
Experimental therapeutic strategies in restenosis and
critical limb ischemia
Tongeren, B. van

Citation
Tongeren, B. van. (2010, April 22). Experimental therapeutic strategies in
restenosis and critical limb ischemia. Retrieved from
https://hdl.handle.net/1887/15290
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/15290
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/15290


62

Chapter

05

100008 Tongeren.indd   62 donderdag28-januari-2010   9:23



Vascular growth in ischaemic limbs:  
a review of mechanisms and possible 
therapeutic stimulation 

Ann Vasc Surg. 2008;22:582-597

V. van Weel 
R.B.M. van Tongeren 
V.W.M. van Hinsbergh 
J.H. van Bockel 
P.H.A. Quax

100008 Tongeren.indd   63 donderdag28-januari-2010   9:23



64

Abstract
Stimulation of vascular growth to treat limb ischemia is promising, and early results 
obtained from uncontrolled clinical trials using angiogenic agents, for instance, 
vascular endothelial growth factor (VEGF), led to high expectations. However, 
negative results from recent placebo-controlled trials warrant further research. Here, 
current insights into mechanisms of vascular growth in the adult, in particular the 
role of angiogenic factors, the immune system, and bone marrow, were reviewed, 
together with modes of its therapeutic stimulation and results from recent clinical 
trials.
Three concepts of vascular growth have been described to date, being angiogenesis, 
vasculogenesis and arteriogenesis (collateral artery growth), which represent 
different aspects of an integrated process. Stimulation of arteriogenesis seems 
clinically most relevant, and has most recently been attempted using autologous 
bone marrow transplantation with some beneficial results, although the mechanism 
of action is not completely understood. Better understanding of the highly complex 
molecular and cellular mechanisms of vascular growth may yet lead to meaningful 
clinical applications.
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Introduction
Peripheral arterial obstructive disease (PAOD), mainly caused by atherosclerosis, is a major 
problem, which is known to affect 10-15% of the aged adult population. PAOD may at 
first exist without symptoms, but with further progression it may lead to intermittent 
claudication. Advanced disease is characterised by pain at rest, ulceration or gangrene 
of ischemic tissues, summarised as Critical Limb Ischaemia.1 Furthermore, in PAOD 
atherosclerosis is often not limited to the leg, leading to increased mortality due to 
cerebro-vascular events or myocardial infarction.2 In case of progression of PAOD with 
vascular occlusions at multiple levels and particularly low quality run-off crural vessels 
with limited outflow, options for vascular interventions, such as percutaneous transluminal 
angioplasty, stenting or bypass surgery, become limited. Amputation of ischemic toes, 
foot or limb remain the only option in 50% of patients with critical limb ischemia within 1 
year, because of insufficient response to the treatments.3 Most of these amputees suffer 
from a poor collateral arterial network, as evidenced by angiography. The large unmet 
medical need of these “no-option” patients has propelled the development of biological 
revascularization. Clinical trials using angiogenic growth factors have been launched in 
the field of both PAOD and coronary artery disease. This review mainly focuses on the 
mechanisms of vascular adaptation to limb ischemia and its stimulation to treat PAOD.

Basic mechanisms of vascular growth
Three principles: angiogenesis, vasculogenesis and arteriogenesis
Neovascularisation plays a major role in both health and diseases. In physiology, it plays 
a role in embryogenesis and development, the female reproductive system and wound 
healing. On the other hand neovascularisation also attributes to a great variety of diseases. 
It has long been recognized that excessive vessel growth is a large contributing factor in 
the pathogenesis of cancer, atherosclerosis, diabetic retinopathy, psoriasis, and arthritis. 
Contrary, insufficient vessel growth is associated with ischemic disease of heart, limb or 
brain, neurodegeneration, pre-eclampsia, and osteoporosis.4 Recently, major progress 
has been made in understanding the mechanisms underlying vascular formation both in 
the adult as in embryogenesis. To date, three concepts of neovascularisation have been 
described, being angiogenesis, vasculogenesis and arteriogenesis,5 which represent 
different aspects of an integrated process (Figure 1). 
Angiogenesis involves the sprouting of new capillary-like structures from existing 
vasculature4, and is regulated by pro- and anti-angiogenic factors.6;7 Hypoxia is a 
strong stimulus, which induces pro-angiogenic factors, such as vascular endothelial 
growth factor A (VEGF) via activation of hypoxia-inducible factor-1α (HIF-1α). A series 
of sequential events can be distinguished during the formation of new microvessels, 
consisting of degradation of the vascular basement membrane and interstitial matrix by 

100008 Tongeren.indd   65 donderdag28-januari-2010   9:23



66

endothelial cells, endothelial cell migration, endothelial proliferation, and the formation 
of new capillary tubes and a new basement membrane.8 These newly formed tubes are 
subsequently stabilised by surrounding pericytes or smooth muscle cells (SMCs). 
Vasculogenesis was originally defined by Risau9 as the formation of a capillary plexus 
from blood islands, and is presently commonly used for the intussusception of bone 
marrow derived progenitors cells into the expanding vascular area.4 These cells were 
primarily addressed as endothelial progenitor cells (EPCs)10 and have been identified 
in peripheral blood11;12 Moreover, they have been demonstrated to contribute to adult 
neovascularization.13;14 To date, the mechanism how these bone marrow-derived 
cells (BMCs) exactly contribute to neovascularisation remains unclear. Substantial 
incorporation of EPCs in the vessel wall is rarely reported15;16, and often there was only a 
minor contribution17-20, leaving a paracrine function of cells with secretion of angiogenic 
factors more probable.21;22 Furthermore, also non-endothelial bone marrow-derived 
progenitor cells have been described to contribute to ischemia-induced angiogenesis/
vasculogenesis in a paracrine fashion.23 
Adaptive arteriogenesis, or shortly arteriogenesis, was described by Wolfgang Schaper 
as the development of adult collateral arteries from a pre-existing arteriole network.24 
Via arteriogenesis a natural bypass is developed around an occluded main artery. This 
collateral artery growth mostly occurs proximal to ischemic tissues where angiogenesis 
and vasculogenesis occur (Figure 1). As compared to the two latter processes, 
arteriogenesis is more prominently stimulated by inflammation, and does not seem to 
be hypoxia-driven. In experiments in rabbits25;26, angiographic collateral growth was 
not associated with production of metabolic intermediates indicative for ischemia or 
with expression of hypoxia-inducible genes, such as VEGF or HIF-1. Moreover, the time 
course of capillary growth and collateral growth was distinct: capillaries were formed 5 
days after femoral artery removal and this was associated with increased lactate release in 
plasma and expression of VEGF in adductor muscle, whereas collateral growth occurred 
at 10 days, without the above mentioned signs of ischemia. Moreover, there is evidence 
that arteriogenesis is triggered by increased shear stress through specific pre-existing 
arterioles, by which the vessel wall is activated. This causes up-regulation of adhesion 
molecules for leucocytes, such as ICAM-1,27 followed by attachment and transmigration of 
leucocytes. These leucocytes may secrete additional factors leading to growth of collateral 
arteries with media thickening and increase of SMC content of the vascular wall.28 In 
addition, degradation of connective tissue surrounding collateral arteries by for example 
metalloproteinases facilitates their remodelling.29;30 
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Figure 1.  Schematic representation of arteriogenesis, angiogenesis and vasculogenesis. EC, endothelial cell; BMC, 
bone marrow cell; SMC, smooth muscle cell. 

 

The three above described concepts of vascular formation probably all play a role in adult 
neovascularisation, and usually occur simultaneously at different levels. However, it should 
be realized that distinction between angiogenesis, vasculogenesis and arteriogenesis is 
not unambiguous. They share common mechanisms, e.g. invasion of inflammatory cells, 
and expression of growth factors and cytokines. In the adult, vasculogenesis is merely a 
term for angiogenesis that involves progenitor cells intussuscepting in and around the new 
vascular structures. Moreover, arteriogenesis may not only be triggered by shear stress-
induced arteriogenic factors, but also by circulating angiogenic factors that are produced 
in distant ischemic tissues. Contrary to the limb, arterial obstruction in the heart is situated 
near the ischemic regions in the vast majority of cases. Consequently, arteriogenesis and 
angiogenesis in the heart occur in close proximity of each other, possibly influencing each 
other via growth factor expression.

Angiogenic and arteriogenic growth factors: successful promotion of 
neovascularisation in animal models
Many vascular growth factors, but also inflammatory cytokines and chemokines, have 
been shown to promote angiogenesis, vasculogenesis and/or arteriogenesis, either in cell 
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cultures or in animal models. Angiogenesis and vasculogenesis are usually triggered by the 
induction of angiogenic factors, particularly by activation of hypoxia-inducible factor 1α 
(HIF-1α). HIF-1α is a transcription factor (master switch gene) that up-regulates a number 
of pro-angiogenic genes, such as VEGF, VEGF-receptor 2, stromal cell derived factor-1 
(SDF-1) and its receptor CXCR4, angiopoietin-2 and erythropoietin (Epo), resulting in a 
coordinated angiogenic response. Numerous growth factors have been shown to play a 
role in angiogenesis, vasculogenesis and arteriogenesis in vivo (Table I). Moreover, most of 
these agents successfully promote vascular growth in animal models of hind limb ischemia. 
Nevertheless, results in placebo-controlled studies in patients were less beneficial to date. 
This may be explained by that current animal models suffer from considerable limitations: 
first, “healthy” animals are used that upon femoral artery occlusion demonstrate acute 
ischemia, whereas patients with arterial disease suffer from various metabolic disorders 
leading to chronic ischemia. Moreover, differences in expression patterns of endogenous 
VEGF in ischemic muscle were reported for muscle either derived from rabbits after 
femoral artery occlusion as compared to human amputation material.65 Another limitation 
is that results from hind limb ischemia models are very much dependent upon the applied 
surgical technique. Many research groups have used a model of complete excision of 
the femoral artery and its side-branches leading to deep ischemia and mainly capillary 
formation. Other groups applied a short occlusion of the proximal femoral artery, which 
is more suitable to study collateral artery growth. The diversity of surgical techniques 
together with a large variety of applied end points measurements (clinical score, blood 
flow using laser-doppler imaging, microspheres, flow probes, or MRI, (post-mortem) 
angiography, CT, histology) merit carefully interpretation of results derived from these 
models.66Vascular growth factors may contribute in different ways to new vessel formation 
depending on which cell types their receptors are expressed. VEGF is the most extensively 
studied and crucial pro-angiogenic factor. Homozygous and even heterozygous VEGF-
deficient murine embryos show a lethal phenotype by abnormal blood vessel formation.67 
Molecular targets for the VEGF gene family have been identified, being VEGF-receptor-1 
and -2 (VEGFR1, VEGFR2) for VEGF-A; VEGFR1 for VEGF-B and PlGF; VEGFR2 and VEGFR3 for 
VEGF-C and VEGF-D68;69. The latter ones contribute to lymphangiogenesis via VEGFR3.68;69 
A variety of cells, such as endothelial cells, haematopoietic stem cells, and monocytes 
respond to VEGF-A either via VEGFR1 or VEGFR2. This indicates that VEGF-A (further 
indicated as VEGF) plays a role in angiogenesis, vasculogenesis, and arteriogenesis, 
respectively.
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Currently, MCP-1 and GM-CSF are a main focus in arteriogenesis research. MCP-1 activates 
the C-C chemokine receptor-2 (CCR-2) on monocytic cells, thereby exerting its effect 
on collateral formation.70 GM-CSF receptor is expressed on a variety of cell types, e.g. 
haematopoietic cells, monocytes, endothelial cells and cardiomyocytes.

Role of cellular components: vascular cells, inflammatory cells, and stem cells
Endothelial cells are the vectors of angiogenesis. They are triggered by vascular growth 
factors, such as VEGF. Cultured (human) endothelial cells by themselves are capable of 
forming capillary-like tubes in three-dimensional matrices in the presence of VEGF.71 
Similarly, overexpression of VEGF in tissues causes initially rapid outgrowth of immature 
endothelial tubes.23 However, these new micro-vessels lack a stabilising mural cell layer 
around their endothelium, which must become stabilised by pericytes. The formation of 
such immature and leaky neovascularisation in vivo may be an important limitation of 
therapeutic angiogenesis using a single endothelial cell-selective growth factor, such as 
proposed for gene therapy with VEGF (initially called vascular permeability factor).40;72 This 
suggests the important contribution of additional growth factors, such as FGF-2, which 
has been shown to act on SMC proliferation. In addition, a variety of inflammatory cell 
types have been demonstrated to play a role in angiogenesis in e.g. cancer development. 
For example monocytes, T-cells, natural killer cells, neutrophils, mast cells and dentritic 
cells have been shown to produce angiogenic factors.4 
It is problematic to determine whether and which (endothelial) progenitor cell types are 
involved in vasculogenesis. This is caused by a significant lack of appropriate cellular markers 
to identify these cells. Both endothelial progenitor cells, selected with CD3473 or CD13374 
markers, and non-endothelial progenitor cells, selected with CXCR4 in combination 
with VEGFR1 markers23, have been proposed to be involved in adult neovascularisation. 
Further research is needed to optimise specificity of cellular markers to define the role of 
progenitor cells in neovascularisation. 
A variety of cell types have been shown to be involved in arteriogenesis, including  
endothelial cells, SMCs, fibroblasts, monocytes, lymphocytes, mast cells, platelets and 
bone-marrow-derived cells.75 The actual growth of collaterals is dominated by proliferation 
of SMCs, adventitial fibroblasts and endothelial cells. Arteriogenesis is initiated by the 
activation of endothelial cells, followed by perivascular accumulation of various types 
of leucocytes and bone marrow-derived cells, which orchestrate collateral growth by 
producing cytokines, growth factors and proteases. Various studies have demonstrated a 
crucial role for monocytes in arteriogenesis.76-78 Only recently, lymphocytes, such as CD4+ 
T-cells79;80, CD8+ T-cells81 and natural killer cells80, have been shown to be involved as well. 
Recently, stem cells have become a main interest for stimulation of arteriogenesis. Stem 
cells can be obtained from different sources: among these are cells from bone marrow, 
peripheral blood or umbilical cord. Stem cells have clonogenic and self-renewing 
capabilities and may differentiate into multiple cell lineages, a phenomenon known as 
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plasticity. Apart from the cell-lineage for red blood cells, the bone marrow contains a 
collection of mononuclear cells (BMCs) (Figure 2). Hematopoetic stem cells represent a 
subpopulation of those BMCs. Given the amount of in vitro data on the plasticity of various 
bone marrow-derived cell populations, it is tempting to suggest that cell-based therapy 
enhances neovascularisation by direct incorporating into the vessel wall.11;82 However, 
conflicting data on this transdifferentiation of BMCs / EPCs into new endothelial cells 
exist. Others challenged this theory with compelling evidence that BMCs do hardly, or 
not at all, incorporate and vascular growth is promoted by a paracrine effect of these cells. 
Bone marrow cell populations contain very small number of stem cells, <0.01% of total 
cells. Since many bone marrow subpopulations are a source of growth factors, cytokines 
and chemokines, a complementary hypothesis is that the cells act in a more supportive 
role.20;83;84 Augmentation of arteriogenesis by administration of bone marrow-derived 
cells was successful in pre-clinical studies82;85-87, and initial results from clinical trials are 
intriguing. Furthermore, implantation of peripheral blood mononuclear cells (PBMNCs) 
and platelets by injection into the ischemic thigh area in rats also induced collateral vessel 
formation by supplying angiogenic factors and cytokines.88 

Figure 2.  Subpopulations of mononuclear cells in the bone marrow and their differentiation.

 

 

 

 

Figure 2.  Subpopulations of mononuclear cells in the bone marrow and their differentiation. 

Therapeutic stimulation of vascular growth
Concept
In aiming to restore sufficient blood flow towards the chronically ischemic limb, formation 
of mature collateral vessels is more essential than capillary growth. In this view, a few 
large conduits (collateral arteries) are hemodynamically much more advantageous 
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over many small high resistance capillaries, as flow through a vessel mainly depends on 
the radius according to the well-established Poiseuille relationship.89 According to this 
mathematical model, the flow resistance, R, in mmHg/mL per minute, along each separate 
collateral parallel pathway, is estimated for laminar tube flow: R=0.5 · μ · L/d4, where μ is 
blood viscosity (0.03 g/cm per second), L is estimated length (mm), and d is diameter 
(mm). Therefore, therapeutic stimulation of vascular growth should primarily aim at large-
diameter collateral vessels. Nevertheless, to improve oxygenation status of ischemic 
tissues, stimulation of both arteriogenic collaterals and angiogenic capillaries are crucial 
for sufficient blood inflow and gas exchange, respectively. 
Increased fluid shear stress is thought to be responsible for initiating collateral artery 
growth, because a sudden decrease in peripheral blood pressure following an arterial 
occlusion increases the flow velocity through pre-existent collateral arterioles that 
interconnect the pre-occlusion high-pressure territories with the post-occlusion low-
pressure regions. Shear stress is defined as the tangential force per unit area applied 
by the blood flow stream on endothelium. Many studies had previously implicated 
increased fluid shear stress as an arterial moulding force.90-92 Shear stress levels are actively 
maintained in the arterial circulation as vascular tissues respond to shear stress changes 
with acute adjustments in vascular tone and with chronic structural remodelling, resulting 
in adjustments of vessel diameter. Only recently, evidence is accumulating that increased 
shear stress indeed plays a role in the induction of arteriogenesis.93 Pipp and colleagues 
clearly showed that a primary change in shear stress is the dominant mechanical force in 
collateral artery growth in an AV shunt model in pigs and rabbits.

Modes of delivery: protein or gene therapy
Stimulation of neovascularisation can be achieved either by the use of growth factor 
proteins or by the introduction of genes encoding these proteins. The use of proteins 
is significantly restricted by their limited tissue half-life, which may require sustained-
release preparation or repeated administration. Moreover, proteins in general require 
systemic administration with potentially more side effects as opposed to local delivery. 
Nevertheless, proteins are closer to clinical use than gene therapy.94 Gene therapy is 
a very promising therapeutic tool in cardiovascular diseases that can overcome the 
inherent instability of angiogenic proteins by facilitating sustained, local production of 
these angiogenic factors. The use of viral vectors to carry angiogenic genes, for example 
adenovirus, adeno-associated virus or retrovirus, has the advantage of high transfection 
efficiency of target tissues. However, viruses disadvantageously trigger immunological 
responses or, in case of retrovirus, insertional mutagenesis is possible. Non-viral vectors 
(plasmids) are much safer and cheaper, can be produced easily in large quantities, and 
have higher genetic material carrying capacity. Plasmids are closer to clinical use than 
viral vectors due to less health issues. Yet, they are generally less efficient in delivering 
DNA and initiating gene expression, and duration of transgene expression is relatively 
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short as compared to viral vectors. Hence, plasmids can be delivered repeatedly95, or their 
transfection efficiency may be improved. The latter is achieved by for example developing 
cationic liposome complexes96 or intelligent polymers97 as vectors that allow efficient 
cellular uptake and endosomal escape. Other emerging methods to enhance non-viral 
gene transfer are ultrasound-mediated microbubbles destruction98 or electroporation. 
Electroporation is a physical method to deliver genes, drugs or other molecules to many 
different types of tissue (e.g. skeletal muscle, liver, lung and vasculature) by electrical 
pulses that result in cell electropermeabilization and DNA electrophoresis.99;100 Recently, 
we showed that intra-muscular gene transfer by electroporation of plasmid DNA results 
in similar or even higher transfection efficacy and transgene expression duration as 
compared to adenoviral vectors.101

Although high transfection efficacy is the aim, one should be cautious that too high 
expressions of angiogenic factors may have deleterious effects, as shown for recombinant 
Sendai viral vector highly over-expressing VEGF, resulting in accelerated limb loss after 
administration in mice.40 Moreover, the most optimal delivery strategy of angiogenic 
vectors or proteins is yet to be determined. There are multiple delivery modes, such as 
systemic (intra-venous, intra-arterial), intra-muscular, intra-vascular, peri-vascular, intra-
pericardial or subcutaneous, which remain unproven in terms of clinical efficacy and 
superiority.94 Finally, optimal dose schedules are largely unknown, and should be further 
explored.

Clinical trials using angiogenic growth factors
The therapeutic implications of angiogenic growth factors were identified by the pioneering 
work of Judah Folkman in the field of tumor biology and Jeffrey Isner in cardiovascular 
regeneration.102 Subsequent beneficial effects of these growth factors in ischemia models 
in animals led to great expectations for the treatment of PAOD. Permission for subsequent 
clinical trials administering angiogenic factors, even by gene therapy, were relatively easy 
to obtain since patients with advanced ischemic disease did not have any other therapeutic 
options. Early results obtained from small phase I/II human trials using angiogenic growth 
factors, mainly using vascular endothelial growth factor A103-109, but also using hepatocyte 
growth factor110, were promising. Similar beneficial results were obtained from early-phase 
trials in patients with coronary arterial disease using VEGF-A 111-114, VEGF-C 115 or fibroblast 
growth factor (FGF)116-119. However, of the larger randomized placebo-controlled trials of 
therapeutic angiogenesis that have been published120-124, all but one, using recombinant 
FGF-2 protein124, were negative. In addition, small randomized trials that tested a more 
arteriogenic approach by using GM-CSF protein showed negative results in patients with 
intermittent claudication125, whereas promising results for treatment of coronary artery 
disease126. Unfortunately, the mainly disappointing results of the larger clinical trials have 
now tempered the therapeutic angiogenesis hype. In contrast, we recently showed, for 
the first time in a double-blind randomized trial, that VEGF gene transfer may significantly 
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improve ulcer healing and haemodynamics as compared to placebo in diabetic patients 
with critical limb ischaemia.127 Hopefully, the latter results may regenerate interest in 
treatment of peripheral arterial disease with angiogenic gene transfer approaches, 
especially using naked plasmid DNA as a vector. For an overview of clinical angiogenesis 
trials in patients with peripheral arterial disease from 1998 to present date please see 
Table II. Numerous reasons have been suggested to account for the negative results from 
clinical angiogenesis trials, such as the use of only a single factor, factor dose, duration 
of expression, mode of delivery, multiple splice-variants for agents, patient selection, 
pre-selected trial end-points, patient heterogeneity, angiogenesis inhibitors, and strong 
placebo effect.130 Moreover, biological responses to growth factor therapy may be 
hampered in chronically ischemic muscle in which endogenous angiogenesis has become 
exhausted; we have recently observed in muscle samples of amputated limbs that there is 
an inability of hypoxic tissues to express sufficient hypoxia inducible factor-1α, and down-
stream VEGF and SDF-1, in chronic ischemia as opposed to acute-on-chronic ischemia.131

Clinical trials using cell-based therapy
A cell-based therapeutic approach has evolved when it was suggested that administration 
of bone marrow-derived stem or endothelial progenitor cells may improve blood flow 
recovery in various ischemic models. Despite the lack of understanding regarding 
the complex issues of cell origin and fate, quite some attention has been focused on 
demonstrating the clinical benefits of cell-based therapy. Tateishi-Yuyama and colleagues 
published their pioneering work in 2002 showing beneficial results with autologous 
transplantation of bone marrow cells in patients with limb ischemia.132 Bone marrow and 
peripheral blood provide stem cells of autologous origin. Practical issues as immunologic 
rejection and possible teratoma formation, as well as ethical issues, have hampered 
the use of embryonic stem cells in a clinical setting. Most clinical trials made use of the 
mononuclear cell fraction from the bone marrow. Alternatively, PBMCs are administered 
after mobilization of these cells from the bone marrow with G-CSF application. Others 
administered more specifically EPCs.
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The safety profile has been reassuring thus far, yet long-term results have recently been 
questioned.133 Unfortunately, these studies are also not easy to interpret. It is particularly 
difficult to state firm conclusions about treatment efficacy since most studies are lacking 
controls, have diverse treatment modalities, endpoints and inclusion/exclusion criteria. 
Furthermore, the emphasis has been on demonstrating recovery of clinical parameters, 
rather than the evaluation of new vessel formation. 
Practically all studies use indirect parameters as ulcer healing, limb salvage, pain-free 
walking distance, ankle-brachial index, transcutaneous oxygen measurements and 
pain scores to assess the outcome. Although clinical effect is of pivotal importance, 
objective parameters for the evaluation of vascular growth seem essential, considering 
the suggested mechanism. Few studies include follow-up digital subtraction angiograms 
of which the assessment is based on qualitative visual comparison. This limitation of 
current clinical endpoints also holds for trials on angiogenic growth factors. An overview 
of published clinical studies in English language using cell-based therapy with more then 
5 patients is given in Table III.
Regarding harvest procedure, a dichotomy exists between the origins of the cells. Initially, 
mononuclear cells were collected from the iliac crest; more recently also PBMCs are 
administered after G-CSF mobilization. Since a firm conclusion about efficacy of cell-
based therapy in general cannot be drawn, one can only speculate about differences 
between BMCs and PBMCs. Collection from the iliac crest requires general or epidural 
anesthesia. Otherwise, some concern has raised that G-CSF therapy might be related to 
an unexpected high rate of in-stent restenosis at the culprit lesion after intracoronary 
infusion of mobilized PBMCs.149 
In summery, cell-based therapy seems an encouraging strategy for patients with severe 
peripheral arterial disease who are not amenable for conventional treatment. Clinical 
studies performed to date however, have not primary been designed or powered to 
evaluate clinical outcomes. Furthermore, long-term safety issues have also to be evaluated.

Limitations of therapeutic angio-/arteriogenesis
Some adverse effects of therapeutic angiogenesis have been reported, such as aggravation 
of re-stenosis using peripheral blood stem cells in patients with myocardial infarction 149 
or microinfarction using mesenchymal stromal cells in a dog model.150 In line with this, 
a so-called Janus phenomenon has been proposed by Epstein and colleagues between 
arteriogenesis and atherosclerosis151, meaning that pro-arteriogenic factors, such as MCP-
1, may also contribute to plaque progression and neointima formation, as reported.152;153 
Moreover, there is evidence that development of atherosclerotic plaques is associated with 
proliferation of the vasa vasorum154-156, which may thus be accelerated using angiogenic 
factors. Nevertheless, the effects of exogenous angiogenic factors, such as VEGF, on re-
stenosis and atherosclerosis are still debated ranging from beneficial157 to adverse158. 
Other limitations of therapeutic neovascularisation may consist of inappropriate blood 
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vessel growth at unwanted sites159, which may theoretically lead to increased incidence of 
diabetic retinopathy or cancer. In line with this, inhibition of angiogenesis has developed 
into an important adjuvant treatment of neoplasms.160;161 Nevertheless, to our knowledge, 
no case of de novo cancer or progression of cancer after angiogenic therapy has been 
described in patients to date. Furthermore, in our experience, there was no evidence of 
increased occurrence of malignancies after plasmid VEGF treatment.127 Local delivery and 
specificity to target tissue of angiogenic proteins or genes may overcome these concerns.

Discussion
As can be concluded from the above, adult neovascularisation is a very complex 
phenomenon involving a large variety of cellular components, in turn excreting a large 
variety of vascular growth factors, cytokines and chemokines. All cellular components 
are tightly orchestrated concerning chronology of involvement, location and expression 
patterns. Many steps in this process remain to be elucidated. It is no coincidence that, 
parallel to ongoing basic research, autologous bone marrow cell transplantation has 
come into play, since bone marrow seems to potentially consist of almost all cell types 
involved. Nevertheless, results from clinical bone marrow trials are inconsistent. Refining 
our knowledge on which and how subsets of BMCs are involved in neovascularisation, 
and isolating these cells before administration, will probably improve efficacy of this 
treatment in the future. For instance, a significant subpopulation of bone marrow consists 
of inflammatory cells. Moreover, others and we recently found that lymphocytes, in 
particular CD4+ T-helper cells79;80, CD8+ T-cells81 and natural killer cells80, play a modulating 
role in arteriogenesis. Administration of defined lymphocyte subsets or their specific 
activation/inhibition with ligands for activating or inhibitory receptors, respectively, may 
thus prove beneficial for stimulation of arteriogenesis in the future. Furthermore, the 
administration of factors for mobilisation of circulating BMCs, such as VEGF or GM-CSF, or 
factors to retain BMCs in ischemic tissues, such as SDF-1162, holds promise as well. 
As mentioned, most placebo-controlled trials using angiogenic factors were negative. 
One obvious explanation may be that the administration of a single factor is not sufficient 
to set the complex process of neovascularisation in motion. Therefore, future trials should 
be designed to use a combination of growth factors, preferably combining angiogenic 
and arteriogenic factors, or including “master-switch genes”, such as HIF-1α, that trigger 
a coordinated expression of many other angiogenic factors. Another explanation for 
unsuccessful trials may be that patient selection occurs guided by ethical concerns, 
especially for gene therapy trials. In many trials, only patients that were no candidate for 
standard vascular intervention, e.g. due to advanced disease, were selected. Hopefully, 
with the development of safer vectors, patients may be included in earlier stages of the 
disease with more beneficial results. In our opinion, electroporation has most potential 
in delivering genes packed in these safer vectors due to high and prolonged gene 
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expression. Furthermore, patients with end-stage ischemic disease may be less susceptible 
to angiogenic therapies due to a diseased vessel wall with endothelial dysfunction and 
concomitant defective receptors, for instance, VEGF receptors, ICAM-1 or V-CAM. Other 
problems may lay in dysfunction of cells involved in neovascularisation, such as reduced 
migration of monocytes towards VEGF in diabetics163, reduced endothelial cell proliferation 
and motility by disturbed lipid metabolism164;165, and reduced neovascularisation capacity 
of bone marrow mononuclear cells166, or lymphocytes. Future research should focus 
on better understanding these problems in order to improve susceptibility to either 
endogenous or exogenous growth factors. 
Other issues that merit future investigation are, first, that arteriogenic factors may 
additionally accelerate atherosclerosis (the Janus phenomenon). Optimal arteriogenic 
factors, that are not atherogenic, may be identified by differential expression studies 
comparing models of arteriogenesis and atherosclerosis. Second, genetic profiles 
of patients determining whether neovascularisation in ischemic tissue is efficient or 
defective should be unravelled to identify new therapeutic targets and open possibility for 
disease prevention. Animal models may help in this by for instance comparing strains with 
different vessel-forming capacity.80;167 In this respect, differences in pre-existing collateral 
networks may be genetically determined, which may explain why one patient forms an 
adequate collateral network or responds well to arteriogenic treatment, and the other 
patient does not. Interestingly, leucocytes were recently proposed to play a role in retinal 
vascular remodelling or pruning during development.168 A role for the immune system 
in embryonic development of a collateral network is yet to be determined. Third, study 
of differential expression of angiogenic genes between acutely and chronically ischemic 
tissues may bring forward novel candidate-growth factors. 
Finally, designer blood vessels fabricated by tissue engineering may ultimately prove to be 
the solution for patients with ischemic disease, however an artificial non-thrombogenic, 
immunocompatible, strong, yet biologically responsive blood vessel seems not in sight in 
the near future.169
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