormalized (d.).
The large exciton kinetic en-
ergy together with the re-
latively spin dynamics cre-
ate an effective potential for
the exciton: the exciton be-
comes localized and the con-
finement generates a ladder
spectrum. Note that thus in
the anti-adiabatic regime the
free results (a., c.) cannot be
trusted.

In the limit of t� J the dispersions (5.93) indeed result in an
effective exciton bandwidth of order t2/J, conform the LSW-SCBA
as can be seen in figure 5.11. The natural question then arises:
how is it possible that in the present non-interacting theory the
exciton bandwidth depends on the spin parameter J? For sure,
the effective exciton model introduced in section 5.2.1 has no such
renormalisation as is shown in figure 5.11. There the exciton
bandwidth fully depends on zt.

However, it is important to realize that the exciton operators
E+

s0,i do not commute with the antiferromagnetic order parameter
operator S̃z

i . As a result the mean field energy of exciting an
exciton is shifted either up or down (depending on the sublattice)
yielding a gap between the two exciton branches of O(Jz). Now
for small t, propagation of the exciton requires that one has to ’pay’
the energy shift Jz to move through both sublattices. As a result
the effective hopping is reduced by a factor t/J. Therefore the
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exciton bandwidth renormalisation, seen in the full LSW-SCBA,
is already present at the mean field level.

For large t/J, however, we will pay a price for the convenience
of the non-interacting equations of motion method. At mean field
level one still expects the dispersions to be (5.93), however, upon
inclusion of the interaction corrections this picture breaks down
completely. The bandwidth of the non-interacting exciton is of
order zt, whereas in the interacting theory an incoherent ladder
spectrum of the same width arises. Thus for large t/J the non-
interacting results cannot be trusted. However, this only applies
to the antiferromagnetic phase due to the presence of dynamical
frustration. In general one can say that the non-interacting results
are qualitatively correct in the absence of gapless modes that need
to be excited in order for an exciton to move. This condition is
naturally met for the other two phases, and hence we expect that
exciton-spin interactions only lead to qualitative changes in the
antiferromagnetic phase.

By simple selection rules one can already conclude that the
singlet exciton mode couples to light. As a consequence this is the
mode that is visible in the susceptibility, as seen in figures 5.11d
(for t < J) and 5.12d (for t > J).

Finally, note that at the transition from the antiferromagnetic
phase to the checkerboard phase the gap in the exciton spectrum
vanishes at (π, π).

Superfluid phase The mode spectrum of superfluid phase,
shown in figures 5.13 and 5.14, is characterized by a linearly dis-
persing Goldstone mode associated with the broken U(1) sym-
metry. This superfluid phase mode has vanishing energy at the Γ
point, where we find the inescapable linear dispersion relation

ωk =
1

4
√

2
zt
√

(1− ρ)ρ (1 + 2VI/t) |k|+ . . . (5.94)

The speed of the superfluid phase mode is the same as for the
XXZ model in equation (5.90) up to a rescaling of the t and VI

parameters. Indeed, this speed is proportional to the superfluid
density

√
ρSF =

√
ρ(1− ρ). This mode can be seen in the ex-

citon susceptibility, figures 5.13e and f. The Goldstone mode has
a gap at (π, π) which decreases monotonically with increasing
exciton density. Precisely at the first order transition towards the
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checkerboard phase this gap closes.
Next to the Goldstone mode there are two triplet excitations,

shown in figure 5.14, each one three-fold degenerate. The de-
generacy obviously arises from the standard triplet degeneracy
m = −1, 0, +1. The two branches, however, distinguish between
exciton-dominated modes and spin-dominated modes, let us dis-
cuss them separately.

The spin-dominated modes have a gap of order ∆S = Jz√
α(1 + α− ρ), which is similar to the triplet gap in the bilayer

Heisenberg model for large α. However, the bandwidth of these
excitations scales with t rather than with J, as would be customary
in a system without exciton condensation (see figures 5.14a and
b). We discussed these modes in great detail in section 5.1, so let
us continue onto the other branch of triplets.

The other branch of triplet excitations is dominated by triplet
excitons, and is therefore barely visible in the spin susceptibility
and not visible in the exciton susceptibility (which only shows
singlet excitons). That it is indeed dominated by triplet excitons
can be inferred from computing the matrix elements of the oper-
ator E1m, as is done in figures 5.14g and h. Furthermore, the gap
∆E = (VIz + tz)ρ− µ is a function of exciton model parameters
only. The bandwidth of this mode is of order O(zt), relatively in-
dependent of the exciton density. As a result, for large superfluid
densities the exciton-dominated modes cross the spin-dominated
triplet modes. One can directly see this in the excitation spectrum
for ρ = 0.27 as shown in figure 5.14d.

We can compare the triplet spectrum to the mode spectrum of
the singlet phase of the bilayer Heisenberg model. When J⊥ � J
the ground state consists of only rung singlets. The excitation
towards a triplet state, shown in figures 5.14a and b, has a gap
Jz
√

α(α− 1) and a bandwidth of order Jz, which is considerably
smaller than the O(zt) bandwidth in the condensate. However,
because the topology of the triplet mode is the same we expect that
the effect of the spin-exciton interactions is the same in the bilayer
Heisenberg model as for the superfluid. Since earlier LSW-SCBA
showed no changes in the spectrum due to interactions, we infer
that the non-interacting results for the superfluid are reliable.

To conclude our review of the excitations of the superfluid
phase we want to discuss the influence of the interlayer tunne-
ling. In the context of the XXZ model we noticed that interlayer
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Figure 5.13: Dispersions and
susceptibility of the Gold-
stone mode associated with
the exciton condensate. We
have set t = VI = 2 eV, J =
125 meV and α = 0.04, and
the exciton density is either
ρ = 0.15 (left column) or
ρ = 0.27 (right column). a,
b. In the simple hard-core
boson model the condensate
phase clearly show the su-
perfluid phase mode, linear
at small momenta. c,d. In
the full t− J model the Gold-
stone mode has a similar dis-
persion as in the XXZ model.
The speed of the mode scales
with the superfluid density.
At higher densities the mode
softens around (π, π), and
when this gap closes a first or-
der transition to the checker-
board phase sets in. e,f. The
absorptive part of the exciton
susceptibility, which can be
measured with for example
EELS or RIXS.
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Figure 5.14: Dispersions and
magnetic susceptibilities of
the exciton condensate. We
have set t = VI = 2 eV,
J = 125 meV and α = 0.04,
and the exciton density is
either ρ = 0.15 (left column)
or ρ = 0.27 (right column).
a,b. As the exciton condens-
ate is spin singlet, we assume
that the excitation spectrum
is governed by propagating
triplet modes. These modes
have a gap of order J⊥ and a
bandwidth of order Jz. c,d.
In contrast to the simple
Heisenberg results, the ac-
tual triplet modes have en-
hanced kinetics, see section
5.1. The modes are split in a
spin-dominated branch with
small gap and large band-
width proportional to the su-
perfluid density (e,f.); and
an exciton-dominated branch
with a large gap and a small
bandwidth (g,h.).
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tunneling has no qualitative influence on the phase diagram itself.
However, the presence of a weak interlayer tunneling may act
as phase pinning54 which opens a gap in the superfluid phase 54 See section 2.2.2 and Rade-

maker et al., 2011.mode spectrum of order O(
√

t⊥(VI + t)). Persistent currents can
still exist, but one needs to overcome this gap in order to get the
exciton supercurrent flowing.

Figure 5.15: The excita-
tion spectrum of the checker-
board phase. a. In the simple
hard-core boson model there
are two exciton modes associ-
ated with the ’doublon’ and
the ’holon’ excitation. b. The
spin modes are decoupled
from the exciton modes in the
full t− J model. There is only
one possible spin excitation:
changing the singlet ground-
state into a non-propagating
triplet. c. The exciton modes,
on the other hand, can still
propagate. The excitation
of removing an exciton can
propagate through the check-
erboard. d. The propagat-
ing mode that changes an ex-
citon into a singlet is detect-
able by optical means and
thus shows up in the exciton
susceptibility.

Checkerboard phase The third homogeneous phase of the ex-
citon t− J model is the checkerboard phase. In this phase the unit
cell is effectively doubled with one exciton per unit cell. This state
is analogous to a Bose Mott insulator. The trivial excitations are
then the doublon and the holon: create two bosons per unit cell
which costs an energy VIz− µ or to remove the boson. The latter
will generate a propagating exciton mode, with dispersion

ωk,pm =
1
2

±VIz +

√
(VIz)2 ±

(
1
2

ztγk

)2
∓ µ± J⊥. (5.95)
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There are two such propagating modes: one associated with the
singlet exciton and one with the triplet exciton. Precisely at
the transition towards the superfluid phase, one of these exciton
waves becomes gapless. Note that the arguments that lead to the
bandwidth renormalisation in the antiferromagnetic phase also
apply here, leading to an exciton bandwidth of order t2/VI . The
dispersions and the corresponding exciton susceptibility can be
seen in figure 5.15.

In the spin sector one can excite a localized spin triplet on the
empty sublattice. The triplet gap is set by the interlayer energy J⊥,
and the dispersion is flat because this triplet cannot propagate, as
can be seen in figure 5.15b.



6
Influence of long-range interactions

The dipolar interaction between bilayer excitons is long-ranged. Previously in this
thesis, we neglected this fact and instead only considered the nearest neighbor repulsion.
However, many complicated ordered phases other than just the checkerboard phase may
appear if one correctly incorporates the long-range nature of the interactions. As a first step,
we investigate which ordered structures will arise for classical particles on a lattice.

a.

 0 0.2 0.4 0.6 0.8 1

Lattice with: Energy=  0.62782420, Filling= 0.3333 and alpha= 3.0000

b.

 0 0.2 0.4 0.6 0.8 1

Lattice with: Energy=  0.98610748, Filling= 0.4000 and alpha= 3.0000

c.

 0 0.2 0.4 0.6 0.8 1

Lattice with: Energy=  0.92635241, Filling= 0.3889 and alpha= 3.0000

Figure 6.1: Some examples
of stripe phases, which arise
from long-ranged interac-
tions on a square lattice. a.
The ρ = 1/3 state. b. The
ρ = 2/5 state. c. The ρ = 3/7
state, but now doped.

6.1 Complex ordering phenomena

The formation of ordered structures is one of the main topics in This chapter is based on
Rademaker et al., 2013d.the field of condensed matter physics. Starting from the relative

straightforward crystalline order a wide variety of increasingly
complex ordering phenomena has been observed and proposed
such as stripes1, charge density waves2, incommensurate phases3

1 Zaanen and Gunnarsson,
1989; Tranquada et al., 1995;
Tranquada et al., 1994;
Cheong and Hwang, 2000;
Salamon and Jaime, 2001;
Dagotto, 2005; Boothroyd
et al., 2011; and Andrade and
Vojta, 2012

2 Grüner, 1988

3 Bak, 1982

and so forth.
These complex ordering patterns usually arise as a result of

competing interactions. For example, the kinetic energy of holes
competes with the tendency towards antiferromagnetic order in
cuprates thus forming stripes. In ANNNI models, the next-nearest
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Figure 6.2: The approxim-
ate ground state phase dia-
gram of the long-range lattice
gas model on a square lattice,
based on variational meth-
ods as discussed in section
6.2.3. On the vertical axis the
type p of the long-range in-
teraction V(r) = 1

rp is given,
together with a logarithmic
decaying interaction. The
horizontal axis represents
the particle density. From
low to high densities we
identify the following phases:
The grey area without name
depicts the dilute general-
ized Wigner crystal, followed
by the 1/9 Wigner crys-
tal, the 1/6 glassy phase
described by Lee et al.,
2002, the 1/4 Wigner crys-
tal, the ‘checkerboard-in-a-
checkerboard’ 1/4’ phase,
stripe phases (with a plateau
for the 1/3 stripe phase and
‘C’ denotes the channelled
stripes as described by Lee
et al., 2001) and finally the
checkerboard phase. Phases
below 1/4 filling are dis-
cussed in section 6.2.1, above
1/4 filling are discussed in
section 6.2.2.
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neighbor Ising coupling has the opposite sign as the nearest neigh-
bor coupling. The question immediately arises whether higher-
order commensurate or incommensurate phases can appear in
systems with only one type of interaction.

Of course this is the case. In the continuum the sole presence of
long-range interactions will cause particles to form a Wigner crys-
tal. When a fixed number of particles are placed on an underlying
lattice the desired Wigner crystalline order may be incommensur-
ate with the lattice, thus leading to frustration.

For the exciton system discussed in this thesis we previously
neglected the long-range 1/r3 nature of the dipolar interactions.
The only charge ordering pattern that arises from the nearest-
neighbor repulsion only is the checkerboard phase. Because most
parts of the phase diagram exhibit phase separation, see figure 5.8,
the influence of long-range interactions may topple the delicate
energy balance favoring specific exciton-ordered phases. Just
like we investigated the competition between the superfluid and
checkerboard phase using the simpler XXZ model,4 here we4 See section 5.2.1.

explore the possible different ordering phases with the classical
lattice gas model.

We have thus investigated the influence of long-range inter-
actions on charge ordering phenomena on a square lattice. Ex-
panding the results of Lee et al., 2001, 2002 we explored the full
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Figure 6.3: Mean field fi-
nite temperature phase dia-
gram of the lattice gas model
(6.1) on a square lattice with
V ∼ 1/r interactions, see sec-
tion 6.2.4. Temperature is
in units of the nearest neigh-
bor interaction. The phases
are the same as in the zero-
temperature phase diagram
of Figure 6.2. At low densit-
ies we find various Wigner
crystalline phases (see sec-
tion 6.2.1) with densities of
the form 1/pq with p, q in-
tegers. Close to half-filling
we find checkerboard order
which has a smooth cros-
sover to the ‘checkerboard-in-
a-checkerboard’ 1/4′ phase.
Around n = 1/3 and
3/7 there are stripe ordered
phases (see section 6.2.2). The
transitions towards the 1/4′

and checkerboard phase are
second order, the other trans-
itions are first order.

range of particle densities 0 ≤ ρ ≤ 1 and types of long-range
interactions V = 1/rp. Our main result is summarized in Fig-
ures 6.2 (zero temperature) and 6.3 (finite temperature), where we
depict phase diagrams of unusual charge ordered patterns. At
low densities the competition between the continuum triangular
Wigner lattice and the underlying square lattice indeed leads to
a plethora of ‘generalised Wigner’ crystals. At higher densities,
this leas to variations of the checkerboard pattern which is well-
known at half-filling. Stripe phases appear as they are rooted in
the topological defects of the checkerboard order.

However, we do not claim that the phase diagrams we derived
are the exact phase diagrams. As is often the case for frustrated
systems, a large set of metastable states persists down to zero
temperature. Unbiased numerical computation of the energy for
a large ensemble of configurations gives us a strong indication
that indeed the phase diagram of Figure 6.2 is correct, however,
these indeed be metastable states incorrectly recognized as ground
states.

The lay-out of this chapter is as follows. In section 6.1.1 we
introduce the lattice gas model, which is the model describing
interacting classical particles on a lattice. In the two subsequent
sections we discuss qualitatively the ordered structures at low
densities (section 6.2.1) and at densities close to half-filling (section
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6.2.2). We have performed a Monte Carlo simulation in section
6.2.3 to derive the zero temperature phase diagram of Figure 6.2.
In section 6.2.4 we extend these results to finite temperatures using
mean field theory, see Figure 6.3.

6.1.1 Long-range lattice gas models

The lattice gas model can be defined on any kind of lattice but we
focus only on the square lattice. On each of the N lattice sites there
can be a particle or not, denoted by ni = 1 or 0 respectively. These
particles interact via some general potential Vij. The corresponding
Hamiltonian is then

HL = ∑
i 6=j

Vij(ni − ρ)(nj − ρ)− µ ∑
i

ni. (6.1)

We subtract the average particle density ρ to prevent divergent
energies. In the grand-canonical ensemble, the chemical potential
µ tunes the average particle density ρN = ∑i ni. The model (6.1)
is in fact equivalent to the Ising model5. Under the replacement5 Lee and Yang, 1952

σz
i = 2ni − 1 and considering only a nonzero nearest neighbor

interaction 1
4 V〈ij〉 = J one finds

HI = J ∑
〈ij〉

σz
i σz

j − B ∑
i

σz
i . (6.2)

The chemical potential maps onto an external magnetic field
B = 1

2 µ − V〈ij〉, while the particle density maps onto the mean
magnetization.

For the ferromagnetic Ising model the ground state is com-
pletely magnetically ordered, which amounts to either a full or
empty lattice in the lattice gas parlance. In addition, a model with
antiferromagnetic coupling will be half-filled with particles if the
external magnetic field is small, |B| < 2J. Therefore, using the
standard grand canonical ensemble will in general not enable us
to investigate all possible particle densities: a canonical ensemble
- fixed particle number - is required.

We argue that most physical realizations of lattice gas models
are in fact at a fixed particle number, and not at fixed chemical
potential. One particular example is the oxygen ordering in YBCO
planes, where it is beyond doubt that the number of oxygen ions
in the lattice is fixed.6 The patterns in which the oxygen ions6 Fontaine et al., 1990
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align themselves are quasi-one-dimensional, in a manner similar
to the expected electronic ordering in TTF-TCNQ salts.7 Whilst 7 Hubbard, 1978

studying the latter, Hubbard has developed a general solution for
the ground state of a lattice gas model with long-range interactions
at any particle density in one dimension. Hubbard’s solution only
requires the interaction energy as a function of distance to be
convex.

The bilayer exciton system, as discussed in section 5.2, is also
a prime example of a material with fixed particle number. Other
two-dimensional realizations of lattice gas models are for example
the ordering of ad-atoms on a surface8, XY systems9, higher or- 8 Pokrovsky and Uimin, 1978;

Bak, 1982; and Feng et al.,
2011

9 Villain, 1977

der commensurate magnetic phases10 or stripe order in high-

10 Fisher and Selke, 1980; Bak,
1982; and Selke, 1988

temperature superconductors.11 Especially systems with aniso-

11 Löw et al., 1994; Emery and
Kivelson, 1993; and Zhang
and Henley, 2003

tropic short-ranged interactions or competing short- and long-
range interactions12 have acquired considerable attention over the

12 Giuliani et al., 2011; and Gi-
uliani et al., 2013

years, therefore we wish to focus here to the case of long-range
isotropic interactions.13

13 Lee and Teitel, 1992;
Möbius and Rössler, 2009;
Tröster, 2010; and Pramudya
et al., 2012

Most studies of lattice gas models in two dimensions how-
ever restrict their attention to half-filled, empty and full lattices,
due to the aforementioned grand-canonical reasons. There are
two notable exceptions: the stripe order discussed in Lee et al.,
2001 between 1/3 and 1/2 filling and the glassy dynamics at 1/6
filling.14 These results were obtained for a ‘quasi-logarithmic’ 14 Lee et al., 2002

repulsive interaction which is a solution of Poisson’s equation on
a lattice, ∇2Vij = −2πδij. Given the nontrivial ordering patterns
discovered there, as a follow-up we present here a systematic
study of the ground state orderings at all densities between 0 and
1/2, for general repulsive interactions

Vij =
1
|rij|p

> 0. (6.3)

6.2 Generalized Wigner crystals, domain walls and stripes

In the following two subsections we will first discuss qualitatively
such long-range lattice gas models at fixed densities, while in the
remaining subsections the picture will be further quantified using
numerical simulations and mean field theory.



122 fermions and bosons: excitons in strongly correlated materials

6.2.1 Dilute densities - Generalized Wigner crystals

In the previous section we introduced the lattice gas model, that
we will now study at fixed densities on the square lattice with
long-range repulsive interaction of the form (6.3). In the limit of
very low particle density, the underlying square lattice becomes
irrelevant compared to the average inter-particle distance,

`p � a (6.4)Figure 6.4: At density ρ =
1/9 a triangular crystal of
particles is formed, which
is not equilateral as would
be the case for a perfect
Wigner crystal. It is thus a
prime example of a general-
ized Wigner crystal. The unit
cell and unit vectors of the
Wigner crystal are shown.

where a is the lattice constant. In the continuum description of
particles repelled by a long-range force, Wigner, 1934 showed
that the interaction energy is minimized when the particles form
a crystalline structure, which is triangular in two dimensions15.

15 Wigner, 1934 considered
quantum particles in second
order perturbation theory
with 1/r interactions, and
in that sense Wigner crys-
tallization is not rigorously
proven. However, for clas-
sical particles the exact en-
ergy is equal to the second or-
der perturbation result since
that amounts to the expecta-
tion value of the interaction
energy. For logarithmic in-
teractions we refer to studies
of vortex lattices that indic-
ate that triangular lattices are
in that case the lowest energy
configurations (Kleiner et al.,
1964). For p > 1 interactions
we compared the energy of
the triangular lattice with the
square lattice, which again fa-
vors the triangular lattice.

In general, one can state that the energy of a Wigner crystalline
state of the particles is16

16 Pokrovsky and Uimin, 1978

E = JNρ ∑
crystal

1
|d|p (6.5)

where N is the number of lattice sites of the underlying lattice, ρ is
the particle density and the summation runs over the particles in
the Wigner crystal. The distance between particles in the Wigner
crystal `p scales with the inverse square root of the density. There-
fore the energy in the low density limit scales as

E ∝ JNρp/2+1. (6.6)

The presence of the underlying lattice is now a source of frus-
tration. Pokrovsky and Uimin, 1978, consider an underlying
triangular lattice, leading to frustration only if the density is not
of the form 1/p2. For example, when ρ = 1/9 a perfect triangular
Wigner crystal can be formed. On top of a square lattice, however,
it is not possible to form a triangular Wigner crystal because

√
3

is irrational. One can nevertheless construct ‘almost perfect’ trian-
gular crystals. As an example, consider the density ρ = 1/9, see
figure 6.4. The lowest energy state is there also a triangular crystal
of particles, but not equilateral as for a perfect Wigner crystal.
In principle such ‘almost perfect’ Wigner crystals could exist at
densities

ρpq =
1
pq

(6.7)
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with p, q integers while p ≤ q, such that the following equilateral
triangle relation is approximated by

p ∼ 1
2

√
3q. (6.8)

For example, the densities ρ = 1/9, 1/12, 1/16 etcetera would al-
low such ‘almost perfect’ triangular crystal. Following the work of
Hubbard17 in one dimensional systems, we will call these particle 17 Hubbard, 1978

orderings ‘generalized Wigner crystals’. From this qualitative
reasoning we argue that such Wigner crystals might exist. Note,
however, that one has to resort to a numerical computation to find
whether such crystals have indeed the lowest energy at a given
density.
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Figure 6.5: A generalized
Wigner crystal can be classi-
fied according to peaks in the
Fourier transformed particle
density. For densities close
to each specific crystal dens-
ity (6.7) the associated crys-
tal structure will be main-
tained. We put forward the
hypothesis that this leads to
a devil’s staircase of gen-
eralized Wigner crystals at
low densities. The figure
shows the crystal structure
versus density obtained by
mean field theory (see section
6.2.4) at β → ∞, displaying
a staircase. The thermody-
namic potential (6.16) relat-
ive to the disordered state is
shown (red dashed line), the
thin lines indicate the energy
of specific ordered states.

So far we only considered densities of the form ρpq = 1/pq.
When the density of a lattice gas is in between such densities,
we suspect that it is favorable to maintain a generalized Wigner
crystal structure. The deviation from the ρpq density can be ac-
commodated by a superlattices of crystal defects or interstitial
vacancies. If such a superlattice of defects forms, still the original
ρpq order is visible in for example the Fourier transformed particle
density, where each crystal type has its own specific Fourier peaks.
We expect therefore a ’plateau’ at densities in the vicinity of each
specific ρpq, where the associated crystal structure remains in-
tact modulo the interstitial superlattice. As we will describe in
more detail later when discussing the numerical results, indeed
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a ’plateau’ is observed for the 1/4, 1/6 and 1/9 states. Using
mean field theory, we went as far as the 1/25 crystal phase, as
is shown in figure 6.5. We have therefore strong indications the
plateau-structure exists all the way to ρ→ 0, yielding an infinite
staircase of plateaux. This structure is reminiscent of the devil’s
staircase, as exists in the case of the one-dimensional lattice gas in
the grand-canonical ensemble18, where specific charge orderings18 Bak and Bruinsma, 1982

are stable for a finite window of chemical potential.
Notice that starting at 1/4 filling the generalized Wigner crystal

picture certainly fails. If one adds one single particle to the 1/4
crystal, it will be necessarily next to another particle. Since the
nearest-neighbor repulsion is the strongest, and nearest-neighbor
occupancy can be avoided for any density below half-filling, the
1/4 crystal will be quickly destroyed upon adding particles. For
densities above 1/4 it is necessary to start reasoning from the
ordering occurring at the half-filled lattice.

6.2.2 Domain walls and stripes

Exactly at half-filling the ground state is checkerboard-like, or
antiferromagnetic in the Ising language. This means that one
sublattice is exactly filled and the other sublattice is completely
empty. Densities slightly less than half-filling can be obtained by
removing particles from the checkerboard pattern, a process we
call hole doping. The density of holes ρh is defined as follows

ρh = 1− 2ρ (6.9)

where ρ is the total particle density. The same scaling arguments
for the dilute particle limit ρ� 1 can be applied to the dilute hole
limit ρh � 1, so close to half-filling the energy scales as

E ∝ E1/2 (1− 2ρh) + JNchρ
p/2+1
h (6.10)

where E1/2 is the energy of the half-filled checkerboard configura-
tion and ch is some proportionality constant.
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Lattice with: Energy=  1.38612264, Filling= 0.4667 and alpha= 3.0000
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Figure 6.6: Some examples of
domain walls between check-
erboard phases. Top. A
particle on the ’wrong’ sub-
lattice surrounded by ’holes’,
which forms the smallest
possible domain wall loop.
Middle. A horizontal do-
main wall. Bottom. Instabil-
ity of a horizontal domain
wall, by moving one particle
to the other domain.

This scaling argument assumes that all particles will remain on
the filled sublattice of the checkerboard phase. However, the check-
erboard phase is a broken sublattice symmetry phase and therefore
domain walls and topological defects can exist between regions
where the checkerboard phase is realized on different sublattices.
Though the ground state at densities slightly less than half-filled
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might be unrelated to the checkerboard phase, we discuss in this
section possible structures that are related to the checkerboard.
Thus the smallest example, which is neglected in the scaling ar-
guments of equation (6.10), is shown in figure 6.6(top). There a
single particle on the ‘wrong’ sublattice is surrounded by holes,
which is obviously a stable configuration.

 0 0.2 0.4 0.6 0.8 1

Test

Figure 6.7: Stable, diagonal
domain walls can exist for all
long-range interactions.

On a large scale domain walls may exist such as the one de-
picted in figure 6.6b. However, such a straight domain wall is
not stable. One can imagine a single particle moving to the other
side, thus causing the domain wall to meander. The energy differ-
ence between the configurations in figure 6.6(middle) and figure
6.6(bottom) is given by the energy of that single moved particle,

∆E = Estraight − Emeander

∼ ∑′

n even

(
1
|n|p −

1
(n2 + 1)p/2

)
> 0 (6.11)

where the prime on the summation means that we should ex-
clude n = 0. Since the meandering domain wall has a lower
energy than the straight one, the latter is unstable. This argu-
ment can be pursued further to the point where one finds that
only a diagonal domain wall, as shown in figure 6.7, is stable.
The resulting domain wall has a surface energy that vanishes in
the thermodynamic limit; but is extremely stiff with respect to
bending.

Now a single domain wall on a infinite lattice will not affect
the average particle density. However, to obtain particle densities
away from half-filling one can introduce a macroscopic number
of domain walls. Such a periodic array of domain walls consti-
tutes a stripe phase, similar to the ones discussed in cuprates,19 19 Zaanen and Gunnarsson,

1989; Tranquada et al., 1995;
and Dagotto, 2005

nickelates,20 manganites,21 or cobaltates22. Examples can be seen

20 Tranquada et al., 1994

21 Cheong and Hwang, 2000;
Salamon and Jaime, 2001;
and Dagotto, 2005

22 Boothroyd et al., 2011; and
Andrade and Vojta, 2012

in figure 6.1 at the beginning of this chapter.
If the ground state of a long-range lattice gas model is perfectly

stripy, then the system is effectively reduced to a one-dimensional
system. The arguments of Hubbard23 then apply and one can

23 Hubbard, 1978

thus find the specific stripe ordering, as is shown in figure 6.1a
and b.

But again, for some densities it may pay off not to form perfect
stripes but rather to dope a stripe structure as in figure 6.1c. It is
then a matter of numerical computation to find out whether the
ground state is a Hubbard-type stripe pattern or a ‘doped’ stripe
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pattern. Lee et al., 2001 call these doped stripe patterns ‘partially
filled diagonal channels’. Finally, we must emphasize that the
discussion in this section does in no way whatsoever constitute a
proof of existence of stripe ordered or hole doped checkerboard
phases. The only way to find the state with the lowest energy is a
tedious numerical computation.

6.2.3 Simulations and characterisation of the phases

Let us now describe the numerical algorithm that was used to
find the lowest energy configurations. First notice that for each
form of order there is symmetry breaking and hence a degeneracy
in the ground state. As the simplest example, observe that the
checkerboard configuration at half-filling is two-fold degenerate.
However, for the purpose of finding the specific type of charge
order, we do not need to worry about ground state degeneracy.

In our algorithm we took various different types of initial
configurations, such as the generalized Wigner crystals of section
6.2.1, stripe structures of section 6.2.2, Wigner crystal structures
of defects in the checkerboard, variations of the checkerboard
phase, suggestions from literature and a large ensemble of random
configurations. We then swapped filled and empty sites randomly.
A swap is accepted if it lowers the total energy of the system. The
long-range nature of the interaction was taken into account by
summing the interaction over all mirror charges as in an Ewald
summation.24 For the quasi-logarithmic interaction we followed24 Essmann et al., 1995

the method of Lee et al., 2001.
The major issue is that one cannot know for sure whether this

algorithm leads to the global ground state or that one gets stuck
in a local energy minimum. Indeed, for a frustrated system we
expect to find a large number of metastable states. The method
of simulated annealing, by which we mean slowly reducing the
temperature to zero, was therefore also used to avoid getting stuck
in a local energy minimum. Upon comparing the energies of
configurations obtained from the various initial configurations,
using both zero temperature swapping and simulated annealing,
we found a lowest energy state at each density.

Our work was performed on a square lattice with 90× 90 and
154 × 154 sites. These lattice sizes were chosen such that the
linear dimension L was divisible by the prime numbers 2, 3, 5 (for
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L = 90) and 7 and 11 (for L = 154). We looked at all densities
that were a multiple of the linear dimension, hence ρ = n/90 and
ρ = n/154 for all integers n = 1 . . . L/2.

After obtaining the ground state configuration, a Fourier trans-
form of the particle density was taken,

n(k) =
1
N ∑

i
e−ikri ni. (6.12)

The peaks in the Fourier spectrum were used to identify the
specific orderings at each density, as can be seen in figure 6.8.
The ground state energy as a function of density is shown in
figure 6.9, rescaled such that the energy at half-filling equals
E = 1. Indeed the general scaling behavior close to zero and
half-filling, as described in the previous two sections, is retrieved.
This is most explicit in the limit of p → ∞, the energy becomes
constant between ρ = 0 and ρ = 1/4, and linear between ρ = 1/4
and ρ = 1/2. Notice an extra kink in the energy around ρ = 1/3,
which signals the onset of the stripe order.

n=1/9 n=0.2556 n=1/3 Figure 6.8: Fourier trans-
formed density at fillings
1/9, 0.25556 and 1/3; on a
90× 90 lattice with 1/r inter-
actions. The different order-
ing wave vectors are clearly
visible. These peaks are used
to identify the phases that
lead to the phase diagram of
figure 6.2.

With the caution that the resulting configurations might be in
fact metastable states incredibly close to the actual ground state,
we constructed the zero temperature phase diagram in figure
6.2. At low densities the finite lattice size used in our numerical
simulations form a limitation with regard to the precision of the
results. The first unequivocal observed charge ordering state is
the 1/9 generalized Wigner crystal phase, which is stable for a
considerable range of densities around ρ = 1/9. Interestingly, the
presence of this phase is remarkably independent of the interaction
range p.

This is followed by the 1/6 phase which is extensively discussed
in the work of Lee et al., 2002. There the 1/6 phase is characterized
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Figure 6.9: Ground state
energy of the long-range lat-
tice gas model as a function
of density, for various types
of interaction. All energies
are rescaled such that E(ρ =
1/2) = 1. We have a log-
arithmic interaction and fur-
thermore the p implies an in-
teraction of the form 1/rp.
Notice the scaling behavior
in the limit p → ∞ and no-
tice the kink around ρ = 1/3
signalling stripe order.
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as a glassy phase, with infinite ground state degeneracy due to
the infinite ways one can tile unit cells of 2× 3 lattice sites. For
further details we refer to Lee et al., 2002.

Directly below ρ = 1/4 densities the 1/4 generalized Wigner
crystal phase is stable. As described before, introduction of
particles to densities higher than ρ = 1/4 leads to a superlat-
tice of interstitials which can be called a ‘checkerboard-in-a-
checkerboard phase’, which seems to be absent in the case of
logarithmic interactions.

Here the logarithmic interactions seem to play a special role, in
that for a much larger density regime than for algebraic interac-
tions the stripe phases seem to be stable. We find, contradictory
to the results of Lee et al., 2001, only stripe order of the Hubbard
kind and no channelled stripes in the region between 1/4 and 4/9,
see figure 6.10. Only the 1/3-stripe order seemed to be present
for a larger region of densities. We have found ‘partially filled
diagonal channels’, or equivalently doped stripe orders, only for
interaction types p = 1 and p = 2 in a very narrow density range.
Our approach differs from Lee et al., 2001 in two aspects: we have
looked at the ground state, while they looked at low temperature
results obtained by simulated annealing only, and we considered
non-local particle swaps in the configuration while they restricted
the system to local swaps only. We have compared the energy of
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Logarithmic p=1

Perfect stripe order Channelled stripe order

Figure 6.10: Detail of the
charge configurations of the
lowest energy states at a dens-
ity of n = 29/77 ≈ 0.377 and
L = 154. For logarithmic in-
teractions the perfect stripe
order is 9× 10−5% lower in
energy than the channelled
stripe order, in contrast to
Lee et al., 2001 who finds
channelled stripes here. For
p = 1 interactions the chan-
nelled stripes are 0.0014%
lower in energy than the per-
fect stripes.

the ground states we found with the explicit ground states of Lee
et al., 2001, taking into account the specific commensurability with
the finite lattice size of their doped stripe orders. Figure 6.10 gives
an example of this energy comparison at n = 29

77 . For all densities
that we checked, it was found that our ground state energies are
lower - be it only by a very small amount.

Notice that for algebraic interactions, the stripe phase shifts to
higher densities when p increases. For large p, the stripe phase
seems to dominate in the whole region between 1/3 and 1/2
fillings.

We also computed the ground state phase diagram for interac-
tions with a finite screening length of the form

V(r) =
e−r/λ

rp (6.13)

turning into a Bessel function K0(r/λ) for the ‘screened logar-
ithmic’ interaction. We find that the corresponding phase diagram
for screened interactions is largely similar to figure 6.2, with only
small quantitative differences that do grow with decreasing screen-
ing length λ.

6.2.4 Finite temperature

The phases described in the previous section survive at finite
temperatures, because we are dealing with a system with discrete
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symmetry in two dimensions. We have computed a finite tem-
perature mean field phase diagram using standard mean field
theory,25 for the 1/r interaction (p = 1).25 Yeomans, 1992

It is of course highly questionable whether mean field theory
correctly describes the competition between various phases. For
example the rich phase diagram of the ANNNI model is construc-
ted using mean field theory,26 but corrections beyond mean field26 Bak, 1982

are shown to tip the delicate balance between different phases and
reduce the critical temperature.27 At the same time Monte Carlo27 Desimone and Stratt, 1985

simulations of the ANNNI miss incommensurate phases that are
clearly present in analytical extensions of mean field theory.2828 Bak, 1982

Results from the ANNNI model thus suggests that mean field
theory acts as a qualitatively reliable first approximation towards
the understanding of complex ordering patterns.

Let us now briefly summarise the quintessence of our mean
field theory. For the model Hamiltonian (6.1) we postulate an
ansatz for the density,

〈ni〉 = n + ∑
α

mα cos(Qα · ri) (6.14)

where there can be as many ordering wave vectors Qα as one
needs to correctly describe the specific charge order. For example,
the 1/9 order has ordering wave vectors Q1 =

(
0, 2π

3
)
, Q2 =( 2π

3 , 2π
9
)

and all linear combinations inside the first Brillouin zone.
When mα 6= 0 the translational invariance is spontaneously broken.
Using the ansatz (6.14) one constructs a mean field Hamiltonian

H0 = ∑
i

[
−µ + ∑

α

mαVQα
cos(Qα · ri)

]
ni. (6.15)

We then minimise the thermodynamic potential

Φ = F0 + 〈H − H0〉0 (6.16)

with respect to the mean field parameters mα, where the free en-
ergy is F0 = − 1

β log Tr e−βH0 and 〈. . .〉0 implies a thermal average
with respect to the mean field Hamiltonian H0. Every charge
order we found at zero temperature acts as a possible ansatz, and
we numerically minimize at each temperature and density the
thermodynamic potential Φ.

Since mean field theory gives only a qualitative phase diagram,
and because the zero-temperature phase diagram of figure 6.2
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Figure 6.11: Thermody-
namic potential relative to
the disordered state ∆Φ plot-
ted around various phase
transitions. a. At n = 0.27
there is a second order phase
transition into the 1/4′ state,
clearly visible by the Mexican
hat potential. The second or-
der phase transition is com-
mon for transitions in the
Ising universality class. b.
At n = 1/9 there is a first
order transition toward the
Wigner crystal, as is custom-
ary for solidification trans-
itions. c. At n = 1/3 there
are two transitions: a second
order transition into the 1/4’
state followed by a first or-
der transition towards the
stripe phase. The 1/4’ and
the stripe phases are locally
stable however for a longer
range of temperatures. This
implies the possibility of su-
percooling the 1/4’ phase.

suggests little qualitative difference between various interaction
ranges, we restrict ourselves to the Coulomb interaction V = 1/r.
The resulting phase diagram is shown in figure 6.3. In addition
to the 1/9 Wigner crystal phase we also considered 1/12, 1/16,
1/20 and 1/25 crystals. As for the stripe phases, we only studied
the 1/3 and the 3/7 ‘channeled’ state. The phase diagram we
thus find indeed matches the zero-temperature phase diagram
obtained by numerical simulations of the previous section. We
emphasize that further studies are needed to understand the
possible incommensurate stripe phases in between 1/3 and 4/7
filling.

The transition to the checkerboard phase and the similar 1/4′

phase is of the second order type within the Ising universality
class.29 The thermodynamic potential for some temperatures 29 Möbius and Rössler, 2009

around Tc, with its typical second order transition behaviour, is
shown in figure 6.11a. The question arises whether this 1/4′

‘phase’ is an artefact of the mean field theory. As is known at
half-filling, a liquid-like state with local checkerboard order exists
in the presence of long-range interactions.30 Such correlated liquid 30 Pramudya et al., 2011

phase can also be present away from half-filling, but will be beyond
the scope of standard mean field theory.

The phase transitions to more complicated orders are always of
the first order kind, an example of which is shown in figure 6.11b
at 1/9 filling. This is a natural result because transitions from
solid to liquid phases are usually discontinuous.31 The existence 31 Brazovskii, 1975

of such first order transition implies that one can supercool the
high-temperature (or 1/4’) state.32 At ρ = 1/3 for example, the 32 Das, 2011

1/4′ phase remains a local minimum of the free energy even
though its energy is higher than that of the stripe phase, see figure
6.11c. This suggests that it might be hard to actually trap the
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system in the lowest energy state.
In combination with our earlier observation that a correlated

liquid-like state at intermediate temperatures might exist, we then
also expect glassy physics upon supercooling.33 With ‘glassy’ we33 Schmalian and Wolynes,

2000 mean that there are macroscopically many local minima of the
free energy, leading to slow relaxation rates. There is a difference
however with the glassy physics found at ρ = 1/6 densities.3434 Lee et al., 2002

There the glassy nature is a ground state property, where glassy
physics around a first order transition vanishes if the temperature
is low enough.

The mean field theory shows the possibility of supercooling,
the consequences thereof such as possible glass-like behaviour
needs to be addressed differently. Finite temperature numerical
simulations however have the great disadvantage that they get
easily stuck in such a complicated free energy landscape. It re-
mains thus an open challenge to quantitatively describe the finite
temperature phase diagram of the long-range Ising model away
from half-filling.

6.2.5 Conclusions and outlook

In conclusion, we computed the full ground state and finite tem-
perature phase diagram of a lattice gas model at fixed density on
a square lattice with general long-range interactions. We were
motivated by the potentiality of nontrivial charge ordering phe-
nomena given the long-ranged dipolar exciton interaction. Most
notable ordering patterns are the generalized Wigner crystals at
low densities, supplanted by the stripe order at densities between
1/4 and 1/2. All phases are shown in figure 6.2 at zero temperat-
ure and in figure 6.3 for finite temperatures.

The results of this chapter extend mainly the work of Lee et al.,
2001, in that we have derived complex ordering patterns in the
absence of anisotropy or competing interactions. In this case, we
suggest that the frustration between the underlying square lattice
and the preferable Wigner crystalline state causes the complex or-
dering. In the vicinity of half-filling this mechanism is supplanted
by periodic domain walls in the checkerboard phase. It is these
domain walls that cause the formation of stripes.

The finite temperature phase diagram has been obtained using
mean field theory, yielding only a qualitative description. Nu-
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merical and/or analytical extensions of the classical mean field
theory will increase the accuracy of the finite temperature phase
diagram. Thereby one can address the possibility of supercooling
and glassy physics.

A possible next step is to include the kinetic energy of the
particles present. This also allows for an extension to quantum
particles35 or O(n) spin variables36 instead of the classical particles 35 Sengupta et al., 2005

36 Nussinov, 2001we have considered thusfar. The inclusion of the quantum nature
of the particles will also bring us closer towards an understanding
of the exciton physics in the correlated bilayer.
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Conclusions and outlook

Our study of excitons in strongly correlated bilayers has yielded
several experimentally testable predictions.

• Using phenomenological Ginzburg-Landau theory we predict
that an exciton condensate must exhibit flux quantization.1 1 Section 2.2.

• The fermionic Hubbard model can describe strongly correl-
ated bilayers. An unreliable mean field theory predicts room-
temperature superfluidity.2 The numerical Determinant Quan- 2 Section 3.2.

tum Monte Carlo suggests that exciton condensation might oc-
cur around 15-20% doping, but the applicability of this method
is severely limited by the sign problem.3 3 Section 3.3.

• We derive a low energy bosonic model4 called the exciton t− J 4 Section 4.1.

model. For most parts of the phase diagram there is phase
separation between the superfluid, the exciton solid and the
antiferromagnet.5 5 Section 5.2.

• In the limit of low exciton density, there is frustration between
moving excitons and the antiferromagnetic background leading
to Ising confinement. This can be seen in optical experiments
of for example undoped YBCO bilayers.6 6 Section 4.2.

• Exciton condensation within the t − J model exists at large
exciton kinetic energies. There the magnetic triplet excitations
‘borrow’ kinetic energy from the exciton which is visible in a
large triplon bandwidth, proportional to the superfluid dens-
ity.7 7 Section 5.1.

• The long-range dipolar interaction might cause the formation of
complex ordered phases, such as generalized Wigner crystals
or stripe phases.8 8 Chapter 6.



136 fermions and bosons: excitons in strongly correlated materials

Despite these several predictions, the theory related to excitons
in strongly correlated bilayers is far ahead of the experimental
progress. This poses a limitation on further theoretical progress,
since questions must always be driven by experiments. Neverthe-
less, there are a few interesting open theoretical questions which
are worth mentioning.

Most of our predictions were obtained in the strong coupling
limit, where the electron and hole are tightly bound into a boson.
It is then natural to ask what happens at intermediate exciton
coupling. Most likely the excitons will be spatially broadened, re-
introducing the complicated fermion sign structure. The inclusion
of finite temperatures puts forward the issue of dissociation of
the excitons into separate holes and electrons. This can be viewed
as the extreme limit of spatial broadening. The broadening and
formation of excitons is certainly the most interesting open prob-
lem regarding the cuprate bilayers, but the fermion sign problem
stands in the way of simple answers.

Another possible theoretical direction is to study exciton-media-
ted superconductivity. Superconductivity in the BCS sense9 re-9 See section 3.2.

quires a bosonic glue to form Cooper pairs, and excitons could
play this role.10 Though this proposal is quite old, there are as of10 Allender et al., 1973; and

Inkson and Anderson, 1973 yet no known exciton-mediated superconductors. Condensation
of the excitons themselves, especially in the case of imbalanced
electron-hole densities, could increase the probability of electron-
electron pairing. Whether exciton-mediated superconductivity is
truly possible is still an open debate, especially within the cuprate
family.

Besides the two major theoretical proposals one can extend the
analysis of this thesis to similar systems. For example, we can
consider different interlayer couplings. In 214 systems such as
La2−xSrxCuO4 the copper atoms in nearest neighbor layers do
not lie directly above each other. Consequently, instead of an
interlayer antiferromagnetic coupling one finds a Dzyaloshinskii-
Moriya interaction. In addition to different interlayer couplings we
could also study different lattice structures, such as the hexagonal
lattice.11 The choice of different lattices and interactions, however,11 Meng et al., 2010

should be guided by actually existing materials that are expected
to have these properties.

Let us therefore discuss the experimental progress on cuprate
bilayers. The main practical difficulty lies in the fabrication of both
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Gold contacts

Bottom layer
NCCO

Top layer
LSCO

Ramp junction

Graphic design of ramp junction

Electron microscope image of sample Figure 7.1: In Twente ramp
contacts combining p and n-
type cuprates were construc-
ted. On the left the design
is shown. On the right an
electron microscope image of
the actual sample is shown.
Both layers are visible, and
the junction in between them.

p and n-type cuprates in a single sample. Marcel Hoek, Francesco
Coneri and Hans Hilgenkamp at the University of Twente are cur-
rently making heterostructures of the hole-doped La2−xSrxCuO4

(LSCO) and electron-doped Nd2−xCex CuO4 (NCCO), see figure
3.2 for their crystal structure. This is done by pulsed laser depos-
ition (PLD). This technique involves focussing a high power laser
on a target in a vacuum chamber, which results in a plasma plume
of the target material. The plume deposits on a substrate as a
thin film. By tuning the amount of laser pulses, one can construct
heterostructures one unit cell layer at a time. The problem is,
however, that p- and n-type cuprates need different growth condi-
tions in the PLD process. To obtain superconducting LSCO one
needs to anneal the substrate in oxygen, whereas NCCO usually
requires annealing in vacuum. The Twente group has managed to
successfully create NCCO layers under the growth conditions of
LSCO.

Subsequently they have fabricated p/n heterostructures with
both LSCO and NCCO in a single sample. The strategy thereby is
to first deposit NCCO layers and on top of that an insulator such
as SrTiO3. A ramp edge is etched and on top of that a LSCO layer
is deposited. This results in a ramp contact as shown in figure 7.1.

The p/n contacts are of extreme importance within semicon-
ductor technology. Such p/n junctions consisting of Mott insu-
lators have been little studied.12 One might for example wonder 12 Manousakis, 2010

whether a Josephson current between n and p-type supercon-
ductors is possible. Back-of-the-envelope theory predicts that
p/n-Josephson junctions might behave qualitatively different from
normal Josephson junctions. Transport measurements on these
p/n ramp contacts are on the way. At the same time RIXS meas-
urements similar to the one proposed in section 5.1 are started on
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p/n heterostructures.

charge balance requires that electrons are transferred from
the IP to OP. Thus, electrons are doped into each of the two
OPs with approximately Ne!OP" # 0:06–0:08 because the
hole doping level at the IP is anticipated to be Nh!OP" #
0:13–0:15. According to neutron scattering measurements
on electron-doped Nd2$xCexCuO4 [22], the electron-
doped CuO2 plane with Ne # 0:08 is in an AFM metallic
state with M# 0:3!B. In fact, since M!OP" # 0:29!B is
the same for the trilayered 0223F(2.0) and the four-layered
0234F(2.0), Ne!OP" # 0:06–0:08 is probably also the same
for both. Therefore, Nh!IP" # 0:06–0:08 is estimated for
the four-layered 0234F(2.0). As a consequence, it is con-
cluded that both compounds with apical F$1 ions are self-
doped high-Tc superconductors having electron doping
and hole doping in one and the same compound. All these
results make it clear that the self-doping, i.e., the transfer of
electrons from the IP to OP, takes place in both com-
pounds, as summarized in Fig. 5. We can therefore under-
stand why Tc % 55 K in 0234F(2.0) increases to
Tc % 76 K in 0223F(2.0) because Nh!IP" # 0:13–0:15 for
the latter is twice as large as Nh!IP" # 0:06–0:08 in
0234F(2.0). Further, the reason why long-range AFM order
was absent in 0223F(2.0) may be because the supercon-
ducting IP with Nh!IP" # 0:13–0:15 suppresses the mag-
netic coupling between the OPs with M!OP" # 0:29!B.
Here we note that our results are consistent with the band
calculations by Hamada who suggested that OP is electron-
doped when F$1 is substituted for the apical O$2 [23]. In
combination with the result from ARPES, which revealed
that the Fermi surfaces consist of electron- and hole-doped
sheets with the SC gap on the former sheets twice that on
the latter one [14], the present work shows that 0234F(2.0)
is a self-doped AFM high-Tc superconductor with TN %
100 K and Tc % 55 K.

In conclusion, 19F- and 63;65Cu-NMR studies have re-
vealed that the four-layered 0234F(2.0) with apical fluorine
F$1 is an AFM high-temperature superconductor with
TN % 100 K and Tc % 55 K. Along with the results on
the trilayered 0223F(2.0) with Tc % 76 K, it has been
demonstrated that electrons are transferred from the IP to
OP in the multilayered cuprates with apical fluorine F$1

ions, confirming on a microscopic level a new concept of
‘‘self-doping’’ that was recently pointed out by ARPES
[14]. We remark that the OPs and the IPs in 0234F(2.0)
have M!OP" % 0:29!B with electron doping Ne!OP" #
0:06–0:08 and M!IP" % 0:16!B with hole doping
Nh!IP" # 0:06–0:08, respectively. Most notable from the
present work is the fact that the uniform mixing of AFM
and HTSC takes place in the under-doped regimes for both
electron and hole doping as illustrated in Fig. 5(b). A
remaining underlying issue is why the SC gap on the
Fermi sheet with the electron-doped OP is twice as large
as that with the hole-doped IP.

The authors would like to thank Y. Chen, M. Mori and T.
Tohyama for their valuable discussions and comments.
This work was supported by Grant-in-Aid for Creative
Scientific Research (No. 15GS0213) from the Ministry of
Education, Culture, Sports, Science and Technology
(MEXT) and the 21st Century COE Program (No. G18)
by Japan Society of the Promotion of Science (JSPS).

*shimizu@nmr.mp.es.osaka-u.ac.jp
[1] P. W. Anderson, The Theory of Superconductivity in the

High-Tc Cuprate Superconductors (Princeton University,
Princeton, 1997).

[2] M. Inaba et al., Physica (Amsterdam) 257C, 299 (1996).
[3] S. C. Zhang, Science 275, 1089 (1997).
[4] A. Himeda and M. Ogata, Phys. Rev. B 60, R9935 (1999).
[5] Y. Sidis et al., Phys. Rev. Lett. 86, 4100 (2001).
[6] B. Lake et al., Nature (London) 415, 299 (2002).
[7] T. K. Lee et al., Phys. Rev. Lett. 90, 067001 (2003).
[8] E. Demler et al., Rev. Mod. Phys. 76, 909 (2004).
[9] Y. Tokunaga et al., Phys. Rev. B 61, 9707 (2000).

[10] H. Kotegawa et al., Phys. Rev. B 64, 064515 (2001).
[11] H. Kotegawa et al., Phys. Rev. B 69, 014501 (2004).
[12] H. Mukuda et al., Phys. Rev. Lett. 96, 087001 (2006).
[13] A. Iyo et al., Physica (Amsterdam) 392–396C, 140 (2003).
[14] Y. Chen et al., Phys. Rev. Lett. 97, 236401 (2006).
[15] W. Xie et al., Phys. Rev. Lett. 98, 047001 (2007).
[16] A. Iyo et al., Physica (Amsterdam) 366C, 43 (2001).
[17] F. Borsa et al., Phys. Rev. B 52, 7334 (1995).
[18] K. Ishida et al., Phys. Rev. Lett. 92, 257001 (2004).
[19] H. Mukuda et al., J. Phys. Soc. Jpn. 75, 123702 (2006).
[20] M. Takigawa et al., Phys. Rev. B 43, 247 (1991).
[21] R. J. Cava et al., Physica (Amsterdam) 165C, 419 (1990).
[22] P. K. Mang et al., Phys. Rev. Lett. 93, 027002 (2004).
[23] N. Hamada and H. Ihara, Physica (Amsterdam) 357–

360C, 108 (2001); N. Hamada (unpublished).

IP

IP

OP

OP

 F

O

(a)

IP

OP

OP

(b)

µΒ

µΒ

µΒ

µΒ

µΒ

FIG. 5 (color online). Illustrations of magnetic properties with
electron-doped OPs and hole-doped IPs for (a) 0223F(2.0) and
(b) 0234F(2.0). Thanks to the results from ARPES for
0234F(2.0), which have revealed that the Fermi surfaces consist
of electron- and hole-doped sheets with their respective SC gaps
[14], it is concluded that the uniform mixing of AFM and SC
realizes both in the hole-doped IPs and the electron-doped OPs.
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Figure 7.2: In the four-
layer cuprate F0234 selfdop-
ing yields electron- and hole-
type layers close to each other.
From Shimizu et al., 2007.

Still, the experimental progress in LSCO/NCCO heterostruc-
tures is far away from the p/n bilayers studied in this thesis.
Probably the closest connection with experiment this thesis has,
lies in cuprates that themselves are bi- or multilayered. In section
4.2 we showed that we expect the dynamical frustration to occur
also in the undoped bilayered YBCO, for which experiments are
underway.

Another Mott compound, Ba2Ca3Cu4O8F2 or F0234, shows the
unique property of selfdoping.13 In F0234 the CuO2 layers come

13 Chen et al., 2006

in groups of four. The outer two layers are electron doped and
the inner two layers are hole doped (see figure 7.2). One might
wonder whether the physics of the exciton t− J model is already at
work. Following the phase diagram of figure 5.8, one might expect
that F0234 should exhibit microscopic phase separation between
antiferromagnetism and exciton superfluidity. Whereas the latter
is not observed (nor excluded), NMR studies14 clearly show the14 Shimizu et al., 2007

coexistence of superconductivity and antiferromagnetism. A study
of the magnetic excitations, following the work of chapter 4, would
further elucidate the interlayer properties in F0234.

Finally, we mention the novel area of interface conductance
in oxide insulators, which entails intriguing prospects to realize
closely coupled p- and n-type conductors. An example has been
provided by Pentcheva et al., 2010 for the case of 2 unit cells of
LaAlO3 and 1 unit cell of SrTiO3 grown epitaxially on a TiO2-
terminated SrTiO3 substrate. This research-area also extends to in-
terfaces with Mott insulator compounds such as LaVO3/SrTiO3.1515 Hotta et al., 2007

Despite the considerable distance between theory and exper-
iment, the exciton t− J model gives room for many interesting
theoretical advances. Microscopic phase separation, frustration,
strongly correlated physics: these are effects that are usually
associated with fermions. Now that we find such complicated
phenomena in a purely bosonic setting one can investigate the
relevance of fermion signs in quantum matter.

7.1 Propositions on quantum matter

In this thesis we studied properties of a strongly correlated bilayer,
a material that is commonly categorized as ’quantum matter’.16

16 See the introductory
chapter 1.
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Following the wide variety of quantum theories (phenomenologic-
ally, fermionic and bosonic) that were presented in this thesis we
are now in the position to state some open questions regarding
the research field of quantum matter.

At first glance the ‘quantum’ distinguishes itself from classical
phenomena only through the concept of superposition. However,
not all superpositions necessarily exclude a classical description.
Any macroscopic object such as a coffee mug or an airplane is in a
superposition of many of its momentum eigenstates - nonetheless
they are clearly classical objects.

One must therefore be more precise in separating the classical
from the quantum, by which we now imply superpositions that
cannot be untwined into classical objects. Those states are called
entangled, and the simplest example of an entangled state is two
electrons in a singlet state,

|Ψ〉 =
1√
2

(| ↑1 ⊗ ↓2〉 − | ↓1 ⊗ ↑2〉) . (7.1)

This state has no classical analogue, as is shown by the famous
Einstein-Podolsky-Rosen experiment.17 17 Einstein et al., 1935; and As-

pect et al., 1982Observe that the singlet state (7.1) describes two indistinguish-
able particles: we cannot say which of the two particles is in the
spin up state, and which is in the spin down state. In fact, there is
a close connection between indistinguishability and entanglement.
The requirement of indistinguishability implies that the wavefunc-
tion of a collection of quantum particles is highly entangled. In the
case of fermions the wavefunctions can be written as a Slater de-
terminant, thus correctly incorporating the fermion minus signs.
For example, three indistinguishable fermions occupying states
A, B and C are described by the wavefunction

|Ψ〉 =
1√
6

(|A1B2C3〉 − |A1C2B3〉+ |B1C2 A3〉

−|B1 A2C3〉+ |C1 A2B3〉 − |C1B2 A3〉) (7.2)

=
1√
3!

∣∣∣∣∣∣∣
|A1〉 |B1〉 |C1〉
|A2〉 |B2〉 |C2〉
|A3〉 |B3〉 |C3〉

∣∣∣∣∣∣∣ . (7.3)

It would be a grave misnomer, however, to classify this state
as a quantum material. By introducing anticommuting creation
operators, a procedure known as second quantization, this state
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is simply written as

|Ψ〉 = c†
Ac†

Bc†
C|0〉. (7.4)

What we have just described is the free (classical) Fermi gas, which
is not a quantum matter at all. Since basically all macroscopic
collections of quantum particles are entangled in the Einstein-
Podolsky-Rosen sense, we need yet again a different way to un-
derstand the difference between classical and quantum matter.

Therefore we will call the many-particle extension of state (7.4)
an antisymmetrized product state,18 since the wavefunction can18 For many-boson systems

this will become a symmet-
rized product state.

be fully untwined into separate single-particle wavefunctions. En-
tanglement is now limited to the antisymmetrization required by
the indistinguishability. The distinction thus introduced, between
states that can be written as (anti)symmetrized product state and
those who cannot, truly captures the difference between classical
and quantum states.

being fermions they are prevented from condensing into
the lowest energy state. Instead, they fill up successively
the sequence of lowest-lying energy states, until a maxi-
mum is reached and all CFs have been accommodated.
The process is equivalent to the filling of states by elec-
trons at B!0. Hence, from the point of view of CFs, the
!!1/2 state appears equivalent to the case for electrons
at B!0. In spite of the huge external magnetic field at
half filling of the Landau level, CFs are moving in a
similar fashion to electrons moving in zero field. This
has been directly observed in experiment. Flux quantum
attachment has transformed these earlier electrons and
they are propagating along straight trajectories in a high
magnetic field, where normal electrons would orbit on
very tight circles. The mass of a CF, usually considered
to be a property of the particle, is unrelated to the mass
of the underlying electron. Instead, the mass depends on
the magnetic field and only on the magnetic field. In
fact, it is a mass of purely many-particle origin, arising
solely from interactions, rather than being a property of
any individual particle. It is another one of these baffling
implications of e-e interactions in high magnetic fields.
The absence of condensation and the lack of an energy
gap prevents the !!1/2 state from showing a quantized
Hall resistance. Instead the Hall line is featureless, just
as it is for electrons around B!0 (see Fig. 18).

The difference between !!1/3 and !!1/2 is striking.
One is a Bose-condensed many-particle state showing a
quantized Hall effect and giving rise to fractionally
charged particles. The other is a Fermi sea, in spite of
the existence of a huge external field, and its particles
have a mass that arises from interactions. One flux quan-
tum per electron makes all the difference.

There are many fascinating open questions associated
with the !!1/2 state, such as: how does the mass vary
with energy for CFs? and what is the microscopic struc-
ture of the particles? Also, how does the electron spin
(which we were neglecting throughout this lecture) af-
fect CF formation? A beautiful picture of composite fer-
mions being tiny dipoles is emerging. While one of the
vortices is placed directly on the electron (Pauli prin-
ciple), the position of the second vortex is a bit displaced
from exact center, rendering the object an electric dipole
in the 2D plane. There is great promise for future dis-
covery and future theoretical insight.

All those other FQHE states

Bose condensation of CBs consisting of electrons and
an odd number of flux quanta rationalizes the appear-
ance of the FQHE at the primary fractions around
Landau-level filling factor !!i"1/q with quantized Hall
resistances RH!h/(v e2) and deep minima in the con-
comitant magnetoresistance R. However, a multitude of
other FQHE states have been discovered over the years.
Figure 18 shows one of the best of today’s experimental
traces on a specimen with a multimillion cm2/V sec mo-
bility. What is the origin of these other states? The com-
posite fermion model offers an extraordinarily lucid pic-
ture. We shall discuss it for the sequence of prominent
fractions 2/5, 3/7, 4/9, 5/11, . . . and 2/3, 3/5, 4/7, 5/9, . . .
(i.e., !!p/(2p"1), p!2,3,4 . . . ) around !!1/2.

At half filling the electron system has been trans-
formed into CFs consisting of electrons which carry two
magnetic flux quanta. All of the external magnetic field
has been incorporated into the particles and they reside
in an apparently field-free 2D plane. Since they are fer-
mions, the system of CFs at !!1/2 resembles a system of
electrons of the same density at B!0. What happens as
the magnetic field deviates from B!0? For electrons
their motion becomes quantized into electron-Landau
orbits. They fill up their electron-Landau levels, encoun-
ter the energy gaps, and exhibit the well-known
IQHE. CFs around !!1/2 follow the same route. As
the magnetic field deviates from exactly !!1/2, the mo-
tion of CFs becomes quantized into CF-Landau orbits.
They fill up their CF-Landau levels, encounter CF-
energy gaps, and exhibit an IQHE. However, this is not
an IQHE of electrons, but an IQHE of CFs. This IQHE
of CFs arises exactly at !!p/(2p"1), which are the
positions of the FQHE features. In fact, the oscillating
features in the magnetoresistance R of the FQHE
around !!1/2 closely resemble the oscillating features
in R around B!0 and, once they have been shifted from
B!0 to !!1/2, they coincide with their position. This is
very remarkable in several ways.

CFs ‘‘survive’’ the additional (effective) magnetic field
(away from !!1/2), and the orbits of these composite
particles mimic the orbits of electrons in the equivalent
magnetic field in the vicinity of B!0. The CFs remain
‘‘good’’ particles. In this way, a complex electron many-
particle problem at some rational fractional filling factor
has been reduced to a single-particle problem at integer

FIG. 18. The FQHE as it appears today in ultrahigh-mobility
modulation-doped GaAs/AlGaAs 2DESs. Many fractions are
visible. The most prominent sequence, !!p/(2p"1), con-
verges toward !!1/2 and is discussed in the text.

886 Horst L. Stormer: The fractional quantum Hall effect
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Figure 7.3: A two-
dimensional electron gas in
a perpendicular magnetic
field exhibits plateaus in its
Hall resistance. This effect,
known as the quantum
Hall effect, occurs either at
integer or fractional filling
fractions. Image from the
Nobel Lecture of Stormer,
1999.

A beautiful example of the latter is the Laughlin wavefunction19

19 Laughlin, 1983

that describes the ν = 1
3 fractional quantum Hall effect (FQHE),

ψ(z1 . . . zN) = ∏
j<k

(zj − zk)3e−
1
4 ∑` |z` |2 (7.5)

where zj = xj + iyj is the complex coordinate of the jth electron.
The single-particle states of an electron in a magnetic field are,
in the lowest Landau level, of the form ψ(z) ∼ zme−

1
4 |z|

2
. The

construction of an antisymmetrized product state out of these
single-particle states yields

ψ(z1 . . . zN) = ∏
j<k

(zj − zk)e−
1
4 ∑` |z` |2 , (7.6)

the wavefunction of the ν = 1 integer quantum Hall state. The
Laughlin state, however, can only be expressed as a superposition
of antisymmetrized product states. It is therefore considered to
be a true quantum liquid.

The concept of superposing different antisymmetrized states
can be taken further, starting with the singlet or valence bond20

20 In first quantization
language this state is given
by |ψ〉 = 4−1/2(|i ↑〉1 |j ↓〉2 −
|j ↓〉1 |i ↑〉2 − |i ↓〉1 |j ↑〉2 +
|j ↑〉1 |i ↓〉2).

|ψ〉 =
1√
2

(
c†

i↑c
†
j↓ − c†

i↓c
†
j↑

)
|0〉. (7.7)

The quantum paramagnetic phase of the bilayer Heisenberg model
consists of such singlets on each interlayer rung,21 and is therefore

21 See the phase diagram, fig-
ure 4.2, and equations (4.2)
and (4.37).
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called a valence bond solid. A macroscopically entangled exten-
sion is the resonating valence bond (RVB) state, which consists
of a superposition of all possible pairings of two particles into
a singlet state. When high Tc superconductivity was discovered,
Anderson proposed that the cuprates can in fact be described by a
long-range RVB state.22 22 Anderson, 1973; and An-

derson, 1987But is it truly a long-range quantum entangled state? The long-
range RVB state on a square lattice has a finite overlap with the
Néel state describing antiferromagnetism,23 23 Liang et al., 1988

|Ψ〉AF = | ↑1 ↓2 ↑3 · · · 〉 = ∏
i∈A

c†
i↑ ∏

j∈B
c†

j↓|0〉 (7.8)

where the lattice is broken into two sublattices A and B. The Néel
state, however, is a clearcut example of a product state. So is the
ground state of the Heisenberg model (4.10) a quantum state or a
classical state?

The antiferromagnetic long-range RVB state of Liang et al., 1988

is the currently best known approximation to the ground state of
the Heisenberg model. It satisfies the rule designed by Marshall,
1955, who proved that the ground state of the Heisenberg model
can be written as a superposition of spin configuration states C,

|Ψ〉0 = w1| ↑1 ↓2 ↑3 · · · 〉+ w2| ↓1 ↑2 ↑3 · · · 〉+ . . . (7.9)

≡ ∑
C

wC |C〉 (7.10)

where the sign of each weight wC is determined by the number of
up spins on the A sublattice,

wC = (−1)N↑A |wC |. (7.11)

With the sign structure thus imprinted into the set of basis kets,
the Heisenberg model on a square lattice at half-filling can be
described purely in terms of positive-definite weights. Similarly,
in the high-temperature expansion or Suzuki-Trotter decomposi-
tion24 of e−βH all statistical weights and/or matrix elements are 24 See section 3.3.

positive definite.
On a frustrated lattice such as the triangular lattice, however,

a short-range RVB state may be the lowest in energy.25 This might 25 Anderson, 1973

indeed constitute a realization of a quantum material. Another
obvious candidate is the ground state of the Hubbard model at
finite doping.26 26 See section 3.1.



142 fermions and bosons: excitons in strongly correlated materials

Summarizing, we defined quantum materials as a superposi-
tion of different antisymmetrized product states. However, once
the sign structure of this superposition is known one can relate the
apparent quantum state to a classical product state, as is shown
for the long-range RVB and Néel state. The main question there-
fore remains whether there exist macroscopic quantum (long-range
entangled) states which cannot be reduced to classical (antisymmetrized
product) states. In terms of the fermion sign problem language
we should ask whether there are superposition states with an
irreducible sign structure.

In the case of the exciton t− J model presented in this thesis,
we implicitly employed this reduction. Even though the model
has an as of yet unknown sign structure,27 variational mean field27 See section 4.1.4.

theory28 yields a product state that has finite overlap with the28 See section 5.2.

true ground state. Similarly the recent experimental detection
of ‘current loop order’ in cuprates29 suggests that in the end29 Varma, 1997; Shekhter

et al., 2013; and Zaanen, 2013 a quantum sign-full strongly correlated material might still be
represented by a classical product state.

Once the correct product state is found, the question arises
what the quantum corrections should be. A systematic way to
answer this is by means of spin wave theory: equation (4.63) in
section 4.2.1 shows how the ground state of the Heisenberg model
can be approximated by a superposition |ψ0〉 of the Néel state |G〉
and its quantum corrections. Many authors call these corrections
quantum fluctuations, but I perceive this as a misleading picture.
There is nothing fluctuating about a superposition. For example, saying
that the singlet state (7.1) is fluctuating between | ↑1↓2〉 and | ↓1↑2〉
fundamentally misunderstands the quantum nature of that state.3030 Note that the spin liquid

community uses the words
‘fluctuation’ and ‘superposi-
tion’ interchangeably, see the
review by Balents, 2010.

How a macroscopic superposition should be understood is
therefore an open question. Experimental realization of superpos-
itions of classically distinct configurations is being pursued by
several research groups. A superposition of two opposite circular
supercurrents in a SQUID is a prime example thereof.31 Following31 Friedman et al., 2000; and

van der Wal et al., 2000 the phase diagram of section 5.2 another suggestion is to consider
first order quantum phase transitions. At such a transition, there
are two macroscopically fundamentally different states with the
same energy which can therefore be put in a superposition. The
possibility of a superposition is competing with the more classical
first order effects of phase separation and the idea that the sys-
tem can actually be fluctuating between the two phases.32 First

32 As for example in super-
cooled water, where numer-
ics suggest ‘phase flipping’
between the high and low
density liquid. Kesselring
et al., 2012.
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order quantum phase transitions are therefore ideal candidate systems to
elucidate the notions of quantum superpositions and fluctuations.

Yet another way to combine two different phases of matter
is as a statistical mixture of states. This is done within the
thermal density matrix formalism. In general, a quantum sys-
tem at temperature T is believed to be described by the density
matrix ρ = e−H/kBT . However, in the case of spontaneous sym-
metry breaking ρ is at best ill-defined in the thermodynamic limit
and at worst incorrect: a magnet is never in a mixed state of its
different possible magnetization directions. The fact that an in-
finitesimal symmetry breaking field radically changes the density
matrix implies that ρ in zero field is singular. On top of that, the
thermal density matrix misses interesting superposition effects
such as in the aforementioned SQUID experiments.33 Therefore, a 33 Which can be viewed as a

magnet in a superposition of
two opposite magnetizations.

good understanding of quantum matter at finite temperature, specific-
ally regarding the role of macroscopic superpositions and entanglement,
requires a novel approach beyond the thermal density matrix.

In this thesis we have considered the existence of fermions as
fundamental. A completely different approach to quantum matter
discards this notion of fermions as being fundamental entities. Just
like phonons34 are emergent quantized particles, fermions could 34 Phonons are quantized lat-

tice vibrations.be emergent. Examples are the emergence of fermions in string-
net condensates35 or in complex weighted networks.36 Close to 35 Wen, 2007

36 Garlaschelli and Loffredo,
2009

the Mott state, the fermions might not even act as fermions due to
their localization constraint, leading to novel statistical effects.37

37 Zaanen and Overbosch,
2011In one-dimensional systems effects such as spin-charge separation

of fermions are well understood. Nevertheless, in higher dimensions
the breakdown or emergence of fermionic behavior deserves more research
attention.

Let us conclude that the mysteries of quantum mechanics be-
come increasingly relevant in the understanding of actually ex-
isting materials, such as cuprates. This presents the opportunity
to study basic quantum phenomena without the need of build-
ing billion-dollar accelerators or satellites. Instead, the greatest
mysteries of modern condensed matter can be held in one’s hand.
And hopefully, just like the specific heat anomaly experiments
paved the way for the development of quantum statistical theory,
the current stream of ill-understood experimental results will lead
to new fundamental insights into the laws of nature.
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Samenvatting

Dit proefschrift gaat over kwantummaterie, oftewel de collectieve
gedragingen van een veelheid aan kwantumdeeltjes. In een stukje
metaal of legering zitten circa 1026 atomen die zich meestal geza-
menlijk ordenen in een kristalstructuur. Natuurkundigen kijken
dan ook niet naar de eigenschappen van een enkel atoom, maar
naar het totale systeem: het geheel is meer dan de som der delen.
Zaken als elektrische geleidbaarheid of de magnetisatie zijn vaak
het gevolg van het gezamenlijk gedrag van elektronen, die relatief
vrij door het kristalrooster van atomen kunnen bewegen.

Elektronen zijn kwantumdeeltjes. Nu hebben kwantumdeel-
tjes de bijzondere eigenschap dat ze ononderscheidbaar zijn, wat
het beste uitgelegd kan worden met een voorbeeld. Neem twee
‘kwantumdeeltjes’ die kop of munt kunnen zijn met 50% kans. De
kans dat deze twee kwantumdeeltjes allebei kop zijn is 33%, bij
twee gewone munten is die kans 25%. De kwantumdeeltjes met
deze eigenschap noemen we bosonen, lichtdeeltjes (fotonen) val-
len in deze categorie. Uit het voorbeeld blijkt dat een verzameling
bosonen relatief vaak allemaal ‘hetzelfde’ willen doen.

Bosonen
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Fermionen
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Klassieke!
deeltjes

Figuur 1: Het verschil tussen
klassieke deeltjes, de confor-
mistische bosonen en de indi-
vidualistische fermionen. De
kleuren geven de spin van de
deeltjes weer, zie voetnoot 42.

Daarentegen is er in de kwantumstatistische fysica ook een
ander type kwantumdeeltje, dat zich juist extreem individualis-
tisch gedraagt. Deze noemen we fermionen. Het Pauli uitslui-
tingsprincipe verbiedt dat meer dan twee fermionen in dezelfde
toestand zitten. Voorbeelden van fermionen zijn elektronen, pro-
tonen en neutronen. De elektronen die in een kristalstructuur
bewegen hebben dankzij het uitsluitingsprincipe elk een andere
snelheid. De gemiddelde bewegingsenergie van elektronen in een
metaal is daardoor veel hoger dan je zonder kwantumtheorie zou
verwachten.

Het uitsluitingsprincipe lijkt op het eerste gezicht te suggereren
dat fermionen onderscheidbaar zijn: elke fermion zit immers in
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Figuur 2: De kristalstructuur
van neodymiumceriumkoper-
oxide en lanthaanstrontium-
koperoxide, twee voorbeel-
den van cupraten. Ter in-
dicatie is in beide materia-
len een koperoxidevlak om-
cirkelt. De natuurkundige
eigenschappen komen voort
uit de elektronen in deze ko-
peroxidevlakken.

 

CuO2 vlakken 

een andere toestand. Toch zijn fermionen ononderscheidbaar, om-
dat je namelijk niet kunt zeggen welke fermion in welke toestand
zit. Neem bijvoorbeeld twee elektronen op plaats A en B. Dan
kunnen we niet zeggen of elektron 1 op plaats A en elektron 2 op
plaats B is (|A1B2〉), of andersom (|B1 A2〉). Net zoals Schrödingers
kat levend én dood tegelijk is, zijn deze twee elektronen op plaats
A én B tegelijk. Dit wordt weergegeven met

|A1B2〉 − |B1 A2〉,

het schoolvoorbeeld van verstrengeling.
Fermionen hebben dus de bijzondere eigenschap dat ze met el-

kaar zijn verstrengeld, ook over langere afstanden. Daarbij bestaat
het probleem dat men vaak niet weet waar mintekens geplaatst
moeten worden om de toestand van veel verstrengelde fermionen
te beschrijven. Dat wordt het ‘fermion mintekenprobleem’ ge-
noemd en vormt één van de grootste mysteries van de moderne
theoretische natuurkunde. In simpele metalen zoals koper of alu-
minium speelt de verstrengeling geen rol omdat de elektronen
beschreven kunnen worden in een producttoestand. Dat wil zeg-
gen dat de verstrengeling ontward kan worden, en de toestand
van het geheel beschreven kan worden als het product van de
toestand van kleinere, niet verstrengelde delen.

Nu zijn er materialen die niet beschreven worden door zo’n
producttoestand, en waarvoor dan ook geen goede theoretische
beschrijving bestaat. De cupraten, een legering van koperroest
met zeldzame aardmetalen zoals in afbeeldingen 2 en 3, zijn een
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Figuur 3: Cupraten zijn be-
kend geworden door hun
supergeleidende eigenschap-
pen. Hier is een stuk yttrium-
barium-koperoxide (YBCO)
te zien, dat door middel van
een magneet zwevend gehou-
den kan worden.

belangrijk voorbeeld. Vrijwel alle fysische eigenschappen komen
voort uit de sterk wisselwerkende elektronen in de koperoxide-
vlakken. Deze groep materialen heeft de hoogste temperatuur
waarbij supergeleiding mogelijk is, afhankelijk van de precieze
verhouding tussen de zeldzame aardmetalen.

Als een cupraat ongedoteerd is, dat wil zeggen dat x = 0
in de chemische formule in figuur 2, is er per koperatoom één
elektron vrij beschikbaar. Door de sterke afstotende kracht tussen
elektronen ontstaat een file: bij elk koperatoom zit één elektron
‘vast’. Deze toestand wordt de Mott-isolator genoemd.

Ten opzichte van de Mott-isolator kan je elektronen toevoe-
gen of verwijderen. Daarmee worden ‘dubbelbezette’ of ‘lege’
koperatomen gecreëerd.38 Je kan het materiaal nu beschrijven 38 Een dubbelbezette plaats

wordt een doublon genoemd,
een lege plaats een holon.
Het toevoegen van doublo-
nen wordt n-dotering ge-
noemd, het toevoegen van
holonen heet p-dotering.

in termen van de dubbelbezette en lege plaatsen, in plaats van
de oorspronkelijke elektronen. Dezelfde elektrische kracht die
ervoor zorgt dat elektronen elkaar afstoten, zorgt er nu voor dat
dubbelbezette en lege plaatsen elkaar aantrekken. De gebonden
toestand van een dubbelbezette en een lege plaats wordt een
exciton genoemd, zie figuur 4.

Exciton 

Figuur 4: Het zijaanzicht van
een dubbellaagssysteem. De
rode pijltjes stellen de spin
van de elektronen voor. De
dubbelbezette en lege plaats
trekken elkaar aan en vormen
samen een exciton.

De dubbelbezette en lege plaatsen gedragen zich afzonderlijk
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elk als een fermion. Doordat ze samengebonden worden door de
elektrische kracht, gebeurt er iets bijzonders: samen vormen ze
een boson. Dat betekent enerzijds dat het systeem eenvoudiger
theoretisch te beschrijven is, omdat bosonen niet de ingewikkelde
langedrachtsverstrengeling kennen die fermionen kenmerken. An-
derzijds leidt dat tot de mogelijkheid dat alle excitonen spontaan
hetzelfde gaan doen. Dit proces wordt excitoncondensatie ge-
noemd. Bij lage temperaturen gedragen alle bosonen zich als één,
met als gevolg dat er bosonenstromen kunnen lopen zonder weer-
stand. Een condensaat wordt daarom ook wel een supervloeistof
genoemd.exciton

Figuur 5: Een sandwich
van verschillende materialen,
waarin een dubbellaagsexci-
ton kan ontstaan dat niet an-
nihileert.

Het belangrijkste obstakel voor het vormen van excitonconden-
saten is dat excitonen kunnen annihileren. Daarbij verplaatst het
‘extra’ elektron van de dubbelbezette plaats naar de lege plaats,
met als gevolg dat het exciton verdwenen is. Om dit te voorkomen
kun je het materiaal met de dubbelbezette plaatsen fysiek scheiden
van het materiaal met de lege plaatsen. Dit kan gedaan worden
door een dubbellaagssysteem te maken, een soort sandwich van
het dubbelbezette en lege materiaal zoals in figuur 5.

In de groep van Hans Hilgenkamp aan de Universiteit Twente
wordt geprobeerd om zulke sandwiches te maken van cupraten.
Mijn theoretische onderzoeksvragen zijn daarbij: is het mogelijk
om excitoncondensaten te maken in de cupraten? Zo ja, wat voor
eigenschappen heeft zo’n excitoncondensaat?

Fenomenologie van excitoncondensaten

In hoofdstuk 2 beschrijf ik wat dubbellaags-excitoncondensaten
zijn, en in het bijzonder de gallium-arsenide sandwiches waarin
het al gelukt is om condensatie te bereiken. Dankzij universele
eigenschappen van de natuurwetten is het mogelijk om onaf-
hankelijk van de details van een systeem al vrij veel effecten te
voorspellen. Om die voorspellingen te kunnen doen leid ik de vrije
energie van een excitoncondensaat af, deze manier van werken
wordt fenomenologie genoemd.

Als je een excitoncondensaat hebt, kun je afleiden dat een exci-
tonstroom zonder weerstand moet kunnen bestaan. In het geval
van een circulaire stroom spelen kwantummechanische effecten
op. Immers: alle excitonen gedragen zich als één, en de stroom
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Figuur 6: Het magnetisch
veld tussen de twee la-
gen van het dubbellaags-
excitoncondensaat is gekwan-
tiseerd.

van alle excitonen wordt bepaald door de fase van een complexe
golffunctie. Een complexe fase is periodiek,39 en dientengevolge 39 Net zoals de wijzers op een

klok: 13 uur is hetzelfde als 1

uur, bijvoorbeeld.
kan een circulaire stroom alleen maar in bepaalde hoeveelheden
voorkomen. Daaruit volgt weer dat het magnetisch veld tussen de
p en n-laag gekwantiseerd40 moet zijn. 40 Het kan alleen bepaalde

waarden aannemen. Bijvoor-
beeld: als je telt ga je van 1

naar 2, daar kan niets tussen
in zitten zolang je jezelf be-
perkt tot gehele getallen.

Fermionische modellen

Vervolgens introduceer ik in hoofdstuk 3 de specifieke theorie die
van toepassing is op de cupraten. Binnen het Hubbard-model
kunnen de elektronen vrijelijk van het ene koperatoom naar het
andere springen. Daarnaast kost het energie om twee elektronen
op één plaats samen te brengen. Hoe simpel dit model ook klinkt,
natuurkundigen zijn er nog steeds niet in geslaagd dit model
volledig te begrijpen.

Een manier om dit model op te lossen is met gemiddelde-
veldentheorie. Daarmee probeer je een producttoestand te formu-
leren, waarbij de verstrengeling van de fermionen ontward wordt.
Dit is echter een onbetrouwbare benadering, omdat je daarbij
impliciet aangenomen hebt dat de elektron-elektron interacties
zwak zijn terwijl die in de cupraten juist sterk zijn.

Een andere manier is om te proberen met supercomputers
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kleine systemen exact op te lossen. De methode die we hiervoor
gebruiken heet Determinant Quantum Monte Carlo, waarbij we
de eigenschappen van een groot aantal willekeurig geconstrueerde
toestanden uitrekenen.41 Een grote beperking is echter dat het41 De naam is inderdaad af-

komstig van het Monte Carlo
casino. Men kan namelijk het
resultaat van veel willekeu-
rig gespeelde spellen precies
voorspellen, zolang het inder-
daad heel veel spellen zijn.

fermion mintekenprobleem tot grote onzekerheden in de resul-
taten leidt. We kunnen daarom niet met zekerheid zeggen of er
excitoncondensatie optreedt in het dubbellaags Hubbard-model.

Effectieve bosonische modellen

Het grootste nadeel van de fermionische modellen is dan ook het
fermion mintekenprobleem. Daarentegen, als de interacties sterk
zijn kun je de cupraatsandwich beschrijven met alleen bosonen.
Naast de excitonen heb je daarbij ook de spin42 van het elektron. In42 Spin is de interne rotatie

van een elektron. Dat is
een kwantummechanisch fe-
nomeen dat wordt weergege-
ven door middel van een pijl-
tje met een willekeurige rich-
ting.

hoofdstuk 4 leiden we het exciton-spin t− J model af gebaseerd
op het Hubbard-model.

In de Mott-isolator op de vierkante roosterstructuur van de
koperatomen ordenen de elektronspins zich als een antiferromag-
neet. Dat betekent dat op de helft van de koperatomen de spin
omhoog wijst, en op de andere helft omlaag, zodanig dat een
omhoog-spin altijd omgeven is door spins die omlaag wijzen. Een
exciton kan zich in zo’n achtergrond niet goed bewegen. Zolang
de antiferromagnetische orde bestaat, is een exciton gefrustreerd
en de gevolgen daarvan moet je kunnen zien in het lichtabsorptie-
spectrum van cupraten.

In hoofdstuk 5 bespreken we dan uiteindelijk het excitonconden-
saat in een cupraatsandwich. Excitoncondensatie blijkt mogelijk te
zijn zolang de bewegingsenergie van de excitonen groot genoeg is.
In plaats van frustratie te veroorzaken helpen de spins en excito-
nen elkaar nu. In het condensaat lenen de spins bewegingsener-
gie van de excitonen, met als gevolg dat je de condensaatdichtheid
kan meten via de bewegingsenergie van de spins.

Als de bewegingsenergie van de excitonen niet groot genoeg is
om een condensaat te vormen, ontstaat er fasescheiding tussen
de antiferromagneet, het condensaat en een exciton vaste stof.

In een exciton vaste stof zitten de excitonen vast op een speci-
fieke plaats en kunnen niet bewegen, net zoals atomen vastzitten
in een blok metaal. Zo’n vaste toestand ontstaat als de afstotende
krachten tussen de excitonen groter zijn dan de bewegingsenergie.
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De simpelste manier om de krachten te beschrijven is om alleen de
afstoting tussen twee naastgelegen excitonen te beschouwen. In
hoofdstuk 5 laten we zien dat dit leidt tot een schaakbord-patroon
van excitonen. Maar in werkelijkheid is de afstoting tussen excito-
nen voelbaar over langere afstanden. Deze lange-afstandsinteractie
zorgt ervoor dat een hele verzameling verschillende exciton vaste
stoffen kunnen ontstaan. Dit beschrijven we in hoofdstuk 6, waar
we voor het gemak de bewegingsenergie van de excitonen ver-
waarlozen.

Conclusie en vooruitblik

Het is theoretisch dus mogelijk om een excitoncondensaat te ma-
ken in cupraatsandwiches. Ik heb daarbij enkele experimentele
voorstellen gedaan om dit condensaat te kunnen onderzoeken.
Het probleem is echter dat de theorie ver voor de experimenten
uit loopt. De grootste uitdaging voor dit vakgebied is dan ook de
experimentele realisatie van de cupraatsandwiches.

De verschillende fenomenologische, fermionische en bosonische
modellen die in dit proefschrift gebruikt zijn dienen als inspiratie
om nog eens na te denken over langeafstandsverstrengeling. In
hoofdstuk 7 bespreek ik dan ook enkele ideeën over kwantumma-
terie die leiden tot stellingen behorend bij dit proefschrift.
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