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Chapter 5

Abstract

Purpose: Quantification of osteolysis is crucial for monitoring treatment
effects in preclinical research and should be based on MicroCT data rather
than conventional 2D radiographs, to obtain optimal accuracy. However,
data assessment is greatly complicated in the case of three dimensional
data. This paper presents an automated method to follow osteolytic lesions
quantitatively and visually over time in whole-body MicroCT data of mice.
Procedures : This novel approach is based on a previously published method
to coarsely locate user defined structures of interest in the data and present
them in a standardized manner (Baiker et al. 2010, Kok et al. 2010). Here, we
extend this framework by presenting a highly accurate way to automatically
measure the volumes of individual bones, and demonstrate the technique by
following the effect of osteolysis in the tibia of a mouse over time. Besides
presenting quantitative results, we also give a visualization of the measured
volume for qualitative assessment. In addition, we describe an approach to
measure and visualize cortical bone thickness, which allows assessing local ef-
fects of osteolysis and bone remodeling. The presented techniques are fully
automated and therefore allow obtaining objective results, which are indepen-
dent of human observer performance variations. In addition, the time typically
required to analyze whole-body data is greatly reduced.
Results : Evaluation of the approaches was performed using MicroCT follow-up
datasets of fifteen mice (n = 15), with induced bone metastases in the right
tibia. All animals were scanned three times: at baseline, after three weeks and
after seven weeks. For each dataset, our method was used to locate the tibia
and measure the bone volume. To assess the performance of the automated
method, bone volume measurements were also done by two human experts.
A quantitative comparison of the results of the automated method with the
human observers showed, that there is a high correlation between the observers
(r = 0.9996), between the first observer and the presented method (r = 0.9939)
and also between the second observer and the presented method (r = 0.9937).
In addition, Bland-Altman plots revealed excellent agreement between the
observers and the automated method (Interobserver bone volume variability:
0.59±0.64%, Obs1 vs. Auto: 0.26±2.53% and Obs2 vs. Auto: −0.33±2.61%).
Statistical analysis yielded no significant difference (p = .10) between the
manual and the automated bone measurements and thus the method yields
optimum results. This could also be confirmed visually, based on the graphical
representations of the bone volumes. The performance of the bone thickness
measurements was assessed qualitatively.
Conclusions : We come to the conclusion that the presented method allows to
measure and visualize local bone volume and thickness in longitudinal data in
an accurate and robust manner, proving that the automated tool is a fast and
user friendly alternative to manual analysis.
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Bone Volume and Thickness Measurements in MicroCT Data of Mice

5.1 Introduction

Breast cancer metastasizes preferentially to bone. Post mortem evaluation revealed
that 70% of patients who died of breast cancer had bone metastases present in the

skeleton [135]. Bone metastases cause severe morbidity in living patients such as bone
pain, fracture, hypercalcaemia and nerve compression [136,137]. As a result, quantifica-
tion of osteolytic lesion size is pivotal in preclinical research of metastatic bone disease
and treatment evaluation in small animal models.

Osteolysis is currently quantified using 2D radiographs [138, 139]. The scoring of
these radiographs is performed manually by drawing a Region-of-Interest (ROI) around
the lesion and measuring the bone area. The problem with this procedure is that lesions
may be projected on top of each other and will therefore be underestimated when quan-
tified, due to the flattening of the three dimensional structure [140] (Fig. 5.1). The same
may happen for lesions on the side of bone. Furthermore, performing the analysis man-
ually is prone to observer bias. MicroCT datasets provide spatial information, suitable
for measurements of various bone parameters such as bone volume, bone thickness and
bone mineral density. These measurements are potentially more informative than the
radiographic analyses. Also, MicroCT enables the researcher to study the overall bone
structure.

The use of MicroCT for quantitative measurements is not without difficulties. The
shape and position of a Volume-of-Interest (VOI, the three dimensional counterpart of a
ROI in 2D) in a 3D dataset greatly influence the measurement results. Therefore, it is
crucial that the selection of a VOI is reproducible and not affected by the scan orientation
or the observer who performs the procedure. We previously published a manual approach
for the normalized selection of a region of interest in complex shapes [140]. This manual
approach provides good and reproducible results but is very time consuming and requires
well trained observers.

The comparison of whole-body datasets from longitudinal studies is even more diffi-
cult. Variation in posture of the animal during scans taken at different scan dates makes
it nearly impossible to spot subtle disease induced differences between scans [17]. We pre-
viously published an approach to automatically align the skeletons of animals that were
scanned at different points in time. The method can handle large postural differences
between animals and as a result, specifically designed holders that are sometimes used to
coarsely align animals [18], are not required. In addition, the user can select individual
bones and generate side-by-side visualizations of these bones from multiple longitudinal
datasets (Fig. 4.3). Such normalized visualizations greatly facilitate detailed qualitative
assessment of structures in multiple complex and large datasets [16].

Here we describe an addition to this method, which enables the user to perform
automated quantitative measurements of bone volume and thickness alongside the visual
output. For evaluation, we applied the method to segment the femur and the tibia/fibula
in whole-body follow-up MicroCT datasets and measured the bone volume and cortical
thickness at three points in time: baseline, three weeks and seven weeks. To test whether
this approach could be used to quantify biologically relevant changes in bone volume,
breast cancer cells were injected into the right tibia after the baseline scan. The left tibia
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Figure 5.1: Examples of datasets for analysis of osteolysis based on a 2D radiograph (left) and
a 3D MicroCT dataset (right). The insets are examples of the target structure to be analyzed.
A ROI can easily be determined on the left whereas definition of a VOI on the right is not
straightforward.

remained untreated and served as a reference. The results of the automated measurements
are compared to manual measurements of two experts. We show that the automated
segmentation and volume measurements perform equally accurate and reproducible as
manual segmentation and volume measurements.

In summary, the goals of this work are to:

• Automate the task of measuring the volume of a user defined bone in whole-body
in vivo MicroCT data and demonstrate the method by measuring the bone volume
of the proximal tibia/fibula at several points in time.

• Compare the automated measurements with two human observers and show that
the results are not significantly different.

• Present a way to assess the measurement quality visually, by providing proper
visualization and

• Present a method to assess effects of osteolysis and bone remodeling locally (site-
specific bone loss or gain) by automatically measuring and visualizing cortical bone
thickness.

5.2 Materials and Methods

5.2.1 Animals

Fifteen (n = 15) female nude mice (BALB/c nu/nu, 6 weeks old) were acquired from
Charles River (Charles River, L’Arbresle, France), housed in individually ventilated cages,
food and water were provided ad libitum. Surgical procedures and MicroCT imaging
were performed under injection anesthesia (100mg/kg ketamine + 12.5mg/kg xylazine).
Animals were sacrificed by cervical dislocation at the end of the experimental period.
Animal experiments were approved by the local committee for animal health, ethics and
research of Leiden University Medical Center.
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Figure 5.2: Example of an automatically determined subvolume, including the right tibia. The
bone surface is shown together with the corresponding subvolume.

5.2.2 Cell Lines and Culture Conditions

The cell line MDA-231-B/Luc+ (hereafter MDA-BO2), a bone-seeking and luciferase-
expressing subclone from the human breast cancer MDA-MB-231 [141,142], was cultured
in DMEM (Invitrogen, Carlsbad, CA USA) containing 4.5g glucose/l supplemented with
10% fetal calf serum (FCS) (Lonza, Basel, Switzerland), 100units/ml penicillin, 50µg/ml
streptomycin (Invitrogen) and 800µg/ml geneticin/G418 (Invitrogen). The cells were
monthly checked for mycoplasma infection by PCR. The cells were donated by G. van
der Pluijm (Leiden University Medical Center, Leiden, The Netherlands).

5.2.3 Experimental Setup

MDA-BO2 cells were injected into the right tibiae as described previously [142]. In brief,
two holes were drilled through the bone cortex of the right tibia with a 25-gauge needle
(25G 5/8, BD MicroFine, Becton Dickinson, Franklin Lakes, NJ USA) and bone marrow
was flushed out. Subsequently, 250,000 MDA-BO2 cells/10µl PBS was injected into the
right tibiae of the animals. MicroCT scans were made before the tumor cell inoculation
(T0) in supine position, three weeks after tumor cell inoculation (T1) in prone position
and seven weeks after tumor cell inoculation (T2) in supine position. The animals were
scanned with arbitrary limb position.

5.2.4 MicroCT Data Acquisition

MicroCT scans were made using a SkyScan 1076 MicroCT scanner (SkyScan, Kontich,
Belgium) using a source voltage and current set to 50kV and 200µA respectively, with
an X-ray source rotation step size of 1.5◦ over a trajectory of 180◦. Reconstructions were
made using the nRecon V1.6.2.0 software (SkyScan) with a beam hardening correction
set to 10%, a ring artifact correction set to 10 and the dynamic range set to -1000 - 4000
Hounsfield Units (HUs). The datasets were reconstructed with voxelsize 36.5 × 36.5 ×
36.5µm3. Neither cardiac nor respiratory gating was used.
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5.2.5 Manual Segmentation of the Tibia / Fibula

To assess the performance of the automated tibia volume measurements, two field experts
were asked to segment the proximal part of the right tibia. To be able to use the data
at full resolution, this was not based on the whole-body dataset but on a subvolume,
corresponding to the right tibia, which was automatically determined following the pro-
cedure in Fig. 4.2. An example of such a subvolume is shown in Fig. 5.2. Starting with
this subvolume, the experts were asked to segment the proximal part of the tibia/fibula,
i.e. the part between the knee and the location where tibia and fibula separate. The
manual segmentation was done using a tool that was developed in-house with MeVisLab
V1.6 (MeVis Medical Solutions AG, Bremen, Germany) [140]. First, the user navigated
through the subvolume by means of three orthogonal slices (see Fig. 5.2) and annotated
the approximate bone centers at about twenty different locations in the femur and tibia,
starting from the most proximal location in the femur and proceeding via the knee to
the most distal location, in the tibia. Subsequently, cubic B-splines were fitted through
these points, yielding a smooth curved line that runs approximately in the center of the
femur and tibia, i.e. a bone ‘centerline’. Subsequently, the user could navigate through
the volume using slices that are perpendicular to this centerline.

Proceeding through the volume along the centerline, the expert first selected the slice
(i.e. a flat plane) in the knee, which best separates the femur and the tibia, and second
selected the slice, where the tibia and the fibula connect distally. To finally measure the
bone volume in the region between the two slices, a three dimensional region grower was
used. Starting from one or multiple seed point(s) set by the expert, this region grower
decided, based on a user-defined threshold value, if the surrounding voxels are bone or
not. This was iteratively repeated, until all bone voxels between the two slices were
identified. Multiple seed points were necessary in case of fractured bone.

After segmentation, the number of bone voxels was determined using a threshold
value to separate bone from background. To determine the optimum threshold for the in
vivo datasets, the tibia of one of the animals was scanned ex vivo with high resolution
(9.125 × 9.125 × 9.125µm3) after the follow-up experiment. Subsequently, the tibial
bone volume was measured. To find the optimum threshold, for segmentation of bone
from the background in the low-resolution data, the threshold was set such that the
volume of the tibia of the same mouse in the low resolution data was the same as the
volume of the tibia in the high resolution data. This threshold was kept constant for
segmentation of all datasets. The result was a volume dataset with the same size as
the initial subvolume with voxels labeled as relevant bone, i.e. the proximal tibia/fibula,
and background (including irrelevant bone). Therefore, the bone volume of the proximal
tibia/fibula could be determined by multiplying the total amount of bone voxels with the
voxel volume i.e. in our case amount of voxels ∗ (36.5× 36.5× 36.5µm3). To be able to
assess the quality of the segmentation visually, we provided a surface representation of
the manually segmented subvolume. The tibia/fibula bone volume served as the reference
for the automated method presented in the next subchapter.
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5.2.6 Automated Segmentation of the Tibia / Fibula

An automated method should yield results that are as similar as possible to the results a
human observer would obtain. Therefore, it should be designed such that it mimics the
manual procedure as much as possible. Just as for the manual segmentation, presented
in the previous subchapter, the automated segmentation was based on a subvolume as
shown in Fig. 5.2 and the goal was to segment the proximal part of the tibia/fibula. First,
a centerline was determined that runs through the center of the femur, the knee and the
center of the tibia, based on the registration of the skeleton atlas to the MicroCT data.
To this end, we defined 21 bone center locations (10 in the femur, 11 in the tibia) in the
atlas. Subsequently, if the atlas bones are registered to the data (Fig. 4.2b), these atlas
bone center locations are approximately in the bone centers of the femur and the tibia
in the MicroCT data (the bone center locations do only have to be defined once for the
atlas). Subsequently, a bone centerline was derived using cubic B-spline fitting through
the bone centers. Next, the volume was segmented into bone and background, using
global thresholding with the same threshold as was used for the manual segmentation
(see previous subsection). Following the bone centerline from the knee towards the distal
part of the tibia, the separation of the tibia and the fibula was determined using a
hierarchical clustering technique with single linkage [143] that determined the number of
bone clusters at regular spaced locations along the centerline. The Euclidean distance
between points was chosen as the dissimilarity measure. The transition from two clusters
(tibia and fibula) to one cluster identified the location of bone separation. Fig. 5.3 (right)
shows a slice, perpendicular to the centerline, which is close to this point (tibia = large
spot, fibula = small spot).

Separation of the tibia/fibula from the femur was done in a slightly different way as
compared to the manual procedure, because it is very difficult to automatically determine
a flat separation plane within the knee. Therefore, we chose to rely on a classifier that
automatically separates all voxels labeled as ‘bone’ (i.e. after thresholding) into the two
classes ‘femur’ and ‘tibia/fibula’. The classifier was trained using volumetric (tetrahedral)
meshes of the femur and tibia atlas after registration (Fig. 4.2b). Each node location of
the meshes was weighted with a 3D Gaussian probability density function with width h
(Parzen kernel density estimation [143]). Subsequently, all individual probability densities
were summed up, yielding a bone dependent posterior probability density value within
the entire data volume. A voxel labeled as ‘bone’ can thus be identified as ‘femur’ or
‘tibia/fibula’, depending on which of the two classes has the highest posterior probability
at that voxel location. The parameter h was optimized using a leave-on-out test, based
on the available datasets. Finally, the bone volume of the proximal tibia/fibula could
be derived by counting the bone voxels classified as ‘tibia/fibula’ along the centerline,
up to the tibia/fibula separation determined before and multiplying the total amount of
bone voxels with the voxel volume. To assess the quality of the automated segmentation
visually, we provided a surface representation of the result.

91



Chapter 5

Profile dx(Profile)

*

*

D

*

*
*

Figure 5.3: Demonstration of how the bone thickness D is determined automatically if osteolytic
lesions are present. Shown are slices from the MicroCT subvolume that are orthogonal to the
centerline, with an overlay of the voxels labeled ‘bone’ (blue net). Along the bone centerline
(orange stars), grayvalue profiles are taken in axial direction at evenly spaced locations along
the centerline. Shown are (left) a location close to the knee, (middle) a locations halfway between
the knee and the tibia/fibula separation and (right) close to the tibia/fibula separation. Points
on the inner boundaries are indicated by red stars, corresponding points on the outer boundaries
by green stars. The black arrows indicate the directions, along which the grayvalue profiles
for the bone thickness measurement are derived. An example of a profile path is shown in red
(middle). The inset shows an example of a grayvalue profile in blue and its gradient values in
green (dx symbolizes a mathematical derivation). The bone boundaries can be found where the
gradients are maximum (red stars in the inset) and the bone thickness D is the distance between
the boundaries.

5.2.7 Automated Segmentation of the Femur

As a proof of concept that the automated segmentation method can be applied to other
skeletal elements besides the tibia as well, we demonstrate an automated segmentation
of the femur. The femur is connected proximally to the pelvis and distally to the tibia.
Following the procedure given in Section 5.2.6, the tibia was separated from the femur
in a first step. Second, volumetric meshes of the atlas femur and the atlas pelvis after
skeleton registration were used to derive a three dimensional posterior probability density
function for these bones and to determine the separation of pelvis and femur, following
the same procedure as described in in Section 5.2.6. The kernel width h was identical to
the one used for the separation of the tibia and the femur. To assess the reproducibility of
the volume measurements, the volume of the left femur of three animals was measured at
all points in time and compared to the volume of the right femur over time. In addition,
the bones were segmented manually, to assess measurement accuracy. To ensure that the
influence of the induced cancer cells had a minimal effect on the femur bone volume, we
chose three animals where osteolysis had only slightly progressed over time.
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5.2.8 Automated Bone Thickness Measurements

Accurate knowledge of local bone thickness enables to follow the progress of osteolysis and
bone remodeling over time. Therefore, a method is required to measure bone thickness
in 3D and to relate the measurement to the exact location on the bone. Above that, the
method should be able to handle severe structural changes over time, induced by osteoly-
sis. There are mainly two approaches described in the literature to assess bone thickness
in volumetric data: volume-based methods and surface (feature)-based methods [144].
These are focusing mainly on measuring trabecular bone and the approaches generally
take the entire image domain into account. The advantage is that structures with very
different shape can be analyzed. Although the approaches could be used for measuring
cortical bone as well, the tube-like shape of long bones enables another approach. Since
the registration of the skeleton atlas to the data yields a coarse segmentation of the skele-
ton, we can map a bone centerline, defined in the atlas femur and tibia, to the femur and
tibia in the data. Subsequently, we can employ a technique similar to that presented in
Van der Geest et al. [145], where the authors measure the diameter and wall thickness
of blood vessels in MRA and CTA, based on slices that are orthogonal to the vessel cen-
terline. The great advantage of relying on a centerline is that it is possible to determine
exactly at which locations along the centerline the thickness should be measured. The
main difference between analyzing vessels and potentially osteolytic bone is that vessels
are continuous structures while bone can be highly fractured and contain holes.

The methods for trabecular thickness measurement generally take the entire image
domain into account, which can be very time consuming, especially for large volumes or
surfaces with a great amount of vertices. The proposed approach enables to greatly reduce
computational burden. Above that, being able to define the thickness measurement based
on a centerline allows to sample certain areas more densely than others, yielding more
accurate measurements.

To determine the cortical bone thickness of the tibia automatically, we relied on the
bone centerline presented in the previous section and the subvolume according to Fig. 5.2.
At regularly spaced locations, following the centerline in distal direction, grayvalue pro-
files were extracted in axial direction, starting from the centerline and progressing out-
wards. In total, 360 profiles were taken per location, with 1◦ angle difference between
them, covering an entire circle, oriented orthogonal to the centerline. Since the centerline
lies in a low intensity area (bone marrow), the grayvalue profile will consist of low values
at the beginning, high values within the bone and again low values outside the bone
(muscle tissue). An example of such a profile is given in Fig. 5.3 (middle, inset). Sub-
sequently, the inner boundary of the bone can be determined, using the highest positive
gradient of the profile. Doing this for all 360 profiles, yielded 360 points located at the
inner boundary of the bone. However, since the centerline may not always lie exactly in
the center, these points are usually not evenly distributed along the boundary. Therefore,
we applied an additional resampling step so that the points had a minimum distance of
one voxel. Examples of resulting inner boundaries are shown in Fig. 5.3 (red stars). Next,
again grayvalue profiles were taken, but this time orthogonal to the inner boundary of
the bone, starting inside the bone and progressing outwards. An example path of such
a profile is shown as a red line in Fig. 5.3 (middle). Finally, the bone thickness D could

93



Chapter 5

Figure 5.4: Bone surface visualization after manual (left) and after automated (right) segmen-
tation of the proximal tibia/fibula. (femur = blue, proximal tibia/fibula = red, distal tibia/fibula
= green). The circles highlight differences between the segmentations.

be determined using the highest positive and the highest negative gradient of the profile,
demarcating the inner and the outer boundary of the bone. This is demonstrated in the
inset in Fig. 5.3 (middle). Hence, our definition of bone thickness is the distance from the
inner boundary to the outer boundary of the cortex, orthogonal to the inner boundary.

The bone thickness measurements can be uniquely related to the location on the bone,
where they were derived. To be able to assess the bone thickness locally and still have
the anatomical context information available, we present a visualization that is based on
a surface representation of all bone in the subvolume (Fig. 5.2). To each location on the
bone surface, we linked the corresponding bone thickness and assigned a value-dependent
color. The result is a surface representation of the bone, on which the color indicates the
bone thickness. The automated segmentations and bone thickness measurements and
visualizations were performed using Matlab 2010b (The Mathworks, Natick, USA).

5.2.9 Quantitative Analysis of Measurement Results

To assess how similar the results of the automated method and the human experts are,
Bland-Altman [146] plots as well as Pearson’s correlation coefficients are presented. To
investigate in detail the influence of the time point (i.e. baseline, first and second follow-
up), the bone (i.e. healthy and pathologic) and the observer (i.e. automated, observer
1 and observer 2) on the bone volume measurement, we performed a statistical analysis
using a three-way repeated measures analysis of variance (ANOVA) [147], with the bone
volume as the dependent variable and observers, bone (i.e. healthy and pathologic)
and time point as the independent variables (3 × 2 × 3 levels). A repeated measures
design requires the variances of the differences between levels to be equal. Therefore,
Mauchly’s sphericity test should be non-significant if we are to assume that the condition
of sphericity has been met. If the results of the test indicated that the assumption of
sphericity was violated, the degrees of freedom were corrected using Greenhouse-Geisser
estimates of sphericity [147]. To identify significant differences between group means for
main and interaction effects, a Tukey HSD (honest significant difference) post hoc test
was used. Effects were considered to be significant if p < .05. The statistical analysis
was performed using Statistica 8.0 (StatSoft, Tulsa, USA).

94



Bone Volume and Thickness Measurements in MicroCT Data of Mice

5 10 15
5

10

15

−0.5

0

0.5

1 T0: 0.03 ± 0.03 T0: 0.12 ± 0.17

y = 0.99*x + 0.055

r = 0.9939

y = 0.99*x + 0.049

r = 0.9937

y = 1*x + 0.0005

V
o

lu
m

e
 O

b
s
2

 [
m

m
3
]

Volume Obs1 [mm3]

V
o

lu
m

e
 O

b
s
2

 [
m

m
3
]

Volume Auto [mm3] Volume Auto [mm3]

V
o

lu
m

e
 O

b
s
1

 [
m

m
3
]

O
b

s
1

 -
 O

b
s
2

 [
m

m
3
]

A
u

to
 -

 O
b

s
2

 [
m

m
3
]

A
u

to
 -

 O
b

s
1

 [
m

m
3
]

Mean volume Obs1,Obs2 [mm3] Mean volume Auto,Obs2 [mm3] Mean volume Auto,Obs1 [mm3]

5

10

15

5

10

15

5 10 15 5 10 15

5 10 15 5 10 15 5 10 15

−0.5

0

0.5

1

−0.5

0

0.5

1

r = 0.9996

T1: 0.07 ± 0.06

T2: 0.08 ± 0.07

T1: 0.06 ± 0.19

T2: −0.10 ± 0.22

T0:   0.10 ± 0.17   

T1: −0.01 ± 0.18

T2: −0.18 ± 0.21

Figure 5.5: (Top row) Correlation between the measurements (in mm3) of the two human
observers and the automated method. Shown are Obs1 vs. Obs2, Auto vs. Obs2 and Auto
vs. Obs1. The blue line represents a linear best fit, defined by the function in the legend. The
Pearson correlation r, based on the data (red), is also shown in the legend. (Bottom row) Bland-
Altman plots representing the measurement agreement between the two human observers and
the automated method. The black lines indicate the grand means (–) ±1.96 times the standard
deviation (- -), which are 0.06± 0.12mm3, 0.03± 0.43mm3 and −0.03± 0.44mm3 respectively.
The arrows indicate the measurement with maximum disagreement between the observers. To
assess, if the agreement is dependent on the time point when the data was acquired, these are
shown in different colors (Baseline or T0 = red circles, T1 = black diamonds, T2 = blue stars).
Note that the values in the legends are the means ±1 time the standard deviation.

5.3 Results

To be able to assess the accuracy of a manual and an automated segmentation of the prox-
imal tibia/fibula, surface visualizations are generated after the measurements. Examples
are shown in Fig. 5.4.

The results of the correlation tests are shown in the top row of Fig. 5.5 and the
measurement agreements are presented in the bottom row of Fig. 5.5. To assess a possible
influence of the time point on the agreement, the data is shown for each time point
individually (see legends).

Mauchly’s test indicated a violation of the sphericity assumption and therefore degrees
of freedom were corrected using Greenhouse-Geisser estimates of sphericity (see Tab. 5.1
in the ‘Appendix’ for details). The results show that there are significant differences in
measured bone volume for the main effect Time, F (1.39, 16.73) = 28.80, p < .001, as well
as the interaction effects Method * Time, F (1.63, 19.59) = 16.71, p < .001, and Bone
* Time, F (1.08, 12.93) = 12.75, p < .05. The Tuckey HSD post hoc tests revealed a
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Figure 5.6: (Top row) Mean bone volume (mm3) over time for the pathologic (Path) and the
healthy (Heal) bones respectively, Bone * Time interaction (left), and bone volume over time for
the two human observers (Obs1, Obs2) and the automated method (Auto), Observer * Time in-
teraction (right). The results are based on including all mice. Error bars indicate 95% confidence
intervals. (Middle and bottom rows) Mean bone volume (mm3) and the standard deviation of
the healthy (Heal) and pathologic (Path) bones for six different mice (a-f) over time, averaging
the measurements of the automated method and the two human observers.

significant difference in bone volume between T0 and T1 (p < .001) as well as T0 and
T2 (p < .001). There was no significant difference between T1 and T2 (p > .05).

For the Bone * Time interaction effect (Fig. 5.6, top left), relevant significant effects
were present for healthy vs. pathologic bone at T2 (p < .001), but not at T0 and T1
(both p > .05). For the Method * Time interaction effect (Fig. 5.6, top right), relevant
significant effects were present for Obs1 vs. Auto and Obs2 vs. Auto at T0 (p < .05 and
p < .001) but not for Obs1 vs. Obs2 at T0 (p > .05). Furthermore there were significant
effects for Obs1 vs. Auto and Obs2 vs. Auto at T2 (p < .001 and p < .05) but not for
Obs1 vs. Obs2 at T2 (p > .05). There were no significant effects at T1.

The results of the comparison of the difference in bone volume between healthy and
pathologic bone for six different mice are given in Fig. 5.6 (middle and bottom rows).

The results of the femur segmentation and subsequent volume measurements are
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shown in Fig. 5.7. The average volume of the right and the left femur was 0.89± 0.64%
when measured manually and 0.83 ± 0.53% when measured automatically. To see if
there is a significant difference between the human observer and the automated method,
a similar statistical analysis as presented in section 5.2.9. was performed, this time
including one human observer instead of two. Mauchly’s test indicated no violation of
the sphericity assumption (p > .05). The results show that the main effect Method is
significant F (1, 2) = 92.894, p < .05, and the mean difference between the automated and
the manual method is −2.15± 0.75%. This means that the automated method results in
lower measured volumes than the manual method.

A comparison of the development of the bone thickness over time for a healthy and a
pathologic bone are given in Fig. 5.8 by means of bone surface visualizations where color
indicates the bone thickness.

5.4 Discussion

In this article, we described a fully automated approach to analyze skeletal changes in
rodent whole-body MicroCT scans. The automated approach is capable to 1.) align scans
of the same animal, taken at different time points, 2.) automatically segment a subvolume
(VOI) in these scans, 3.) measure the bone volume, 4.) measure cortical thickness and
5.) visualize it by means of assigning thickness-dependent colors. In addition, the user
can visually check the segmentation performance using 3D bone surface representations
and can generate normalized sections of identical sectioning planes in longitudinal scans
for side-by-side comparison.

Conventional analysis of radiographs involves identifying osteolytic lesions manually.
The procedure of manually drawing a region of interest is prone to observer bias and
small changes in thickness or multiple lesions projected on top of each other are easily
overlooked [140]. Manual analysis of MicroCT data is a better alternative, but is very
labor intensive [140].

An automated method for MicroCT analysis has several advantages over manual
analysis. The risk of non-objectivity and interobserver variability are greatly reduced by
minimizing the active manual input of the researcher. Only an automated approach can
be purely objective and handle every dataset in exactly the same manner. Additionally,
an automated analysis method is much faster than any manual procedure. Thus, by
automating the analysis, a relatively larger number of scans can be evaluated, compared
to a human observer.

Researchers want to know exactly how quantified data is generated and tend to dislike
automated ‘black-box’ approaches. To enable the researcher to check every step along
the way, the automated method generates visualizations of the segmented volume. These
visualizations can be evaluated after the analysis is complete. The automatic segmenta-
tion can be overruled manually or some datasets can be excluded from further analysis.
Moreover, the cortical thickness maps enable the researcher to directly pinpoint where
structural changes of the cortical bone occurred. This way, the cortical thickness maps
help to identify areas of interest in the original scan data and in other modalities such
as histological sections. Assessment of trabecular bone is not possible with the proposed
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Figure 5.7: Result of the automated (auto) and manual (Obs1) volume measurement for the
right (ri) and left (le) femur for three different mice (a-c) over time.

method, because the relatively low resolution of the in vivo data (36.5× 36.5× 36.5µm3)
renders measuring the trabecular thickness accurately very difficult [148].

We validated the presented automated method by comparing it to the ‘best available’
method, namely manual bone segmentation and bone volume measurements. Therefore,
we acquired datasets of 15 mice (n = 15) with induced bone metastases in the tibia at
three points in time. The volume measurement results show that there is an excellent
correlation between the human observers and the automated method: rObs1Obs2 = 0.9996,
rAutoObs2 = 0.9939 and rAutoObs1 = 0.9937. The Bland-Altman plots (Fig. 5.5, bottom
row) based on all data indicate excellent agreement among the two human observers (in-
terobserver variability) as well as the observers and the automated method. There is no
obvious relation between the difference and the mean. Residual disagreement can there-
fore be explained by the bias and the deviation, which is very low in all cases, namely
0.59± 0.64%, 0.26± 2.53% and −0.33± 2.61% respectively. The residual errors are the
result of mainly two factors that may influence the measurement outcome: the regis-
tration accuracy, and subsequently the segmentation accuracy, and the chosen threshold
to separate bone from the background. The registration accuracy has the largest influ-
ence on the result and therefore, improving the accuracy would require a modification of
the registration method. Special attention should be paid to the robustness of potential
methods with respect to bone resorption. The thresholding procedure also influences the
measured volume, because both values are inversely related i.e. if the threshold value
increases, the volume decreases and vice versa. We chose a global threshold since the
resolution of the in vivo data does not allow to reliably segment the trabecular bone [148]
but methods including local thresholds may be more accurate, if data resolution increases.

Ideally, the automated measurements are identical to the manual measurements. The
ANOVA revealed no significant difference between observers (Method, p = .10), which
means that the automated method is performing equally well as the two human observers.
However, the low p value indicates that significant interaction effects may be present. It
appears that there is a dependency of the performance of the automated method on the
time point since the automated method is significantly different from the human observers
at T0 and T2. Visual inspection of Fig. 5.6 (top right) suggests overestimation of the
volume at T0 and underestimation of the volume at T2. There is no significant difference
at T1. This is supported by the Bland-Altman plots (Fig. 5.5, bottom row) in which
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the mean difference in measurement is close to zero at T1. However, the differences are
borderline and probably due to the very small variation between the human observers.

The bone volumes of pathologic bones were significantly decreased compared to the
healthy bones at T2 (Fig. 5.6, top left). There are no significant differences at T0 and T1.
There are two explanations why there is no volume decrease at earlier time points. Firstly,
the bone marrow is partially flushed out of the bone during the intra osseous injection
of tumor cells. This partial bone marrow ablation has profound anabolic effects on local
bone turnover. Bone formation induced by bone marrow ablation reaches a maximum
one week after the intervention. After this initial week the bone volume normalizes
gradually over time as the bone recovers from the procedure, a process that can take
weeks [149,150]. Secondly, starting osteolytic lesions around the tumor create weak areas
in the bone. The mechanical stress on other, healthy parts of the bone will increase due
to these weak areas. Both the anabolic effects due to the partial bone marrow ablation
and due to the increased mechanical stress result in a local increase of bone volume
alongside osteolytic lesions. Combined, these anabolic and osteolytic processes influence
the volume measurements as can be seen in Fig. 5.6 (middle and bottom rows, a-d and
f). The cortical thickness maps provide an excellent tool to see exactly where the volume
changes occur in relation to the osteolytic lesion site (Fig. 5.8).

The presented segmentation method is not restricted to the tibia, but can be applied
to any bone of the skeleton in whole-body MicroCT scans, as long as it is contained in
the MOBY mouse atlas [16, 17, 59]. We are currently implementing the volume mea-
surements of every segmented skeletal element using the same principle. We segmented
the femur as preliminary proof of concept. Several conclusions can be drawn from the
results in Fig. 5.7. The volumes of the right and the left femur are very similar for the
manual and the automated measurement, meaning that measuring the femur is highly
reproducible. The automated method however, underestimates the volume compared
the manual method. This underestimation is to be expected since the femur included
in the MOBY mouse atlas does not include the femoral head and neck. Therefore the
segmentation result ‘cuts’ the femoral neck approximately in the middle and the amount
of underestimated volume thus corresponds to the volume of the femoral head and part
of the femoral neck. Note that this is a systematic error and only leads to inaccurate
results if the femoral head and neck are of particular interest within a study. The same
type of measurement error may occur for other bones as well, since most of the bones in
the MOBY atlas are simplified versions of the real bone shape. However, as is the case
for the femur, this should not lead to problems because the error is systematic. If higher
segmentation accuracies are required in a particular part of the bone that is simplified,
another animal model with more details could be employed. One should however bear
in mind that using simplified bone shapes has the advantage that the influence of e.g.
differences in strain or animal size can be minimized by leaving out the fine details.

The increased radiation dose of MicroCT compared to radiographs has always been
a major concern limiting its use in cancer research. This is not a problem anymore as
modern MicroCT scanners can perform whole-body scans in less than a minute [151].
The delivered radiation dose during these scans is well below a dose that would affect
tumor growth, even during longitudinal follow-up studies [151–153].
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Figure 5.8: Comparison of the bone thickness development over time for a healthy and a patho-
logic (diseased) bone. Shown are bone surface representations. The colors indicate the bone
thickness at each location on the bone. The bone marrow was partially flushed out of the bone
during the intraosseous inoculation used to induce bone metastases. This partial bone marrow
ablation leads to a local increase in bone volume preceding cancer-induced osteolysis [140]. The
arrow indicates this local increase in bone thickness around the site of early osteolysis. Note
that the measurements at the distal end of the femur and the proximal end of the tibia are
not meaningful, because at these locations, a substantial amount of trabecular bone is present.
However, bone thickness measurements are only meaningful for cortical bone.

All datasets used in this article have been generated with a standard scanning protocol
using the Skyscan 1076 MicroCT. However, the described methods can be performed
on any other whole-body MicroCT dataset acquired on a different machine and with a
different protocol. Other scans might require an adjustment of threshold values and the
initial scan resolution will always be a limiting factor during further analysis.

Finally we want to stress, that the described method is general and can be applied to
others species as well as long as an anatomical skeleton atlas is available.

5.5 Conclusion

We suggested a new MicroCT analysis paradigm based on the combined approach of
previously published methods for animal posture correction, normalized visualization of
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follow-up data and the quantification and visualizations discussed in this paper. Together,
this results in a fast and automated workflow, in which the user can easily compare
whole-body MicroCT scans on the whole-body level, zoom in to the level of a single bone
or bone segment of choice and gain qualitative and quantitative data of that segment.
The animals can be scanned in any posture. Normalized and interactive side-by-side
visualizations of the exact same section of skeletal elements at different time points can
be generated from longitudinal scans in which one animal is scanned multiple times
over time. The detailed side by side visualizations greatly help the researcher to identify
changes in the skeleton. The researcher can then identify and zoom in on the bone or bone
segment of interest and automatically generate quantitative volumetric data alongside
visualizations of the segmented volume and visualizations of the cortical thickness of
that specific skeletal element. This new workflow greatly reduces analysis time, aids the
handling of complicated scan data and improves the overall qualitative and quantitative
assessment of MicroCT scans. The method was validated by quantification of osteolytic
effects over time in the tibia but can easily be adapted to other bones of the skeleton.
In addition, the approach can be used for other species as well, given that an animal
skeleton atlas exists for that animal.

Acknowledgements

The authors gratefully acknowledge Marieke Thurlings and Ron Wolterbeek for helping
with the statistical analysis. This research was supported by the Dutch Cancer Soci-
ety Koningin Wilhelmina Fonds (grant UL2007-3801) (TS) and the European Network
for Cell Imaging and Tracking Expertise (ENCITE), which was funded under the 7th
framework program.

Conflict of interest disclosure: The authors declare that they do not have a conflict of
interests.

101



Chapter 5

Appendix

5.6 Results of Mauchly’s test and Greenhouse-Geisser

correction

Table 5.1: Results of Mauchly’s test and Greenhouse-Geisser correction.

Mauchly’s test Greenhouse-Geisser correction

W χ2 df p
df
M

df
E

F p ε
Adj.
df1

Adj.
df2

Adj. p

Method .05 33.72 2 .00 2 24 3.18 .06 .51 1.02 12.29 .10
Bone 1 1 12 0.69 .42 1 1.00 12 .42
Time .57 6.26 2 .04 2 24 28.80 .00 .70 1.39 16.73 .00
Method * .18 18.9 2 .00 2 24 0.80 .46 .55 1.10 13.18 .40
Bone
Method * .03 35.3 9 .00 4 48 16.71 .00 .41 1.63 19.59 .00
Time
Bone * .14 21.3 2 .00 2 24 12.75 .00 .54 1.08 12.93 .00
Time
Method * .05 31.3 9 .00 4 48 2.81 .04 .55 2.18 26.18 .07
Bone *
Time
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