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Summary
IgA nephropathy (IgAN) is characterized by deposits of IgA in the renal
mesangium. It is thought that deposits of IgA mainly involve high molecular
weight (HMW) IgA1. However there is limited information on the exact compo-
sition of HMW IgA in these deposits. In this study we investigated the presence
of secretory IgA (SIgA) in human serum and in the glomerular deposits of a
patient with IgAN. Furthermore, we analysed the interaction of SIgA with
mesangial cells. With ELISA SIgA concentrations in serum of IgAN patients
and healthy controls was measured. Patients and controls both have circulat-
ing SIgA that was restricted to the HMW fractions. Patients tend to have high-
er levels of SIgA, but this difference was not significant. However, in patients
with IgAN, high serum SIgA concentrations were associated with hematuria.
Binding of size fractionated purified serum IgA and secretory IgA to mesangial
cells was investigated with flow cytometry. These studies with mesangial cells
showed stronger binding of SIgA to primary mesangial cells, compared to bind-
ing of serum IgA. Importantly, after isolation and elution of glomeruli from a
nephrectomized transplanted kidney from a patient with recurrent IgAN, we
demonstrated a 120-fold accumulation of SIgA compared to IgA1 in the eluate.
In conclusion we have demonstrated that SIgA strongly binds to human
mesangial cells, and is present in significant amounts in serum. Furthermore,
we showed that SIgA is accumulated in the glomeruli of an IgAN patient. These
data suggest an important role for SIgA in the pathogenesis of IgA nephropa-
thy.
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INTRODUCTION   

Primary IgA nephropathy (IgAN) is the most common form of primary glomeru-
lonephritis. The disease shows a spectrum of clinical presentations, leading to pro-
gressive renal failure in a substantial proportion of patients. The hallmark of this dis-
ease is deposition of IgA in the glomerular mesangium (1-3). It is generally thought
that deposits of IgA mainly involve IgA1 and for a large part consist of high molecu-
lar weight (HMW) IgA (4). The composition of HMW forms of IgA in serum is diverse
and may include dimeric IgA, CD89/IgA complexes, IgA immune complexes and
IgA-fibronectin complexes (5-9).

Several reports have shown that the glycosylation of IgA1 in patients is different
from that in controls. Patient IgA1 contains more terminal GalNAc and this could
play a role in the deposition of IgA1 in the mesangium (10-12). IgA from the
glomeruli of IgAN patients consists at least partly of HMW IgA (13) and is under-O-
glycosylated (10,14). In these studies no data was presented concerning the pres-
ence of secretory IgA (SIgA). When deposited in the kidney, the IgA1-containing
complexes are linked to inflammation. Stimulation of mesangial cells with HMW IgA
leads to enhanced production of cytokines and chemokines, including IL-6, TGF-β,
TNF-α, MCP-1, IL-8 and MIF (15-18).  These cytokines and chemokines might play
a role in the development and progression of renal injury in IgAN patients.

SIgA is the dominant immunoglobulin in external mucosal secretions like in oral,
respiratory, and intestinal cavities, and is often characterized as a component of the
immune systems "first-line defence" against pathogenic micro-organisms (19). The
SIgA molecule is composed of two IgA monomers, linked by a junction peptide
called J chain, and the secretory component (SC) that wraps around the dimer (20).
Next to its presence in mucosal secretions, small amounts of SIgA can also be found
in human serum (21,22). Moreover, increased serum levels of SIgA have been
reported in various diseases (23-25), indicating that SIgA may be a marker of clini-
cal interest. A previous study has suggested that the serum concentrations of SIgA
are not different in IgAN patients compared to healthy controls (23). The physiolog-
ical roles of serum IgA and SIgA are quite different, and the presence of the highly
glycosylated SC can have major effects on the biological functions of SIgA (26,27).
In literature it is still controversial if SIgA is able to bind to mesangial cells (28,29).
One study showed that SIgA is able to bind to mesangial cells (28), however this
could not be confirmed in another study (29). 

In the present study we investigated the presence of SIgA in sera of IgAN
patients and healthy controls, and examined the binding of different molecular forms
of IgA to human mesangial cells with special interest for SIgA. Finally we investigat-
ed the presence of SIgA in the glomerular eluate of an IgAN patient. 

MATERIAL AND METHODS

Human subjects
In this study, we included 19 healthy volunteers and 47 patients with primary IgAN (30).

The latter were defined by mesangial deposits of IgA. None of these patients had clinical or
laboratory evidence of Henoch Schoenlein purpura, systemic lupus erythematosus, liver dis-
ease or received immunosuppressive therapy. Patients were included in the study between
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October 1998 and February 1999. Blood and urine samples were collected, clinical charac-
teristics and laboratory data of the patient group were obtained (Table 1) retrospectively
(observation time 5.9 ± 0.5 years) and prospectively (follow-up time 3.7 ± 0.2 years). 

Renal cortex was obtained from a transplant nephrectomy from a male patient (1977),
with biopsy-proven recurrent IgAN. He was diagnosed with macroscopic hematuria (serum
creatinine 146 µmol/l) in 1993. The renal biopsy of 1996 showed characteristic features of
progressive IgAN, and dialysis was started. In April 2002 he received a cadaveric renal trans-
plantation. Three months later a decline in renal function was observed and a renal biopsy
showed the presence of interstitial nephritis and recurrent IgAN. In a biopsy taken 6 months
following transplantation characteristics of the interstitial nephritis were disappeared, but IgA
was still present. Due to decreased patient compliance there were two episodes of acute
rejection in 2003 and 2004, which eventually led to graft loss. Informed consent was obtained
from all subjects.   

IgA purification
Serum from healthy controls was used for IgA purification, according to methods

described before (9). In brief, serum was applied to an anti-IgA (HisA 43, kindly provided by
dr J. van den Born, Free University Medical Center, Amsterdam) affinity column. IgA was elut-
ed with 0.1 M glycine/ 0.3 M NaCl (pH 2.8). The eluted protein fractions containing IgA, as
assessed by ELISA (31), were pooled and dialysed. The IgA was size-separated with a
HiLoadTM 16/60 HR200 Superdex prep grade gelfiltration column (120 ml, Amersham
Pharmacia, Roosendaal, The Netherlands) into pIgA and mIgA.

Cell culture   
NHMC (normal human mesangial cells, Cambrex, USA) were expanded according to the

protocol provided by the manufacturer. Experiments with NHMC were performed in RPMI with
10 % FCS, 1 % non-essential amino acids, 0.5 % transferrin/insulin/selenium, 1 % sodium
pyruvate, 1 % L-glutamine (all purchased at Gibco/ life Technologies, Paisley, Scotland).
AMC11, a spontaneously growing adult human mesangial cell line (kindly provided by Prof.
Holthofer, Helsinki), was cultured in DMEM with 10 % FCS. Cells were cultured in culture
flasks (Greiner, Frickenhausen, Germany) at 37 ºC in a humidified incubator with 5 % CO2/
95 % air. For passage the cells were harvested by trypsinization (0.02 % (w/v) EDTA/ 0.05 %
(w/v) trypsin in PBS from Sigma (St. Louis, MO)).

Monocyte-derived dendritic cells were generated as described before (32).
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Table 1: Clinical characteristics of the patients with IgAN at the point of serum 
SIgA measurement. 

Number of patients Median Range 
Male/ female 38/ 9 
ACE-inhibitor/AII antagonist 24/ 3 
Age (years) 47 19-69 
Systolic blood pressure (mmHg) 130 100-160 
Diastolic blood pressure (mmHg) 80 55-100 
Proteinuria (g/day) 0.6 0.1-5.2 
Glomerular filtration rate (ml/min) 71 15-137 
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Flow cytometry
Cells were harvested, washed with FACS buffer (0.5 x PBS containing 1 % BSA/ 2.8 %

glucose/ 0.01 % NaN3) and incubated with monomeric and polymeric serum IgA, and SIgA
(Sigma). Following incubation for 1 hour at 4 ºC, cells were washed and incubated for one
hour at 4 ºC with monoclonal anti-IgA Ab 4E8 (IgG1) (31). IgA binding was visualized using
PE-conjugated goat anti-mouse IgG1 (Southern Biotechnology, Birmingham, AL) and
assessed for fluorescence intensity by flow cytometry (FACSCalibur, Cell quest software; BD
Biosciences). Dead cells, identified by propidium iodide uptake, were excluded from analysis.

For analysing the presence of the mannose receptor, anti-mannose receptor antibody
(D547.3; kindly provided by F. Koning, Leiden University Medical Center, Leiden, The
Netherlands) was used followed by PE-conjugated goat anti-mouse Ig (Dako, Glostrup,
Denmark).  For the detection of the two chains of MAC-1, anti-human CD11b (leu-15-PE, BD
Biosciences) and anti-CD18 (IB4, ATCC) were used. 

For inhibition of the binding of SIgA to mesangial cells, the cells were pre-incubated with
purified free SC (100 µg/ml) (33), 10 mM EDTA or 10 mM CaCl2 for 1 hour at 4 ºC.
Subsequently, without washing, SIgA was added and this binding was visualized as described
above. Inhibition of binding of SIgA was also detected with a pre-incubation of IgA for one
hour at 4 ºC; subsequently Alexa-conjugated SIgA was added. After one hour the binding of
Alexa-conjugated SIgA was measured.

Cytokine analysis
Production of IL-6 was measured in supernatants of mesangial cells after 72 hr stimula-

tion. Prior to stimulation, cells were transferred to 48-wells plates (Costar, Corning, NY) at a
density of 25 x 103 cells per well and cultured overnight in culture medium with 0.5 % serum.
Cells were stimulated with IL-1, serum IgA, or SIgA.  The concentration of IL-6 in culture
supernatants was measured by specific ELISA as described previously (34).

RNA extraction and RT-PCR   
Total RNA was extracted from mesangial cells using RNeasy mini kit (Qiagen, Valencia,

CA). OD260/280 ratio was measured to determine the quantity and purity of RNA prepara-
tions. Fixed amounts of total cellular RNA (1 µg) were reverse transcribed into cDNA by
oligo(dT) priming, using M-MLV reverse transcriptase (Gibco/Life Technologies, Breda, The
Netherlands). PCR to detect the human mannose receptor was performed with specific
primers (sense 5'-TTG AGT GGA GTG ATG GGA CC-3'; antisense 5'-TTT CTG GAC CTT
GGC TTC GT-3') using AmpliTaq DNA polymerase (Applied Biosystems, Roche, Mannheim,
Germany). The PCR reaction was performed under standard conditions (35). The cDNA sam-
ples were also subjected to PCR for GAPDH as an internal control (35), PCR products were
resolved on 1 % agarose gels and bands were visualized by ethidium bromide staining.   

Preparation of glomerular eluate
Glomeruli were isolated from a nephrectomized kidney from a transplanted IgAN patient

with recurrent disease. For this purpose the renal cortex was separated from the medulla.
After slicing the cortex in little pieces, the glomeruli were collected on a 150-mesh sieve and
stored at -70ºC with protease inhibitors (Complete, Mini, and Roche). The glomeruli were
washed with PBS and the final pellet was resuspended in 5 ml of elution buffer (2 M KSCN
in 0.01 M phosphate buffer, pH 7.6) as described before (36). After stirring at room tempera-



ture (RT) for 60 min, the suspension was centrifuged at 8,000 g for 15 min at 4ºC in a high-
speed centrifuge (Beckman, Avanti J25-1). The supernatant was collected and dialysed
overnight against PBS. The precipitate that was formed during dialysis was removed by cen-
trifugation for 15 min at 17,000 g and was negative for immunoglobulins. The remaining
supernatant was concentrated to one-third of the original volume.

ELISA for human SIgA, IgA1, IgA2, IgG and IgM
To test the specificity of the antibodies used for the SIgA ELISA, Ninety-six well Nunc

Maxisorp microtitre plate (Gibco/Invitrogen) was coated with 2 µg/ml IgA and BSA in carbon-
ate buffer (pH 9.6) overnight at RT. After washing, the plate was incubated with monoclonal
antibodies (2 µg/ml) specific for secretory component: NI194-4 (IgG1-k; Nordic Immunology,
Tilburg, The Netherlands) (37) or 3F8 (kindly provided by dr R.M. Goldblum, University of
Texas Medical Branch, Galveston) (38) in PBS/ 1 % BSA/ 0.05 % Tween for one hour at 37
ºC. Bound antibody was detected with goat anti-mouse Ig HRP (Dako). Enzyme activity of
HRP was developed using ABTS (Sigma). The O.D. at 415 nm was measured using a
microplate biokinetics reader (EL312e, Biotek Instruments, Winooski, Vermont, USA).

In order to quantify SIgA levels in isolated IgA and serum, a sandwich ELISA specific for
SIgA was developed. Plates were coated with 2 µg/ml monoclonal antibody specific for secre-
tory component (NI194-4; 3F8) in carbonate buffer (pH 9.6) (100 µl/well) overnight at RT.
Subsequently, the plates were washed with PBS/ 0.05 % Tween. Plates were incubated with
IgA or with serum from patients and controls in PBS/ 1 % BSA/ 0.05 % Tween for one hour
at 37 ºC. After washing, bound IgA was detected using mouse anti-human IgA (4E8) conju-
gated to digoxigenin (Dig), followed by F(ab)2 anti-Dig antibodies conjugated to HRP
(Roche). Enzyme activity of HRP was developed using ABTS (Sigma). The O.D. at 415 nm
was measured. A calibration line was produced using purified SIgA (Sigma).

Concentrations of IgA1, IgA2, IgG and IgM in sera and glomerular eluate were determined
using specific ELISAs (39).

Western blot analysis
IgA preparations were subjected to 10% SDS-PAGE under reducing conditions, followed

by semi-dry blotting to PVDF (immobilin-P, Millipore, Bedford, MA). Blots were blocked for 2
hours at RT in TBS/ 0.1 % Tween/ 5 % skim milk powder (Fluka, Buchs, Switzerland). Blots
were subsequently incubated with 2 µg/ml monoclonal antibody specific for secretory compo-
nent (NI194-4) in TBS/ 0.1 % Tween/ 2.5 % skim milk powder overnight at 4 ºC. After wash-
ing with TBS/ 0.1 % Tween, blots were incubated with HRP conjugated goat anti-mouse
immunoglobulin (Dako) for 2 hours at RT. After washing bands were visualized with
Supersignal (Pierce Chemical Co., Rockford, IL) and exposure to HyperfilmTM films
(Amersham Pharmacia).

Statistical analysis
Statistical analysis was performed using the Mann-Whitney test. Differences were consid-

ered statistically significant when p values are less than 0.05. 
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RESULTS

Specific detection of SIgA in human serum
An ELISA system was developed to specifically measure the amounts of secre-

tory IgA in serum. In this system anti-SC antibodies were coated, samples were
applied and SIgA was detected with anti-IgA antibodies. Purified SIgA was readily
detected by this ELISA with a detection limit of 100 ng/ml (Figure 1A). In contrast,
purified monomeric serum IgA is not recognized in the ELISA, even when applied at
high concentrations (Figure 1A). In accordance with previous publications (23), a
specific signal for SIgA could be detected in serum of healthy individuals (Figure
1B). The specificity of this assay is especially dependent on the specificity of the
anti-SC antibody. Using Western blot, we showed that this monoclonal antibody only
recognized the 75 kDa SC (Figure 2A). Furthermore comparison of the NI194-4 anti-
body with another anti-SC antibody 3F8 (38) showed specificity for SIgA both in a
direct ELISA (Figure 2B) as well as in a sandwich ELISA (Figure 2C). 

To determine the molecular size of SIgA in serum, IgA was isolated from serum
using affinity chromatography. Size-fractionation revealed that SIgA was specifical-
ly present in the HMW fractions (Figure 3A). Using the same procedure, IgA was iso-
lated from 8 healthy controls followed by gel filtration. Pools containing pIgA and
mIgA, respectively, were obtained and assessed for the amount of SIgA (Figure 3B).
In all cases, SIgA was demonstrated exclusively in the pIgA pool. 

Next we assessed concentrations of SIgA in serum of 47 IgAN patients and 19
healthy controls (Figure 4A). Both in controls and in patients significant serum con-
centrations of SIgA were detected.  There was no significant difference (p= 0.159)
in the SIgA concentrations in serum of patients (3.3 ± 3.0 µg/ml) compared to con-
trols (2.2 ± 1.2 µg/ml). After comparison the SIgA concentration in serum of IgAN
patients with different clinical parameters there were no correlations found. However
concentrations of SIgA in IgAN patients were more heterogeneous than in controls.
Therefore we divided the IgAN group in patients with elevated levels of SIgA (> 5
µg/ml, mean ± 2 SD of control sera), and patients with normal levels (<5 µg/ml).
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There were no significant correlations with the degree of proteinuria or creatinine
clearance and the serum concentration of SIgA (Figure 4B). However, there was sig-
nificantly more pronounced hematuria in the group with higher levels of SIgA (p=
0.04) (Figure 4B).

SIgA binds to mesangial cells and induces cell activation
After demonstrating the presence of SIgA in the circulation, we investigated its

capacity to interact with mesangial cells. After incubation of the mesangial cell-line
AMC11 or normal human mesangial cells (NHMC) with 200 µg/ml of different molec-
ular forms of IgA, the binding was examined by FACS analysis. Binding of
monomeric serum IgA to NHMC is very low (Figure 5A). In contrast, the polymeric
form of serum IgA showed a clear binding to mesangial cells. However the best
binding was observed with similar concentrations of SIgA, which occurred in a dose-
dependent fashion, present over a wide range of concentrations (Figure 5B).
Although the mean fluorescence intensity of IgA binding to NHMC, compared with
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AMC11, was overall higher for all forms of IgA, the relative differences between the
different forms of IgA were the same.

The different molecular forms of IgA were compared for their capacity to induce
IL-6 production by mesangial cells. Stimulation of NHMC for 72 hours with IgA
resulted in an increased IL-6 production. This increase was most prominent follow-
ing stimulation with SIgA (Figure 6A). The induction of IL-6 production by mesangial
cells was dose dependent: a 17-fold increase was observed compared to the nega-
tive control upon stimulation with 200 µg/ml SIgA (Figure 6B).  

Mesangial cells do not express the mannose receptor (CD206) or MAC-1
(CD11b/CD18)

Recently we showed that dendritic cells are able to bind SIgA via the mannose
receptor (CD206) (40). Therefore we investigated the presence of the mannose
receptor as a potential SIgA receptor on mesangium cells. However both using
FACS analysis (Figure 7A) and RT-PCR (Figure 7B) we were not able to demon-
strate the presence of the mannose receptor on mesangial cells. In both cases, DC
served as a positive control. Similarly, we were not able to demonstrate the pres-
ence of CD11b/CD18 (Figure 7C), recently identified as a co-receptor for SIgA bind-
ing (41). 

Binding of SIgA to mesangial cells is not inhibited by secretory component,
EDTA and calcium

To investigate in more detail the mechanism of binding of SIgA to mesangial
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cells, the cells were pre-incubated with free SC. After pre-incubation with SC the
binding of SIgA to mesangial cells was not affected (Figure 8A). Binding of SIgA was
slightly inhibited with SIgA and pIgA but not with mIgA (Figure 8A), suggesting inter-
action with the IgA part of the molecule. 

To investigate the potential contribution of C-type lectins, a family of cell surface
molecules including the mannose receptor, the role of calcium in SIgA binding to
human mesangial cells was examined. However, neither the addition of extra calci-
um, nor the removal of calcium using EDTA showed a significant effect on the bind-
ing of SIgA to mesangial cells (Figure 8B). 

SIgA is present in glomerular eluate from a kidney of an IgAN patient.
To determine the potential role of SIgA in the pathogenesis of IgAN, we had the

unique opportunity to analyse the glomerular eluate of a nephrectomized specimen
derived from a patient with recurrent IgAN. After elution, concentrations of specific
immunoglobulin isotypes were determined. In the glomerular eluate, all
immunoglobulin classes measured were detectable (Table 2), including SIgA in a
concentration of 2 µg/ml. To exclude that the immunoglobulins in the eluate were the
result of aspecific trapping from the circulation, serum immunoglobulin levels were
determined in the serum of this patient at the time of nephrectomy (Table 2). The
ratio of the immunoglobulin concentrations in the eluate and the serum can be used
as a measure of the specific accumulation in the glomerular deposit (Figure 9). In
this analysis we observed a ratio for SIgA which was 120 fold higher that the ratio
for IgA1. 

DISCUSSION

This is the first study to support a role for SIgA in the pathogenesis of IgAN. We
show that SIgA is present in low concentrations in serum of healthy individuals as
well as in IgAN patients. In patients with higher SIgA serum concentrations hema-
turia is more pronounced. Furthermore we show that SIgA exhibits the strongest
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binding to mesangial cells compared to serum IgA. Finally, in the eluate of glomeruli
from a kidney of an IgAN patient a strong accumulation of SIgA was detected. Taken
together these data suggest an important role for SIgA in the pathogenesis of IgAN.

The high incidence of IgAN recurrence after renal transplantation, and the disap-
pearance of deposits of IgA from accidentally transplanted kidneys clearly suggests
that intrinsic alterations and/or structural characteristics of IgA contribute to the
process of deposition (42,43). The predominance of IgA1 deposits and the specific
hinge region of IgA1 with potential O-linked glycosylation sites, has initiated a direct-
ed search for alterations in glycosylation. Indeed, both in serum but, more important-
ly, also in the eluate of renal deposits (14), a specific reduction of O-linked galacto-
sylation has been observed (10,12,14). Furthermore, with size fractionation of elut-
ed proteins from kidney sections, it was shown that deposited IgA was mostly HMW
of nature (13). In addition based on different staining methods, it has been proposed
that a large part of the deposited IgA is high molecular weight of nature (44-46). 

The results from all these methods provide indirect indications for the composi-
tion of the IgA1 deposits. We now show by eluting glomeruli, that glomeruli show a
strong and specific accumulation of SIgA compared to other serum immunoglobu-
lins. However, this technique can only be applied in limited cases of situations. We
have tried to demonstrate the presence of SIgA deposits using traditional immuno-
fluorescense on cryosections. Until now, we were not able to show SIgA in renal
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Figure 7: Mannose receptor and MAC-1 are not present on mesangial cells.
A) FACS analysis of mannose receptor on DC and AMC11. Filled histograms represent expression
of mannose receptor; open histograms represent the control staining with secondary antibodies B)
Mannose receptor mRNA expression was analyzed by RT-PCR as described in the material and
methods C) Presence of MAC-1 on mesangial cells and DC was tested with FACS analysis. Filled
histograms represent expression of MAC-1. Open histograms represent the control staining with
secondary antibodies.



sections, even not in cryosections of the kidney used for our elution study. This
might be due to inappropriate reagents or conformational changes of the deposited
SIgA, thereby masking the SC epitope. Therefore it will be necessary to generate
other reagents for the detection of deposited SIgA, and a more thorough analysis of
renal biopsies.

As described above, it is assumed that glycosylation of IgA is an important fac-
tor in IgAN. Previous studies have shown the role of the glycosylation of IgA on the
activation of mesangial cells (47,48), which could be partially explained by altered
interaction with mesangial cells (49). The glycosylation of SIgA is different compared
to that of serum IgA in several aspects. First, SIgA is a tetra molecular complex con-
sisting of two IgA molecules, a J chain and the SC wrapped around the H chain.
Modelling of SIgA suggests that the N-glycans on the heavy chain can be masked
by the SC (50). This may also result in a different exposure of the O-glycans.
Moreover, specific analysis of the glycosylation of the IgA heavy chain present in
SIgA, demonstrated different N-glycan structures compared to that of serum IgA,
with terminal GlcNAc residues on the majority of the N-glycans (50). The O-glycans
on the hinge region of the heavy chain of SIgA1 presented a wide range of glycan
structures, of which the major part is now characterized (50).  Finally, also the SC
itself is heavily glycosylated. However we were not able to inhibit the binding of SIgA
to mesangial cells with SC, suggesting that the SC part is not important for interac-
tion with mesangial cells.  It will be a major challenge to isolate SIgA from serum of
IgAN patients and to determine specific alterations in glycosylation.

Having shown that SIgA strongly binds to mesangial cells, an important question
is which receptor is involved in this binding and whether this receptor is different
from that of serum IgA. Several IgA receptors have been described in the literature.
The best known receptors, the polymeric Ig receptor (pIgR), the asialoglycoprotein
receptor and CD89, have already been described to be absent on mesangial cells
(28,51,52). The transferrin receptor is described as an IgA receptor present on
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Figure 8: Binding of SIgA to mesangial cells is not affect by free secretory
component or calcium but is affected by IgA.
A) Mesangial cells were pre-incubated with mIgA, pIgA, SIgA (400 µg/ml) or free secretory
component (SC) (100 µg/ml). After one hour SIgA (200 µg/ml) was added and the binding of SIgA
to mesangial cells was examined with flow cytometry. Depicted is the percentage of SIgA binding
of a representative experiment of 2 experiments. B) Cells were incubated with SIgA (200 µg/ml)
in the presence of absence of EDTA (10 mM) or calcium (10 mM) followed by detection of SIgA
binding as described in the Material and Methods.



mesangial cells but it has been reported that this receptor is not able to bind SIgA
(29). We have previously reported the binding of SIgA to the mannose receptor on
dendritic cells (40), but we were not able to demonstrate the presence of the man-
nose receptor on mesangial cells. Similarly we were not able to demonstrate the
presence of CD11b/CD18 (MAC1), a co-receptor for CD89 specifically involved in
recognizing SIgA or free SC (41). Therefore until now we have no indication for the
mesangial IgA receptor involved in SIgA binding. Our inhibition experiments suggest
that IgA rather than SC is recognized and that no C-type lectin is involved.
Importantly we found that the putative receptor is able to transmit proinflammatory
signals, since SIgA induced a strong dose-dependent increase in IL-6 production by
mesangial cells. This seems in contrast with the proposed anti-inflammatory role of
SIgA (53).

Generation of SIgA, i.e. production of dIgA followed by transcytosis using the
pIgR, is a specific process taking place at mucosal surfaces (54). Interestingly, IgAN
patients often present macroscopic hematuria following upper respiratory tract infec-
tions. Mucosal challenge also leads to an increased production of IgA in the sys-
temic compartment, probably based on the migration of B cells (the mucosa-bone
marrow axis) (55). This mucosa-bone marrow traffic has been confirmed by chal-
lenging healthy individuals intranasally with the neoantigen cholera toxin subunit B
(CTB) (56). In patients with IgAN we observed a reduced mucosal IgA response to
mucosal immunization with CTB (56). At present it is not clear whether a mucosal
challenge also regulates levels of circulating SIgA. Still our finding of glomerular
accumulation of SIgA provides a link between the mucosal immune system and
renal deposits.  

In summary, we have shown that SIgA is able to bind to mesangial cells in a
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Table 2: Immunoglobulin concentrations in serum and glomerular eluate of 
IgAN patient. 

IgA1 IgA2 SIgA IgM IgG 

Serum (mg/ml) 5.9 0.59 0.016 0.74 10

Glomerular eluate (µg/ml) 6.1 0.65 2 2.2 6.8 
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Figure 9: SIgA is accumulated in the glomerular eluate of an IgAN kidney
To make an estimate for the specific accumulation in the glomerular deposit,
immunoglobulin concentrations in the eluate and serum were compared. Depicted is the ratio
of concentration of different immunoglobulins in the eluate and the serum.



dose-dependent manner and that this binding is calcium-independent and cannot be
inhibited with free SC. Furthermore low concentrations of SIgA can be detected in
serum. Further research is needed to determine to which receptor SIgA can bind
and what the mechanism of cell activation induced by SIgA is. SIgA is strongly accu-
mulated in the glomeruli of a kidney from an IgAN patient. Therefore we conclude
that our data support a role for SIgA in the pathogenesis of IgAN, and further
research to define such a pathogenic role is warranted.
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