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Chapter 6

Abstract

In vivo MicroCT imaging of disease models at multiple time points is
of great importance for preclinical oncological research, to monitor disease
progression. However, the great postural variability between animals in the
imaging device complicates data comparison.
In this paper we propose a method for automated registration of whole-body
MicroCT follow-up datasets of mice. First, we register the skeleton, the lungs
and the skin of an articulated animal atlas (Segars et al. 2004) to MicroCT
datasets, yielding point correspondence of these structures over all time points.
This correspondence is then used to regularize an intensity-based B-spline
registration. This two step approach combines the robustness of model-based
registration with the high accuracy of intensity-based registration.
We demonstrate our approach using challenging whole-body in vivo follow-up
MicroCT data and obtain subvoxel accuracy for the skeleton and the skin,
based on the Euclidean surface distance. The method is computationally effi-
cient and enables high resolution whole-body registration in ≈17 minutes with
unoptimized code, mostly executed single-threaded.
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6.1 Background

The possibility to scan the entire body of small animals with dedicated hardware
in vivo offers great benefits for preclinical research, because it allows to follow e.g.

pathology development over time within the same subject. This excludes intersubject
variability and has ethical and economical benefits.

A problem that arises with imaging entire bodies is the potentially large postural
variability of animals that are imaged at different time points (Fig. 1.3, left). This sig-
nificantly complicates data examination, because researchers have to ‘align’ structures of
interest visually and navigate through large whole-body datasets. For some applications,
dedicated animal holders can be used to reduce the postural variability [18]. However,
such holders may influence the study, e.g. by obstructing light in optical imaging based
studies [5].

To deal with the problem of high postural variability, in [17] we presented a robust
method for registration between the skeleton, the lungs and the skin of a mouse atlas
(MOBY [59]) and whole-body MicroCT data of mice. We subsequently used the point
correspondences on these structures to map the remainder of the body using Thin Plate
Spline (TPS) interpolation. However, in areas with few correspondences, the accuracy of
the mapping may be limited.

In this paper we aim at improving the accuracy of the TPS mapping by integrating
intensity information during the registration. We present an accurate, time efficient and
highly robust method for registration of follow-up MicroCT datasets that contain artic-
ulated objects. This we achieve by regularizing an intensity-based registration criterion
with the Euclidean distance metric, based on sets of anatomical correspondences. We
evaluate the method using non-contrast-enhanced MicroCT data of eight animals, imaged
at two time points.

6.2 Previous work

Several strategies are described in the literature that focus on registration of images
with multiple structures of interest with varying structural properties. Staring et al. [23]
describe an approach that adds a local rigidity penalty term to the registration function in
order to penalize the deformation of rigid objects. They apply the approach to CT follow-
up data of the thorax. Somayajula et al. [19] present an intensity based registration of
whole-body MicroCT follow-up datasets of mice. They register multiple levels of a scale-
space simultaneously. A method that relies on skeleton segmentations from MicroCT is
described in Li et al. [26]. The skeletons are aligned using nonrigid robust point matching,
followed by intensity based nonrigid registration based on radial basis functions. Suh et
al. [27] register the skeleton using extended demons with subsequent intensity based
registration using normal demons. These approaches exploit the high CT contrast to
avoid unrealistic bone deformation without [19] and with [23, 26, 27] using the skeleton
explicitly. All methods may suffer from local minima when bones are in close proximity,
but especially in case of large postural variability.
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Figure 6.1: First, an anatomical animal atlas (skeleton, lungs, skin) is registered to a base-
line (fixed image, 1) and one or multiple follow-up (moving image, 2) MicroCT datasets. The
point correspondence between the atlas and the datasets allows to establish point correspon-
dences between the datasets as well, which can subsequently be used to regularize intensity-based
registrations (3).

A possibility to increase the robustness of whole-body registration is to model and
register individual parts of an animal. Approaches range from registration of individual
Volumes Of Interest and subsequent interpolation (block-matching), that do not take re-
lationships between VOIs into account [31] to methods that register structures of interest
simultaneously [34] or hierarchically [18]. Other methods are based on realistic anatom-
ical modeling of the relationship between structures, so-called articulated registration
approaches, and were applied to registration of hand radiographs in 2D [92] and mouse
hind limbs [35].

6.3 Method: whole-body mouse registration

In the following, we shortly describe an atlas-based framework for articulated registra-
tion presented in earlier work [17] and then the proposed extension for intensity-based
registration. An overview of the framework is shown in Fig. 6.1. The fixed and moving
images are denoted with IF and IM respectively, and the transformation relating the two
by Tµ, with parameters µ.

6.3.1 Articulated whole-body registration

The mouse atlas used in this work is the publicly available MOBY atlas [59] that we
modified by manually segmenting individual bones and organs, identifying joint locations
and adding anatomically realistic joint models. The registration of this atlas to MicroCT
was presented in previous work [17] and will be described briefly. Using a hierarchical
anatomical model of the skeleton, each atlas bone is registered individually to an unlabeled
skeleton surface representation, using the Iterative Closest Point (ICP) algorithm [79].
In each step, the Degrees of Freedom (DoFs) of the transformation function are defined
by the joint type, by which the current bone is connected to the bone that is higher in
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the hierarchy. To account for differences in bone size, anisotropic scaling is added to the
motion parameters of each bone. Thus, the DoFs vary between seven for a hinge joint
(translation, non-isotropic scaling, one rotation) and nine for a ball joint. The surfaces of
the lungs and the skin are subsequently registered, initialized by the skeleton registration
result. The final result is a dense set of corresponding points on the skin, the skeleton and
the lungs. Establishing such a point correspondence between the atlas and a target for
data of several timepoints, allows to subsequently establish point correspondence between
the timepoints as well (see Fig. 6.1). Corresponding pointsets of two different timepoints
are in the following denoted as ZF and ZM .

6.3.2 Regularized Intensity Based Registration

The articulated skeleton registration is surface-based and mostly neglects intensity infor-
mation in the data. To combine the robustness of the articulated registration with the
accuracy of intensity-based methods, we propose to regularize an intensity-based regis-
tration with the point correspondence from the articulated registration. Registration is
formulated as an optimization problem:

arg min
µ
C = arg min

µ
Ssim(Tµ; IF , IM) + αSCP(Tµ;ZF ,ZM), (6.1)

where the cost function C is optimized with respect to the transformation parameters
µ. Ssim measures the image intensity similarity. We chose Normalized Cross Correlation
(NCC), because all datasets are acquired with the same modality. We thus assume a linear
relationship between the intensity values of IF and IM . SCP is a metric incorporating
the similarity of the corresponding pointsets ZF and ZM and is defined as the mean
Euclidean distance between them:

SCP =
1

P

∑
xi
F∈ZF

∥∥xiM − Tµ(xiF )
∥∥ , (6.2)

where P is the number of corresponding points, and xiF ,x
i
M corresponding points from the

fixed and moving image pointsets, respectively. The two terms of Eq. 6.1 are weighted by
the parameter α. The optimization problem is solved using a parameter-free Adaptive
Stochastic Gradient Descent (ASGD) optimization routine [154], in a multiresolution
fashion, using Gaussian pyramids. For each resolution, the optimal value of α is set
manually, depending on how much the image intensity and the point distance measure
should contribute to C. In the first resolutions, SCP should have a relatively large impact
on C, to remove large postural differences. Thus, α is set to a relatively large value because
otherwise the optimization may get stuck in local minima. Assuming that afterwards IF
and IM are coarsely aligned, the influence of SCP can be gradually decreased and removed
from C in the last resolution (α = 0).

The intensity-based registration was initialized by a similarity registration (motion
and isotropic scaling), followed by nonrigid registration with the transformation Tµ pa-
rameterized by B-splines [155]. They were employed in a multigrid setting, gradually
refining the B-spline control point grid over the resolutions.
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(a) Moving IM (b) IFFD (c) TPS (d) IFFD Reg (e) Fixed IF

Figure 6.2: Dorsal-ventral maximum intensity projections of MicroCT volumes before and af-
ter registration with different methods. Note that (a) was acquired in prone, whereas (e) was
acquired in supine position. The arrows indicate erroneous limbs after registration based on
intensity information only. This is the animal shown in Fig. 6.4.

6.4 Experimental Setup

Eight female mice (Balb/c nu/nu, Charles River, L’Arbresle, France), 6 weeks old at
baseline, were scanned twice, three weeks apart, once in prone and once in supine position
and with arbitrary limb position. MicroCT (SkyScan 1076, Kontich, Belgium) parameters
were: 1.5◦ steps, 180◦, 50keV x-ray voltage, 200µA anode current, Al filter 0.5mm and
exposure time 100ms. The datasets were reconstructed with built-in software (beam-
hardening and ring artifact correction both 10) and a dynamic range of -1000 to 4000
Hounsfield units. No cardiac nor respiratory gating was used. The data was subsampled
to 1443 µm3 voxelsize (≈ 250 × 200 × 650 voxels), smoothed with a Gaussian filter
(σ = 1) and segmented using the Color Structure Code technique [156] with T = 24
for the skeleton and the skin and T = 6 for the lungs. Triangular surface meshes were
extracted from the segmentations using Marching Cubes (more details in [17]).

Following the procedure in Section 6.3.1, we derived ≈2000 correspondences on the
skeleton, the lungs and the skin. For the intensity-based registration, we used 5 reso-
lutions (500 iterations) for the similarity registration and 6 resolutions (2000 iterations)
for the B-Spline registration. α was kept constant at 0.05 in resolutions 1-4, decreased
to 0.005 and 0 in resolutions 5 and 6 respectively (the corresponding parameter files
are available at http://elastix.isi.uu.nl/wiki.php). Invertibility and smoothness
of all final transformations was confirmed using the determinant of the Jacobian of the
deformation fields, which was > 0 within all animals.
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Table 6.1: Skeleton and skin surface distance and landmark localization accuracy (in voxels).
Surface distances are based on eight animals and the landmark distances on a subset of three
animals. (*) Results are based on a different, yet comparable dataset.

Skeleton distance Mean Median Max Min
Init 9.70 ± 11.68 5.59 81.16 3e-6

TPS 2.01 ± 2.72 1.32 36.91 3e-6
IFFD 1.19 ± 5.15 0.34 71.99 5e-7
IFFD Reg 0.49 ± 0.80 0.33 17.83 3e-7

Li et. al [26] (*) 0.61 ± 0.19 N/A N/A N/A

Skin distance Mean Median Max Min
Init 9.56 ± 10.30 6.46 76.62 9e-6

TPS 3.79 ± 3.63 2.71 36.70 1e-6
IFFD 1.37 ± 4.58 0.50 68.64 4e-7
IFFD Reg 0.83 ± 1.16 0.49 16.41 9e-8

Landmark distance Mean Median Max Min

Init 65.24 ± 32.81 64.52 131.62 4.91
TPS 6.25 ± 3.75 5.52 25.63 2.17

IFFD 3.75 ± 7.46 1.90 51.87 0.37
IFFD Reg 1.97 ± 1.72 1.57 11.51 0.37
Li et. al [25] (*) 3.46 ± 1.88 3.64 5.96 1.04

For evaluation, the following metrics were chosen: Normalized Cross Correlation
(NCC) to assess the intensity similarity and the Dice Similarity Coefficient (DSC) to as-
sess skeleton and skin segmentation accuracy. The DSC is defined as 2(V1∩V2)/(V1 +V2)
and measures structural overlap. It is well suited for elongated and thin structures, which
occur in our data (Fig. 1.3, left). We also determined the Euclidean Point to Surface
Distance (EPSD) between the skeletons and skins of registered datasets. We excluded
the tail, since it is irrelevant for most studies. Color-coded EPSD mapping to the surfaces
allows to detect local registration inaccuracies. Finally, we assessed how well specific bone
structures are registered, by measuring the Euclidean Point to Point Distance (EPPD)
between 19 anatomical landmarks, manually indicated before and after registration, on
distal body parts like the limbs, on the spine and on the ribs. Results are given after
initialization, TPS interpolation, intensity-based registration without (IFFD) and with
using regularization (IFFD Reg). For comparison with published work, we present results
of Li et al. [26], because their datasets are comparable to ours.

Correspondence determination was done with Matlab 2010b (The Mathworks, Natick,
USA) and the intensity-based registration using the ITK-based and publicly available
elastix software [130] on an Intel Xeon E5620 8 cores (2.4GHz) and 24GB RAM. The
time requirements were ≈5 mins. for IFFD and ≈17 mins. for IFFD Reg. (including ≈5
mins. to determine correspondence).

6.5 Results and Discussion

Qualitative results of the registration are shown in Fig. 6.2, quantitative results for the
DSC and the NCC are presented in Fig. 6.3 and the surface distances and landmark
localization accuracy before and after registration are given in Tab. 6.1 and Fig. 6.4.
The very large difference between the metrics after initialization and after IFFG are an
indication for the large postural differences between the animals. Comparing TPS and
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Figure 6.3: Boxplots of the DSC for the skeleton and the skin and the NCC, for IFFD and
IFFD Reg. Notch overlap indicates no significant difference (p ≥ 0.05) between medians. Note
that after initialization, the medians are: DSC skeleton 0.15, DSC skin 0.81, NCC 0.65 and
using TPS interpolation 0.42, 0.91 and 0.81.

IFFD, the average error is smaller for IFFD, but the maximum is much larger. The reason
is the large initial postural differences between animals. TPS can deal with that and
therefore, all body parts are registered equally well. IFFD is very accurate, when body
parts lie within the registration capture range, but fails completely otherwise. Generally,
the more distal to the body, the higher the error becomes. Fig. 6.4 and Fig. 6.2 support
this because the error increases significantly at the limbs. The results of IFFD Reg reveal
that our approach can handle large variability in the data without losing accuracy. The
DSC plot (Fig. 6.3) shows excellent overlap for the skeleton and for the skin. We obtain
subvoxel accuracy for bone and the skin in the surface distance measure (Tab. 6.1). The
maximum distances mainly stem from the very distal ends of the limbs and the ribs for the
skeleton, and folds for the skin (Fig. 6.4). In addition, IFFD Reg yields higher intensity
similarity than IFFD (Fig. 6.3). For all presented metrics, IFFD Reg outperforms both,
TPS and IFFD, proving that relying on point correspondence or intensity only is not
sufficient for highly accurate registration, in case of large postural differences.

Compared to published data by Li et al. [25, 26], we have similar results for the
skeleton distance and better results for the landmark localization. Their method pays
special attention to registration of the ribs, thus it might yield more accurate results for
these structures. However, they evaluate using ex vivo data, excluding rib movement
artifacts. If accurate rib registration is required, an additional stiffness penalty could
easily be added to our registration criterion [23]. In addition, we want to stress that
the method in Li et al. requires 260 minutes for registration and our method takes
≈17 minutes. We realize that those experiments were performed on outdated hardware
(Pentium PC, 2GHz, 1GB RAM), but most of our code was executed single-threaded and
in addition, our image domain was approximately twice as big. It would be interesting
to compare our method to the promising approach of Suh et al. [27] as well, which seems
to be more time efficient and more accurate, compared to Li et al.

Finally we want to point out, that the registration of an atlas yields a segmentation
of the skeleton as a by-product.
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Figure 6.4: The skeleton and the skin of an animal at baseline with color-coded Euclidean
distance to the nearest surface point on the mapped skeleton and skin after registration using
IFFD and IFFD Reg respectively. Values (in voxels) are based on one animal.

6.6 Conclusion

We presented a highly robust and accurate approach for registration of articulated objects
with application to whole-body MicroCT data of mice. This we obtained by regularizing
an intensity-based registration criterion with a distance metric, derived from point cor-
respondence among datasets. We performed registration of in vivo whole-body MicroCT
data with high resolution in ≈17 minutes and obtained subvoxel accuracy for the skeleton
and the skin. Compared to competing methods, our approach is very time efficient.
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