Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines
Xia, T.

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/15122

Note: To cite this publication please use the final published version (if applicable).
Stellingen

Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

1. Supercooled liquids can behave like yield-stress solids at temperatures well above the glass transition.
 Chapter 2

2. The thermal history is crucial for the onset of solidification in supercooled glycerol.
 Chapter 3

3. Fluorescent probes can be used to image spatial heterogeneity in a thin film of glycerol.
 Chapter 4

4. The proposed temperature-cycle microscopy combined with optical probing methods can be used to study fast molecular dynamics at the single-molecule level.
 Chapter 6

6. Chromophores whose spontaneous emissions are dominated by their fast non-radiative decay can be detectable by using stimulated emission, which competes effectively with the non-radiative decay. Min et al., Nature 461 (2009) 1105–1109.

7. Non-blinking and -bleaching properties of nano-gold particles have made themselves promising labels in biological applications.

Ted Xia
Leiden, 25 maart 2010