
Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257

Chapter 9

A Logical Viewpoint on
Architectures

Authors: F.S. de Boer, M.M. Bonsangue, J.F. Jacob, A. Stam, L. van der
Torre

9.1 Introduction

In this paper we consider the gap between abstract enterprise architecture
descriptions and much more detailed business process models. The prob-
lem of analyzing and simulating enterprise architectures is that they are
described in much more vague terms than business process models. For ex-
ample, the IEEE standard 1471-2000 is based on the notion of the viewpoint
of a stakeholder with a set of concerns, and it defines view, architectural
description, architecture and system accordingly. However, despite the fact
that this approach has led to a useful reconsideration of the concepts used
in architecture, the drawback is that it does not lead to concepts which are
precisely defined in a mathematical sense, and consequently it is neither very
clear how to bridge the gap between architectural descriptions and business
process models, nor how to incorporate the architectural concepts in tools.

In this paper we study the following two research questions.

1. How to incorporate business process models in enterprise architectures
to analyze and simulate their behavior?

189

190 CHAPTER 9. A LOGICAL VIEWPOINT

description

View

System Architecture

symbolic model

signature

semantic model

1

*

abstraction

selects 1..*

*

described by 1has 1..*

is addressed to 1..*

conforms to

organized by 1..*

identifies 1..*

has an

has 1

establishes methods for 1..*

consists of 1..*

participates in 1..*

participates in

interprets 1..*

architectural
Stakeholder

viewpoint

Figure 9.1: Extension of IEEE with LVA

2. How to provide architectural tool support for enterprise architectures
with business process models?

To incorporate business process models in enterprise architectures, we
believe that we have to extend the IEEE architectural concepts. Consider
the main IEEE 1471 standard definitions.

architecture: The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.

system: A collection of components organized to accomplish a specific func-
tion or set of functions.

system stakeholder: An individual, team, or organization (or classes
thereof) with interests in, or concerns relative to, a system.

view: A representation of a whole system from the perspective of a related
set of concerns.

viewpoint: A specification of the conventions for constructing and using a
view. A pattern or template from which to develop individual views by

9.1. INTRODUCTION 191

establishing the purposes and audience for a view and the techniques
for its creation and analysis.

These definitions do not reflect the distinction between enterprise architec-
tures and business process models. Our extension of the IEEE conceptual
model is visualized in Figure 9.1, in which a symbolic model corresponds
to the IEEE concept of model, and which contains the two new concepts
semantic model and signature (we leave out IEEE 1471-2000 concepts not
related to our new concepts).

Semantic model. The missing concept in the IEEE 1471-2000 to bridge
the gap between enterprise architectures and business process models
is the notion of a semantic model, which interprets symbolic models.

Signature of an architecture. Moreover, each symbolic model has a sig-
nature, which contains besides the usual concepts and relations (in-
cluding special relations like is-a) also functions. The functions play a
crucial role in our proces models, as some of them are interpreted by
actions in the semantic model.

Finally, in contrast to IEEE 1471-2000 we distinguish between the conceptu-
alization of an architecture and its vizualization (though this is not visualized
in Figure 9.1).

Concerning tool support, our logical viewpoint provides the formal foun-
dations for the use of XML as a representation language for the signature
of an architecture, and more generally as a representation langauge for sym-
bolic as well as semantic models. In this paper we use AML instead of XML,
which is equivalent with XML, but designed to be better readable for hu-
mans. Roughly, in AML the end tags and angle brackets are replaced by
indentation principles.

Moreover, we promote the use of the Rule Markup Language or RML as a
language to describe model transformations and thus actions. As explained
in detail in this paper, actions are interpreted as functions, and can thus
be described by their input/output behavior, which can be described by
transoformation rules. RML consists of a small set of XML constructs that
can be added to an existing XML vocabulary in order to define RML rules
for that XML vocabulary. These rules can then be executed by RML tools
to transform the input XML according to the rule definition.

The layout of this paper is as follows. In Section 9.2 we introduce a
running example to explain our definitions. In Section 9.2.1 we explain the

192 CHAPTER 9. A LOGICAL VIEWPOINT

signature, the distinction between symbolic and semantic model, and the
actions. In Section 9.5 we discuss tool support, XML, AML and RML.

9.2 Archimate: a running example

Archimate is an enterprise architecture modelling language [JvBA+03, ea04].
It provides through a metamodel concepts for architectural design at a very
general level, covering for example the business, the application, and the
technology architecture of a system. The Archmate language resemble the
business language Testbed [EJL+99] but it has also a UML-flavour, intro-
ducing concepts like interfaces, services, roles and collaborations.

In the remainder of this paper, we will consider as running example, the
enterprise architecture of a small company, called ArchiSell, modeled using
the Archimate language. In ArchiSell, employees sell products to customers.
The products are delivered to ArchiSell by various suppliers. Employees of
ArchiSell are responsible for ordering products and for selling them. Once
products are delivered to ArchiSell, each product is assigned an owner, re-
sponsible for selling the product.

To describe this enterpise we will need the ArchiMate meta-concepts and
their relationships as presented in Figure 9.2. In particular, we will use
structural concepts (product, role and object) and structural relationships
(association), but also a behavioural concepts (process) and behavioural re-
lationships (triggering). Behavioural and structural concepts are connected
by means of the assignment and access relationships.

A product is a phisical entity that can be associated with roles. A role
is the representation of a collection of responsability that may be fulfilled
some entity capable of performing behaviour. The assignment relation links
processes with the roles that perform them. The triggering relation between
process describes the temporal relations between them. When executed,
process may need to access data, whose representation is here called object.

We will specifically look at the business process architecture for ordering
products, depicted in Figure 9.3.

In order to fulfill the business process for ordering a product, the employee
has to perform the following activities:

• Before placing an order, an employee must register the order within
the Order Registry.

9.2. ARCHIMATE: A RUNNING EXAMPLE 193

process

role

object

triggering

assignment

access

product

association

Figure 9.2: Some concepts and relations

• After that, the employee places the order with the supplier.

• As soon as the supplier delivers the product(s), the employee first
checks if there is an order that refers to this delivery. Then, he/she
accepts the product(s).

• Next, the employee registers the acceptance of the product(s) within
the Product Registry and determines which employee will be the owner
of the product(s).

9.2.1 Systems and architectures

Following IEEE 1471-2000, every system has an architecture. In our logical
perspective which abstracts from pragmatics, like design principles, an archi-
tecture is the structure and dynamics of a system consisting of its components
and their relationships.

The architecture of a system is purely conceptual and different from par-
ticular symbolic descriptions of that architecture. An architectural descrip-
tion consists of several symbolic models (also called model in [Soc00]) and
other pragmatic information. Examples of the latter are the architectural ra-
tionale. In the next sections we focus on the logical nature of these symbolic
models which involves their syntax and semantics.

194 CHAPTER 9. A LOGICAL VIEWPOINT

Employee

Accept product
Register
product

acceptance

Place order for
product

Register order
placement

Order
Registry

Product
Registry

owns

Product

Figure 9.3: A Business Process Architecture

The signature of an architecture

The very core of a symbolic model of an architecture consists of its signature
which specifies its name space. The names of a signature are used to denote
symbolically the structural elements of the architecture, their relationships,
and their dynamics. The nature of each structural element is specified by
a sort, and each architectural relationship by a relation between sorts. Ad-
ditionally, a signature includes an ordering on its sorts and its relations for
the specification of a classification in terms of a generalization relation on
the structural elements and the architectural relations. For example, the
sort object in Figure 9.2 can be defined as a generalization of both the sorts
Order Registry and Product Registry given in Figure 9.3, to indicate that
every element in Order Registry or Product Registry is also an element of
sort object. Also, an association between role and product is a generalization
of the relation owns between Employee and Product.

The ordering on sorts and relations is in general used to capture certain
aspects of the ontology of an architecture. Other ontological aspects can
be captured by the aggregation and containment relations. For technical
convenience however we restrict to the generalization relation only.

Definition 8 A signature consists of

• a partially ordered set of primitive sorts, also called the sort hierarchy;

• a partially ordered set of relations, where each relation is of the form

9.2. ARCHIMATE: A RUNNING EXAMPLE 195

R(S1, . . . , Sn), with R the name of the n-ary relation and Si the prim-
itive sort of its ith argument.

We allow overloading of relation names, i.e., the same name can
be used for different relations. For instance, given the primitive sorts
Person, Boss, and Employee, the relations Responsible(Boss, Employee)
and Responsible(Person, Person) are in general two different relations with
the same name.

Further information about the architecture is expressed symbolically in
terms of suitable extensions of one of its signatures. Usually a signature is
extended with operations for constructing complex types from the primitive
sorts. Examples are the standard type operations like product type

T1 × T2

of the types T1 and T2, and the function type

T1 → T2

of all functions which require an argument of type T1 and provide a result of
type T2. Note that a relation R(S1, . . . , Sn) is a sub-type of S1 × · · · × Sn.

Given functional types, the name space of a signature can be extended
with functions

F (T1):T2,

where F specifies the name of a function of type T1 → T2. Functions can be
used to specify the attributes of a sort. For example, given the primitive sorts
Employee and N, the function Age(Employee):N is intended for specifying
the age of each person.

Note that multi-valued functions

F (T1, . . . , Tn):T ′
1, . . . , T

′
m

can be specified by the functional type T → T ′, where T denotes the prod-
uct type T1 × · · · × Tn and T ′ denotes the product type T1 × · · · × Tn. In
general, functions are also used to specify symbolically the dynamics of an
architecture.

The next example shows the signature of the business process architecture
described in Figure 9.3. It is written in AML, a human-understandable
notation for generating XML documents. AML and the corresponding tool-
support will be discussed in Section 9.5.

196 CHAPTER 9. A LOGICAL VIEWPOINT

Example 2 The sorts of the example described in Figure 9.3 are simply
enumerated in AML by

Role
Object
Employee
Product
product
Order_Registry
Product_Registry

Note that we did not include processes as a sort (in our logical view ex-
plained above, processes are modeled as functions). The subsort relation is
specified in AML by the following enumeration

is-a
domain name=Employee
codomain name=Role

is-a
domain name=Order_Registry
codomain name=Object

is-a
domain name=Product_Registry
codomain name=Object

is-a
domain name=owns
codomain name=association

Note that we have encoded meta-model information of an architecture as
part of the signature of the architecture itself. The relation between the meta-
model sorts and relations and architectural sorts and relations is expressed
by the respective partial orders between sorts and relations of the signature.

In AML the owns-relation itself is specified by

owns
domain name=Employee
codomain name=Product

Finally, the processes are specified in AML as functions. The types of
the arguments and result values are determined as follows: A role which is
assigned to a process specifies the type of both an argument and a result value
of the corresponding function. Similarly, an outgoing access relation from
a process to an object specifies the type of both an argument and a result
value of the corresponding function. On the other hand, an incoming access
relation from an object to a process only specifies the type of the corresponding
argument (this captures the property of ‘read-only’).

9.2. ARCHIMATE: A RUNNING EXAMPLE 197

Register_order_placement
domain name=Employee
domain name=Order_Registry
codomain name=Employee
codomain name=Order_Registry

Place_order_for_product
domain name=Employee
codomain name=Employee

Accept_product
domain name=Employee
domain name=Order_Registry
codomain name=Employee

Register_product_acceptance
domain name=Employee
domain name=Product_Registry
codomain name=Employee
codomain name=Product_Registry

Note that the triggering relation is not included in our concept of a sigan-
ture. In our view such a relation specifies a temporal ordering between the
processes which is part of the business process language discussed below in
section 9.3.

The recommendation IEEE 1471-2000 [Soc00] emphasizes that views on
an architecture should be seen from the perspective of a viewpoint of a stake-
holder, that has several concerns. In our logical characterization, a viewpoint
is essentially a partial transformation over signatures, and a view is a visu-
alization of the result of the transformation, given a visualization.

Summarizing, the signature of an architecture focuses on the symbolic
representation of the structural elements of an architecture and their rela-
tionships, abstracting from other architectural aspects like rationale, prag-
matics and visualization. It emphasizes a separation of concerns which allows
to master the complexity of the architecture. Notably, the signature of an
architecture can be easily formalized in XML for storage and communication
purpose, and can be integrated as an independent module with other tools
including, e.g., graphics for visualization. In the following sections we define
the formal semantics of a symbolic model of an architecture. Such a seman-
tics provides a formal basis for the development and application of tools for
the logical analysis of the dynamics of an architecture.

198 CHAPTER 9. A LOGICAL VIEWPOINT

Interpretation of Types

In this section we first define a formal interpretation of the types underlying
a symbolic model.

Definition 9 An interpretation I of the types of a signature assigns to each
primitive sort S a set I(S) of individuals of sort S which respects the subsort
ordering: if S1 is a subsort of S2 then I(S1) is a subset of I(S2).

Any primitive sort is interpreted by a subset of a universe which is given
by the union of the interpretation of all primitive sorts. The hierarchy be-
tween primitive sorts is expressed by the subset relation.

An interpretation I of the primitive sorts of a signature of an architecture
can be inductively extended to an interpretation of more complex types. For
example, an interpretation of the product type

T1 × T2

is given by the cartesion product

I(T1) × I(T2)

of the sets I(T1) and I(T2). The interpretation of the function type T1 → T2

as the set
I(T1) → I(T2)

of all functions from I(T)1) to I(T2), however, does not take into account the
contra-variant nature of the function space. For example, since the sort N of
natural numbers is a sub-sort of the real numbers R, a function from R to R

dividing a real number by 2 is also a function from N to R, but, clearly, the
set of all functions from I(R) to I(R) is not a subset of the set of functions
from I(N) to I(R). Therefore, given the universe U defined as the union of
all the interpretations of the primitive sorts, we define the interpretation of
the function type T1 → T2 by

I(T1 → T2) = {f ∈ U → U | f(I(T1)) ⊆ I(T2)}.
The function type T1 → T2 thus denotes the set of all functions from the
universe to itself such that the image of I(T1) is contained in I(T2). Note
that if T ′

1 is a subtype of T1 and T2 is a subtype of T ′
2 then I(T1 → T2) is

indeed a subset of I(T ′
1 → T ′

2).

9.3. SEMANTIC MODELS 199

In general, there can be a large number of different interpretations for a
signature. This reflects the intuition that there are many possible architec-
tures that fit a specific architectural description. In fact, a signature of an
architecture basically only specifies the basic concepts by means of which the
architecture is described.

9.3 Semantic models

In our logical perspective, a semantic model is a formal abstraction of the
architecture of a system. The logical perspective presented until now, only
concerned the symbolic representation of an architecture by means of its
signature. Next we show how to obtain a formal model of a system as a
semantic interpretation of the symbolic model of its architectural description.

The semantic model of a system involves its concrete components and
their concrete relationships which may change in time because of the dynamic
behavior of a system. To refer to the concrete situation of a system we have
to extend its signature with names for referring to the individuals of the
types and relations. For a symbolic model, we denote by n:T a name n
which ranges over individuals of type T .

Given a symbolic model of an architecture extended with individual
names and an interpretation I of its types, we define a semantic model Σ as
a function which provides the following interpretation of the name space of
the symbolic model covering its relations, functions, and individuals.

Relations For each relation R(S1, . . . , Sn) we have a relation

Σ(R) ⊆ I(S1 × · · · × Sn)

respecting the ordering between relations, meaning that if R1 is a sub-
relation of R2 then Σ(R1) is a subset of Σ(R2).

Functions For each symbolic function F (T1):T2 we have a function

Σ(F) ∈ I(T1 → T2).

Variables For each individual name n:S we have an element

Σ(n) ∈ I(S).

200 CHAPTER 9. A LOGICAL VIEWPOINT

Example 3 For our running example we introduce the following semantic
model. In this model we have only two products p1 and p2. This is specified
in AML by

Product
p1
p2

In order to model the processing of orders and products individuals of
the sort Employee have a product attribute and an order attribute. These
attributes indicate the order and product the employee is managing. These
attributes can also be viewed as providing an interface to the environment
consisting of the clients and suppliers. Both the order of a client and the
product of a supplier will be stored by an employee (not necessarily the same
employee). In our model individuals of the sort Employee are fully charecter-
ized by these attributes. Therefore in our model the sort Employee contains
four elements, as described in AML by

Employee
e1 order=p1 product=p1
e2 order=p1 product=p2
e3 order=p2 product=p1
e4 order=p2 product=p2

In our simple model both the Order Registry and Product Registry can
contain only information about one of the two products p1 and p2 (in section
9.5 we discuss how to model an Order Registry as a finite list of orders).
Consequently, we can identify in this simple model the interpreation of these
sorts with that of Product:

Order_Registry
p1
p2

Product_Registry
p1
p2

The interpretation of the processes of our running example in this model
are specified in AML by means of matrices of input/output pairs. For exam-
ple, in the following we illustrate two such input/output pairs belonging to
the interpretation of Register order placement: it replaces the product stored
in the Order Registry by the product stored in the order of the employee:

matrix function=Register_order_placement
input

9.3. SEMANTIC MODELS 201

e1 order=p1 product=p1
p1

output
e1 order=p1 product=p1
p1

input
e1 order=p1 product=p2
p2

output
e1 order=p1 product=p2
p2

The other processes are formally described in a similar manner. Be-
cause of space limititaion we restrict to a informal description of their inter-
preations.

The function Place order for product does not affect the information
stored in an employee (in more refined models this function may in fact de-
scribe an update which records informationm about the supplier involved).

The function Accept product simply checks whether the product managed
by an employee is stored in the Order registry. We model this check as a
partial function which contains only those input/output pairs for which the
product stored in the Order registry coincides with the product managed by
the employee. Note that the product managed by the employee results from
the delivery of a supplier and that the order managed by an employee may
have changed after it has been stored in the Order registry.

The function Register product acceptance simply stores the product man-
aged by the employee in the Product registry.

Finally, in order to refer to the elements of the different sorts we introduce
individual names emp:Employee, order-reg: Order Registry, and product-reg:
Product Registry. A semantic model assigns individuals to these names, for
example, such an assignment is specified in AML simply by

emp = e1 order=p1 product=p1
order-reg= p1
product-reg= p2

Note that this assignment describes an employee which manages an order
of product p1 and a delivery of product p1, an Order registry which registers
an order of product p1, and a Product registry which registers the acceptance
of a product p2.

202 CHAPTER 9. A LOGICAL VIEWPOINT

Dynamics of a system

The dynamics of a concrete system with an architectural description given
by its signature can be specified in different ways. Below we distinguish two
different use of functions to describe the dynamics of a system: one where
functions are seen as primitive actions that change the state of a system, and
another where functions are seen as data transformers.

In the first case, we define the action of a function F (S):T by an assign-
ment of the form

n: = F (m)

where n:T and m:S are names ranging over the types T and S, respectively.
The execution of such an action in a semantic model Σ assigns to the name
n the return value of

Σ(F)(Σ(m))

which denotes the result of applying the function Σ(F) ∈ I(S → T) to the
element Σ(m) ∈ I(S). Note that actions transform semantic models (i.e. the
state of a system) but not the interpretation of a signature (i.e. the structural
information of a system).

Example 4 Given the interpretation of the individual names e and or of the
example 3, the execution of the action

e,or:=Register order placement(e,or)

results in the new semantic model Σ′ such that Σ′(or) = p1.

Given this concept of an action as a transformation of semantic models,
we can define more complex processes by combining actions, that is, we
can define operations on actions determining the order of their execution.
For example, we can define the sequential composition n: = F (m);n′: =
G(m′) of two actions n: = F (m) and n′: = G(m′) as the composition their
transformation of semantic models. Other operations on actions include case
structure, loops, parallel composition, and synchronization.

Example 5 Given the above sorts Product and Employee, and a function
name Produce of type Employee × Product → Product, we can define a pipe-
line by

p1:=Produce(e1,p1);p2:=Produce(e2,p1),

where e1 and e2 denote individual employees and p1 and p2 denote some
products.

9.4. DESIGN SUPPORT 203

The above interpretation of functions as actions forms a formal basis for
the introduction of process algebras and corresponding analysis techniques
in business process modeling. A process algebra [Hoa85] is a structured
approach for constructing complex processes out of actions. Alternatively,
we can use functions to specify the data-flow in a system illustrating how
data is processed in terms of inputs and outputs. In this view a multi-valued
function

F (T1, . . . , Tn):T ′
1, . . . , T

′
m

is interpreted as an asynchronous process transforming data as follows. It has
an input channel for each of its arguments; when on each input channel data,
i.e., an element of the corresponding type, has arrived it outputs the result
values on corresponding output channels. Such processes can be connected
via their channels in a data-flow network [Kah74] pictorially represented by a
Data Flow Diagram [GS79]. Because of space limitiations we omit the formal
details.

9.4 Design support

In this section we discuss the support that can be offered by our logicla
perspective to describe the evolution of a system. In particular we will briefly
describe the role of logical languages and design action in the design of an
architecture.

Logical languages

Logical extension of a signature consists in considering types as predicate
symbols that can be combined into more complex formulae by means of logi-
cal operators like conjunction and disjunction. The resulting logical language
can be used to constraint the set of semantic models under consideration.
There are several logical languages that can be used as logical extensions of
a signature, and a more detailed description of them is beyond the scope of
this paper. We just mention here description logics [BCM03] as formalism
for constrining semantic models and for reasoning about architecture. They
are tailored towards a representation of architecture in terms of concepts
and relationships between them. A description logic system consists of the
following components:

204 CHAPTER 9. A LOGICAL VIEWPOINT

1. a description language to construct complex description from simple
ones;

2. a specification formalism to make statements about how concepts and
relations are related each other (TBox) or to make assertions about
individuals (ABox)

3. a reasoning procedure.

The advantage of usimg description logics is that they can be formulated in
terms of digrams, called the Entity-Relationships Diagrams (ERD) [Che76].
Basically they illustrate the logical structure of a system in terms of concepts
and their relationships.

Temporal logics [MP92] are specially tailored towards the specification of
the dynamic aspects of a systems. They consists of some atomic predicates
on the semantic models together with the prositional connectives and some
temporal opeartors like next (X), until (U), some time in the future (F), and
always in the future (G). In our view, a temporal logic is intepreted ‘ in terms
of sequences of semantics models generated by the actions of the symbolic
model. For example the formula

emp.order = p1

implies

(emp.order = p1 U order_reg = p1)

specifies that if employee emp has received an order for product p1, then
eventually the order will be register and until then the employee cannot
process any different order.

Design actions

A design action is a transformation between symbolic model. It contains some
additional non-logical information that can used to describe the evolution of
the system. Examples are actions for adding sorts or relations, for deleting
them, or for renaming them. Design actions can be realised by means of rules
(for example expressed in RML) that have as antecedent a set of parameter
and as consequence a description of the change. When the parameters are
collected the rule can fire resulting in a new symbolic model as described in
consequence of the rule.

9.5. TOOL SUPPORT 205

9.5 Tool support

In this section we discuss how our logical perspective provides a formal basis
for the integration of XML based tools for the semantic analysis of architec-
tures.

The Extensible Markup Language (XML) [XML] is a universal format
for documents containing structured information so that they can be used
over the internet for web site content and several kinds of web services. It
allows developers to easily describe and deliver rich, structured data from any
application in a standard, consistent way. Today, XML can be considered
as the lingua franca in computer industry, increasing interoperability and
extensibility of several applications. Terseness and human-understandability
of XML documents is of minimal importance, since XML documents are
mostly created by applications for importing or exporting data.

The ASCII Markup Language (AML) [Jaca] used in this paper is an
alternative for XML syntax. AML is designed to be concise and elegant
and easy to use. AML uses indentation to increase readability and to define
the XML tree hierarchy: indentation level corresponds to depth, sometimes
called level, in the tree. No indentation is required for the set of attributes
that immediately follows each attribute name.

In the next sub-section we describe a tool for transforming XML doc-
uments that can be used for analysis of architectural description, and in
particular for the definition and simulation of the system behavior.

9.5.1 The Rule Markup Language

RML stands for Rule Markup Language. It consists of a set of XML con-
structs that can be added to an existing XML vocabulary in order to define
RML rules for that XML vocabulary. These rules can then be executed by
RML tools to transform the input XML according to the rule definition. The
set of RML constructs is concise and shown in Table 2.1.

Rules defined in RML consist of an antecedent and a consequence. The
antecedent defines a pattern and variables in the pattern. Without the RML
constructs for variables this pattern would consist only of elements from the
chosen XML vocabulary. The pattern in the antecedent is matched against
the input XML. The variables specified with RML constructs are much like
the wildcard patterns like * and + and ? as used in well known tools like
grep, but the RML variables also have a name that is used to remember the

206 CHAPTER 9. A LOGICAL VIEWPOINT

matching input. Things that can be stored in RML variables are element
names, element attributes, whole elements (including the children), and lists
of elements.

If the matching of the pattern in the antecedent succeeds then the vari-
ables are bound to parts of the input XML and they can be used in the
consequence of an RML rule to produce output XML. When one of the RML
tools applies a rule to an input then by default the part of the input that
matched the antecedent is replaced by the output defined in the consequence
of the rule; the input surrounding the matched part is kept intact.

Below we show an example of RML by presenting the rule that defines
the state transformation of the action

emp,order-reg:=Register order placement(emp,order-reg)

of our running example (emp and order-reg are individual names for an em-
ployee and the Order registry, respectively). Content-preserving RML con-
structs have been omitted for clarity.

div class=rule name="Register order placement"
div class=antecedent

variables
rml-Employee order=rml-OrderName

product=rml-ProductName
or

orders
rml-list name=oldOrders

div class=consequence
variables

rml-Employee order=rml-OrderName
product=rml-ProductName

or
orders

rml-use name=oldOrders
order name=rml-OrderName

In the antecedent of the rule the matching algorithm first looks for
an element with name variables which contains that part of the AML
representation of the semantic model discussed 3 that stores the values of
the names emp (of sort Employee) and order-reg (of sort Register order) If
that is found it looks for children of that element: one child with an order and
product attribute (an employee), and one child with the name r1 (the order
registry). The algorithm binds the employee name emp to RML variable

9.5. TOOL SUPPORT 207

Employee and it binds the values of the order and product attributes to
OrderName and ProductName respectively. The list of old orders, a list of
XML elements that are the children of the orders child of the r1 order
registry, is bound to RML variable oldOrders. In the consequence of the
rule the variables are reused in the output and an order element with the
correct name is appended to the oldOrders list. Note that by means of this
RML rule we have extended the semantic model of our running example to
an interpretation of the sort Order registry of unbounded capacity.

We see here that in a straightforward way, thanks to the wildcard match-
ing technique used in RML, a pattern can be matched that is distributed over
various parts of the input XML. Such pattern matching is hard to define with
other existing approaches to XML transformation because they do not use of
the problem domain XML for defining transformation rules: transformations
are defined either in special purpose language like the Extensible Stylesheet
Language Transformation (XSLT), or they are defined at a lower level by
means of programming languages like DOM and SAX.

RML does not define, need, or use another language, it only adds a few
constructs to the XML vocabulary used, like the wildcard pattern matching.
RML was designed to make the definition of executable XML transformations
also possible for other stakeholders than programers. This is of particular
relevance when transformations capture for instance business rules. In this
way it is possible to extend the original model in the problem domain XML
vocabulary with semantics for that language. Similarly, it is also possible to
define rules for constraining the models with RML.

9.5.2 RML as a tool for architectural description

As illustrated above, with RML a formal definition can be given of the dy-
namics of the basic actions of an architecture in terms XML transformations.
This allows for a formal use of process algebras [Hoa85] in the modeling and
analysis of business processes. In fact, the use of RML allows the formal
definition of one own’s business process constructs on top of the semantic
description of the basic actions.

As a simple example, the execution of an action a by the process P=a.b
that specifies a temporal order between a and b (namely, first a and than b),
can be described in a process algebra by a transition of the form (we abstract
from the state)

208 CHAPTER 9. A LOGICAL VIEWPOINT

a.b -> b

As a transformation in RML this transition can be specified by the fol-
lowing rule:

div class=rule
div class=antecedent

process name=rml-P
prefixes

rml-A
rml-B

div class=consequence
process name=rml-P

prefixes
rml-B

The removal of the a prefix is easily specified in such an RML rule as the
removal of an element from a list of children elements.

XML tranformations normally involve creating links between elements
by means of cross-referencing attributes, or reordering elements, or adding
or removing elements, but does typically not include things like integer arith-
metric and floating point calculations. In case of such transformations the
RML tool will have to be combined with another tool that can do the de-
sired calculation. For modelling business architectures a transformation that
can not be expressed with XML+RML alone is rather uncommon, but they
may occur when the user is interested in a simulation of a model. We have
applied combinations of RML with other components like programming lan-
guage interpreters successfully in the EU project OMEGA (IST-2001-33522,
URL: http://www-omega.imag.fr) that deals with the formal verification of
UML models for software. That tool for the simulation of UML models does
the XML transformations with RML, and uses an external interpreter for
example for floating point calculations on attributes in the XML encoding.

9.6 Summary and outlook

In this paper we consider the relation between enterprise architectures and
much more detailed business process models. The missing link to bridge the
gap between the two worlds is the notion of a semantic model in the IEEE
1471-2000 standard [Soc00] . We show how semantic models can be distin-
guished from the models used within the standard, which we call symbolic

9.6. SUMMARY AND OUTLOOK 209

model. This distinction provides a formal basis for the introduction of a for-
mal definition and analysis of business processes. Moreover, we extend the
IEEE standard with the notion of the signature, which serves as the basis of
the enterprise architecture description, as well as the semantic model.

Semantic models are at the center of our logical perspective on enterprise
architectures which integrates both static and dynamic aspects. The frame-
work we have developed allows the integration of various models for business
processes, ranging from process algebras to data-flow networks.

Furthermore, we have introduced a XML tool for the transformation of
XML data and showed how it can be used to simulate business processes.

There is a rich literature of business processes. However, as far as we
know, our logical perspective is a first attempt to a formal integration of such
processes in enterprise architectures. We believe that our logical framework
(plus tool support) also provides an promising basis for the further design
and development of business process languages and corresponding tools.

Acknowledgements This paper results from the ArchiMate project
(http://archimate.telin.nl), a research initiative that aims to provide
concepts and techniques to support architects in the visualisation, and anal-
ysis of integrated architectures. The ArchiMate consortium consists of ABN
AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and Customs Admin-
istration, Ordina, Telematica Institute, CWI, University of Nijmegen, and
LIACS.

210 CHAPTER 9. A LOGICAL VIEWPOINT

