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Chapter 3

Abstract

This paper presents a fully automated method for atlas-based whole-
body segmentation in non-contrast-enhanced MicroCT data of mice. The
position and posture of mice in such studies may vary to a large extent, com-
plicating data comparison in cross-sectional and follow-up studies. Moreover,
MicroCT typically yields only poor soft tissue contrast for abdominal organs.
To overcome these challenges, we propose a method that divides the prob-
lem into an atlas constrained registration, based on high-contrast organs in
MicroCT (skeleton, lungs and skin), and a soft tissue approximation step for
low-contrast organs. We first present a modification of the MOBY mouse at-
las (Segars et al. 2004) by partitioning the skeleton into individual bones, by
adding anatomically realistic joint types and by defining a hierarchical atlas
tree description. The individual bones as well as the lungs of this adapted
MOBY atlas are then registered one by one by traversing the model tree
hierarchy. To this end, we employ the Iterative Closest Point method and
constrain the Degrees of Freedom of the local registration, dependent on the
joint type and motion range. This atlas-based strategy renders the method
highly robust to exceptionally large postural differences among scans and to
moderate pathological bone deformations. The skin of the torso is registered
by employing a novel method for matching distributions of geodesic distances
locally, constrained by the registered skeleton. Because of the absence of im-
age contrast between abdominal organs, they are interpolated from the atlas to
the subject domain using Thin-Plate-Spline approximation, defined by corre-
spondences on the already established registration of high-contrast structures
(bones, lungs and skin).
We extensively evaluate the proposed registration method, using 26 non-
contrast-enhanced MicroCT datasets of mice, and the skin registration and
organ interpolation, using contrast-enhanced MicroCT datasets of 15 mice.
The posture and shape varied significantly among the animals and the data
was acquired in vivo. After registration, the mean Euclidean distance was
less than two voxel dimensions for the skeleton and the lungs respectively and
less than one voxel dimension for the skin. Dice coefficients of volume over-
lap between manually segmented and interpolated skeleton and organs vary
between 0.47 ± 0.08 for the kidneys and 0.73 ± 0.04 for the brain. These ex-
periments demonstrate the method’s effectiveness for overcoming exceptionally
large variations in posture, yielding acceptable approximation accuracy even in
the absence of soft tissue contrast in in vivo MicroCT data, without requiring
user initialization.

34



Atlas-Based Whole-Body Segmentation of Mice from MicroCT data

3.1 Introduction

3.1.1 Background

Molecular imaging modalities are nowadays regarded as powerful tools for pre-
clinical (small animal) research, especially for characterization and quantification

of molecular processes in vivo [2]. In contrast to traditional structural imaging meth-
ods in diagnostic medicine, their aim is to determine disease-related abnormalities at a
microscopic (cellular) scale at an early stage and to subsequently correlate these with
macroscopic anatomical changes over time [3]. This adds a new dimension to animal
experiments, since the traditional cross-sectional studies using different animals can be
extended to follow-up studies, using the same animal.

While sometimes researchers are interested in imaging molecular events in a specific
target organ, e.g. the brain or the heart, it is often necessary to acquire data from the
entire animal. This is particularly important in oncology, where researchers aim at mon-
itoring metastatic disease, to answer questions like where in the body particular tumor
cells metastasize, and to follow tumor growth and interaction with its environment [5,6].
Bioluminescence Imaging (BLI) and Fluorescence Imaging (FLI) are useful modalities for
this purpose because of their high sensitivity but in general do not provide anatomical
reference information. Therefore, BLI or FLI datasets are often combined (fused) with
high-resolution diffuse light photographs and coregistered MicroCT datasets. Although
we earlier demonstrated that this improves visual data navigation [7], the localization of
a particular structure of interest remains challenging if the structure of interest does not
show sufficient contrast, for instance for abdominal organs in MicroCT. An automated
whole-body segmentation of the entire animal, including the skeleton, would therefore
greatly facilitate data interpretation. Moreover, a whole-body segmentation can be use-
ful to localize and quantify bioluminescence sources, because accurate Bioluminescence
Tomography (BLT) approaches require a heterogeneous tissue model [90,91].

Since light propagation in tissue is highly diffusive and light has a very limited pene-
tration depth, the positioning of the animal in the BLI and FLI data acquisition device
is strongly dependent on the type of study. If there are e.g. metastases in the spine,
the animal should be positioned such, that the back of the animal is directed toward
the CCD camera. Therefore, the data acquisition protocol cannot be standardized and
the animal posture and shape may vary significantly among different animals in a cross-
sectional study or the same animal in a follow-up study. The reason is that an animal
body consists of many individual (rigid) bones next to multiple (nonrigid) organs and
other soft tissues, which renders the animal interior largely heterogeneous. Besides the
shape variability of these individual parts, there exists an additional variability in loca-
tion relative to each other, which is especially the case for the distal parts of the skeletal
system (limbs). Above that, being the modality of choice for bone imaging, non-contrast-
enhanced MicroCT shows poor soft tissue contrast (Fig. 1.3, right). This complicates data
comparison, especially in the abdominal cavity.

The goal of this work is to provide a fully automated, atlas driven method for whole-
body segmentation of mice. To deal with follow-up as well as cross-sectional data, the
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Figure 3.1: Overview of the registration and organ approximation process. First, high contrast
structures (the skeleton, the skin and the lungs) are extracted from the CT data of a given
subject (A). Subsequently the atlas skeleton (B) and lungs and the extracted skeleton and lungs
(D) are registered (E and F) using an anatomically realistic kinematic model. Finally, major
organs are mapped from the atlas (C) to the subject domain (G). (The dashed arrows indicate
the data input i.e. the CT data and the atlas).

method should be able to handle anatomical intersubject data and exceptionally high
variability in posture and shape between timepoints and individuals. Moreover, the
method should be robust with respect to moderate bone malformations (e.g. as a result
of metastatic activity) and with respect to low soft-tissue contrast. Primary application
in this paper is non-contrast-enhanced MicroCT data, acquired in vivo.

3.1.2 Related work

The amount of Degrees of Freedom (DoF) that a registration method has to resolve is
related to the shape variability of the registration object and can become very large for
nonrigid structures. A generic whole-body registration approach not only has to deal
with a large shape variability of individual parts of the body, but in addition with the
large postural variability of the entire body. This requires a tradeoff between an enormous
amount of DoFs and deformation constraints to ensure that the individual elements of
the body are transformed in an anatomically realistic way, e.g. stiff structures like bones
should not be deformed as much as soft tissue structures.

Methods that aim at registration of individual anatomical structures have been ex-
tensively surveyed in the literature [12–15]. Therefore in the following, only registration
strategies that are suitable to handle objects with inherent structural diversity and meth-
ods, specifically tailored for small animal whole-body registration, are reviewed.

Several strategies have been reported to tackle the aforementioned difficulties of whole-
body registration. There are basically two types of approaches:

1. Methods that solve for a global transformation function directly [20,26] and

2. Methods that are based on a set of local transformations, derived using (hierarchi-
cal) block-matching [18] or using an underlying anatomical model [32, 33, 35]. The
global transformation is subsequently determined by combining the local transfor-
mations.
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Chaudhari et al. [20] determine a diffeomorphic transformation between the skin sur-
face of the Digimouse 3D atlas [36] and a subject skin, derived from MicroCT data. They
segment the animal interior by surface-constrained warping of the atlas volume to the
subject using harmonic maps, based on the skin mapping result. The method to a certain
extent handles variations in limb position by manually drawing curves on the limbs, but
does not take internal structural differences into account. Bone structures therefore can
easily deform in an anatomically non-realistic way. A method that takes special care of
the skeleton is presented in Li et al. [26]. The authors present a whole-body intersub-
ject, intramodality (CT) approach for ex vivo mouse studies. They nonrigidly register
centerline representations of different animal skeletons and subsequently use the corre-
spondences to define a Thin-Plate-Spline (TPS) mapping. As a final step, they apply
an intensity-based nonrigid registration. Their work is based on the skeleton and there-
fore distinguishes between bone and soft tissue in general. However, there is no further
identification of soft tissue parts. Above that, the point matching method cannot handle
large limb articulations.

A way to take local differences in tissue properties into account during registration
are block-matching methods. Depending on the target, the transformation model can
be adjusted to fit the deformations locally. Approaches have been presented for various
applications allowing translation only [28], translation and rotation [29] or affine [30, 31]
local transformations. Kovacevic et al. [18] apply a hierarchical block-matching method
for whole-body, intramodality registration of MRI data, using locally affine transforma-
tions. The approach is based on the “part-of” concept, i.e. they first separate the main
organ compound and refine that division as the registration progresses, down to single
bones and organs. A drawback of block-matching methods reported in the literature is
that, although the individual transformations are initialized by the registration result on
a higher hierarchical level, the individual blocks are determined anatomically independent
of each other. Therefore larger postural differences will lead to suboptimal results.

To deal with larger postural differences, several authors perform local registrations by
integrating anatomically realistic motion constraints. Mart́ın-Fernández et al. [32,92] for
example make use of an anatomical hand model to register 2D radiographs. The bones
are thereby represented by a wireframe where individual ‘rods’ are registered imposing
kinematic constraints. Du Bois d’Aische et al. [33] register a human head, based on a
model of the cervical spine. Articulated vertebrae are registered to the target image
and the deformation is propagated to the rest of the head using a linear elastic model.
Papademetris et al. [35] use a kinematic model to register the legs of a mouse by modeling
the joints. Articulated parts thereby have to be segmented manually. After registration,
they propagate the deformations to soft tissue parts by focusing on the folding problem at
interfaces of articulated parts. Although they show the applicability of such an approach
for small animal registration, they focus on a subpart of the body.

In summary, some available methods can be used either for whole-body applications,
as long as differences in posture and shape are small. Some authors use animal holders
or place the animals in a similar position for each scan. Other methods include a priori
information, for instance about structural properties of single elements of the object,
about kinematics of elements relative to each other or about position and spatial extent of
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anatomical objects but again, allow small articulations only or were used for registration
of subparts of a body. Often the method is only suitable for intramodality applications
[18, 26] and registration is therefore restricted to image features that show sufficient
contrast in the used modality. The required amount of user interaction e.g. to define joint
locations or to generate labeled datasets [35] or computational demands [26] makes some
methods laborious. Moreover, the aforementioned methods for small animal applications
were evaluated either using synthetic data [18] or using only few subjects [20,26,35].

3.1.3 Contributions

In this work we present an automated method for whole-body segmentation of MicroCT
datasets of mice using atlas-based registration. To accommodate for large postural vari-
ations between scans or animals, the DoFs in the registration are governed by realistic
kinematic constraints on the animal skeleton in a coarse-to-fine manner: after global
alignment, individual bones are registered locally, subject to a hierarchical model of the
skeleton that includes anatomically realistic motion constraints in the joints. The regis-
tration is driven by high-contrast anatomical structures (bones, lungs and skin) included
in the matching hierarchy. To compensate for missing registration features in MicroCT
(most organs and soft tissue), we rely on a publicly available whole-body mouse atlas
(the MOBY atlas [59]). Abdominal organs with low contrast are estimated using Thin-
Plate-Splines (TPS) interpolation [80], after establishing a dense set of correspondences
between the high-contrast structures in the data and the atlas.

The novel elements in this work are:

• We extend the MOBY atlas by partitioning the static skeleton into individual bones,
and defining anatomically realistic kinematic constraints for each joint.

• We define a hierarchical anatomical model of the animal body for automated reg-
istration of the MOBY atlas.

• We describe a novel algorithm to determine dense correspondences on the animal
skin based on an initial set of sparse correspondences, using matching of local
distributions of geodesic distances.

• We validate our approach using 41 MicroCT datasets of mice scanned in arbitrary
posture. To the best of our knowledge this represents the most extensive validation
reported for whole-body small animal segmentation.

Pilot studies on the methods in this work were presented previously [86,93].

3.2 Methodology

An overview of the presented approach is given in Fig. 3.1. First the anatomical atlas
modifications (Fig. 3.1, B) as well as the hierarchical anatomical model are introduced
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Figure 3.2: The mouse atlas (top), the skeleton as
originally included in the atlas (middle) and after
segmentation of individual bones (bottom). The
colors indicate different bones.

Figure 3.3: Representation of the
shoulder complex. Besides global
DoFs, a symmetric translation t and
rotation α with respect to the shoulder
joints are allowed.

(section 3.2.1). Details about the automated extraction of the high-contrast organs (skele-
ton, lungs and skin) are given in section 3.2.2 (Fig. 3.1, D). Next, the registration of the
individual parts of the hierarchy, namely the global registration of the entire skeleton
(Fig. 3.1, E) and the local registration of individual structures (Fig. 3.1, F) are given in
section 3.2.3. The determination of skin correspondence is introduced in section 3.2.4 and
section 3.2.5 describes how skeleton, lung and skin correspondence is used for low-contrast
organ interpolation (Fig. 3.1, G).

3.2.1 Atlas adaptations and anatomical model definition

The atlas used in this work was originally developed by Segars et al. [59]. It is a 4D
whole-body anatomical mouse model including bones and organs that allows to simulate
breathing and heart motion. For this work, an instance of the model was generated at
a fixed time point in the respiratory and cardiac cycle at end diastole and full exhale
(Fig. 3.2, top). The skeleton is represented as a whole and does not distinguish be-
tween individual bones (Fig. 3.2, middle). To integrate rotational DoFs in the joints, we
segmented the individual bones using Amira 3.1 (Mercury Computer Systems, Chelms-
ford, USA), guided by anatomical text books [76, 77], yielding a labeled volume dataset
with voxel size 90 µm × 90 µm × 90 µm. Subsequently, triangulated surface represen-
tations of all bones, the organs and the skin were generated using the Marching Cubes
Algorithm [94]. A surface representation of the segmented skeleton is given in Fig. 3.2
(bottom). Based on the segmented bones and lungs, a set of characteristic anatomical
landmarks at distinctive locations like the joint pivot points, the caudal end of the skull
etc. was defined manually on the surfaces and the skin surface was partitioned into torso
and limbs. Second, local coordinate systems for each bone were defined such that the
realistic bone articulation for each joint could be expressed more intuitively, e.g. the knee
rotation axis and the longitudinal axis of the tibia were chosen to be coordinate axes of
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Figure 3.4: Hierarchical anatomical tree for the skeleton and the lungs. The connections depict
relations between single bones or bone compounds such that a part on a lower level is initialized
by the registration result on a high level.

the local coordinate system.
Three types of joints were distinguished: ball joints, hinge joints and the shoulder

complex (both shoulders combined). Tab. 2.1 shows the DoFs for the ball and hinge
joints. Due to the large number of DoFs in the shoulder, an additional motion constraint
was introduced by allowing only a coupled, symmetric displacement of both front upper
limbs, with a varying distance between the shoulders and a rotation toward and away
from each other (Fig. 3.3). Subsequently, the left and the right front upper limbs are
decoupled. The hierarchical anatomical tree of the animal skeleton and the lungs is
shown in Fig. 3.4, containing the bones that determine the major posture variations.
For capturing the animal posture, smaller skeletal elements such as the shoulder blades
and individual paw bones were excluded. Assuming that the spine and the sternum
sufficiently describe the global pose of the ribcage, individual ribs were removed from
the data by applying appropriate preprocessing steps (see section 3.3.1), as indicated in
Fig. 3.5. In principle, each of the 23 individual vertebrae in the mouse body could be
separately modeled. However this would greatly increase the total amount of DoFs. To
avoid this, we opted for modeling the spine as a 3D curve connecting the skull to the
pelvis.

3.2.2 Robust extraction of registration features

The presented registration method relies on automatically extracting surface meshes of
the high-contrast organs from MicroCT data (skeleton, skin, lungs), and several inter-
changeable processing pipelines can be envisioned that produce these meshes automati-
cally. We opted for extracting these meshes by smoothing the CT data to remove noise
and small skeletal elements, followed by isodata thresholding (Ridler et al. [95]). The
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Figure 3.5: Isosurfaces of a mouse skeleton before (left) and after preprocessing (right).

resulting data volume was used for global skeleton alignment and spine determination,
as described in section 3.2.3. The skin boundary of the animal was segmented from the
smoothed data volume by isodata thresholding in one iteration (threshold t1). For seg-
mentation of the lungs, the triangle algorithm [96] was selected for its ability to classify
lung tissue voxels in the absence of a clear lung peak in the MicroCT histogram . The
required parameters were set to bmin = t1 and bmax being the bin k of the 8-bit histogram
hgray where hgray(k > t1) is maximal. Triangular surface meshes were extracted from the
segmented volumes using the Marching Cubes Algorithm [94]. For the determination of
the skin correspondences, the skin surfaces were simplified using the QSlim method by
Garland et al. [97].

3.2.3 Registration of high-contrast organs

To initialize the hierarchical model registration, first a coarse alignment of the atlas and
the target data on the highest hierarchical level (L0), i.e. the entire mouse skeleton,
is performed. For this purpose, a similarity transformation model with seven DoFs is
employed (translation, rotation, isotropic scaling), which suffices to accommodate for the
animal pose in the CT scanner and for size differences between animals. The individual
DoFs are resolved in several steps, which are based on a set of robust inherent features
of the skeleton:

• Alignment of the anteroposterior axis of the animal, based on the Center of Gravity
(CoG) and the first eigenvector of the skeleton, represented as a 3D point set, using
Principal Component Analysis [98].

• Determination of the animal position (prone/supine) in the scanner, using a 3D
curve representation of the skeleton. This is derived from the labeled skeleton
volume by binning the data along the anteroposterior axis and calculating the CoG
in each bin. Between the ribcage and the pelvis, the curve closely follows the spine.
The course of the curve in this part allows deriving the animal position.

• Determination of the animal orientation, because the amount of bone is much larger
in the cranial half.

• Determination of the neck location, based on the projection of the 3D curve to the
coronal plane.

• Derivation of an initial scale factor from the total bone content of the skeletons.

41



Chapter 3

An example of the result of the global alignment step is given in Fig. 3.8 (top row).

Following the coarse alignment of the entire skeleton, lower hierarchical tree levels
are registered piece by piece. For the individual bones, transformation models accord-
ing to Tab. 2.1 are used. We consider the amount of DoFs to be sufficient to model
coarse anatomical bone differences among subjects. Adding more DoFs would lead to
more accurate registration results but would compromise robustness with respect to large
postural variations, especially if bones show pathological changes.

The transformation parameters for the individual bones are determined using the Iter-
ative Closest Point (ICP) algorithm (Besl et al. [79]). It is a method that iteratively solves
for transformation and correspondence, by minimizing the Euclidean distance between
two point sets. Because of the restricted amount of DoFs of the individual transforma-
tions and the fact that a skeleton segmentation from CT data contains only few outliers,
ICP offers the best tradeoff between robustness and computational burden for the prob-
lem at hand and therefore a more robust but more expensive method, e.g. the Robust
Point Matching (RPM) framework [99], is not required. While ICP has originally been
developed for incorporating rigid transformations only, non-isotropic scaling can be inte-
grated as well. In this way, it is possible to account for anatomical intersubject variability
in bone thickness and length.

The articulated registration of the skeleton is performed by traversing the hierarchical
anatomical tree (Fig. 3.4) in a top-down manner i.e. starting at L1 and proceeding to
the lowest level L6. At each step ICP is applied to the distal part of a joint, constrained
by the respective joint type i.e. if e.g. the pelvis (L3) has been registered, the upper
hind limb (L4) is registered subsequently, allowing the DoFs of a ball joint. The lungs
(L3) are initialized based on the spine and the sternum. They are registered allowing 9
DoFs because during breathing, lungs expansion with respect to the longitudinal body
axis differs significantly from the lateral expansion [100]. Elastic deformations are not
modeled. After convergence of a structure, the final transformation function is used to
initialize the registration of a bone at a lower hierarchical level. An example of the
gradually improving overall registration error during stepwise registration of individual
structures is given in Fig. 3.6.

Given the source point sets Xk = {xki, i = 1, 2, . . . ,Mk} of the segmented atlas bones,
the target point set Y = {yj, j = 1, 2, . . . , N} of the skeleton segmented from CT, and
the error measure Ek, the Euclidean distance between a source and the target surface,
the registration is done as follows (note that Xk and Y are represented in homogeneous
coordinates to enable matrix multiplications:

1: Determine the global transformation matrix T0 that coarsely aligns the skeletons
2: for All k elements (bones and lungs) in the hierarchy do
3: Obtain the local transformation matrices T1, . . . , Tk−1 of the elements on the higher

levels in the hierarchy
4: Define the parameter vector Θinit for the current element
5: Determine the transformation matrix Tlocal2global that aligns the local to the global

coordinate system
6: Apply the ICP algorithm to the current element:
7: repeat
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Figure 3.6: Improvement of the error criterion as the registration progresses down the anatom-
ical tree (1voxel=̂332 µm).

8: Define Θk = Θinit in the first or Θk = Θnew in subsequent iterations
9: Determine the local transformation matrix T (Θk) = Trans(Θk)∗Rot(Θk)∗S(Θk)

10: Determine the global transformation matrix Ttotal(Θk) = T−1
local2global ∗ T (Θk) ∗

Tlocal2global ∗ Tk−1 ∗ . . . ∗ T1 ∗ T0 and transform the current element
11: Calculate the error between the source and the target:

E(X, Y, Ttotal(Θk)) =

1

Mk

Mk∑
i=1

min
j=1...N

(‖yj − Ttotal(Θk) ∗ xki‖) (3.1)

12: Search for another set of parameters Θnew that yields a smaller error, using a
trust-region approach that is based on the interior-reflective Newton method [101]

13: until |Θk −Θnew| ≤ ε, with ε being the user defined parameter tolerance
14: end for

The spinal centerline is extracted using three dimensional region growing, where a
landmark at the skull-atlas connection serves as the seed point and the region growing
is stopped when the vertebra connecting the spine to the pelvis is reached. The 26
intervertebra connections are subsequently mapped from the atlas to the subject, relative
to the length of the spine.

3.2.4 Determination of skin correspondence

Because of the high variability of animal positioning during data acquisition, the shape
of the animal skin surface may have high rotational symmetry with respect to the an-
teroposterior body axis (Fig. 3.1, C) and may be symmetric to the sagittal (Fig. 3.7)
or the transverse plane. However, one can exploit the already registered skeleton and
lungs to remove postural ambiguity, and thus derive a sparse set of correspondences on
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the skin to provide landmark support over the entire animal surface [102,103]. Following
the skeleton registration, the manually defined landmarks in the atlas reference frame
can be mapped to the target domain. As a result, the location of the atlas-annotated
landmarks is known in the target domain as well. Since bone is adjacent to the skin
at many locations in the animal body, an equal amount of skin correspondences can be
derived by selecting the skin points closest to the bone and lungs landmarks. This sparse
set of skin correspondences can only provide landmark support in regions where bones
are present e.g. near to the spine. To determine a dense set of correspondences on the
skin, a method is needed that handles abdominal deformations and articulated limbs.

Available methods that determine shape correspondence in the spatial domain, for
example the RPM framework, have to include a transformation model to handle large
nonlinear deformations. Another approach is to represent the shape intrinsically. This
can be done e.g. by using Euclidean distances between points [104], rendering the rep-
resentation invariant to rigid body transformations or by using geodesic distances (the
shortest path between two points on a manifold), to obtain invariance to rigid body trans-
formations and bending [105]. Using appropriate normalization of the representations,
invariance to scaling can be obtained as well.

Elad et al. [105] used a bending invariant shape signature for classifying articulated
shapes and Jain et al. [106] aimed on determining correspondence between articulated
shapes. Both methods are based on global shape representations and therefore require
a very densely sampled surface. This is necessary to ensure that the larger geodesic dis-
tances can be computed accurately. However, calculating a geodesic distance distribution
for each node on a dense mesh is very time consuming. Given an initial set of correspon-
dences on the surface it is possible to use a more local shape representation based on
geodesic distances. This has the advantage of a reduced calculation time and that local
shape variations are better represented. Above that, it is possible to use a coarser mesh
sampling [107], which further reduces computational burden.

Our approach employs an intrinsic representation of the skin shape that is based on
geodesic distances. We assume that elastic deformations i.e. stretching or compression
of the skin play a minor role and that bending is the main form of deformation. We
determine correspondence between two shapes by calculating distributions of geodesic
distances locally, starting from the initial set of correspondences, and continue until the
entire surface is covered. A method that is similar to ours was presented by Wang et
al. [108], but their method requires a much larger set of initial correspondences.

Matching of local geodesic distributions

Given an initial sparse set of corresponding nodes on the source and the target surface,
we determine new correspondences in the vicinity of each node in this sparse set, yielding
an extended set of correspondences. The vicinity of a node is controlled by two fixed
neighborhood parameters: a minimum distance gmin, to prevent that new correspon-
dences are too close to already known correspondences and a maximum distance gmax,
to ensure locality. (Details on the determination of the geodesic distances are given in
the ‘Appendix’). Subsequently, more correspondences are determined in the vicinity of
the extended set and so on. The search for correspondences stops when there are no new
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Figure 3.7: The images show an example skin surface in bottom view. Depicted are an initial
sparse landmark set (red stars) and candidates for new correspondences (blue stars), based on a
known landmark (arrow) on the chest (left). The final dense set of correspondences is indicated
by black stars (right).

candidates left on the mesh. Parameter K controls how many already known correspon-
dences are taken into account to derive the distribution of geodesic distances. To find
optimal parameter values, gmin and gmax were fixed and K was determined as a tradeoff
between the quality of the mapping and the processing time. The quality investigation
was based on the mean distance between the source and the target skin surfaces, after de-
termining correspondence and mapping the source to the target surface (mapping details
are given in section 3.2.5) and on a triangle quality measure.

Let P = {pi, i = 1, 2, . . . ,m} and Q = {qj, j = 1, 2, . . . , n} be the nodes of respectively
the target and source surfaces to be matched, gi and gj be the geodesic distances between
two nodes on P and Q and hi(k) with k = 1, 2, . . . , K and hj(k) with k = 1, 2, . . . , K
be a distribution of local geodesic distances for the nodes pi ∈ P and qj ∈ Q based on
K known correspondences on the surface. So hi(k) contains the geodesic distances from
node pi to K other nodes of P , in the vicinity of pi and hj(k) contains the geodesic
distances from node qj to K nodes of Q, in the vicinity of qj.

1: Determine geodesic distances for each node on the target surface to the remaining
nodes (for the atlas skin surface, this calculation only has to be done once).

2: Initialize a list with the initial sparse set of corresponding nodes. (Shown as red stars
in Fig. 3.7, left)

3: repeat
4: Select possible candidates for new correspondences on P and Q in a surface area

of interest with respect to the next element on the list with gmax > gi > gmin and
gmax > gj > gmin. (Blue stars in Fig. 3.7, left)

5: Calculate hi(k) and hj(k) for all possible candidates in P and Q
6: repeat
7: Calculate the cost Cij for matching two nodes pi and qj by using the χ2 test

statistic [104]:

Cij =
1

2

K∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
(3.2)
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Figure 3.8: Registration results between the atlas (red) and two different subjects (gray) after
coarsely aligning the skeleton (top), after the articulated registration (middle) and after organ
interpolation (bottom).

8: Find the best match Cmin = min
i,j

(Cij)

9: Add the nodes pCmin and qCmin to the list of correspondences
10: Remove landmark candidates around pCmin and qCmin if gi ≤ gmin or gj ≤ gmin
11: until No landmark candidates are left on P
12: until No new elements in the correspondence list are left

An example of a mouse skin surface with a dense net of correspondences is shown in
Fig. 3.7 (right).

3.2.5 Atlas organ interpolation

The established point correspondences (landmarks) on bone, lungs and skin provide suf-
ficient data support to constrain a nonrigid mapping of organs from the atlas domain
to the subject domain for the entire body. For this purpose, we chose Thin-Plate-Spline
(TPS) interpolation [80, 109] because correspondences can be distributed non-uniformly
within the image domain and the transformation can be determined analytically.

A TPS transformation is based on the combination of a set of radial basis functions
(RBF) whose coefficients determine the displacement field. RBFs are functions of the
Euclidean distance between an interpolation point x and a landmark point xi, based on
a kernel Ri = R(|x− xi|). The RBF for TPS interpolation has the form:

f(x) =
n∑
i=1

wiRi (3.3)
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*

A                             B                             C                             D

Figure 3.9: Several examples of skeleton registration results. The subject skeletons are shown
in gray and the atlas bones in yellow. Three mice were in prone (A, B, D) and one mouse in
supine position (C) respectively. The last example shows the result of an additional experiment
to demonstrate the robustness of the method with respect to moderate bone resorption. The tibia
without the registered bone is shown in the framed box (*).

with in 3D, Ri = |x− xi| [110], n is the amount of landmarks and wi are the coeffi-
cients.

TPS interpolation also includes a global, linear (affine) component and so the TPS
transformation u is determined as:

u(x) = Ax + B +
n∑
i=1

wiRi (3.4)

A and B are coefficient matrices of the affine part of the transformation.
In its original form, TPS interpolation maps a set of source points pi to their corre-

sponding target points qi, with i = 1, . . . , n, exactly. The smoothness of the interpolation
is ensured because the transformation u minimizes an energy functional JTPS that rep-
resents the bending energy of u [80]. However, exact landmark matching implies that
the landmark locations should be known exactly, especially for landmarks that are in
close proximity to each other, to ensure that the transformation remains invertible. In
our case, a node on the target skin, with a specific distribution of geodesic distances,
may not have an exact match on the source skin because of the discretization of the
surface. This may lead to small landmark localization errors. To deal with such errors,
approximating TPS (Rohr et al. [111]) have been proposed. The method is similar to
smoothing TPS [109] but has the advantage that a localization uncertainty can be added
for each landmark individually. This is formulated into an energy functional Jλ, where
JTPS is incorporated by means of a regularization parameter λ:

Jλ(u) =
1

n

n∑
i=1

|qi − u(pi)|
2

σ2
i

+ λJTPS(u) (3.5)
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Figure 3.10: Boxplots of the joint localization errors for the limb joints (U = upper limb, L
= lower limb, P = Paw, h = hind, f = front, r = right, l = left) before (left) and after the
articulated registration (right). (*) There exists a joint localization error at 4.408 mm for this
joint location that is not shown in the Figure (1voxel=̂332 µm).

The first term measures the distance between the corresponding point sets qi and
u(pi) i.e. between n target points and n source points pi, mapped to the target domain
by u. Isotropic landmark localization errors can be integrated using the weighting factors
σi, for each landmark individually. Depending on how smooth the final transformation
should be, λ has to be chosen accordingly (λnorm = 0: interpolation, λnorm = 0.1: nearly
affine transformation, λnorm = 0.001: intermediate value). Like with conventional TPS,
the transformation u of the approximating TPS can be determined analytically [111].

3.3 Experimental setup

Several experiments were executed to evaluate different aspects of the developed method.
Experiments were performed on two different types of data, therefore the following sec-
tions are separated accordingly:

1. Assessment of the registration performance for the skeleton and the lungs, using
non-contrast-enhanced data

2. Evaluation of skin landmark errors and organ interpolation performance, using
contrast-enhanced data

3.3.1 Evaluation of skeleton and lungs registration

Data acquisition and preprocessing

For evaluation of the registration errors in skeleton and lungs, twenty-six data sets were
acquired from twenty-one healthy, 6- to 10-week-old mice (Balb/c, Charles River WIGA,
Sulzfeld, Germany), 20 female and 1 male, with a mean weight of 21.7g±2.2g, in prone
and supine position and with arbitrary limb position. In total, 180 images were taken
with step size 1◦, using a Skyscan 1178 MicroCT (Kontich, Belgium), with 50keV x-ray
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00  Coarsely aligned skeleton
01  Skull
02  Right part of the pelvis
03  Right hind upper limb
04  Right hind lower limb
05  Right hind paw
06  Left part of the pelvis
07  Left hind upper limb
08  Left hind lower limb
09  Left hind paw
10  Sternum
11  Right front upper limb
12  Right front lower limb
13  Right front paw
14  Left front upper limb
15  Left front lower limb
16  Left front paw

Figure 3.11: Overall mean error improvement during traversing the anatomical tree and mean
error for specific bones before and after registration (1voxel=̂332 µm).

voltage, an anode current of 200µA, an aluminum filter of 0.5mm thickness, an exposure
time of 640ms and without using a contrast agent. The reconstructed datasets covered
the range between -1000 (air) and +1000 (bone) Hounsfield units (HU). Neither cardiac
nor respiratory gating was used.

The data with resolution 83 µm× 83 µm× 83 µm was subsampled by averaging with
a factor of 4, yielding a voxel size of 332 µm× 332 µm× 332 µm, and smoothed using a
Gaussian filter with kernel = 5 and sigma = 3. Subsequently, the skeleton, the skin and
the lungs were segmented according to section 3.2.2. Triangular meshes were generated
with ≈ 20000 nodes for the atlas skeleton (without ribs, spine and shoulder blades) and
≈ 30000 nodes for the CT skeleton surface. For skeleton registration, the set of atlas and
subject surface nodes was reduced by factor 10. The lungs were represented with ≈ 400
nodes for the atlas and with ≈ 500 nodes for the CT surface.

Matching parameters

For each tree level (except L0), the registration was performed in two iterations. The first
iteration involved was used for coarse rigid alignment allowing 6 DoFs i.e. translation and
rotation in 3D, covering the entire anatomically realistic range of motion. Although not
anatomically realistic for ball and hinge joints, translation was allowed to a small extent,
to ensure that registration inaccuracies do not influence lower hierarchical levels. The
second iteration incorporated non-isotropic scaling (≤ 15%), allowing 9 DoFs. The min-
imization was terminated when the difference between subsequent parameter estimates
was below 0.01 degrees for the rotation, 3.2 µm for the translation and 0.001 (0.1%) for
the scaling parameters.

Evaluation metrics for skeleton and lung registration

To evaluate the skeleton registration performance, joint localization errors were calcu-
lated. These were expressed as the Euclidean distance between corresponding anatom-
ical landmarks (point to point distance). To this end, the locations of the upper-lower
limb and the lower limb-paw joints of all 26 data sets were indicated manually using the
extracted skeleton surfaces. The difference in measured length of corresponding bones
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on the right and the left side of the animal thereby gives an indication of the manual
joint localization error (0.38±0.25 mm, which is in the order of the data resolution). For
validation, the found joint locations were compared to those determined after registration
of the skeleton.

To assess the performance in areas where anatomical landmarks cannot be located
manually in a reliable manner (on large parts of the bones and the lungs), the point
to surface distance was determined to quantify border positioning errors, yielding an
indication of the registration error of the entire object.

3.3.2 Evaluation of the skin and organ mapping

Data acquisition and preprocessing

The accuracy of the organ interpolation was determined based on datasets presented in
Henning et al. 2008 [112]. These were acquired from fifteen healthy, 4- to 6-week-old
female mice (C3H, Charles River WIGA, Sulzfeld, Germany), with a mean weight of
17.8g±0.83g, in prone position and with arbitrary limb position. The CT system was a
MicroCAT II (ImTek Inc, Knoxville, TN), with 70keV x-ray voltage, an anode current
of 500µA, an aluminum filter of 0.5mm thickness and an exposure time of 300-500ms. In
total, 360 images were taken with step size 1◦ and with injected contrast agent Fenestra
LC (ART Inc., Montreal, Canada), which is particularly suitable for increasing liver and
spleen contrast. Neither cardiac nor respiratory gating was used.

Note that the contrast enhancement was only used for manual segmentation of organs
to assess the performance of the organ interpolation. It was not used during registra-
tion as a registration feature. Although the strain of the animals in this dataset was
different from the strain used for the skeleton registration validation, in our experience
bone dimensions are very similar. For the femur, this has been shown in [77] (however,
the density and thus the bone volume differ). For the lungs, longitudinal expansion is
significantly larger for C3H mice [100].

In all the datasets the liver, the lungs and the spleen were segmented manually, based
on their large contrast with respect to the surrounding tissue. The brain did not show
an increased contrast but its extent is strongly restricted by the skull. Also the kidneys
are not enhanced but show sufficient contrast with surrounding tissues (liver, spleen and
abdominal fat deposits) for segmentation. In a subset of five datasets, the heart was
also segmented, because these datasets were acquired within 30 minutes after Fenestra
administration, yielding high contrast in the heart and vascular system.

To ensure the same conditions as for the skeleton registration evaluation, the data
was preprocessed and the skeleton, the lungs as well as the skin were extracted in the
same manner as presented in section 3.3.1. Only the subsampling parameter has been
adjusted to 2, since the original resolution of the contrast-enhanced datasets was lower
(107 µm× 107 µm× 107 µm).
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Matching parameters

To determine skin correspondences, meshes were used with ≈ 7500 vertices for the atlas
and ≈ 2000 vertices for the subjects. To derive the dense set of corresponding nodes,
the parameters gmin and gmax were chosen such that the amount of correspondences is
sufficient for the torso (relatively small surface curvature) and that almost the entire
animal surface could be covered in three iterations. With gmin = 15 (1voxel=̂214 µm)
and gmax = 50, K = 8 was determined, based on the criteria described in section 3.2.4 (A
detailed motivation for the selection of K is given in the ‘Appendix’). The initial sparse
set of correspondences was replenished by ≈ 120 nodes from the skin, all over the torso.
Together with 30 correspondences on the surface of the lungs and the 32 anatomical
landmarks, ≈ 182 corresponding nodes were used for mapping of the skin and major
organs from the atlas domain to the subject domain. The regularization parameter
for the approximating TPS was set to λ = 1000, yielding λnorm = λ

x dim∗y dim∗z dim =
1000

160∗150∗400
≈ 0.0001 [111]. Since the initial sparse set of landmarks are considered as

highly accurate, we assume a variance of σ = 0.01. All newly determined correspondences
are considered as less accurate σ = 2.2 (the mean internode distance of the atlas skin
surface is ≈ 5). During the experiments, the smoothness of the mapping was monitored
using the determinant of the Jacobian of the final transformation, which was positive in
all cases (more details are presented in the ‘Appendix’).

Fig. 3.8 shows two examples of mice with registered skeleton and approximated organs.

Evaluation metrics for the skin and the organs

For evaluation of the skin registration error, the Euclidean point to surface distance
was employed. Note that this experiment was performed with a net density of skin
correspondences that was appropriate for the torso and therefore the calculated surface
distance does not include the limbs.

To assess the organ interpolation performance, the Dice coefficient s [81] was com-
puted. This measure takes two individual absolute volumes V1 and V2 as well as their
overlap into account and is defined as follows:

s = 2
|V1 ∩ V2|
|V1|+ |V2|

(3.6)

The stomach, spleen and intestines were not considered for determining dice coeffi-
cients, because of the large environmentally dependent variability in shape and location.

All experiments were run using Matlab 2007b (The Mathworks, Natick, USA). The
time requirements are ≈3 mins for the data preprocessing and the articulated skeleton
and lungs registration, ≈3 mins for calculating the geodesic distances and ≈3 mins to
determine the dense landmark correspondences on the skin and warping the organs.
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Figure 3.12: The mean atlas to surface
distance after registration for the contrast-
enhanced datasets. Maximum values are in-
dicated with plus signs. (1voxel=̂214 µm).
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Figure 3.13: An original (gray) and an ap-
proximated animal skin. The colorcoding rep-
resents the Euclidean distance between the two
surfaces (units in millimeters).

3.4 Results

3.4.1 Skeleton and lung registration

In all 26 cases, the matching converged to a correct solution from the automatically es-
timated initial position. Fig. 3.9 shows several examples of animals in prone and supine
position. The Euclidean point to point distance between the manually defined joint loca-
tions and the ones determined by the articulated bone registration is shown in Fig. 3.10.
The boxplots show the lower quartile, median and upper quartile values. The whiskers
extend within 1.5 times the interquartile range. Outliers are indicated with a plus sign.

The mean Euclidean point to surface distance between atlas and subject skeleton
surfaces decreases from 2.93±0.63 mm to 0.58±0.04 mm and between the lungs surfaces
from 1.76± 0.49 mm to 0.42± 0.07 mm, including all 26 cases.

3.4.2 Skin registration and organ interpolation

In 4 out of the 15 contrast-enhanced datasets, the automated skeleton initialization was
incorrect, and required manual correction. The subsequent hierarchical matching suc-
ceeded in all cases given a manually corrected initialization. The mean Euclidean point
to surface distances between atlas and subject torso after registration for all 15 datasets
are presented in Fig. 3.12. Fig. 3.13 gives an indication of the distribution of the error
over the surface. The volumes of the manually segmented and the approximated organs
as well as the calculated Dice coefficients are given in Fig. 3.14. Qualitative examples of
the skeleton registration and subsequent organ interpolation are shown in Fig. 3.15 and
Fig. 3.16.
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Figure 3.14: Mean value and standard deviation of the organ volumes (left) and the Dice co-
efficients (right). The Dice coefficient for the skeleton is given with and without including the
skull. Additional results are given if the kidneys are registered as well (see ‘Discussion’). For the
brain, heart, lungs and the skeleton, the results are identical with or without kidney registration.
(*) The result is based on a subset of the data (see text).

3.5 Discussion

The experiments demonstrate that the method performs highly robust in the presence of
large postural variations, with successful fully automated matching in 37 out of a total of
41 cases. In the remaining 4 cases, only the initial animal pose estimate required manual
correction. The achieved accuracies are discussed in the following.

3.5.1 Skeleton and lungs registration

Using articulated registration, a mean surface distance between the atlas and the tar-
get skeleton and lungs within two voxel dimensions is accomplished and we show that
the method can handle bones with moderate osteolysis. This performance, given the
large variety in the data with respect to posture, strain, gender and size of the animals,
demonstrates the robustness of the method. The results are comparable to the accuracy
reported in [26]. However, our approach is more than an order of magnitude faster.

An important fact to notice is that there exists a clear dependency between the mean
surface distance and the joint location distance before the registration: the lower the
bone or the joint in the hierarchy, the larger the distance. The dependency does not
appear anymore after the registration (Fig. 3.11). This is an indication that possible
registration errors made at a high hierarchical level do not propagate down the tree and
do not influence the registration result of elements at a lower hierarchical level. For
all joints, the joint localization error decreases an order of magnitude as a result of the
registration.

Although it appears from Fig. 3.10 that the joints of the front limbs could be de-
termined significantly less accurate than the hind limbs (balanced one-way ANOVA
p < 0.05). This is caused by the fact that the hind limbs are modeled as rigidly connected
to the pelvis, whereas the front limbs are modeled as dependent on the skull registration
only (without a rigid connection). As a result, the front limbs are occasionally placed
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Manual          Automated                   Manual          Automated

Top view                               Bottom view

Figure 3.15: Skeleton registration and organ interpolation result for two different mice (top and
bottom row). The rows show alternately the manually segmented animal and the mapping result.
Only those objects are shown that are used for calculating the Dice coefficients (except of the
spleen and the skin).

relatively further away from their target after initialization. In such a situation, the final
registration result may be suboptimal. There are no significant differences among the
hind limbs and among the front limbs themselves.

Another situation where suboptimal registration results can occur is when two ad-
jacent long bones are pointing in almost the same direction or the opposite direction
(meaning that they are almost aligned next to each other). In some of these cases, the
resulting scaling factor along the longitudinal bone axis was the maximum value that was
considered anatomically realistic for this particular bone (scaling by 15%). As a result,
parts of the adjacent bones were erroneously assigned to belong to the target bone during
registration. These cases are shown as outliers in Fig. 3.10. A remedy for this problem
would be to register adjacent bones simultaneously or to traverse the hierarchical tree
several times. The previous registration result could be used for initialization.
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3.5.2 Skin registration

As presented in Fig. 3.12, the mean surface distance between the atlas and the subject
skin is in the order of one voxel dimension. This indicates that the chosen amount of
correspondences, together with the minimum and maximum geodesic distance constraints
and the regularization parameter λ result in a proper interpolation of the surface while
surface smoothness is retained (Fig. 3.13).

There are some areas on the surface where the surface distance becomes larger (red ar-
eas in Fig. 3.13). In these areas there are either not enough skin correspondences available
because they are too far away from bone, or the automatically extracted subject surface
contains elements that are not included in the model skin (eyes). In applications where a
high accuracy particularly in the lower abdomen is needed, the minimum and maximum
geodesic distance constraints should be defined for all the correspondences individually
instead of using the same values for all of them. This would allow to better deal with
the area specific density of the initial sparse landmarks on the skin. Another advantage
would be that the amount of candidates around already found correspondences could be
drastically reduced in areas with dense initial landmarks. Another way to improve the
accuracy of the skin interpolation would be to assume the landmark localization errors
on the skin to be non-isotropic i.e. to allow shifting correspondences only tangential to
the surface [111] during TPS interpolation.

3.5.3 Organ interpolation

For the soft tissue interpolation step we only considered the animal torso and therefore
derived a coarse net of correspondences. To include surface areas that have a large
curvature like the limbs as well, determination of corresponding nodes should start at a
coarse scale (in terms of intervertex distance) and, depending on the required amount of
detail, continue at a smaller scale, e.g. as proposed in Wang et al. [108]. This however is
only feasible, if the model is detailed enough. Furthermore, the limbs should not touch
each other or the torso since the calculated geodesic distances may be wrong in such a
case.

The calculated Dice coefficients of volume overlap indicate the feasibility of the pre-
sented soft tissue interpolation but in addition show some limitations of the method.
Since the interpolation does not distinguish between stiffness properties of different tis-
sue types, all the organs are treated in the same manner. This means that in areas
where the shape differs most between the atlas and the subject, typically the abdomen,
organs may deform in a way that is anatomically not realistic. An example are the kid-
neys, which may be squeezed and underestimated up to half of their actual volume after
warping (Fig. 3.14). As a result, the Dice coefficient is smaller for the kidneys.

Although the Dice coefficients for the registered objects i.e. the skeleton (and as a
result the brain) and the lungs are high as expected, they are limited by the fact that
the volumes for both are systematically underestimated. The reason for this is that
the preprocessing of the CT data causes all parts of the joints to be represented as
bone. Especially in the knee and the ankle joints this leads to an overestimation of the
bone volume. As for the lungs volume, its underestimation is the result of a simplified
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Manual       Automated       Manual       Automated       Manual       Automated

Coronal (Kidneys)        Coronal (Heart)                 Sagittal

Figure 3.16: Comparison of manual bone and organ contours of two different mice (top and
bottom row) in contrast-enhanced MicroCT data. Each row shows alternately the result of the
manually drawn contours and the estimated contours for two coronal planes and one sagittal
plane. Note that the contrast is only used for delineation of the organs and not for registration.

representation of the lungs in the atlas.

Triggered by the large difference in volume between the subject and atlas liver, we
designed an experiment to further investigate on the influence of the shape simplifica-
tions in the atlas for this particular organ. Since the liver is adjacent to the lungs and the
kidneys we aimed on defining as many correspondences as possible on these two organs
before the mapping. The lungs are already registered and therefore a dense landmark set
can easily be obtained. As for the kidneys we decided to integrate them into our hierar-
chical framework (on L3). Since we do not expect large shape variations among healthy
subjects, allowing 9 DoFs as for the bones suffices to approximate intersubject shape
differences. The target kidneys were segmented manually as described in section 3.3.2.
The experiment was performed using the 15 contrast-enhanced datasets. The effect on
the organ volumes and the Dice coefficients is shown in Fig. 3.14. After registration, the
measured kidney volume is almost the same as the target volume and the Dice coefficient
has increased. As for the liver, the volume has decreased but is still significantly differ-
ent from the target (paired t-test p = 5.5e−07). From this we conclude that the model
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simplifications are the prominent limiting factor of the interpolation result for the liver.
Further investigation using an improved animal model has to be conducted to be able to
clearly distinguish between segmentation inaccuracies because of model simplifications
and physiological intersubject variability.

3.5.4 Segmentation accuracy

The registration of the skeleton was achieved with high accuracy and enables to accurately
segment individual bones of the skeleton from the data. For applications that require a
higher accuracy e.g. to assess morphological bone changes locally, the amount of DoFs
for the articulated registration of the skeleton should be increased i.e. the transformation
model should include nonlinear deformations as well. To render the registration robust
to large postural variability, the results of our method could serve as an initialization.

Compared to the results for the skeleton and lungs, the segmentation accuracy for the
abdominal organs is restricted. However, it is still high enough for anatomical referencing
or to provide a heterogeneous tissue model for Bioluminescence Tomography, because
even a coarse segmentation can significantly improve the reconstruction result [9, 91]. A
possibility for improvement would be to use our result as an initialization of a nonrigid,
voxel-based registration method for the entire body. This would require sufficient soft-
tissue contrast in the data. However, in many routine MicroCT studies, contrast agents
(e.g. eXIA and Fenestra), highlighting abdominal organs, are not part of the experimental
protocol.

3.6 Conclusion and Future Work

This paper presents a fully automated method for atlas-based whole-body segmentation in
non-contrast-enhanced MicroCT. We proposed a solution that divides the problem into an
atlas constrained registration based on high-contrast organs in MicroCT (skeleton, lungs
and skin) and a soft tissue approximation step. Experiments demonstrated the method’s
effectiveness to overcome exceptionally large variations in posture and shape, even in the
absence of soft tissue contrast in in vivo MicroCT data. By combining an articulated
skeleton with a hierarchical anatomical model and a suitable registration framework for
individual bone elements (ICP), a final registration result could be obtained very time
efficient but yet with high accuracy (between one and two voxel dimensions). We also
showed the robustness of the method with respect to moderate bone resorption. In
addition, the presented performance of the organ approximation proved that the missing
soft tissue contrast in the data can be compensated for and the results of the calculated
Dice coefficients outperform previously reported results [20].

To our knowledge, there are no reports to date of other unsupervised methods that
can deal with such a high variability in posture and shape and that have been validated
as extensively as in this work.

The method is suitable for intrasubject as well as intersubject registration using data
acquired in vivo and is applicable for referencing of internal processes in molecular imag-
ing research. The absence of any user interaction to initialize the procedure would make
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this method suitable for high-throughput batch processing, and posterior result checking
and occasional manual initial pose correction. Above that, it could serve as a way to
provide a whole-body heterogeneous tissue model for bioluminescence tomography.

The method was tested using whole-body data of mice only but would be applicable to
other animals as well, if an atlas is available. Besides that, we want to point out that not
only data of entire animals but also data including only parts of an animal can be handled
by simply removing the missing body parts from the hierarchical anatomical model.
The determination of skin correspondences and the organ mapping can in principle be
restricted to a certain volume of interest as well.

In the future we plan to develop multiple small animal models and investigate how to
minimize the influence of shape differences between the model and the target, especially
in the organ interpolation step. We also plan to generalize the whole-body registration
to other modalities as well. The focus will not only be on volumetric data (MRI or
SPECT) but also on photographs from the subject surface (mono- or biplanar) for posture
estimation, using skeleton based motion constraints.

The modified MOBY atlas is publicly available in the ‘Downloads’ section at http:

//www.lkeb.nl.
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Appendix

Calculation of geodesic distances

To determine geodesic distances on the skin surface, the Fast Marching Algorithm [113]
is used, a very time efficient method to solve the Eikonal equation |∇T | = F (x) using
triangulated domains. Given a starting point x, a front with speed F is expanded on
the mesh and arrival times T can be determined for all other vertices. By setting a
constant propagation speed F = 1 all over the mesh, the arrival times are equal to the
geodesic distance between the starting point and a given endpoint. The fact that the
accuracy of the derived geodesic distances depends on how dense the mesh is sampled
requires analyzing the calculation error in practice for the application at hand. For the
underlying problem, the target surface is represented with 2000 nodes, which is sufficient
to represent the major deformations that are caused by postural variations. Experiments
showed that, given a starting point, the mean error for determination of geodesic dis-
tances to nodes within a given range gmax is below one voxel dimension. Therefore, the
chosen sampling is a good tradeoff between calculation time for the geodesic distances
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Figure 3.17: Median distance between the sub-
ject surface and the mapped atlas surface for
26 subjects, depending on the parameter K
(see text). Note that the point to point rather
than the point to surface distance is presented
here.
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Figure 3.18: Median triangle quality of the
mapped surfaces, depending on K. The me-
dian quality of the atlas skin triangles before
the mapping is 2.28.

and possible correspondence localization accuracy. Note that the geodesic distances have
to be calculated for each target but only once for the source (atlas) surface. Therefore the
atlas skin surface can be sampled very densely and the distribution of geodesic distances
be calculated offline.

Optimum value determination for parameter K

To derive the optimum value for the parameter K we chose gmin = 15 and gmax = 50 and
varied K within a range of 2 and 28. For this experiment, we used the skins of all animals
of the non-contrast-enhanced study (26 animals). Quantification of the performance is
based on the median point to point distance between the source (atlas) and the target
skin surface, after determining correspondence and mapping the atlas torso to the target
surface, a triangle quality measure, applied to the mapped atlas surface and the processing
time. The triangle quality is defined as the ratio of the radius of the circumcircle and
the radius of the incircle of a triangle (a value of 2 is the optimum). Fig. 3.17, Fig. 3.18
and Fig. 3.19 show the results of the experiment. The boxplots indicate, that K = 8
is a reasonable choice and a good tradeoff between accuracy and calculation time, since
neither the surface distance nor the triangle quality improve significantly for K > 8.

Invertiblity of the Thin Plate Spline transformation

To investigate if the regularization of the energy functional (section 3.2.5) leads to an
invertible transformation, given a dense set of skin and skeleton correspondences (sec-
tion 3.2.4), we calculate the determinant of the Jacobian of the final transformation for
all 26 datasets that were used for the skeleton registration validation. The determinant
was determined in steps of 180 µm (twice the phantom voxel size) i.e. in a total vol-
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Figure 3.19: The calculation time for deter-
mining skin correspondence for 26 subjects,
depending on K.
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Figure 3.20: Histograms of the determinant of
the Jacobian of the final transformations for
all 26 datasets used for validating the skeleton
registration.

ume of 201 × 201 × 601 voxels and was based only on the non-affine parts of the final
TPS transformations. Figure 3.20 shows the results. The first observation is that all
values are positive, proving that the transformation is in principle invertible. Second,
the vast majority of the determinants lie between 0.5 and 1.5. This means that only
moderate expansion and compression takes place (1: neither compression nor expansion,
<1: compression, >1: expansion [114]).
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This is a dummy!
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