
Multimodality cardiac image analysis for the assessment of coronary
artery disease
Gupta, V.

Citation
Gupta, V. (2013, September 11). Multimodality cardiac image analysis for the assessment of
coronary artery disease. Retrieved from https://hdl.handle.net/1887/21704
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/21704
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/21704


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/21704 holds various files of this Leiden University 
dissertation 
 
Author: Gupta, Vikas 
Title: Multimodality cardiac image analysis for the assessment of coronary artery disease 
Issue Date: 2013-09-11 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/21704
https://openaccess.leidenuniv.nl/handle/1887/1�


3
Fully automatic registration and segmentation

in cardiac MR perfusion images

This chapter was adapted from:

V. Gupta, E. A. Hendriks, J. Milles, R. J. van der Geest, M. Jerosch-Herold, J. H. C. Reiber,
and B. P. F. Lelieveldt.Fully automatic registration and segmentation of first-pass
myocardial perfusion MR image sequences, Academic Radiology, Volume 17, Issue 11,
Pages 1375°1385, 2010.



Abstract

Derivation of diagnostically relevant parameters from first-pass myocardial perfusion
MR images involves the tedious and time consuming manual segmentation of the
myocardium in a large number of images. To reduce the manual interaction and
expedite the perfusion analysis, we propose an automatic registration and segmentation
method for the derivation of perfusion linked parameters. A complete automation was
accomplished by first registering misaligned images using a method based on Independent
Component Analysis (ICA), and then using the registered data to automatically segment
the myocardium with Active Appearance Models (AAM). We used 18 perfusion studies
(100 images per study) for validation wherein the automatically obtained (AO) contours
were compared with expert drawn contours on the basis of point-to-curve error, Dice
index, and relative perfusion up-slope in the myocardium. Visual inspection revealed
successful segmentation in 15 out of 18 studies. Comparison of the AO contours with
expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error
and Dice index, respectively. The average difference between manually and automatically
obtained relative up-slope parameters was found to be statistically insignificant (p =
0.37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5
minutes (automatic). We proposed an automatic method that significantly reduced the
time required for analysis of first-pass cardiac MR perfusion images. The robustness and
accuracy of the proposed method were demonstrated by the high spatial correspondence
and statistically insignificant difference in perfusion parameters, when AO contours were
compared with expert drawn contours.
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CONTRAST enhanced magnetic resonance imaging (MRI) techniques, such as first-
pass myocardial perfusion imaging, have become an important tool for diagnosis
of ischaemic heart disease. First-pass myocardial perfusion imaging involves
the acquisition of MR images at the same phase during the first pass of contrast

medium through heart in multiple cardiac cycles. This imaging process requires the
acquisition of data over a period of 45 to 60 seconds.

The main aim of perfusion imaging is the derivation of myocardial perfusion linked
parameters (e.g., relative up-slope), which requires tracking of regional myocardial
intensity in all the frames of a perfusion sequence as a function of time. Because the
signal must be derived from the same myocardial region in successive frames to obtain
accurate results, the perfusion assessment method must include correction measures for
respiratory-induced motion of the myocardium. The most commonly used approach to
assess myocardial perfusion involves the manual delineation of myocardium with epi-
and endocardial contours by an expert (regarded as gold standard). A typical perfusion
sequence, as such, consists of 50-65 frames per slice and therefore, the task of manually
segmenting the myocardium in each frame of the sequence is tedious and time consuming.

To date, several semi- and fully-automatic methods have been proposed to solve the
problem of respiratory induced motion. Most of the proposed methods include intensity
or model based registration for the reduction of displacement error caused by this motion.
The minimization of displacement error has been performed by using registration criteria
based on squared intensity differences [30], normalized cross-correlation [38, 92], mutual
information [19, 36], and a measure based on gradient strength and direction [231]. A
recent development in perfusion image registration has been the application of model
assumptions that relate not only to the shape of the myocardium [19, 85, 231] but also
to the intensity curve of the perfusion sequence [67, 86, 188]. Although these techniques
have shown promising results, they are usually limited by manual interaction. In addition,
only a few of the fully automatic methods have included the quantitative evaluation
based on perfusion parameters [30, 68]. Another limitation is their inability to deal with
the contrast variation in right ventricle (RV) and left ventricle (LV) during the first-pass
of contrast bolus. This limitation was overcome by a recently proposed approach that
took into account the characteristic temporal contrast variation in the perfusion sequence
[154].

As suggested in the preceding discussion, a fully automatic approach, incorporating
measures to deal with rapid contrast variation and ability to perform perfusion analysis,
is highly desirable. The goal of this study was to develop a fully automatic framework
for the analysis of cardiac MR perfusion images by extending the registration method
proposed in our earlier work [154]. The proposed approach focuses on first registering
the perfusion sequences and then segmenting the myocardium in the whole sequence to
obtain diagnostically relevant perfusion parameters automatically.

Physiologically, a perfusion sequence can be considered as the result of a number
of independent processes that contribute to the observed contrast variations [154].
The extraction of these sources of variation allows reconstruction of a spatially static
reference image that can be used to align displaced frames in the perfusion sequence.
Independent component analysis (ICA) has been successfully used for this type of blind
source separation problems where little prior information is available about the sources.
Because of its high speed and open availability, ICA was employed in the proposed
method to register perfusion sequences and also to extract the information for subsequent
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segmentation in the registered sequence.
Although the myocardial displacement is significantly reduced by ICA based registra-

tion, the automation of myocardial segmentation continues to pose challenges due to
the presence of (a) noise and artifacts introduced during image acquisition, (b) papillary
muscles and other anatomical structures around left ventricle, and (c) low contrast
between the myocardium and surrounding tissues. Therefore, the segmentation method
should integrate prior knowledge on myocardial appearance. Our method employs active
appearance models (AAMs) [57] to delineate myocardial boundaries, since they allow
the incorporation of prior knowledge on myocardial shape and texture. Furthermore, the
task of initializing AAM contours and selecting an optimal contrast image is performed
by utilizing the information from the components, which are extracted for the ICA based
registration.

There are, primarily, three contributions that we propose in this work:
1. We improved the registration strategy proposed in [154] by adding another

registration pass at full resolution and by performing the constrained expansion of the
search space for LV matching in order to reduce large shifts of perfusion images within a
slice.

2. A segmentation method based on AAM was integrated in the registration strategy to
identify and delineate the myocardium in registered images without requiring user inter-
action. For the complete automation of the perfusion analysis pipeline, the initialization
of the AAM based segmentation was performed by utilizing the components from ICA.

3. A validation of the fully automatic registration and segmentation pipeline was per-
formed on the basis of point-to-curve error, Dice index and perfusion related parameters.

3.1 Background

3.1.1 Independent Component Analysis (ICA)

ICA is a source separation method, which aims to represent non-Gaussian data linearly in
such a way that the essential structure of the observed data can be captured with only a
few statistically independent component sources S and their corresponding weights W
[55, 136]. Let an image with size p £q from the perfusion sequence be represented in
vectorized form as:

I = [g (x
1

, y
1

), g (x
1

, y
2

), g (x
1

, y
3

), ......, g (xp , yq )]

T (3.1)

and the complete perfusion sequence with n time points as:

X = [I
1

I
2

I
3

.......In]

T (3.2)

where, It represents images at time points t = 1,2,3, .....,n. In the form of an ICA model,
the observation space (a perfusion sequence) can be shown as:

X = ¯X +W S (3.3)

where S 2 <k£pq consists of independent components, k is the number of retained
components and pq represents the size of perfusion images. The matrix W 2 <n£k in
Equation 3.3 defines the weight coefficients representing the time-intensity variation of
k component images and n is the number of frames per slice of the perfusion sequence.
The linear combinations of the component images contained in S and the corresponding
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coefficients in W provide approximations of the original frames and are referred to
as reference frames. Due to its blind source separation properties, ICA has been used
successfully to solve time sequence based problems in various image processing and
medical image analysis applications [43, 45, 106].

3.1.2 Active Appearance Model (AAM)

AAMs were proposed by Cootes et al.[57] in 1998 and, since then, they have found
widespread use in various image segmentation applications [33, 70, 156, 157, 226, 228].

3.1.2.1 Model Building

AAMs rely on the fact that an object’s variability can be learned from a training set
by building an appearance model that integrates shape and texture (pixel intensities)
information. To this end, the expected shape is drawn on all the images in the training
set by annotating them with landmark points corresponding to the same location in each
image. For our application, a shape is defined by P two-dimensional landmark points and
is represented as: s = [x

1

, y
1

, x
2

, y
2

, ....., xP , yP ]

T . Because the sample shapes in different
training images can vary in scale and orientation, Procrustes analysis [90] is performed to
compensate for these variations. The shape model is built using the mean shape and the
shape related modes of variation, which are obtained by applying principal component
analysis (PCA) on the sample covariance matrix. The model thus obtained (Equation 3.4)
can be used to generate a new shape instance s.

s = ¯s +Qs bs (3.4)

Here, ¯s is the mean shape, Qs consists of shape eigenvectors and bs are the model
deformation parameters.

In contrast to the shape modeling where landmarks in the shape vectors constitute the
data itself, the texture modeling requires a consistent method for collecting the texture
information between the landmarks. The texture model is, therefore, built by warping
gray values into correspondence using a piece-wise affine warp, which is normalized and
sampled from the Procrustes aligned mean shape. In order to avoid the influence from
the global linear changes in pixel intensities, the warping is followed by a photometric
normalization of the texture vectors t of the training set. Hereafter, akin to the shape
model construction process, PCA is performed on the training image textures to find the
texture related modes of variation (Qt ) and the mean texture vector for the texture model:

t = ¯t +Qt bt (3.5)

where ¯t is the mean texture and bt are the texture related model deformation parameters.
The parameter vectors bs and bt summarize the shape and texture of any sample from
the training dataset. To recover the correlation between shapes and textures, we apply
PCA on the concatenated vector:

bc =
µ

Ws bs
bt

∂
(3.6)

which, based on Equations 3.4 and 3.5, can also be written as:

bc =
µ

WsQT
s (s ° ¯s)

QT
t (t ° ¯t )

∂
(3.7)
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where Ws is a diagonal matrix that consists of weight factors for the shape parameters.
The PCA on the combined vector bc yields another model:

bc =Qa a (3.8)

where Qa represents appearance eigenvectors and a represents appearance parameters
that controls both the shape and the texture of the model. The use of simple linear algebra
yields the expression for generating shape and texture instances in terms of combined
model parameters, a:

s = ¯s +QsW °1

s Qas a (3.9)

t = ¯t +Qt Qat a (3.10)

where,

Qa =
µ

Qas
Qat

∂
(3.11)

The model thus obtained gives a compact representation of the permissible variations in
the appearance (shape and texture) as seen in the training set and allows the synthesis of
a sample image for a given a by generating the shape-free texture image from the vector,
t , and warping it using the control points described by s.

3.1.2.2 Model Matching

The AAM matching makes use of the model built in training step (previous section) to
know what is expected in the unknown (target) image, and typically attempts to find the
best model parameters which generate a model instance as close as possible to the target
image (perfusion testing data).

For a set of model parameters, a, we generate an instance of the model projected
into the target image and compare it with the target image to get an error measure
which, in our case, is the root mean square between the current model instance and
the target image. The best set of parameters to interpret the objects in the target image
is then the set which minimizes this error measure. To generate model instances, we
employ an iterative approach that involves incremental additive updates to the shape
and appearance parameters. With an initial estimate of shape parameters, the target
images are warped onto the model co-ordinate frame thus allowing us to obtain the
root mean square error between the current model instance and the target image. The
error thus obtained is minimized by repeating the update of model parameters using a
gradient descent approach until convergence. The model parameters obtained after the
convergence provide the best fitting model instance and can be used for further processing,
such as for measurement or classification. In the proposed method, these parameters
yield the best possible endo- and epicardial contours for the target images.

3.2 Data

3.2.1 AAM Training Data

The images in the training dataset were acquired using 1.5T Philips Gyroscan NT Intera
MR Scanner with a 5-element Synergy coil during breath-holds. The electrocardiogram
gating was used to obtain images of the same phase during a cardiac cycle. The heart
was imaged from apex to base with 10 to 12 imaging slices in the short-axis orientation.

44



C
H

A
PT

ER
3

F
U

LLY
A

U
T

O
M

AT
IC

R
E

G
IST

R
AT

IO
N

A
N

D
SE

G
M

E
N

TAT
IO

N

Figure 3.1: Overview of the proposed method

Typical imaging parameters were 400 x 400 mm2 Field-of-View, 10mm slice thickness,
256 x 256 image resolution and 1.5mm pixel size. A subset of 50 images was selected
randomly to include considerable shape and texture variability in the AAM.

3.2.2 Perfusion Testing Data

The validation data used for the proposed algorithm consisted of 18 rest MRI datasets that
were obtained for the multi-ethnic study of atherosclerosis (MESA) [31]. The selected
datasets comprised three slices per dataset and 50 frames per slice. Because only mid-
ventricular and basal slice ground truth contours were available, our dataset for validation
consisted of 100 frames per dataset. All the images were acquired with a Siemens
Sonata(1.5T) MR scanner using a fast gradient echo pulse sequence (TR 2 ms, TE 1.2
ms, flip angle 18±) and T1-weighting. For each study, three slices were obtained (pixel
size: 1.37 1.37 mm , slice thickness: 8 mm, slice gap: 8 mm) in short-axis orientation.
The breathhold period of 12-18 s was used during acquisition and a Gadolinium-DTPA
(Gd-DTPA) bolus (Magnevist, Berlex, Wayne, NJ) of 0.04 mmol/kg of body weight was
injected, starting at the third or fourth heartbeat, followed by a saline flush of 10 mL. The
first pass of the injected contrast agent bolus through the right and left ventricles and its
first recirculation was captured in 50 heartbeats.

3.2.3 Ground truth contours

The manual segmentation of the myocardium in perfusion testing data was performed by
two experts (designated as Observer A and Observer B) using the MASS software [246].
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3.3 Methods

An overview of the proposed method is shown in Figure 3.1. As shown in the figure, this
method consists of two parts: the ICA based registration and the AAM based segmentation
phase. The registration part takes a perfusion sequence with misaligned images as input
and provides a set of parameters and a registered sequence as output for segmentation.
Both steps are described in following subsections:

3.3.1 ICA based Registration

A time-intensity analysis of a typical perfusion sequence provides three physiologically
important components viz., a right ventricle component (IC

RV

), a left ventricle component
(IC

LV

), and a baseline component (IC

BL

). These components are assumed to be the main
sources contributing to the dynamic behaviour of whole perfusion sequence, and their
extraction, using ICA, is based on the contrast variability induced by the passage of a
contrast agent through heart. It has been shown in a study by Milles et al. that ICA is able
to separate these components with a high accuracy in most cases [154].

Computation and labeling of components: ICA is performed on the complete perfusion se-
quence and feature images viz., IC

RV

(right ventricle), IC

LV

(left ventricle), IC

BL

(baseline),
IC

MC

(myocardium), IC

BM

(breathing motion), representing events occurring during the
perfusion sequence, are extracted. Their signs are determined by the signs of their mean
values. The labeling of these feature images is based on a majority voting system of the
parameters such as mean weight value, maximum weight value, time point of maximum,
histogram symmetry and maximum time derivative, which are derived from the weighting
curves corresponding to feature images [154].

Computation of the region of interest (ROI) and reference image: The left ventricle (LV) is
identified and localized by coarsely segmenting the LV blood pool using a thresholding
function on the IC

LV

image. The LV mask (ROI) is then computed as the rectangle that
encompasses the LV completely by ensuring that its outermost pixels fall within the LV
radial extent. The LV radial extent, r adLV , is obtained by computing the distance between
the blood pool centres of LV and RV. To obtain the reference image, it is essential to
identify and label the components correctly. However, it was observed that the correct
identification and labeling of the component corresponding to myocardium ( IC

MC

) was
difficult to achieve due to the low myocardial signal intensity in several images. As
a result, only the components IC

RV

, IC

LV

, and IC

BL

that were reliable with respect to
the identification and labeling were used for the computation of reference image. The
component corresponding to the breathing motion ( IC

BM

) is considered as noise and is,
hence, not used in the reference image computation. Figure 3.2 depicts the weighting
curves and feature images corresponding to IC

RV

, IC

LV

and IC

BL

for one slice. A reference
image for each frame is then defined by the linear combination of selected component
images and corresponding coefficients in the weight matrix (Equation 3.3).

Computation of the displacements and alignment of frames: Each frame in the sequence
is aligned using a rigid registration after comparing it with the reconstructed reference
image for that frame. The ROI calculated in the last step allows reduction of computation
time by restricting the search area. We compute cross-correlation between the ROI in
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Figure 3.2: A typical example showing weighting curves and the feature images obtained after
the application of ICA

Figure 3.3: Extraction of initial parameters from the components derived from ICA: The scale,
center, and orientation angle for the initialization of AAM contour are calculated from the LV
mask. The optimal contrast frame for the AAM based segmentation is indicated by the peak
of LV weighting curve.

reference and input images in order to find the similarity matrix by shifting the ROI over
a specified displacement range. Due to the similarity in intensity distribution between the
reconstructed reference images and the input images, cross-correlation was found to be a
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highly robust and rapidly computable measure for obtaining the similarity matrix. The
images in the input dataset are then aligned with their respective reference images by
applying the displacement based on the maximum value from the similarity matrix.

All the registration steps can be repeated in multiple passes because the use of multi-
resolution passes mitigates the effect of motion on the computation and labeling of
independent components. Moreover, the multi-resolution strategy also saves computation
time as shown by Milles et al.[154] who used first pass of coarser (sub-sampled by two)
resolution and one pass of full resolution. However, it is often the case that the acquisition
process of perfusion sequences results in extremely large movements of diaphragm during
rapid breathing motion. We observed that the addition of one more pass of registration at
full resolution provided a significant improvement in case of large shifts. Therefore, we
added one more iteration of registration at full resolution to the earlier method [154] in
order to offset those large displacements. Furthermore, the search space was expanded by
increasing the range of displacements by 33% for shifting ROI to compute the similarity
matrix.

3.3.2 AAM based Segmentation

Segmentation utilizes a priori information of shape and intensity by employing trained
AAM contours (refer to Model building section) to delineate myocardial borders in
registered images. The following sections describe how AAM matching is used in the
proposed method:

Derivation of initialization parameters: The performance of AAM matching depends
considerably on the selection of three initialization parameters: position, orientation and
scale of the AAM contours. We derive these parameters from the ICA based registration.
The angle between the diagonal and the inferior edge of the mask serves as the initial
orientation and r adLV obtained during registration, contributes the initial scale of AAM
contour. Figure 3.3 depicts how the initial parameters are derived from ICA components.

Selection of the optimal contrast frame for segmentation: For the myocardial segmentation,
the registration step is followed by the selection of an optimal contrast image from
the registered set. Automation of the selection process is accomplished by selecting
the image corresponding to the IC

LV

peak frame as it provides a high contrast between
myocardium and surrounding tissue. In order to use a model contour for segmentation,
AAM building (refer to section Model Building) is used once on the training data prior
to the application of the proposed method. The model contour thus obtained is then
applied on the selected image using the initialization parameters. Based on the Model
Matching method described earlier, the desired myocardial contours are obtained for
further analysis after convergence.

3.3.3 Validation Indices

We evaluated the effectiveness of the proposed method by comparing the ground truth
contours with the automatically obtained contours (AO contours) on the basis of following:
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3.3.3.1 Spatial correspondence

To test the spatial correspondence of automatically obtained contours with ground truth
contours, we used point-to-curve errors and Dice indices. The point-to-curve error is
calculated as the Euclidean distance from AO contours to ground truth contours. The Dice
index, which indicates extent of overlapping area between ground truth and AO contours,
is calculated as the area of intersection between ground truth and AO contours divided by
the mean of individual contour areas as shown in Equation 3.12:

Dice index = 2

|P \Q|
|P |+ |Q| (3.12)

where P and Q represent the areas corresponding to the overlapping contours.

3.3.3.2 Myocardial perfusion analysis

We used absolute and relative up-slope parameters for the semi-quantitative assessment
of myocardial perfusion due to their wide acceptance as reliable indices [8, 112]. The
absolute up-slope of myocardium is given by the maximum value of the first-derivative of
myocardial time-intensity curve during the initial ascent of the first pass. The absolute
up-slope of myocardium is then normalized by the absolute up-slope of LV pool to obtain
relative up-slope parameter.

3.3.4 Statistical Analysis

To determine whether the automatically obtained perfusion parameters differ significantly
from the manually obtained parameters, a paired samples t-test was performed at 95%
significance level under the assumption that the paired differences are independent.

3.3.5 Implementation details

A PC with Intel(R) Core(TM)2 Duo CPU @ 2.6 GHz and 2GB RAM was used for the
execution of the implemented method. Both the proposed method and the validation
experiments were implemented using MATLAB® [1].

3.4 Results
A visual inspection of the segmentation results revealed that the proposed method
succeeded in identifying and delineating correct myocardial region in 15 out of 18
studies. A further analysis showed that, out of 36 slices in the perfusion testing dataset,
segmentation failed in 2 slices (both slices in one patient study, as shown in Figure 3.4)
and registration was unsuccessful in 4 slices (both slices in 2 patients).

As shown in the Figure 3.5a, the ICA driven initialization of AAM contours was able to
successfully locate myocardium in the optimal contrast image. Figure 3.5b depicts the
final contours obtained after the convergence of AAM matching. A visual comparison of
ground truth and AO contours is shown in Figure 3.6. The point-to-curve errors, obtained
by the proposed method and existing methods, are provided in Table 3.1. These values
show an improvement of 24% and 35% over the methods proposed by Stegmann et
al.[226] and Ólafsdóttir et al.[171], respectively. Table 2 summarizes the point-to-curve
errors separately for endo- and epicardial contours with respect to mid-ventricular and
basal slices. A similar analysis is shown on the basis of Dice index in Table 3.3. Boxplots
depicting the spread of the point-to-curve error and Dice index are shown for all the
studies in Figure 3.7.
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Figure 3.4: AAM Matching failure in (a) Mid-ventricular slice and (b) Basal slice of same
patient study

Figure 3.5: AAM contours (a) before and (b) after the AAM matching

To study the incursion of LV and RV blood pools into the myocardial region, we present
an analysis of the differences in signal intensities within the regions enclosed by AO
and ground truth contours: Figure 3.8 depicts the intensity variation w.r.t. frames and
Figure 3.9 shows the intensity variation w.r.t. slices (mid-ventricular and basal). The
results of perfusion analysis are presented in Table 3.4, which also includes p-values from
paired samples t-test. The Bland-Altman plot in Figure 3.10 further shows the agreement
between manual segmentation and the proposed method by comparing the mean and
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Table 3.1: A comparison of existing methods with the proposed method based on point-to-
curve error (in mm)

Methods Mean ± Std. dev. (mm)
Proposed method 2.23 ± 0.56
Stegmann et al.[226] 2.93 ± 0.84
Ólafsdóttir et al.[171] 3.44 ± 1.73

difference of absolute up-slope parameter.
For each slice consisting of 50 frames, it took our method altogether 1.5 minutes on

average to register all the frames, to obtain myocardial contours, and to derive perfusion
parameters.

3.5 Discussion
The presented results show the potential of a fully automated framework for the analysis
of cardiac MR perfusion images. When compared to the manual gold-standard, the
proposed method achieved a high spatial correspondence and similar values for the
diagnostically relevant perfusion parameters albeit within a fraction of time required
by manual segmentation; the automatic method took 1.5 minute per slice for the
myocardial segmentation as opposed to 20 minutes required for manual segmentation,
thereby reducing the analysis time by more than 92%. This large reduction in analysis
time is, mainly, due to the employment of ICA because it allows the extraction of
physiologically significant components such as IC

RV

, IC

LV

, and IC

BL

for registration, and
initialization parameters for AAM based segmentation, thus facilitating the full automation
of myocardial perfusion analysis.

3.5.1 Spatial correspondence

The automatically obtained myocardial contours were occasionally found to be over-
(in case of epicardial contour) and underestimation (in case of endocardial contour) of
the corresponding manual contours. This is as expected because, while the automatic
method delineates myocardium along the edges in images, the manual contours are
drawn well within the myocardial boundaries to avoid incursions of pixels from RV
and LV blood pools into the myocardium. However, our results on perfusion analysis
suggested that a little deviation in size of contours does not strongly affect the derivation
of perfusion parameters, if the automatically obtained contours accurately enclose only
myocardium. Table 3.2 and Figure 3.7(a-b) provide an indication of the point-to-curve
distance variability after the proposed method was applied on perfusion testing data. The
epicardial contours tend to have higher error and spread than endocardial contours since
the epicardial boundaries are usually not easily discernible. However, these errors do not
have a significant impact on the clinically relevant perfusion parameters as shown in Table
3.4. Moreover, the two sets of contours compared reasonably well w.r.t. Dice index (Table
3.3, 3.7(c-d)). The inter-observer point-to-curve error and Dice index measurements
were only slightly better than the corresponding values obtained by the proposed method.
A further comparison of AO contours with contours from observer A and B suggested
that values w.r.t. observer A were closer to inter-observer difference. This observation
can be ascribed to the similarity in the fashion in which contours were obtained by the
proposed method and observer A i.e., one set of contours was obtained for only one phase
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Table 3.2: Point-to-curve distance measurements (in mm) obtained from the comparison of
manual contours from observers A and B with automatically obtained (AO) contours. The
last column shows inter-observer measurements. All values in the table are shown in the
format: mean ± standard deviation.

Comparisons Obs. A vs. AO Obs. B vs. AO Obs. A vs. Obs. B
Contours Endocardial Epicardial Endocardial Epicardial Endocardial Epicardial
Mid-ventricular
Slice

2.44 ± 0.53 2.55 ± 0.71 2.90 ± 0.68 3.08 ± 0.98 1.77 ± 0.57 2.08 ± 0.75

Basal Slice 1.71 ± 0.53 2.55 ± 0.46 2.50 ± 0.62 2.51 ± 0.58 1.76 ± 0.49 2.02 ± 0.71

Table 3.3: Dice index measurements obtained from the comparison of manual contours from
observers A and B with automatically obtained (AO) contours. The last column shows inter-
observer measurements. All values in the table are shown in the format: mean ± standard
deviation.

Comparisons Obs. A vs. AO Obs. B vs. AO Obs. A vs. Obs. B
Contours Endocardial Epicardial Endocardial Epicardial Endocardial Epicardial
Mid-ventricular
Slice

0.89 ± 0.02 0.91 ± 0.02 0.87 ± 0.03 0.88 ± 0.04 0.91 ± 0.03 0.93 ± 0.03

Basal Slice 0.92 ± 0.02 0.93 ± 0.01 0.90 ± 0.02 0.92 ± 0.02 0.93 ± 0.02 0.93 ± 0.02

Figure 3.6: Visual comparison of (a) Ground truth contours with (b) AO contours

of each slice followed by its propagation to other phases along with minor translations, if
required. Observer B segmented individual frames of each slice adapting to rigid as well
as non-rigid transformations.

It is worth noting that the proposed method succeeded in identifying and delineating
desired myocardial regions despite the fact that the AAM training and the matching were
performed on datasets acquired using disparate protocols and MR scanners from different
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Figure 3.7: Boxplot showing point-to-curve errors and Dice index for all the datasets: plots in
column (a) represent mid- ventricular slices, and plots in column (b) represent basal slices.

vendors; the data for AAM training consisted of MR function scans from Philips scanner,
and the model thus obtained was used for AAM matching on perfusion testing data that
consisted of MR perfusion images from Siemens scanner.

3.5.2 Myocardial perfusion analysis

The results on relative and absolute up-slope differences give an indication of the suitability
of the proposed method in a clinical set up. As shown in Table 3.4, the differences between
the values obtained manually and automatically were found to be statistically insignificant
(p=0.37 for relative up-slope and p=0.12 for absolute up-slope). The standard deviation
of relative up-slope parameters for the complete dataset remained unchanged when it was
computed with the proposed method, and the further analysis of absolute up-slope values
(Figure 3.10) for all slices suggests that there is little to no variation in the values obtained
manually and automatically. In the Bland-Altman plot (Figure 3.10), the distribution
around the mean suggests the absence of both a systematic error and a visible trend.
The intensity distribution shown in Figures 3.8 and 3.9 indicated that both AO and
ground truth contours enclosed the same myocardial region. As shown in both figures, the
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Figure 3.8: Difference (in percent) between the Ground truth and AO contour intensity curves
for all frames of the complete dataset

variation of differences is significantly lower and only a few outliers are indicated in Figure
3.8 during the first-pass (frame 1 through 35) as compared to the second-pass (frame
36 through 50) of contrast agent. These observations indicate that the proposed method
does well to avoid the incursions of pixels from LV blood pool into the myocardium, thus
suggesting its suitability for regular use in clinics.

Table 3.4: Up-slope parameter obtained using the Ground truth and AO contours for the
complete dataset

Parameter Ground truth contours AO contours p value
Relative up-slope 0.11 ± 0.08 0.11 ± 0.08 0.37
Absolute up-slope 0.40 ± 0.13 0.38 ± 0.13 0.26

3.5.3 Limitations

The accurate segmentation of the myocardium in the proposed method relies primarily
on the ICA’s ability to identify and label correct components, hence, an identification and
labeling failure in few cases translates to the incorrect contour application on misregistered
frames. This failure of registration can be attributed to the poor quality of images and
a large breathing motion during image acquisition. As an implication of this failure, it
was no longer feasible to propagate one set of contours to all the frames of the perfusion
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Figure 3.9: Difference (in percent) between the Ground truth and AO contour intensity curves
for all slices of the complete dataset

sequence since it contradicted our basic assumption that, post registration, myocardium
should be located at same position in all the frames. The segmentation failure (Figure 3.4)
was observed mainly in those images that had higher myocardial shape variability with
respect to the training shapes. Therefore, we ascribe these failures to the limitations of
trained AAMs that prohibit the model from deforming according to the edge-information
in a few images. However, this issue can be resolved in the future by training the AAM
with more shapes and images, extending the shape variability of the model.

3.5.4 Future perspectives

We intend to direct the current work towards the improvement of registration strategy
to reduce unusually large and rapid breathing motion that affects the identification and
labeling of correct components. In addition, training of AAM with a larger pool of shapes
and images will make the segmentation more robust. Finally, the clinical validation should
be extended to multi-vendor datasets and, more importantly, to the images of the patients
with pathological conditions in order to demonstrate the true potential of the proposed
method.
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Figure 3.10: Bland Altman plot comparing the absolute up-slope parameters obtained from
the Ground truth and AO contours for the complete dataset

3.6 Conclusion
We proposed an integrated registration and segmentation pipeline that is completely
automatic and hence, very fast compared to manual methods. The complete automation
and rapid processing were accomplished by first registering misaligned images using a
method based on ICA, and then using the output of the registration step to automatically
segment the myocardium with AAM. The results related to point-to-curve distance and
overlap area, for a dataset comprising 1500 images, indicated that our method achieved a
high spatial correspondence with the manual gold standard. Furthermore, the analysis
based on myocardial time-intensity curve demonstrated that the difference between
manually and automatically obtained perfusion parameters was statistically insignificant.
With the presented results, we have shown the potential of the proposed method in
accelerating the analysis of first-pass cardiac MR perfusion image sequences.
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