
Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257


Chapter 10

Using XML Transformation for
Enterprise Architecture

Authors: F.S. de Boer, M.M. Bonsangue, J.F. Jacob, A. Stam, L. van der
Torre

10.1 Introduction

In this paper, we investigate the use of XML transformation techniques in the
context of Enterprise Architectures. We have split up this research question
into two subquestions:

• How can we use XML transformation for the generation of views on an
architecture (selection and visualization)?

• How can we use XML transformation for the analysis of architectures?

First, we will introduce the reader to the term Enterprise Architecture,
the ArchiMate project, and XML. Second, we will give a short overview of
our research methodology.

10.1.1 Enterprise Architectures

A definition of Architecture quoted many times is the following IEEE defini-
tion: ”the fundamental organization of a system embodied in its components,

211



212 CHAPTER 10. TRANSFORMATIONS

their relationships to each other and to the environment and the principles
guiding its design and evolution” [Soc00]. Therefore, we can define Enterprise
Architecture [MAS+03] as the Architecture of an enterprise. It covers prin-
ciples, methods and models for the design and implementation of business
processes, information systems, technical infrastructure and organizational
structure.

Architectural information is usually contained in Architectural models.
With these models and the information they incorporate, stakeholders within
an organization are able to get more insight into the working of the organiza-
tion, the impact of certain changes to it, and ways to improve its functioning.

Usually, we can distinguish between architectural descriptions that cover
the as-is situation of an organization and descriptions that cover its intended
to-be situation. According to IEEE, views are part of an architectural de-
scription. Views conform to viewpoints which are useful for certain stake-
holders.

10.1.2 ArchiMate

Within the ArchiMate project, a language for Enterprise Architecture has
been developed [JvBA+03]. This language can be used to model all ar-
chitectural aspects of an organization. An overview of the concepts in the
ArchiMate language is given in Figure 10.1.

As can be seen, the language contains concepts for several aspects of
an organization. The individual concepts can be specialized for multiple
domains, like the business domain, application domain or technical domain.
Thus, a Service can be a business service, an application service or a technical
service, for example.

10.1.3 XML

The Extensible Markup Language (XML) [XML] is a universal format for
documents containing structured information so that they can be used over
the Internet for web site content and several kinds of web services. It al-
lows developers to easily describe and deliver rich, structured data from any
application in a standard, consistent way.

Today, XML can be considered as the lingua franca in computer industry,
increasing interoperability and extensibility of several applications. Terseness
and human-understandability of XML documents is of minimal importance,



10.1. INTRODUCTION 213

Process

Simple
service

Composite
service

Function

Composite
behaviour

Action

Collaboration/
Connector

Information

Trans -
action

2..*

Composite
actor/

component

Simple
actor/

Component
Data

collection
Data
item

Structure
aspect

Behaviour
aspect

manipulates

perf orms

Document

Information
aspect

Medium Message

contributes to

Actor/
Component

offers

uses

carries

fulfils

Data
object

Role/
Interface

Behaviour
element

Service

exchanges

affects

results in

accessible

via

Event

Inter -
action

Figure 10.1: The ArchiMate metamodel

since XML documents are mostly created by applications for importing or
exporting data.

10.1.4 Research methodology

First, we have developed a running example for verification of our ideas and
techniques. During the development, we have refined the research questions
as follows:

1. Given a set of architectural information described in a single XML
document. How can we use XML transformation to select a subset of
this information for a specific architectural view?

2. Is it possible to use XML transformation for visualization? I.e. is it
possible to transform an XML document containing an architectural



214 CHAPTER 10. TRANSFORMATIONS

description into another XML document containing visual information
in terms of boxes, lines, etc.?

3. How can we use XML transformation to perform analyses on an archi-
tectural description? At first, we have chosen to specifically look at a
specific form of impact analysis: given an entity within the architec-
tural description which is considered to be modified or changed, which
other entities in the description are possibly influenced by this change?

The second step consisted of developing an XML document containing the
architectural information of the running example. As a basis for the archi-
tectural description, we have used an XML Schema containing the concepts
from the ArchiMate metamodel.

Thereafter we developed an XML Schema for visualization information
and built a model viewer which interprets this visualization information and
shows this information on the screen. The aim was to keep the model viewer
as “dumb” as possible, in order to make full use of XML transformation
techniques for the actual visualization.

In the fourth step, we selected a transformation tool, namely the Rule
Markup Language(RML), and built the transformation rules for selection,
visualization and impact analysis.

10.1.5 Document layout

In Section 10.2 the Rule Markup Language (RML) is introduced. In Sec-
tion 10.3 we will introduce the running example: ArchiSurance, a small in-
surance company which has the intention to phase out one of its core ap-
plications. In Section 10.4 we show transformation rules for selection and
visualisation of architectural views, while in Section 10.5 we illustrate trans-
formation techniques for analysis by means of performing a small impact
analysis. In Section 10.6 we conclude.

10.2 The Rule Markup Language

RML stands for Rule Markup Language. It consists of a set of XML con-
structs that can be added to an existing XML vocabulary in order to define
RML rules for that XML vocabulary. These rules can then be executed by
RML tools to transform the input XML according to the rule definition.



10.2. THE RULE MARKUP LANGUAGE 215

The set of RML constructs is concise and shown in Table 2.1 with a short
explanation of the constructs.

Rules defined in RML consist of an antecedent and a consequence. The
antecedent defines a pattern and variables in the pattern. Without the RML
constructs for variables this pattern would consist only of elements from the
chosen XML vocabulary. The pattern in the antecedent is matched against
the input XML. The variables specified with RML constructs are much like
the wild-card patterns like * and + and ? as used in well known tools like
grep, but the RML variables also have a name that is used to remember the
matching input. Things that can be stored in RML variables are element
names, element attributes, whole elements (including the children), and lists
of elements.

If the matching of the pattern in the antecedent succeeds then the vari-
ables are bound to parts of the input XML and they can be used in the
consequence of an RML rule to produce output XML. When one of the RML
tools applies a rule to an input then by default the part of the input that
matched the antecedent is replaced by the output defined in the consequence
of the rule; the input surrounding the matched part is kept intact.

RML does not define, need, or use another language, it only adds a few
constructs to the XML vocabulary used, like the wild-card pattern matching.
RML was designed to make the definition of executable XML transformations
also possible for other stakeholders than programmers. This is of particular
relevance when transformations capture for instance business rules. In this
way it is possible to extend the original model in the problem domain XML
vocabulary with semantics for that language. Similarly, it is also possible to
define rules for constraining the models with RML.

10.2.1 Comparison with other techniques

XSLT is a W3C language for transforming XML documents into other XML
documents.

The RuleML [com] community is working on a standard for rule-based
XML transformations. Their approach differs from the RML approach:
RuleML superimposes a special XML vocabulary for rules. This makes the
RuleML approach complex and thus difficult to use in certain cases.

The Relational Meta-Language [Pet94] is a language that is also called
RML, but intended for compiler generation, which is much more roundabout
and certainly not usable for rapid application development like with RML in



216 CHAPTER 10. TRANSFORMATIONS

this paper.
Another recent approach is fxt [BS02], which, like RML, defines an XML

syntax for transformation rules. Important drawbacks of fxt are that it is
rather limited in its default possibilities and relies on hooks to the SML
programming language for more elaborate transformations.

Other popular academic research topics that could potentially be useful
for rule based XML transformations are term rewriting systems and systems
based on graph grammars for graph reduction. However, using these tools for
XML transformations is a contrived and roundabout way of doing things. To
use these kind of systems, there has to be first a translation from the problem
XML to the special-purpose data structure of the system. And only then,
in the tool–specific format, the semantics is defined. But the techniques
used in these systems are interesting, especially for very complex or hard
transformations, and it looks worthwhile to see how essential concepts of
these techniques can be incorporated in RML in the future.

Compared with the related work mentioned above, a distinguishing fea-
ture of the RML approach is that RML re-uses the language of the problem
itself for matching patterns and generating output. This leads in a natu-
ral way to a much more usable and clearly defined set of rule based trans-
formation definitions, and an accompanying set of tools that is being used
successfully in practice.

10.3 Running Example

Throughout this paper, we will use a running example to illustrate our ideas.
The architectural description of this example can be found in the models in
Figures 10.2, 10.3, 10.4 and 10.5.

A small company, named ArchiSurance, sells insurance products to cus-
tomers. Figure 10.2 contains a Business View of the company. Two roles
are involved, namely the insurance company and the customer, which work
together in two collaborations, namely negotiation, i.e. the set of activities
performed in order to come to an appropriate insurance for a customer by
discussion and consultation, and contracting, i.e. the set of activities per-
formed in order to register a new customer and let it sign a contract for an
insurance policy.

Within Figure 10.3, the business process for selling an insurance product
to a customer is shown, together with the roles and/or collaborations that



10.3. RUNNING EXAMPLE 217

Customer
Insurance
Company

Negotiation Contracting

Figure 10.2: a Business View of ArchiSurance

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Figure 10.3: a Process View of ArchiSurance

are involved in executing the individual steps within the process.

Figure 10.4 shows the software products (components) that are used
within the ArchiSurance company and the services they offer. ArchiSure
is a custom-made software application for the administration of insurance
products, customers and premium collecting. PrintWise is a out-of-the-box
tool for official document layout and printing. Intermed is an old application,
originally meant for intermediaries to have the possibility to enter formal re-
quests for insurance products for their customers. The application is now
used by employees of the insurance company, since no intermediaries are in-
volved in selling insurance products anymore. Actually, the company would
like to phase out this application.

In Figure 10.5, the process for selling products is shown again, together
with the services that are used within each step.



218 CHAPTER 10. TRANSFORMATIONS

Request for
insurance

Formalize
request Create contractInvestigate

Register
policySign contract

Check
contract

Customer Insurance
CompanyNegotiation Contracting

Figure 10.4: an Application View of ArchiSurance

Request for
insurance

Formalize
request Create contractInvestigate

Register
policySign contract

Check
contract

Print contractsView requests Edit policiesEdit requests

Figure 10.5: a Service View of ArchiSurance

10.3.1 An XML description of the example

Though the four views are depicted separately, they are clearly related to each
other via the concepts they contain. In this small example, it is possible to
imagine the big picture in which all ArchiSurance information is contained.

Within the ArchiMate project, a XML Schema has been developed which
can be used for storage or exchange of architectural descriptions. Based on
this Schema, we have created an XML document that contains all information
about ArchiSurance. For illustration, a fragment of this XML document is
shown below. It contains the XML equivalent of Figure 10.2.

<role id="002" name="Customer"/>

<role id="003" name="Insurance Company"/>

<collaboration id="004" name="Negotiation"/>

<collaboration id="006" name="Contracting"/>

<composition id="035" name="composition">

<from href="004"/>

<to href="002"/>

</composition>

<composition id="036" name="composition">

<from href="004"/>

<to href="003"/>

</composition>

<composition id="041" name="composition">

<from href="006"/>

<to href="002"/>

</composition>

<composition id="042" name="composition">



10.4. SELECTION AND VISUALISATION 219

<from href="006"/>

<to href="003"/>

</composition>

10.4 Selection and Visualisation

The initial XML document contains the concepts and relations based on
the ArchiMate metamodel. It does not contain information about which
concepts are relevant for which views, nor does it describe how to visualize
the concepts. We can use RML rules for both tasks, as will be illustrated in
the following sections.

10.4.1 Selection

Within a single view, usually a selection of the entire set of concepts is
made. For example, the Business View in our example only contains roles and
collaborations. For this purpose, RML rules have to filter out all unnecessary
information from the XML document and thus create a new document that
only contains those concepts and relations that are relevant for the view.

We have created the following recipe for selection:

1. add a specific selection element to the XML document which is going
to contain the selected concepts;

2. iterate over the document and move all relevant concepts into the spe-
cific selection element;

3. iterate over the document and move all relevant relations into the spe-
cific selection element;

4. remove all relations within the selection element that have one “dan-
gling” end, i.e. that are related at one side to a concept that does not
belong to the selection;

5. remove all elements outside the selection element.

Note that the step for removing relations with one “dangling” end out of
the selection is necessary, because one relation type (e.g. association) can be
defined between several different concept types.



220 CHAPTER 10. TRANSFORMATIONS

The following RML rule illustrates the way all instances of a specific
concept are included in the selection:

<div class="rule">

<div class="antecedent">

<model>

<rml-list name="list1"/>

<collaboration rml-others="other">

<rml-list name="childs"/>

</collaboration>

<rml-list name="list2"/>

<selection>

<rml-list name="selection"/>

</selection>

<rml-list name="list3"/>

</model>

</div>

<div class="consequence">

<model>

<rml-use name="list1"/>

<rml-use name="list2"/>

<rml-use name="list3"/>

<selection>

<rml-use name="selection"/>

<collaboration rml-others="other">

<rml-use name="childs"/>

</collaboration>

</selection>

</model>

</div>

</div>

10.4.2 Visualization

As is described in the introduction, we wanted to keep the model viewer
as “dumb” as possible, in order to illustrate the way in which XML trans-
formations can be used for creating several visualizations for a single XML
document.

For this purpose, we have made a specific XML schema which can be
interpreted by the model viewer without having to know anything about the
ArchiMate language. The following XML fragment illustrates this language.

<container height="80" id="014" type="interaction" width="100" >

<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />

<label fieldname="name" halign="center" text="register policy" x="50" y="40" z="1" />

<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>



10.4. SELECTION AND VISUALISATION 221

<container height="80" id="013" type="interaction" width="100" >

<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />

<label fieldname="name" halign="center" text="sign contract" x="50" y="40" z="1" />

<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

<arrow from="013" id="020" to="014" type="triggering" >

<line type="solid" width="1" z="0" />

<headarrowtip size="10" type="filledarrow" z="1" />

</arrow>

The intermediate visualization language has two main constructs: con-
tainers and arrows.

Containers are rectangular areas in which several visual elements can be
placed. The exact location of those visual elements can be defined relative
to the size and position of the container. Each container has a unique iden-
tifier which can be used to refer to the original elements in the architectural
description.

Arrows are linear directed elements. They have a head and a tail, which
both have to be connected to containers (via their identifiers). They also
have unique identifiers themselves.

In the example above, two containers and one arrow are defined. In
Figure 10.6 the output of the interpretation of this XML fragment by the
model viewer is shown. As can be seen in the XML fragment, some visual
elements, like “split circle”, are built into the model viewer. This has mainly
been done for reasons of efficiency.

Register
policySign contract

Figure 10.6: Example of the visualization technique used

For the transformation of the original XML model to the visualization
information, we have created scripts that transform each concept into its
corresponding visualization. An example is given below.

<div class="rule">

<div class="antecedent">

<interaction id="rml-id" name="rml-name" color="rml-color"/>

</div>



222 CHAPTER 10. TRANSFORMATIONS

<div class="consequence">

<container id="rml-id" type="interaction" width="100" height="80" color="rml-color">

<box x="0" y="0" z="0" width="100" height="80" color="khaki1" type="round"/>

<label x="50" y="40" z="1" halign="center" text="rml-name" fieldname="name"/>

<icon x="75" y="10" z="1" width="15" height="15" type="splitcircle"/>

</container>

</div>

</div>

This example rule transforms an interaction concept into a visual repre-
sentation.

The technique presented here is quite powerful: from the same architec-
tural description, it is possible to define different visualization styles, like
ArchiMate, UML, etc. In the context of enterprise architectures, this is
especially useful since architects often want to have their own style of vi-
sualization (for cultural and communication reasons within organizations),
without having to conform to a standard defined outside the organization.

10.5 Analysis

Next to selection and visualisation, we have investigated ways to use XML
transformation for analysis of enterprise architectures. Our aim was to create
a technique for impact analysis, i.e. given an entity within the architectural
description which is considered to change, which other entities are possibly
influenced by this change?

We have created the following recipe for this analysis:

1. add a specific selection element to the XML document which is going
to contain the concepts that are considered to be possibly influenced;

2. add a special attribute to the element describing the entity under con-
sideration, which can be used for for example visualisation (in order to
make it have a red color, for example);

3. make the element describing the entity under consideration a child of
the selection element;

4. iterate over all relations included in the analysis and, if appropriate,
add a special attribute to them and make them a child of the selection
element;



10.6. SUMMARY 223

5. iterate over all concepts and, if appropriate, add a special attribute to
them and make them a child of the selection element;

6. repeat the previous two steps until the output is stable;

7. remove the selection element, so that we have one list of concepts and
relations, of which some concepts have a special attribute which indi-
cates that the change possibly has impact on them.

An example of the output of the analysis is given below. The compo-
nent “InterMed” is considered to change. It has two new attributes. The
selected attribute indicates that it belongs to the entities which are possi-
bly influenced by the change, while the special attribute indicates that this
entity is the unique entity considered to change. The remaining elements de-
scribe concepts and relations that are all selected, because they are directly
or indirectly related to the “InterMed” component.

<component id="082" name="InterMed" selected="yes" special="yes"/>

<composition id="104" name="composition" selected="yes" >

<from href="082" />

<to href="094" />

</composition>

<interface id="094" name="Interface" selected="yes" />

<assignment id="112" name="assignment" selected="yes" >

<from href="094" />

<to href="090" />

</assignment>

<service id="090" name="edit requests" selected="yes" />

Within Figure 10.7 and Figure 10.8, the output of the model viewer is
given for two views. The change of color is done by the visualisation scripts,
based on the attributes added during the analysis.

10.6 Summary

Our conclusions about each research question are as follows:



224 CHAPTER 10. TRANSFORMATIONS

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Figure 10.7: The Application View with a selected InterMed application

Customer
Insurance
Company

Negotiation Contracting

Figure 10.8: The resulting Business View after the impact analysis

10.6.1 Question 1

How can we use XML transformation to select a subset of a set of archi-
tectural information for a specific architectural view? In Section 10.4 we
have illustrated a way to filter out certain concepts and create a new XML
document containing a selection out of the original document.

10.6.2 Question 2

Is it possible to use XML transformation for visualization? In Section 10.4
we have shortly described an “intermediate” language for visualization infor-
mation and illustrated how we can transform an ArchiMate XML document
into a Visualization XML document.



10.6. SUMMARY 225

10.6.3 Question 3

How can we use XML transformation to perform a specific form of impact
analysis on an architectural description? A technique to perform this specific
analysis is described in Section 10.5.

10.6.4 Conclusions

The research reported on in this paper shows promising results. The use
of XML and transformation techniques for it has several benefits: XML is
well-known, the transformation techniques are generic and tools for it are
improving rapidly. Transformation rules are well understandable and can be
adapted quickly for specific needs or purposes.

The use of XML transformations for visualization proves to be specifically
interesting: in many cases, enterprise architecture tools have a fixed way of
visualizing information, which hinders architects in representing information
in the way they want to. By separating the “visualization step” from the
“viewer”, architects gain much often demanded flexibility.

Acknowledgments This paper results from the ArchiMate1 project, a
research initiative that aims to provide concepts and techniques to sup-
port architects in the visualization and analysis of integrated architectures.
The ArchiMate consortium consists of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematica In-
stitute, CWI, University of Nijmegen, and LIACS.

1(http://archimate.telin.nl)



226 CHAPTER 10. TRANSFORMATIONS


