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Chapter 7

Abstract

In this work we present a method for registration of a CT-derived mouse skin
surface to two or more 2D, geometrically calibrated, photographs of the same
animal using a similarity transformation model. We show that by using a 3D
distance map, which is reconstructed from the animal skin silhouettes in the
2D photographs, and by penalizing large angle differences between distance
map gradients and CT-based skin surface normals, we are able to construct a
registration criterion that is robust to silhouette outliers and yields accurate
results for synthetic and real data (mean skin surface distance 0.12mm and
1.35mm respectively).
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7.1 Introduction

Molecular Imaging comprises imaging of biological processes at a cellular level
and at molecular resolution noninvasively and in vivo [3]. A broad spectrum of

modalities exists for acquiring structural as well as functional data. If modalities are
combined, this can results in new insights that could not have been gained by looking at
the data separately.

In some cases, it can be useful to register datasets of a different modality and dimen-
sionality. An example of this is the registration of 3D anatomical (e.g. CT or MRI) data
and multiple 2D views of bioluminescence imaging (BLI) data of small animals. Since
BLI images do not show anatomical references, they are usually combined with diffuse
light photographs. If these photographs can be registered to 3D CT/MRI data, accurate
bioluminescence source localization and quantification becomes possible in 3D using Bio-
luminescence Tomography, assuming that a 3D map with optical tissue properties can be
derived from the CT/MRI dataset [8]. There are traditionally two categories of methods
for solving 2D/3D registration problems, dependent on what the registration criterion is
based on [157]: feature-based methods [158] and texture(intensity)-based methods [159].
In comparison, feature-based methods are usually faster than texture-based methods but
have the disadvantage that the registration accuracy is dependent on the feature selection.
To combine high processing speed with high accuracy, gradient-based methods have been
proposed more recently [160]. Besides the choice of the registration criterion it is impor-
tant to choose the registration domain (2D or 3D). While it is relatively easy to generate
a 2D representation of a 3D object, the contrary may be complicated since typically the
amount of 2D data is very limited. But registration in 3D has the advantage, that the
time-consuming, repeated 3D to 2D mapping and the inherent loss of information can be
avoided [158].

In recently published work, Markelj et al. [160] present an iterative method for rigid
registration of a CT or MRI-derived dense gradient field with a sparse 3D gradient field,
reconstructed using multiple 2D gradient images (conventional X-ray). The presented
results show that their approach combines accuracy with robustness. A drawback of the
method is that it needs to search for correspondence between the gradient fields in each
iteration, which is time-consuming. Iwashita et al. [161] employ a correspondence-free
3D/2D approach for iterative registration of a 3D shape to pre-calculated distance maps,
generated using estimated 2D contours of the object. However, the method is carried out
in 2D and therefore requires an expensive 3D to 2D mapping in each iteration.

In this work, a 2D/3D registration approach is presented that does not need to estab-
lish correspondence during registration. On the one hand the method is based on data
reduction by extracting features, but on the other hand it integrates feature gradients as
well. The contributions of this work are:

• We introduce a registration criterion, based on a 3D distance map, which is re-
constructed from a sparse set of 2D images. To ensure robustness and to increase
accuracy, it includes angle penalties based on the direction of the gradients in this
distance map as well as distance penalties based on the zero level set of the map.
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Source S                   Target B1

Figure 7.1: Examples of a CT-derived skin surface (source S) and a surface visualization of a
target B1, derived from two orthogonal photographic views.

• We apply this criterion to register CT-derived mouse skin surfaces to two or more
2D silhouettes of the animal skin using a similarity transformation model.

7.2 Methodology

7.2.1 Shape Representation and transformation type

Since the light photographs only show the animal exterior, the internal structural infor-
mation in the CT data cannot be exploited for registration. Therefore the skin surface is
extracted and represented as a triangular mesh. The target object is not fully determined
in 3D because the photographs show projections of the animal and there is only a limited
number of photographs available. Therefore an implicit shape representation in 3D is
determined based on back-projection of the skin silhouettes that are derived from the 2D
images. The target volume B1 is then defined as the intersection of the back-projected
silhouettes. An example of a skin surface extracted from CT and a target volume based
on two photographs (top and side view) is given in Fig. 7.1. The size of the entire regis-
tration domain B0, with B1 ∈ B0, is determined by the size of the 2D images. Since the
CT dataset and the photographs are both acquired from the same animal but the two
modalities are not calibrated, a similarity transformation model was chosen to describe
the transformation from source to target.

7.2.2 Registration criterion

Given the source skin surface S with n vertices v ∈ R3 and the registration domain B0,
an energy function is defined as the sum of squared Euclidean distances (SSD) of all
vertices in S to the boundary of the target volume B1:
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Etotal =
n∑
v=1

E(v,Θ)2 (7.1)

E(v,Θ) = DM(B0,x) (7.2)

x = bT (v,Θ)e (7.3)

In these equations, T represents the similarity transformation (translation, rotation
and isotropic scaling), which is expressed as the parameter vector Θ. DM(B0,x) contains
the Euclidean distance between x and the boundary of B1 [162]. For computational
purpose, DM was precalculated for all possible (rounded) vertex locations x by calculating
the distance transform of B0, using Danielsson’s method [163]. Note that in the following,
the boundary of B1 is referred to as SB1.

The registration criterion formulated in Eq. 7.1 yields accurate results if the match
only receives data support on the tangential lines between S and SB1, and only if the
source and the target shape are very similar [160]. However, as depicted in Fig. 7.1, S
and SB1 differ significantly from each other because one modality may contain informa-
tion that is not available in the other (Fig. 7.2) and more importantly, because B1 is
based on a very limited number of 2D images. As a result, the minimum SSD yields an
overestimation of S, because all vertices on S are considered to contribute equally to the
SSD (Figs. 7.3, left and 7.3, middle). To reduce the influence of surface nodes on S, that
do not determine the shape of SB1, three steps are implemented:

1. The maximum distance in DM is limited, by introducing a Dmax if |DM(B0,x)| ≥
Dmax:

DMbound(B0,x) = max(min(DM,Dmax),−Dmax) (7.4)

A bounded distance map reduces the influence of vertices that cause a large distance
error, even if the solution is optimal.

2. Vertices on S that fall outside SB1 are penalized by multiplying the distance with
a factor α > 1:

DMboundOP(B0,x) =

{
αDMbound, DMbound > 0

DMbound, DMbound ≤ 0
(7.5)

Adding a penalty to all vertices that fall outside B1 reduces the overestimation of S.
Note that these vertices are by definition positioned erroneously, since SB1 fully encloses
S.

3. The surface normal of S (which closely corresponds to the direction of the steepest
gradient in the CT volume) is compared to the distance map gradient (DMG)
by adding a penalty if the angle difference rv between the gradients is above a
maximum angle rmax (Fig. 7.3, right):
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Figure 7.2: A photograph of a mouse at 0◦(left), the true silhouette (middle) and a simulated
projection (right) based on a CT of the same subject.

Eangle(v,Θ) =

{
DMboundOP, if rv < rmax

αDmax, if rv >= rmax

(7.6)

rv =
360

2π
cos−1 (DMG(B0,x) · vertexnormal(T (v,Θ))) (7.7)

By integrating an angle penalty and iteratively decreasing rmax, the influence of vertices
on S, that are not ‘contour’-vertices, is decreased step by step. Indeed, for rmax → 0,
only vertices are taken into account, whose surface normal is identical to the distance
map gradient (i.e. the tangential lines). In practice however, the final rmax will depend
on the number of vertices, i.e. the sampling density of S (Fig. 7.4). The final energy
function is:

Efinal =
n∑
v=1

Eangle(v,Θ)2 (7.8)

7.2.3 Minimization of the criterion function

For initialization, the Centers of Gravity (CoGs) of S and B1 are aligned and an initial
scaling parameter is derived from the dimensions of B1. Subsequently the energy function
is minimized using an iterative nonlinear regression method [101].

7.3 Experiments

7.3.1 Validation tests

To validate the proposed method, registration of a CT-derived skin surface to a recon-
structed volume was performed. This volume was based either on two and four simulated
2D projections, or two real 2D photographs. For quantitative performance assessment,
the transformation parameters (absolute translation of CoG, solid angle, scaling) after
registration were compared to the true transformation parameters. In addition, the mean
surface distance, and a mean Dice coefficient [164] were calculated between the ground
truth and the registered source surface. For the simulated data, the transformation
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Min SSD Best Fit
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Figure 7.3: Demonstration of the source surface (represented as a circle) overestimation when
all surface vertices are weighted equally. In this case, the transformation yielding the minimum
SSD (left) does not correspond to the optimum solution (middle). The drawing on the right
shows penalized vertices, depending on the angle difference (dark gray = 20◦, light gray = 40◦)
between vertex normals (black) and the DMG (light gray).

Table 7.1: Results of the validation tests (voxel dimension =̂700µm).

Dist. between Abs. Dist. Scaling Solid Angle Dice
Data Views α Skin Surfaces of CoGs Error Error Coefficient

[voxels] [voxels] [%] [degrees]
Synth. 2 1 0.46± 0.18 0.64± 0.61 0.74± 0.54 0.59± 0.42 0.995± 0.75e−3

Synth. 4 1 0.54± 0.08 0.54± 0.35 1.33± 0.34 0.37± 0.27 0.995± 6.46e−4

Synth. 2 2.5 0.17± 0.08 0.14± 0.12 −0.32± 0.22 0.60± 0.38 0.998± 5.10e−4

Synth. 4 2.5 0.21± 0.04 0.56± 0.16 −0.07± 0.19 0.34± 0.22 0.998± 3.68e−4

Real 2 1 1.98± 0.59 5.59± 3.74 −1.65± 1.53 1.73± 1.22 0.983± 3.00e−3

Real 2 2.5 1.93± 0.66 4.51± 3.10 −3.40± 1.86 1.66± 1.03 0.984± 3.07e−3

parameters were known. For the real data, these were calculated, by minimizing the
Euclidean distance between two sets of four manually determined anatomical landmarks
in the CT data and the photographs respectively. To investigate the effect of α, all ex-
periments were run using α = 1 (no penalty) and α = 2.5. rmax was first set to 180◦ (no
angle penalty) and then iteratively reduced to 40◦ and 10◦.

7.3.2 Data Acquisition

For validation, 10 mice (Balb/c) were individually placed on a holder. First, a MicroCT
dataset was acquired (Skyscan 1178, Kontich, Belgium) in vivo, with the resolution 80×
80×80 µm3. Subsequently, 2D photographs (top and side view with an angle difference of
90◦) were taken from the same animal (Caliper IVIS 3D BLI system, Hopkinton, USA),
and subsampled to 700 × 700 µm2. The usage of the holder prevented posture changes
during animal transfer between the modalities. For registration, the skin was segmented
semi-automatically from the CT datasets and converted to a triangular mesh (≈ 2000
vertices). The skin boundary in the 2D images was outlined manually in this study
(Fig. 7.2, middle). The entire registration domain had the dimensions 52.5 × 52.5 ×
105mm3 (150 × 150 × 300 voxels). The dimensions of the simulated data as well as the
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Figure 7.4: The effect of introducing an angle penalty. Vertices on S, that are penalized, are
shown in red. Non-penalized vertices are shown in green. In this example, rmax was set to 10◦.

angles were chosen equal to the dimensions and the angles of the real data. For the four
view case, two additional angles were used at ±45◦.

7.4 Results and Discussion

A qualitative example of the ground truth as well as the registration result is shown in
Fig. 7.5. Table 7.1 presents quantitative results for the experiments using synthetic and
real data.

The experiments with the synthetic data reveal good performance of the algorithm.
The mean surface error is less than a voxel dimension (≈ 0.12mm), the Dice coefficient
is very high (0.998) and the transformation parameters could be recovered accurately. In
addition, applying a penalty for overestimation (α = 2.5) resulted in a better estimation
of the scaling parameter than without using the penalty (α = 1). Also the registration
performance seems to be somewhat better for the 2 view case than for the 4 view case,
which is unexpected. However, the variance is smaller in the 4 view case, which indicates
that the algorithm performs more robustly, while still yielding accurate results. The other
results (e.g. the surface distance) are comparable and clearly below a voxel dimension.
This indicates that interpolation effects during generation of the projections at ±45◦

might cause this error.
For the real data, the mean surface distance is less than two voxel dimensions (≈

1.35mm) and the Dice coefficient is very high (0.984). Altogether, the results are less
good than using the synthetic data. Reasons might be shape discrepancies (Fig. 7.2 and
7.5) and the non-standardized, manual 2D silhouette and 3D skin surface segmentation.
Applying the penalty α = 2.5 seems to cause results that are less good for some evalu-
ation measures. This can be explained by the fact that the manually placed anatomical
landmarks, which were used to derive the ground truth, have limited accuracy.

7.5 Conclusions and Future Work

We presented a novel method to register a 3D surface to multiple 2D photographs. The
chosen registration criterion has proven to yield accurate results using synthetic and
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          (a)                     (b)                     (c)                     (d)           

Figure 7.5: Qualitative registration result showing 2D silhouettes (light gray), CT-based projec-
tions of a skin surface (dark gray) and their overlap (white) for the ground truth (a, b) and the
presented method (c, d). The method is robust against missing registration features (e.g. the
ears and part of the tail).

real data and is robust to missing registration features. While the performance was
demonstrated using two and four views, more views can be added easily, without adding
computational overhead. Since the method does not rely on calculating correspondences,
it can be implemented very efficiently.

Because the experiments using more than two (synthetic) views did not yield con-
clusive results, these experiments will be expanded in the future using real data. Above
that, the skin silhouette and the CT skin segmentation should be automated. In addition,
we plan to combine the algorithm with a method to approximate major organs from CT
data [86] to provide a heterogeneous tissue model for bioluminescence tomography.
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