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Clinical presentation of IgA nephropathy

Primary IgA nephropathy (IgAN) is the most common form of primary glomeru-
lonephritis. The disease shows a broad spectrum of clinical presentations, leading
to progressive renal failure in a substantial proportion of patients. The hallmark of
this disease is deposition of IgA1 in the glomerular mesangium (1-3). In the
glomeruli of patients with IgAN mostly high molecular weight IgA1 is detected,
sometimes together with IgM and/or C3 (4,5). After renal transplantation recurrent
mesangial IgA deposition is observed in 50 % of the patients (6). Case reports have
shown that IgA deposits disappear after transplantation of a kidney with IgA deposits
into a non-IgAN patient (7). These results strongly suggest that IgAN is not only a
disease of the kidney, but also dependent on systemic factors.

Interestingly, patients with IgAN often present macroscopic hematuria following
upper respiratory tract infections. Mucosal immune challenge leads to an increased
production of IgA in the systemic compartment, probably based on the migration of
B cells (the mucosa-bone marrow axis) (8). This mucosa-bone marrow traffic has
been confirmed by challenging healthy individuals intranasally with the neoantigen
cholera toxin subunit B (CTB) (9). In patients with IgAN a mucosal IgA hypo-
response to mucosal immunization with this neoantigen was observed (9).

Since differences in circulating IgA together with IgA binding to mesangial cells
have been proposed to play an important role in the pathogenesis of IgA nephropa-
thy, detailed analysis of circulating IgA and its interactions with cellular receptors is
important.

Histopathology of IgA nephropathy

The most common histological lesion seen in renal biopsies from patients with
IgAN are focal or diffuse mesangial proliferative glomerulonephritis (10). The initial
phase of IgAN is characterized by increase in mesangial matrix but no segmental
sclerosis. Focal proliferative lesions comprise the largest subgroup of IgA nephropa-
thy. The histologic changes range from focal and segmental mesangial proliferative
glomerulonephritis to focal glomerulonephritis with segmental endocapillary cell pro-
liferation, with or without crescent formation. Associated with these variable expres-
sions of glomerular pathology are variable degrees of tubular atrophy, interstitial
fibrosis, and interstitial inflammation comprised of lymphocytes,
monocytes/macrophages, and plasma cells. The number of macrophages in the
glomeruli correlates with the presence of crescents and proteinuria (11).
Furthermore, more monocytes and T-cells were found in biopsies of patients with
active disease as compared to those without disease activity (12).

Immunohistochemistry has revealed that IgA deposits mainly consist of the IgA1
subclass (13,14), and commonly occur with co-deposits of C3, IgG, and, less com-
mon, IgM (15). The predominance of IgA1 deposits and the specific hinge region of
IgA1 with potential O-linked glycosylation sites have initiated a directed search for
alterations in glycosylation. Indeed, in the eluate of renal deposits, a specific reduc-
tion of O-linked galactosylation has been observed (16,17). Furthermore, with size
fractionation of eluted proteins from kidney sections, it was shown that deposited
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IgA is mostly high molecular weight of nature (18). Additional evidence for the dep-
osition of high molecular weight IgA was obtained from immunohistochemical analy-
sis of renal tissue (14,19,20). 

Composition of IgA

IgA is the most abundant class of immunoglobulin synthesized in humans, with
66 mg of IgA/kg of body weight produced daily compared to 34 mg of IgG and 8 mg
of IgM. The half life of IgA in the circulation is 6 days. Almost all circulating IgA (2
mg/ml) is produced in the bone marrow and the liver is involved in the catabolism of
the circulating IgA. Only negligible amounts (1 mg/ kg bodyweight/ day) of the total
IgA produced in the bone marrow, spleen and lymph nodes (20 mg/ kg bodyweigth/
day) reach the external secretions (21). The other part of the IgA (46 mg/ kg body-
weight/ day) is produced at the mucosal sites and is secreted efficiently as secreto-
ry IgA (SIgA).

General composition
Human IgA exists as two isotypes, IgA1 and IgA2, with IgA2 having two allotyp-

ic variants: IgA2m(1) and IgA2m(2). The human IgA subclasses differ at 14 amino
acid (aa) positions in the α-chain sequence. α-Chains have three constant region
domains Cα1 to Cα3 (Figure 1A). IgA2 of the A2m(2) allotype differs from A2m(1)
and IgA1 in 6 positions; 2 in Cα1 and 4 in Cα3. The Cα3 domain is the same for
IgA1 and IgA2m(1). The Cα2 domain is the same for both A2 allotypes and differs
from IgA1.

A major difference between IgA1 and IgA2 occurs in the hinge region. IgA2 mol-
ecules lack a 13-aa segment found in the hinge region of IgA1 molecules, which
contain 5 potential O-linked carbohydrate sites.

Serum IgA
Human IgA in serum exists with an IgA1: IgA2 ratio of about 9:1 (22,23) and is

found in different molecular forms: monomeric IgA (mIgA), composed of two heavy
and two light chains; dimeric IgA (dIgA), consists of two IgA molecules linked with a
joining (J-) chain. Finally, in serum also additional high molecular weight forms of IgA
can be recognized, generally described as polymeric IgA (pIgA). The composition of
human serum polymeric IgA is diverse and may include CD89/IgA complexes, IgA
immune complexes and IgA-fibronectin complexes (24). In humans, circulating IgA
primarily consists of monomeric IgA (mIgA), and only 10-20% of the IgA is found in
high molecular weight IgA (dIgA and pIgA) forms. In contrast, in rodents IgA is most-
ly present in a high molecular weight form (25). 

Secretory IgA
Secretory IgA (SIgA) is the major immunoglobulin responsible for protecting the

mucosal surfaces. To generate SIgA, dimeric IgA with the attached J-chain is pro-
duced in plasma cells close to the epithelium. The epithelial cells express on the
basolateral side the polymeric Ig receptor (pIgR) that binds to dIgA; this complex is
translocated through the epithelial cell (transcytosis). During transcytosis the extra-
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cellular part of the pIgR, the secretory component (SC), is covalently linked to dIgA.
At the mucosal surface the secretory component is cleaved from the pIgR and
secretory IgA is secreted. Besides the presence of SIgA in the mucosa, low levels
(10 µg/ ml) of SIgA can be detected in serum (Figure 1B) (26,27).
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Figure 1: proposed domain structure of human monomeric IgA
A) The α heavy chain contains 3 constant domains Cα1, Cα2 and Cα3 and 1 variable
domain VH. The light chain contains 1 constant domain CL and 1 variable domain
VL. Positions of disulfide bonds (S), N- (N) and O-(O) linked glycosylation sites are
indicated. (adapted from (30)). B) Pathway of pIgR through an epithelial cell (adapted
from (104))
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Glycosylation of serum IgA

Glycans contribute 6 to 7 % of the total molecular mass of IgA1 and 8 to 10% of
the total mass of IgA2 proteins. The higher carbohydrate content in IgA2 proteins is
the result of additional N-linked oligosaccharide side chains (28). Human IgA1 con-
tains two conserved N-glycosylation sites in each α-chain (Asn263 and Asn459),
while the IgA2 subclass contains an additional two (IgA2m(1)) or three (IgA2m(2))
conserved N-glycans (29). The number, the type and the terminal sugar residues
vary between proteins of IgA subclasses but also within one subclass (Figure 2)
(30). Serum IgA contains complex type N-linked carbohydrate moieties. Biantennary
structures accounted for 86 % of the N-linked glycans on IgA whereas 14 % of the
oligosaccharides were multiantennary or extended (31). 

IgA1 is one of the few serum proteins and unique among circulating immunoglob-
ulins in having O-glycosylation as well as N-glycosylation sites. These O-glycosyla-
tion sites are restricted to the hinge region of IgA1, which contains four to five short
chains. The O-glycans are relatively simple sugars in which N-acetylgalactosamine
(GalNAc) is O-linked to a serine or threonine residue. The glycan is completed with
a terminal galactose (Gal) with or without additional sialic acid residues (NeuNAc)
(Figure 2).

Glycosylation of SIgA

The glycosylation of SIgA is different compared to that of serum IgA in several
aspects (Figure 2). Modelling of SIgA suggests that the N-glycans on the heavy
chain can be masked by the SC (32). This may also result in a different exposure of
the O-glycans. Moreover, specific analysis of the glycosylation of the IgA heavy
chain present in SIgA, demonstrated different N-glycan structures compared to that
of serum IgA. Specifically, terminal GlcNAc residues are present on the majority of
the N-glycans of SIgA (32). The O-glycans on the hinge region of the heavy chain
of SIgA1 presented a wide range of glycan structures, of which the major part is now
characterized (32). Finally, also SC itself is heavily glycosylated. 

The J chain (16 kDa) contains a single carbohydrate side chain linked to
asparagine. This N-linked glycan is approximately 8 % of the molecular mass of J
chain. This chain consists of fucose, mannose, galactose, N-acetylglucosamine and
sialic acid. The N-glycan appears to be critical to polymer formation between J chain
and IgA monomer subunits (Figure 2) (33). 

Free secretory component (SC) was isolated from mucosal secretions as well as
associated with SIgA. SC (70 kDa) consists of five immunoglobulin-like domains
with approximately 22 % of the total molecular mass of SC contributed by carbohy-
drates. The 5 to 7 site chains contain N-acetylglucosamine, fucose, mannose,
galactose and sialic acid, N-glycosidic linked to the protein backbone (Figure 2)
(34).
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Effector functions of IgA

IgA plays an important role in providing protection at mucosal surfaces. Passive
protection by SIgA, secreted by the mucosal immune system, plays a central role in
the protection of mucosal surfaces in general. Mechanisms of protection by SIgA at
mucosal surfaces are: inhibition of adherence (SIgA appears to surround a microbe
and other particulate antigens with a hydrophilic shell that repels attachment to a
mucosal surface), agglutination, mucus trapping (SIgA diffuses freely through
mucus (35)), neutralization of enzymes and toxins, and interaction with innate
antimicrobial factors. On the other site there is increasing evidence that serum IgA
is able to trigger effector functions that have the potential to destroy micro-organ-
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Figure 2: prototype structures of O- and N-linked
carbohydrates identified on the heavy chain of
serum and secretory IgA, the J chain and
secretory component (30,32). ± indicates that some
chains terminate at the site of the preceding sugar
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isms, including: interaction with the complement pathway (although the level of acti-
vation differs between isotypes), interaction with Fc receptors on leukocytes, and
epithelial cells (Figure 3).

Complement activation
The complement system is a key component of our innate immune system and

is comprised of a complex of at least 30 proteins and regulators. The liver is the
main source of complement synthesis. The complement molecules constitute
approximately 5 % of the total serum proteins. Three principle pathways are
involved in complement activation, the classical pathway, the alternative pathway
and the lectin pathway, each with their own recognition mechanism. These path-
ways converge at the central component of the complement system, C3. The final
common pathway leads to the formation of a protein complex on a complement-acti-
vating surface, named the membrane attack complex (MAC) (Figure 4). IgA can acti-
vate complement via the alternative pathway and the lectin pathway (36,37). The
lectin pathway can be activated via the recognition molecules mannose-binding
lectin (MBL), H-ficolin and L-ficolin. IgA can interact with MBL and thereby activate
the lectin pathway as demonstrated by activation and deposition of C4 (37), where-
as for the ficolins no IgA binding data are available yet. 
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Figure 3: Biological consequences of the interaction of IgA with various cell
types (adapted from (30)).
Cells of the myeloid lineage (neutrophils, eosinophils, monocytes, and macrophages) express CD89
through which these cells can be activated by IgA. B cells produce IgA, whereas T cells are
important for the regulation of the IgA production. The interaction of IgA with Natural Killer (NK) cells
may be mediated by lectin-like receptors for carbohydrate determinants. Epithelial cells transport
dIgA to the apical surface where it release SIgA. Hepatocytes are important in the clearance of IgA
from the circulation.
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IgA receptors 
Different IgA receptors are described in literature (Table 1). These receptors

belong to two major families of receptors, namely the Ig superfamily and the lectin
family. The known receptors for IgA in the Ig superfamily are the FcαRI (CD89), the
Fcα/µR and the polymeric Ig receptor. The polymeric Ig receptor is present on
epithelial cells and is important for the transcytosis of IgA to the mucosal surfaces
(38). The known receptors for IgA in the lectin family are the asialoglycoprotein
receptor (ASGPR) and the mannose receptor. The ASGPR is present on hepato-
cytes and is important for clearance of IgA (39). The ligand specificity for ASGPR is
terminal galactose. The other IgA receptor in the lectin family, the mannose recep-
tor, is present on dendritic cells and macrophages, and can bind and internalize
SIgA without inducing maturation in dendritic cells (40). This binding of SIgA to the
mannose receptor is sugar dependent and can be blocked with mannose, fucose
and N-acetylglucosamine.

FcαRI (CD89)
FcαRI (CD89) is an IgA receptor, which is constitutively expressed on polymor-

phonuclear leukocytes (PMN), monocytes, eosinophils, and selected macrophages
(41). CD89 is also expressed on Kupffer cells in the liver. It was suggested that
CD89 on Kupffer cells provides a second line of defence in mucosal immunity (42).
Initially it has been suggested that CD89 might be an IgA receptor at the surface of
mesangial cells (43), however it is now widely accepted that CD89 is not expressed
by mesangial cells (44-47). CD89 consists of two extracellular Ig-like domains with
potential N- and O-linked glycosylation sites, followed by a stretch of hydrophobic
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amino acids representing the predicted transmembrane domain, with a positively
charged arginine which is essential for association of CD89 with the FcR γ-chain
homodimer-signalling subunit (48), and a short cytoplasmic tail devoid of recognition
signalling motifs (Figure 5). The protein core of CD89 has a predicted molecular
mass of 30 kDa with differential glycosylation at six potential N-linked sites, and the
probability of additional O-glycosylation contributing to the variable size observed for
the mature receptor, 55-75 kDa on monocytes and neutrophils, 70-100 kDa on
eosinophils. The site of interaction between CD89 and IgA was identified in the first
extracellular domain of CD89 (49,50) and in the Cα2/Cα3 junction of IgA (51,52). 

CD89 participates in different aspects in host defence. CD89 induces phagocy-
tosis of IgA complexed antigens (53), initiates antibody-dependent cellular cytotoxi-
ty (54) and CD89 is important for the clearance of IgA from the circulation (48). Upon
activation, a soluble form of CD89 is released from the surface of monocytes and
monocytic cell lines (55). These soluble CD89 molecules circulate in a complex,
covalently linked with IgA, in the high molecular weight fractions of serum IgA (56).
Binding studies with different molecular forms of IgA have shown that pIgA binds
better to CD89 than mIgA (54,57,58). Furthermore one study suggested that SIgA
can only interact with CD89 if MAC-1 (CD11b/ CD18) is present (59).

To study the role of the IgA-CD89 interaction mouse models were used. Although
CD89 is described on human myeloid cells, no murine homolog has yet been
defined. Therefore transgenic mouse models have been created, including a model
in which the CD11b promoter was used (60). In this model human CD89 was high-
ly expressed on macrophages/ monocytes. These transgenic mice develop sponta-
neously massive mesangial IgA deposits after 12 weeks, suggesting a role for CD89
in IgA nephropathy (60).

Fcα/µR
The Fcα/µR, located on chromosome 1, is a newly identified receptor for IgA.

Transcription of the receptor is demonstrated in several tissues including thymus,
spleen (B cells and macrophages, but not on granulocytes, T cells or NK cells), liver,
kidney, small and large intestines, testis and placenta (61,62). Furthermore, tran-
scription of the Fcα/µR was described on mesangial cells and was upregulated after
stimulation of mesangial cells with IL-1 (63).

The Fcα/µR is a type 1 transmembrane protein with a 32-aa leader sequence, a
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Table 1: Receptors with IgA binding capacities

Receptor Ligand Cellular distribution
Ig 
family FcαRI (CD89)

pIgA> 
mIgA Myeloid cells

Fcα/µR IgA/ IgM B cells,Macrophages,Mesangial cells
pIgR dIgA Epithelial cells

C-type ASGPR IgA Hepatocytes
lectins Mannose receptor (CD205) SIgA Macrophages,Dendritic cells

Transferrin receptor (CD71) IgA1 Mesangial cells



423-aa extracellular domain, a 20-aa transmembrane domain and a 60-aa cytoplas-
mic region. The extracellular domain has four potential sites for NH2-linked glycosy-
lation (61), leading to a mature protein of 60- 70 kDa. In the extracellular domain of
the receptor cysteine residues are identified and it is flanked by the consensus
sequence for immunoglobulin-like domains, indicating that this molecule is a mem-
ber of the immunoglobulin super family. The Fcα/µR shows no significant homology
with other proteins. However, in the immunoglobulin like domain there is a motif that
is conserved in the first immunoglobulin like domain of the polymeric Ig receptor
(Figure 5) (61). 

The Fcα/µR mediates endocytosis of immune complex composed of
Staphylococcus aureus and IgM anti-S. aureus antibody by primary B lymphocytes
(61). The underlying mechanism of this internalization is not yet known. However,
experiments with Fcα/µR mutants suggest that the di-leucine motif is important in
this process (61). Furthermore, the Fcα/µR acquires the ability to bind IgM and IgA
antibodies after stimulation of B cells.

IgA receptors and mesangial cells 

The binding of high molecular weight IgA is better to mesangial cells than that of
monomeric IgA. However the specific mechanism for the binding and retention of
IgA1 remains uncertain. Several findings point to an IgA-specific receptor(s) on
mesangial cells (41,64). However none of the known IgA receptors (CD89, ASGPR,
pIgR) is expressed on mesangial cells (45,47). Two other receptors have recently
emerged as candidate receptors for binding IgA; CD71 (transferrin receptor) and the
Fcα/µR (63,65,66).  CD71 expression is enhanced in the glomeruli of IgA nephropa-
thy patients and co-localizes with IgA1 deposits. Mesangial cells bind both IgA sub-
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Figure 5: structure of Fcα /µR and of CD89 with the γ-chain.
The extracellular, membrane and cytoplasmic domains of the Fcα/µR and
CD89 as well as the γ-chain with its signalling motifs are depicted.
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classes, whereas CD71 binds only IgA1, suggesting involvement of an additional
receptor. Theoretically, it may be the Fcα/µR that can be transcribed by mesangial
cells in vitro (63). In contrast, another group found that polymeric IgA1 from IgA
nephropathy patients induces macrophage migration inhibitory factor (MIF) and
TNF-α in mesangial cells. This induction is probably through an unidentified IgA
receptor, as shown by failure to suppress IgA-induced MIF synthesis by blocking IgA
receptors with specific antibodies or various ligands to IgA receptors (67). 

IgA in IgA nephropathy 

Several studies using lectin interactions (Table 2) and fluorophore-assisted car-
bohydrate electrophoresis (FACE) focused on the analysis of IgA glycosylation,
showing aberrant O-glycosylation in circulating IgA from IgAN patients, resulting in
increased Tn antigen (GalNAcβ1-Ser/Thr) residues (68-71). This undergalactosylat-
ed IgA1 may lead to recognition by IgG antibodies and generation of circulating IgG-
IgA1 complexes (72). Furthermore, altered interaction with mesangial cells has
been described (73). This aberrantly O-glycosylated IgA is suggested to be depend-
ent on a hampered function of the β1-3 galactosyltransferase (74). Furthermore, it
is suggested that downregulation of the β1-3 galactosyltransferase chaperone
(Cosmc) is important for the aberrant O-glycosylation in patients with IgAN (75). 

Levels of plasma IgA1 are elevated in about half of the patients with IgAN (76-
78), which appears to be the result of an increased production of this isotype by the
bone marrow (79-82) and by a low elimination rate by the liver. Mucosal pIgA plas-
ma cell numbers are normal or even reduced in IgAN (83,84), whereas pIgA anti-
body levels in mucosal secretions are not elevated and are sometimes lower than
controls (9). Furthermore, systemic antigen challenge results in increased titers of
circulating pIgA1 antibodies (85,86) with normal levels in mucosal secretions (87).

IgA and mesangial cells 

Functional studies with purified IgA from IgAN patients showed that IgA from
IgAN patients binds better to mesangial cells than IgA healthy individuals (73),
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Table 2: Reactivity of lectins used for analysis of IgA glycosylation 

Name Abbreviation Sugar specificity
Artocarpus integrifolia Jacalin Galβ1-3GalNAc
Helix aspersa HAA GalNAc
Vicia villosa VV GalNAc
Helix pomatia HPO GalNAc
Erythrina crystagalli ECL Galβ1-4GlcNAc
Ricinus communis RCA βGal
Sambucus nigra SNA NeuNAc
Peanut agglutinin PNA Galβ1-3GalNAc



although this is still controversial (88). The binding of polymeric and aggregated IgA
to mesangial cells was stronger as compared to monomeric IgA. Moreover, polymer-
ic IgA with the highest net negative charge is superior in binding to mesangial cells
(73). In IgAN circulating aberrantly glycosylated IgA1 has been described. To mimic
this IgA, IgA1 was purified with Jacalin and in vitro degalactosylated. The removal
of galactose residues from IgA1 isolated with Jacalin increases binding to mesan-
gial cells in vitro (89). 

The activation of mesangial cells by IgA1 immune complexes is considered the
initiating event in the pathogenesis of IgA nephropathy. Mesangial cell activation
was observed in vitro in many instances (90-93). Exposure of mesangial cells to IgA
is capable of initiating a proinflammatory cascade involving mesangial cell secretion
of IL-1β, TNF-α , IL-6, TGF-β and MIF and the release of the chemokines  MCP-1
(CCL2), IL-8, and IP-10 (91,94-97). After stimulation of mesangial cells with
degalactosylated IgA the production of these factors is higher as compared to con-
trol IgA. In vivo, urinary IL-6 (98), the tubular and interstitial expression of intercellu-
lar adhesion molecule type 1 (99), and the intrarenal expression of proinflammato-
ry cytokines and chemokines (100) correlated with renal injury and may have prog-
nostic value. 

IgA is also capable of altering mesangial cell-matrix interactions by modulating
integrin expression, and this could have an important role in remodeling of the
mesangium following glomerular injury (101). There is also evidence that activation
of mesangial cells by co-deposited IgG could synergistically contribute to the devel-
opment of a proinflammatory mesangial cell phenotype and thereby influence the
degree of glomerular injury (102). It is not yet clear which specific physicochemical
properties of mesangial IgA affect mesangial cell activation; however, there is some
in vitro evidence that undergalactosylated IgA glycoforms from patients with IgAN
reduce proliferation, increase nitric oxide synthesis and the rate of apoptosis, and
enhance integrin synthesis in cultured mesangial cells (101,103). This, together with
the overrepresentation of aberrantly glycosylated IgA1 in mesangial IgA, suggests
that IgA1 O-glycosylation plays a role in both the deposition of IgA and the subse-
quent injury.

Scope of this thesis 

For a better understanding of the role of IgA and mesangial cells in IgA nephropa-
thy, we focused on different questions in the course of the disease. In chapter 2 and
3 we focused on the possible receptor mechanisms underlying mesangial IgA dep-
osition. Therefore we studied the interaction of IgA with CD89 in different binding
assays. We showed a similar association to CD89 for monomeric and polymeric IgA
(chapter 2). CD89 is described not to be present on mesangial cells, whereas the
recently identified Fcα/µR is suggested to be expressed by mesangial cells. To
investigate the role of the Fcα/µR in IgA nephropathy we produced fusion proteins
of this receptor and used these fusion proteins for IgA binding studies (chapter 3). 

Because it is suggested that IgAN is not only a disease of the kidney, but also
dependent on systemic factors we investigated in chapter 4 to chapter 8 which
changes in IgA lead to the deposition of IgA in the glomeruli. Therefore, we investi-
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gated in chapter 4 the activation of the lectin pathway of complement via IgA in
glomeruli of IgAN patients. We show that activation of the lectin pathway of comple-
ment in the glomeruli of patients with IgAN is associated with more severe renal dis-
ease. In chapter 5 we isolated IgA from patients and controls and separated this IgA
in monomeric and polymeric IgA. With these IgA preparations we investigated the
differences between monomeric and polymeric IgA between patients and controls
including the interaction with lectins and mesangial cells. In this study we observed
clear differences between monomeric and polymeric IgA for lectin and mesangial
cell interactions, but there were no differences between patients and controls.
However, the concentration of SIgA in the polymeric IgA preparations was signifi-
cantly higher in patients as compared to controls. This suggests that only a minor
part of the IgA from patients might be different from controls. Finally, we demonstrat-
ed that SIgA is able to bind stronger to mesangial cells than serum IgA, and that
SIgA is present in glomerular IgA deposits (chapter 6). To confirm the presence of
SIgA in the glomerular IgA deposits we studied the presence of SIgA in biopsies
from IgAN patients. We showed in chapter 7 that in 15 % of the cases SIgA is
detectable in the glomerular IgA deposits. Finally, chapter 8 summarizes the studies
described in this thesis and discusses the relevance of these new findings.
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