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Confinement-deconfinement transition due to
spontaneous symmetry breaking in quantum Hall
bilayers
D.I. Pikulin1,2,3, P.G. Silvestrov4 & T. Hyart3,5

Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton

condensate phases. Interest in quantum spin Hall effect in these systems has recently put

them in the spotlight. We investigate such a bilayer in an external magnetic field. We show

that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate

state. Existence of the counterpropagating edge modes in this system results in formation of

a ground state spin-texture not supporting gapless single-particle excitations. The charged

edge excitations in a sufficiently narrow Hall bar are confined: a charge on one of the edges

always gives rise to an opposite charge on the other edge. Magnetic field and gate voltages

allow the control of a confinement-deconfinement transition of charged edge excitations,

which can be probed with nonlocal conductance. Confinement-deconfinement transitions are

of great interest, not least because of their possible significance in shedding light on the

confinement problem of quarks.
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T
he role of the electron–electron interactions for the
experimentally accessible topological media is best
appreciated in quantum Hall (QH) systems. The

fractionally charged quasiparticles have been studied at the
fractional filling factors1,2, and the non-abelian excitations of
more exotic QH states may eventually lead to a revolution in
quantum computing3–7. However, Coulomb interactions play a
crucial role also in the case of the integer filling factors1,8–13.
Remarkably, interactions create a QH ferromagnetic ground state
at total filling fraction v¼ 1 even in the absence of Zeeman
energy. In such systems, the SU(2) spin rotation symmetry is
spontaneously broken, resulting in the low-energy excitations
being spin waves and charged topological spin textures,
skyrmions1,8,12,13. The presence of a small symmetry-breaking
Zeeman field does not change the low-energy excitations
qualitatively.

In QH bilayer systems the role of spin is played by the layer
index (pseudospin)8,10,11,13. In this case the SU(2) pseudospin
rotation symmetry is explicitly broken by the interactions, as they
are larger within the layers than between the layers. The
interactions favour the pseudospin orientations in (x, y)-plane,
where the direction is chosen spontaneously (spontaneous U(1)
symmetry breaking) so that the QH bilayers realize an easy-plane
ferromagnet. Since the spontaneously chosen direction in the
(x, y)-plane corresponds to a spontaneous interlayer phase
coherence, this easy-plane ferromagnetic state is equivalent to
an exciton condensate11,13.

The QH ferromagnet and QH exciton condensate in electron–
electron bilayers support a single chiral edge mode. However, the
two Landau levels may also support counterpropagating edge
modes. The natural hosts of such kind of QH states are systems
supporting quantum spin Hall (QSH) effect14–19 due to inverted
electron-hole bandstructure. In these materials the magnetic
field allows tuning through the Landau level crossing20,21, where
we expect to find a QH state with spontaneously broken
(pseudo)spin-rotation symmetry. Thus, we argue that there
exist four different experimentally accessible pseudospin
ferromagnetic states, determined by spontaneously broken
symmetry (SU(2) in single layer and U(1) in bilayer systems)
and the edge structure (chiral or helical). All these possibilities are
illustrated in Fig. 1.

In this paper, we concentrate on the helical QH exciton
condensate state (broken U(1) symmetry and helical edge
structure). Remarkably, we find that in this system the charged
edge excitations in a sufficiently narrow Hall bar are confined:
a charge on one of the edges is always connected to the opposite
charge on the other edge through the bulk by a stripe of rotated
pseudospins, and thus low-energy isolated charged excitations
cannot be observed. The gapless single-particle excitations are
prohibited since the electron–electron interactions lead to an edge
reconstruction and opening of a single-particle gap22,23. However,
unlike it happens in the existing examples, the helical exciton
condensate creates long-range correlations between edges.
We show that a magnetic field and gate voltages can be used to
tune in and out of the exciton condensate phase. Thus this
system provides a unique opportunity to study a confinement-
deconfinement transition, similar to the one which is
hypothesized to liberate the quarks from their color
confinement at extremely high temperatures or densities24.
Finally, we show that the confined and deconfined phases can
be distinguished using non-local conductance.

Results
Helical quantum Hall exciton condensate phase. We consider
bilayer QSH systems, such as InAs/GaSb17–19, described by the
BHZ Hamiltonian15,17 (Supplementary Note 1). The important
property of these systems is that there is a crossing of electron and
hole Landau levels as a function of magnetic field at B¼Bcross

(refs 20,21; Fig. 2a and Supplementary Fig. 1), where the band
inversion is removed. Near this crossing the single-particle
Hamiltonian is (Supplementary Note 1):

Ĥ0 ¼
X

k

½ĉyk;"ĉk;" � ĉyk;#ĉk;#�EGðkl2
BÞ; ð1Þ

where EGðyÞ ¼ EGðkl2
BÞ is the energy–momentum dispersion of

Landau levels and ĉw
k"ð#Þ are the electron creation operators for

the lowest electron and hole Landau levels. Here we have fixed the
total filling factor of the Landau levels nT ¼ n" þ n# ¼ 1, and used
the fact that the momentum k in the Landau level wavefunctions
is directly connected to the position y in the real space.
Importantly, the spin and layer degrees of freedom are locked
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Figure 1 | Four different types of QH pseudospin ferromagnetic states at v¼ 1. The single layer realizations (a,c) realize Heisenberg ferromagnets

because the interactions have SU(2) symmetry. The bilayer QH exciton condensates (b,d) can be described as an easy-plane ferromagnet with a

spontaneously broken U(1)-symmetry. We argue that the classification is additionally enriched as the QH systems can support either chiral (a,b) or helical

(c,d) edge excitations.
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with each other, so that the pseudospin " ð#Þ means
simultaneously up (down) spin and upper (lower) layer. The
Fermi level is set to be at zero energy.

In the bulk the energy EG(y)¼ EGb is independent of the
momentum (EGbo0 for BoBcross and EGb40 for B4Bcross).
When approaching the edge the Landau level originating from
the electron (hole) band always disperses upwards (downwards)
in energy. The spatial variation of EG(y) occurs within a
characteristic length scale l0lB, which depends on the details of
the edge, but due to topological reasons EG(y)40 reaches
extremely large values (on the order of the energy separation
between the bulk Landau levels) close to the edge (Supplementary
Note 1). Therefore, for the magnetic fields BoBcross, EG(y) goes
through zero near the edge, yielding to the helical edge states
(Fig. 2b). On the other hand for B4Bcross the edge is gapped in
the non-interacting theory (Fig. 2c).

The electron–electron interactions ĤI are described by

ĤI ¼
1
2

X
s;s0

X
k;k0;q

Vss0
P ðk� k0; qÞĉyksĉ

y
k0;s0 ĉk0 þ qs0 ĉk� qs; ð2Þ

where Vss0
P ðk� k0; qÞ is obtained by projecting the Coulomb

interactions to the subspace generated by the wavefunctions of
the lowest Landau levels (Supplementary Note 2). Here we
assumed that the higher Landau levels are energetically separated
from the lowest ones by an energy gap larger than the
characteristic energy scale of the Coulomb interactions
VC ¼ e2=ð4pEE0lBÞ. We find that this assumption can be satisfied
with the material parameters corresponding to InAs/GaSb
bilayers25.

To find the ground state of the Hamiltonian Ĥ ¼ Ĥ0þ ĤI , we
consider states where the local direction of the pseudospin h(r)
(|h(r)|¼ 1) varies in space. Because the Hamiltonian is transla-
tionally invariant in the x direction, we assume that h(r) is
independent of x (It is known that for sufficiently large interlayer
separation the quantum Hall bilayers display an instability
towards formation of a charge density wave ground state26.
Here we assume that the interlayer separation is small enough

that such kind of instability does not occur.). By further noticing
that the y-dependence translates to a momentum dependence of
the pseudospin hiðyÞ ¼ hiðkl2

BÞ, we can express our ansatz for the
ground state many-particle wavefunction as a Slater determinant
C½hðkl2

BÞ�
�� �

, where for each momentum k we create an electron
with pseudospin pointing along hðkl2

BÞ. To compute the ground
state, we need to minimize the energy functional for such kind of
pseudospin texture13. For the energy functional we obtain
(Supplementary Note 2)

E ¼E0�
X
k;k0

X
i¼x;y

VXY
P ðk� k0Þhiðkl2

BÞhiðk0l2
BÞ

(

þVZ
P ðk� k0Þhzðkl2

BÞhzðk0l2
BÞ
)
þ
X

k

EGðkl2
BÞhzðkl2

BÞ:
ð3Þ

Here VZ
P ðqÞ ¼ ½�V""P ðq; 0ÞþV""P ðq; qÞþV"#P ðq; 0Þ�=4 and

VXY
P ðqÞ ¼ V"#P ðq; qÞ=4 are the interaction coefficients, which

characterize the anisotropy of the interactions within a layer
and between the layers.

We start by considering an infinite system. In this case,
the pseudospin direction h(r) is spatially homogeneous. By
minimizing the energy functional (3), we find that the
pseudospin direction hb is determined by the parameters EGb

and VZðXYÞ
0 ¼

P
q VZðXYÞ

P ðqÞ (Supplementary Note 3). Here EGb

acts as an effective magnetic field preferring the pseudospin
direction along � sgnðEGbÞêz . On the other hand, the interactions
prefer the pseudospin directions within the (x,y)-plane
(VXY

0 4VZ
0 ), and the energy cost to rotate the pseudospin so that

it points along the z direction is proportional to VXY
0 �VZ

0 . Thus,
as a balance between these two competing effects, the direction of
the pseudospin is tilted away from the (x, y)-plane, resulting in
the three distinct phases of the system, which are summarized in
Fig. 3. For sufficiently large |EGb|, we see that |hzb|¼ 1, meaning
that only one layer is occupied. The phases hzb¼ 1 (uncorrelated
helical QH phase) and hzb¼ � 1 (trivial QH phase) are

E 0
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B
cr
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s

C↑ = +1 C↑ = 0

C↓ = –1 C↓ = 0

B < Bcross

B > Bcross

Lower layer, spin downE
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y ≡ kl2B

y ≡ kl2B
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c

B

Figure 2 | Magnetic field and momentum dependence of the lowest

Landau level energies. (a) There exists a robust crossing of the lowest

Landau level energies as a function of magnetic field at B¼ Bcross, because

the energy of the electron-like Landau level with spin up (red line) increases

and the energy of the hole Landau level with spin down (blue line)

decreases as a function of B. We denote the energy separation between

these two levels as 2EGb. (b,c) Momentum (or equivalently position)

dependencies of the lowest Landau level energies. The electron-like

(hole-like) Landau level bends upwards (downwards) in energy near the

edge of the sample. (b) For BoBcross the system supports helical edge

modes protected by spin-resolved Chern numbers C" ¼ �C# ¼ 1. (c)

For B4Bcross the edge is gapped according to the non-interacting theory

(C" ¼ C# ¼ 0).
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Figure 3 | Phase diagram. For EGbo� 2ðVXY
0 �VZ

0Þ the system supports an

uncorrelated helical QH phase. In this phase, there is no spontaneous

interlayer phase coherence in the bulk (h2
xbþ h2

yb ¼ 0) and the system

supports helical edge states (guaranteed by spin-resolved Chern numbers

C"=# ¼ � 1). For EGbj jo2 VXY
0 �VZ

0

� �
the system supports a helical QH

exciton condensate phase. In this phase, there is spontaneous interlayer

phase coherence (h2
xbþ h2

yb 6¼ 0), and the system supports exotic confined

edge excitations (see below). For EGb42ðVXY
0 �VZ

0Þ the system is in a trivial

QH phase, where the edge is fully gapped. EGb can be controlled with gate

voltages or magnetic field (If EGb=VXY
0 is varied with magnetic field the ratio

VXY
0 =VZ

0 will change within the phase-diagram. Nevertheless, we find that

the phase-diagram stays qualitatively similar). Charged bulk excitations are

gapped everywhere in the phase diagram (Egap,s40). We have chosen

VZ
0=VXY

0 ¼ 1=2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10462 ARTICLE

NATURE COMMUNICATIONS | 7:10462 | DOI: 10.1038/ncomms10462 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


topologically distinct from each other. For EGbo� 2ðVXY
0 �VZ

0 Þ
and hzb¼ 1 the system supports helical edge modes (the spin-
resolved Chern numbers are C"=# ¼ � 1). On the other hand,
in the regime EGb42ðVXY

0 �VZ
0 Þ and hzb¼ � 1, the edge is

completely gapped (the spin-resolved Chern numbers are
C"=# ¼ 0). Between these two phases is the helical QH exciton
condensate phase, where |hzb|o1 and thus h2

xbþ h2
yb 6¼ 0. In this

phase the direction of the pseudospin projection onto the (x, y)-
plane is determined spontaneously. Because the pseudospin in
this system labels spin and layer index simultaneously, this phase
has simultaneously spontaneous in-plane spin polarization and
spontaneous interlayer phase coherence.

The bulk gap for single particle excitations Egap,s can be
calculated using Hartree-Fock linearization (Supplementary
Note 3)

Egap;s ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEGb� 2VZ

0 hzbÞ2þ 4ðVXY
0 Þ

2ðh2
xbþ h2

ybÞ
q

: ð4Þ

In addition to the single particle excitations, the helical QH
exciton condensate supports collective excitations13: the neutral
pseudospin waves (Goldstone mode) give rise to spin and
counterflow charge superfluidity, and the lowest energy charged
excitations are topological pseudospin textures, which carry
fractional charge � n"ð#Þe. Here n"=# ¼ ð1 � hzbÞ=2 are the
pseudospin resolved filling factors of the different Landau
levels. The energy required to create these charged excitations is
slightly lower than Egap,s (ref. 13).

We point out that although hzb¼±1 are topologically distinct
phases, the bulk gap for creating charged excitations never closes,

when one tunes from one phase to the other by controlling EGb.
This is possible because the pseudospin rotation symmetry, which
protects the existence of spin-resolved Chern numbers as
topological numbers, is spontaneously broken in the helical
exciton condensate phase. The interacting BHZ model for
bilayers shows somewhat similar behaviour also at zero magnetic
field, where a trivial insulator phase can be connected to a
quantum spin Hall insulator phase without closing of the bulk
gap, because of an intermediate phase where the time-reversal
symmetry is spontaneously broken27. It is also experimentally
known that the exciton condensate phase with n" ¼ n# ¼ 1=2 can
be smoothly connected to uncorrelated QH state with n" ¼ 1
and n# ¼ 0 in conventional QH bilayers28. Experimental
investigations of InAs/GaSb bilayers in the QH regime18,29 are
consistent with this prediction, because no gap closing has been
observed as a function of magnetic field.

Confinement-deconfinement transition of edge excitations.
We now turn to the description of the ground state pseudospin
texture hz(y)¼ cos[y0(y)], hx(y)¼ sin[y0(y)]cos (f) and hy(y)¼
sin[y0(y)]sin(f) at the edge. (The ground state will be degenerate
with respect to the choice of f.) As discussed above close to the
edge EG(y)40 takes large values, because the edge states are
topologically protected to exist at all energies between the lowest
Landau levels and higher ones. Therefore close to the edge
y0(y)¼ p. On the other hand, in the bulk y0(y)¼ yb¼ arccos(hzb).
This means that there always exists a domain wall, where y0

rotates from p to yb. Although the existence of the domain wall is
a robust topological property of the system, the detailed shape of

Uncorrelated helical QH state (deconfined phase)

L

Helical QH exciton condensate (confined phase)

x

y

+e

–e

+�↑e

–�↑e

W

ldw

a b

dc

Figure 4 | Spin textures. (a,b) Ground state spin textures for the uncorrelated helical QH phase and the helical QH exciton condensate phase, respectively.

In both cases there exists a robust domain wall, where the polar angle of the pseudospin magnetization y(y) rotates from p to yb along the y-direction.

In the uncorrelated phase yb¼0 but in the helical QH exciton condensate phase yba0, p indicating spontaneous interlayer phase coherence in the bulk.

In both cases the ground states are degenerate for all choices of the constant azimuthal angle f of the pseudospin magnetization. (We have chosen f¼0.)

(c,d) Charged excitations can be created by letting the azimuthal angle f(x) to rotate along the x-direction. In a closed system (obtained by connecting the

ends of the sample to form a narrow cylinder) f(x) must rotate integer multiples of 2p. The energy to create such kind of excitation in the uncorrelated

helical QH phase scales as dE � VXY
2 ldw=L, and the elementary excitations, which carry charge ±e, can be created independently on the different

edges. On the other hand, deep inside the helical QH exciton condensate phase dE � VXY
2 W=L and the elementary charges are � n"e. Furthermore, the

charged edge excitations are confined: a charge � n"e on one of the edges is always connected to the opposite charge on the other edge by a stripe of

rotated pseudospins through the bulk, and thus isolated charges cannot be observed at low energies. The charge density obtained from equation (5) is

shown with red (positive charge density) and blue (negative charge density) colours.
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y0(y) and the length scale ldw, where this rotation happens,
depend on the details of the sample (Supplementary Note 4). The
ground states in the uncorrelated helical QH phase (yb¼ 0) and
helical QH exciton condensate phase (yba0, p) are illustrated in
Fig. 4a,b, respectively. It turns out that the existence of sponta-
neous interlayer phase coherence, which distinguishes the two
different phases of matter, also has deep consequences on the
nature of the low-energy excitations in this system.

By using a Hartree-Fock linearization for the ground state, we
find that the single particle excitations are gapped also close to the
edge, and the magnitude of the energy gap is determined by the
Coulomb energy scale VXY

0 . However, similarly as for the case of a
coherent domain wall in QH ferromagnetic state in graphene23,
the lowest energy edge excitations are not the single-particle ones.
Namely, the ground state is degenerate with respect to the choice
of f, and therefore in accordance with the Goldstone’s theorem
the system supports low-energy excitations described by spatial
variation of fðrÞ. Due to the general relationship between the
electric and topological charge densities in QH ferromagnets13,23

(Supplementary Note 5)

drðrÞ ¼ � e
4p
@f
@x

@cos½y0ðyÞ�
@y

ð5Þ

these excitations also carry charge, which is localized at the edges
of the sample. In this section we illustrate these excitations in a
closed system obtained by connecting the ends of the sample to
form a narrow cylinder with width W and circumference L
(Alternatively, instead of comparing the energies to create
elementary excitations in a closed system one could compare
the energies needed to create a fixed charge density on the edge.
This generalization allows the possibility to consider open
systems.). We point out that in addition to the topological
contribution (5) there can also be non-topological contributions
to the electric charge density of pseudospin textures due to
excitation of higher Landau levels. However, these contributions

are small for the pseudospin textures which are smooth on the
scale of lB (Supplementary Note 8 and Supplementary Fig. 2).

We start by considering this kind of closed system, where
WooL (see Fig. 4). This geometry is topologically equivalent to a
Corbino ring, which has been experimentally realized for QH
exciton condensates30,31. Using equations (3) and (5) we find that
the lowest energy excitations correspond to rotation of f(x) by 2p
and carry a net charge within one of the edges (Supplementary
Note 6). They have an energy dE�VXY

2 ldw=L in the uncorrelated
phase and dE � VXY

2 W=L deep in the helical exciton condensate
phase. Here VXY

2 ¼ 1
2

P
q VXY

P ðqÞq2l2
B characterizes the cost of

exchange energy caused by rf(x) (Supplementary Note 4).
In the uncorrelated phase these excitations have a charge ±e.

By inspecting Fig. 4, we notice that because the spin points along
z-direction in the bulk, there is no rotation happening in the bulk.
This means that we can choose separate fields f1(x) and f2(x)
for the two edges, so that these excitations can be created
independently on the different edges much as in graphene23.

The situation is dramatically different in the helical QH exciton
condensate phase. There, the elementary excitations in a closed
system have a charge � n"e. Moreover, as illustrated in Fig. 4, a
charge � n"e on one of the edges is always connected to the
opposite charge on the other edge by a stripe of rotated bulk
pseudospins. Breaking the bulk pseudospin configuration costs an
energy comparable to the Coulomb energy, and thus isolated
charges cannot be observed at low energies. This means that this
type of charged edge excitations in the helical QH exciton
condensate phase are confined.

It is illustrative to consider what happens to the excitations in
the helical QH exciton condensate, when the width of the sample
is increased. Namely, the excitation energy increases proportion-
ally to the width of the sample dE � VXY

2 W=L and eventually for
WBL it becomes energetically favourable instead of having a

x

y

Figure 5 | Charged excitation localized at one edge of the sample in the

helical QH exciton condensate. The excitation can be visualized as a

meron-antimeron pair, where the meron is localized inside the sample and

anti-meron—outside. These excitations become the lowest energy charged

excitations in sufficiently wide samples (otherwise similar cylinder

geometry as in Fig. 4), where it is energetically favourable to break the

stripe connecting opposite charges at the different edges by a creation of a

bulk meron. Depending on the profile EG(y) near the edge, the lowest

energy excitation is charge-neutral or having charge ±e. The charge is

determined by the pseudospin orientation in the center of the meron.

The energy of such excitation is of order of Coulomb energy VXY
0 .
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Figure 6 | Non-local transport to demonstrate the charge confinement.

(a) The transport geometry. A drive current is applied on one of the edges

and the resulting drag current is measured on the opposite edge. (b) Drag

current Idrag as a function of the driving current Idrive in the geometry from a.

Due to the charge confinement in the helical QH exciton condensate phase,

the drive current necessarily gives rises to an opposite drag current on the

other edge. On the other hand, in the uncorrelated (deconfined) phase,

there is only a weak drag current due to the Coulomb force acting between

the charges.
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large area of rotating spins between two edges to create a bulk
meron (Fig. 5). This resembles the physics of quarks, where the
growing separation of a quark-antiquark pair eventually results in
the creation of a new quark-antiquark pair between them.

Luttinger liquid theory and nonlocal transport. To predict
experimentally measurable consequences of the charge
confinement, we consider nonlocal transport in an open system.
By considering the time-dependent field theory for the
pseudospin for a reasonably narrow sample in the helical
QH exciton condensate phase we arrive at an effective
one-dimensional Hamiltonian (Supplementary Note 7)

H ¼
Z

dx
e2

2W‘ 2G
�ðxÞ2þ Wrsb

2
ð@xfðxÞÞ2

� �
; ð6Þ

where rsb ¼ VXY
2 sin2yb=p is the pseudospin stiffness and

G ¼ e2=ð16pl2
BðVXY

0 �VZ
0 ÞÞ describes the interlayer capacitance

per unit area, which is strongly enhanced from the electrostatic
value by the exchange interactions. The one-dimensional
charge densities in the different edges (labelled 1 and 2)
r1;2ðxÞ ¼ � e

4p ð1þ cos ybÞ @f@x are always opposite and deter-
mined by a single field f(x), highlighting the confinement of the
charged edge excitations. The one-dimensional theory describes a
Luttinger liquid, and the so-called Luttinger parameter K in the
convention used in ref. 32, is given by

K ¼ lB
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VXY

0 �VZ
0

VXY
2

s
ð1þ cos ybÞ2

4sin yb
: ð7Þ

The Luttinger parameter in quantum Hall systems determines the
conductance for ideal contacts Gcf¼Ke2/h (ref. 32,33). Because
the pseudospin waves are charge neutral in the bulk, conductance
decreases with W as Gcfp1/W. It is important to notice that in
this system Gcf describes the conductance for a counterflow/drag
geometry, where opposite currents are flowing in the two edges.
The helical QH exciton condensate phase does not support net
transport current as long as the voltages eV are small compared
with :vp/W (Supplementary Note 7). This automatically leads to
a remarkable transport property that characterizes the helical QH
exciton condensate phase. Namely, by considering a non-local
transport geometry shown in Fig. 6a, where a drive current is
applied on one of the edges and a resulting drag current
is measured on the opposite edge, we find that necessarily
Idrag¼ Idrive at small voltages. This should be contrasted to the
uncorrelated helical phase, where the charged edge excitations are
deconfined. In that case, one has two independent Luttinger
liquid theories for the two edges (Supplementary Note 7), and
therefore one expects only a weak drag current due to the
Coulomb force acting between the charges. For W44lB, we
expect that this effect is negligible compared with drag current in
the confined phase.

Finally, to estimate the critical current Ic, where the relation
Idrag¼ Idrive breaks down, we notice that the maximum
voltage is determined by the gap eVmaxE:vp/W. By using
reasonable estimates VZ

0 ¼ VXY
0 =2, VXY

2 ¼ VXY
0 =4, yb¼ p/2,

W¼ 20 lB, lB¼ 10 nm, v¼ 14 km s� 1 (refs 34,35), we find
Ic¼GcfVmaxE0.1 nA.

Discussion
In summary, we have predicted the existence of a helical QH
exciton condensate state in band-inverted electron-hole bilayers.
We have shown that the counterpropagating edge modes give rise
to a ground state pseudospin texture, where the polar angle of the
pseudospin magnetization y(y) rotates from the boundary value p
to the bulk value yb along the direction perpendicular to the edge.

Low-energy charged excitations can be created by letting the
azimuthal angle of the pseudospin polarization f(x) to rotate
along the edge. Remarkably, in a sufficiently narrow Hall bar
these charged edge excitations are confined in the presence of
spontaneous interlayer phase-coherence (yba0, p): a charge on
one of the edges always gives rise to the opposite charge on the
other edge, and thus isolated charges cannot be observed at low
energies. Moreover, we predict the possibility to control yb with a
magnetic field and gate voltages. This allows to study a
confinement-deconfinement transition, which occurs simulta-
neously with the bulk phase-transition between the helical QH
exciton condensate phase (yba0, p) and the uncorrelated helical
QH phase (yb¼ 0).

The helical QH exciton condensate phase can be experimen-
tally probed using Josephson-like interlayer tunnelling and
counterflow superfluidity1,8,9,13,30,31,34,35. Moreover, because the
pseudospin in this system describes simultaneously both the spin
and the layer degrees of freedom, the helical QH exciton
condensate phase can also be probed using the spin
superfluidity and the NMR techniques8. Perhaps it is even
possible to use local probe techniques to image the confinement-
deconfinement transition and the confinement physics as
illustrated in Figs 4 and 5. Finally, we have shown that the
charge confinement also gives rise to a remarkable new transport
property. Namely, a drive current applied on one of the edges
gives rise to exactly opposite drag current Idrag¼ Idrive at the
other edge.

Our results for the confinement of the edge excitations may
also be applicable to the so-called canted antiferromagnetic phase,
which is predicted to appear in graphene36. Similarly to the
helical QH exciton condensate state considered in this paper,
the canted antiferromagnetic phase is characterized by a
spontaneously broken U(1)-symmetry in the bulk and a single
edge supports only gapped meron-antimeron excitations36.

The phenomena of confinement stemming from the particle
physics models24 has been studied also in condensed matter
systems37–41. However, we expect that the combination of the
different techniques for probing the helical QH exciton
condensate phase will provide a more intuitive understanding
and new perspectives on the confinement physics.

We also point out that InAs/GaSb bilayers is a promising
system for superconducting applications, and edge-mode super-
conductivity has already been experimentally demonstrated in the
QSH regime42. In the presence of superconducting contacts, the
helical QH exciton condensate may provide a new route for
realizing exotic non-local Josephson effects and non-Abelian
excitations, such as parafermions5,6.
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