
Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257

Chapter 5

Component Coordination in
UML

Authors: Frank de Boer, Marcello Bonsangue, Joost Jacob

5.1 Introduction

Modeling is an essential part of large software projects. The Unified Modeling
Language (UML) has become the de-facto standard language for specifying,
modeling and documenting software systems, visualizing software systems.
The basic innovative ideas of UML, which are the main reasons for its popu-
larity, are the unification of the concepts and notations used in the life-cycle
of software development as well as the recognition of the importance of mod-
eling and analysis as a means to improve quality. UML consists of a number
of diagrams used for expressing the goals of the system (use case diagrams),
for specifying the structure of the system (class diagrams) and the behavior
of the system (state diagrams, activity diagrams, sequence diagrams).

In this paper we introduce a formal model of components in UML.
This model has been developed in the context of the European IST project
OMEGA. The aim of this project is the correct development of real-time
embedded systems based on formal techniques. The approach followed is
based on a formal semantics of a suitable subset of UML which includes
class and state diagrams, a version of the Object Constraint Language, use
case diagrams, and live sequence charts (an extension of UML’s sequence

107

108 CHAPTER 5. COMPONENT COORDINATION IN UML

diagrams [DH01]). The semantics of the UML subset, here called Ω-UML, is
defined in terms of a formal interleaving semantics obtained by associating
with each model of Ω-UML a symbolic transition system [DJPV03].

Our component model generalizes the basic concepts of object-orientation
by providing additional structuring and abstraction mechanisms which allow
a modeling discipline and the application of formal techniques based on in-
terfaces. More specifically, it allows to structure the class diagrams of a
UML model into components and to abstract from the internal details of
these encapsulated class diagrams. Because of the encapsulation provided
by components we can compose them hierarchically in a natural manner.

In this paper we also discuss the formal semantics of our component
model. First we discuss the formal relation between a system of components
and the underlying UML class diagrams. This relation is defined in terms of
a reduction which ‘compiles away’ the additional structuring and abstraction
mechanisms provided by components. However, we also show how we can
describe the externally observable behavior of a component at a high-level of
abstraction and compositionally in terms of its structuring and abstraction
mechanisms. This latter view provides the formal justification of the model-
ing to interfaces discipline and it provides a formal basis for the application
of formal techniques to components.

Furthermore, we discuss different coordination patterns in the context
of our component model. First we show how high-level components can be
used to model the low-level coordination patterns underlying the computa-
tional model of Ω-UML. These coordination patterns form an intricate com-
bination of the asynchronous communication supported by an event-driven
computational model (along the lines of the Actor model [Agh86]) and the
synchronous communication supported by the usual rendez-vous mechanisms
of operation calls in object-orientation. Finally, we show how to generalize
our component model to a model of component coordination based on mobile
channels which allow a clear separation of concerns between coordination and
computation.

This paper is structured as follows: Section 2 introduces the component
model. In Section 3 we discuss the formal semantics of our component model.
Section 4 then proceeds with a discussion of how to model the low-level coor-
dination patterns underlying Ω-UML by means of high-level inter-component
coordination. Finally, Section 5 discusses a generalization to mobile channels.
In Section 6 we draw some conclusions.

5.2. A COMPONENT MODEL 109

5.2 A component model

In this section, we introduce an extension of UML addressing the area of
component-based software systems. Following Szypersky [Szy02], we see a
software component as a unit of composition with well-defined interfaces,
that can be independently developed and subject to composition by third
parties. In the context of UML, this means that we consider a component
as a mean to provide a high-level software abstraction like that of a mod-
ule, which encapsulates its internal structure and which provides interfaces
specifying the provided and required operations. The rationale is to provide
a structuring and abstraction mechanism which allows a modeling discipline
based on interfaces.

More technically, a component is a UML classifier, which is intended to
be self-contained and re-usable during development and deployment. It is
identifiable by a name but it has no attributes and operations. It cannot
be instantiated or be part of associations, but it can be generalized since it
has a type, defined by the set of its provided and required interfaces. This
means that a component is a unit of substitution that can be replaced by a
component that offers at least the same provided interfaces and demand at
most the same required interface.

A component interface is just a UML interface, that is, a non-instantiable
classifier with operations and attributes. We distinguish between two kind
of component interfaces: required interfaces and provided interfaces. A pro-
vided interface specifies a set of operations that the component offers to
the environment. A required interface specifies a set of operations that are
needed by the component to guarantee the correct functionalities of some
provided interfaces. We allow for generalization relations among component
interfaces.

A component is also a package, and therefore a structural em unit of
abstraction of the classes realizing its behavior. Other UML elements may
be owned by a component. In particular, other components may be owned
by a component allowing for hierarchical specifications. Encapsulation of the
internal structure is guaranteed because interaction points with its environ-
ment are exclusively defined via ports, the software concept equivalent of the
hardware port on a board.

A port is a class and also an interface, that is, it is an instantiable interface.
A components owns a set of ports, and each port owns a set of the component
provided interfaces, and a set of the required interfaces. The same component

110 CHAPTER 5. COMPONENT COORDINATION IN UML

interface may be owned by more than one port. The set of ports defines
the border between the internal implementation of the component and its
environment. Internal classes may realize a port or depend on a port.

Incoming communications defined in the provided interface of a port are
handled within instances of an internal class of the component realizing that
port. If a class realizes a port it realizes also one of its provided interfaces. We
assume that at most one internal class may realize a provided interface of a
port (but we allow for different classes to realize the same provided interface if
each class realize a different port). A port introduces an indirection, and each
request of instantiation for that port is resolved at run-time by instantiating
an internal class realizing a provided interface owned by the port (which
class is resolved statically by the type of the object expected by the requester
from the instantiation). This indirection mechanism abstract from the actual
implementation of an operation and allows for a very late binding of an
operation implementation with its declaration in a component interface. We
call port instances the object instance of internal classes instantiated by a
port.

If an internal class depends on a port then it depends also on one of
its required interfaces. From the environment point of view, outgoing com-
munications of an object instance of an internal class are identified with
communications from the port owning the required interface on which that
class depends. Communications at the border (that is, between two port
instances) are observable.

A component has two structural vies: a black-box view and a white-box
view. In the black-box view, only the component provided and required inter-
faces and their grouping into ports is visible. Optionally, behavioral elements
such as a state machines may be attached to each port, to define more ex-
plicitly a sequence of operation calls. For a black-box component it must
hold that every type or class used in a provided interface must be declared
in one of the provided or required interface of the component itself. This
self-containment property, together with not allowing generalization across
the border, ensures a complete encapsulation of the internal implementation.
Notationally, a black-box component is drawn as a classifier rectangle with in
the right hand corner a component icon: a rectangle with two smaller rectan-
gles protruding from its left hand side. Ports are shown as small squares on
the edge of the component rectangle, with association to interfaces, shown
as labeled ball and socket for the provided and required interface interface,
respectively. Provided and required interface can also be shown more explic-

5.2. A COMPONENT MODEL 111

Server Component

PServerPClient1 PClient2

Figure 5.1: A black-box view of a component

itly as the classifier rectangles. Figure 5.1 shows an example of a component
with two ports: one with a provided interface and another with a provided
and a required interface.

Black-box views of components are used in component system diagrams
to visualize the structural connections in a component-based system. There
can be dependency relations from a provided interface of a component to
a required interfaces of another component (but not vice-versa). Option-
ally, a coarser specification of the structural collaboration can be made using
connectors. A connector is a specialized association between ports, used
to indicate that all required interfaces of a port must be compatible with
the provided interfaces of the other connected port. The wiring between
components in a system is used at run-time for the instantiation across com-
ponents. If an internal objects (i.e., an instance of an internal class) requests
the instantiation of a port P with interface I on which it depend, then this
request is resolved at deployment time in a request for instantiation of the
port Q with a provided interface wired with the required interface I of P .
In other words, a port through its required interfaces act as placeholders for
port names that become known only at deployment time, when connectors
or dependency relations are statically fixed in a component system diagram.

Figure 5.2 shows a component system diagram. Dependency relations
between provided and required ports implicitly given by the ball-in-socket
notation. The association between a port of component B and one of com-
ponent C is a connector: the set of provided and required ports of those ports
must be compatible.

In the white-box view, the internal elements of a component are revealed,

112 CHAPTER 5. COMPONENT COORDINATION IN UML

� � � � � �
 � � �
 � �

� �
 � �

� � � � � � � �

� � �
� � � � � � � �

� � � �

� � � � �

� � � � � � � �

Figure 5.2: A component system diagram

5.2. A COMPONENT MODEL 113

in order to show the implementation of the external behavior of the compo-
nent ports. To this end, dependency and realization relations must be given
between internal classes or internal components and the component ports:
a dependency relation provides information about an internal class imple-
mentation in terms of its required services. An internal class can depend
on several ports. Since ports are UML interfaces we can draw dependency
relations from an internal class to a port, with the intended meaning that
the class depend on one of the required interface of that port. On the other
hand, a required component interface or a port cannot depend on something
inside a component. That would be a design error since the component can
supply the needed services by itself. Since ports are UML interfaces, we can
draw realization relations from internal classes to ports. An internal class
can realize several port, but port can only realize provided interfaces. A
connector between the port of an internal component and an external port
is used to graphically show the export of a port of an internal component to
the environment.

Figure 5.3 show the white-box view of component A: the upper port is
connected with a port of the internal components B, while the other port is
realized by class C. Class C depends on the same port and also on a provided
interface of the internal component B.

Run-time component interaction configurations are modeled in architec-
tural diagrams. They are snapshots that can be used to describe the ini-
tialization of a component system, invariant properties of the configuration,
and others useful runtime characteristics. In architectural diagrams only
instances of ports, ports and components are shown, together with their re-
lationships. Instances of ports handle all interactions from the environment
into the component they belong to, as well as the interaction between dif-
ferent port instances. Interaction from the inside of a component to the
environment is handled by the ports of the component (and not by their
instances).

In Figure 5.4 we show an architectural diagram of the component system
depicted in Figure 5.2. Port instances are represented by filled squares, while
port classes are denoted by plain squares. Arrows denote directed relations
either between port instances (representing the possibility of executing oper-
ation calls from a port instance to another one), or from port classes to port
instances (representing the possibility of executing operation calls from the
internal of the component to the port instance of another component).

114 CHAPTER 5. COMPONENT COORDINATION IN UML

addClient(string name)

send(string server; string event)

...other operations...

sendCommand(string command)

sendMessage(string line)

connectServer(string location)

conferenceStart()

receivePercept(string line)

receiveMessage(string line)

newClientUpdate(string clientnames)

newClientUpdate(string clientnames)

receiveMessage(string line)

receivePercept(string line)

conferenceStart()

− GuiPart gui

setupGUI(int x; int y)

redrawClients()

conferenceGUI()

isWaiting()

addLine(string line)

Client

RPC_Class

PClient<< Port >>

GuiPart

Figure 5.3: A white-box view of a component

5.2. A COMPONENT MODEL 115

� � � � � 	 � 	
 �

� �

� � � � � 	 � 	
 �

� � � � � 	 � 	
 � � � � � � 	 � 	
 �

� � � �

� � �

� � �

� � �

� � �

� � � � � 	 � 	
 � � � � � � �

� � ! �
 �
 # � � $ � � � � � � �

& �) �
 � � � � � � �

� � �

� � �

� � �

� � �

Figure 5.4: An architectural diagram of a component system

116 CHAPTER 5. COMPONENT COORDINATION IN UML

5.3 Ω-UML

Building embedded real-time systems of guaranteed quality, in a cost-effective
manner, is an important technological challenge. There is a general agree-
ment that a means to achieve this is a model-based approach. UML aims
at providing an integrated modeling framework encompassing structural de-
scriptions, as well as behavioral descriptions. Although there is a large num-
ber tools available that implement a dynamic semantics of UML, none of
these tools integrates state-of-the-art formal validation tools, as required in
many industrial sectors for a proper development process.

The aim of the European IST project OMEGA is the correct development
of real-time embedded systems based on formal techniques. The approach
followed is based on a formal semantics of a suitable subset of UML which
includes class and state diagrams, Object Constraint Language, use case
diagrams, and live sequence charts (an extension of UML’s sequence dia-
grams [DH01]). The semantics of the UML subset, here called Ω-UML, is a
formal interleaving semantic obtained by associating with each model of Ω-
UML a symbolic transition system [DJPV03]. Due to space restrictions, we
only sketches here the main concepts of Ω-UML and their intuitive semantics.

Similarly to the standard UML [SWB03], classes in Ω-UML may be either
active or passive. An active object (i.e., an instance of an active class) is like
an event-driven task, which processes its incoming requests in a first-in-first-
out fashion. It has only one thread of control, so that active objects are
internally sequential. As only one message may be treated at a time, there
must be a mechanism for queuing the calls. For a passive object only one
operation may be active at a time, and, although passive, it has certain
degree of control over the invocations made toward them, as explained later
in this section. Furthermore, in Ω-UML all objects are assumed to be reactive,
that is, their behavior can be made dependent on the current state of the
system.

In Ω-UML state-machines are used to describe the computational be-
havior of the instances of a class. These state machines are composed of
transitions which are labeled by a (guarded) trigger and an action. A trigger
specifies the reception of an operation call. An action involves assignments
to the attributes, class instantiation and operation calls.

The semantics model of Ω-UML captures three different kinds of inter-
object communication: share variables (via public attributes), synchronous
(via triggered operation calls, i.e. operation calls whose return value depend

5.3. Ω-UML 117

on the current state of the system) and asynchronous (via signal events).
The execution of a synchronous operation call involves a rendez-vous be-

tween the sender and the receiver of the call: First, the sender and receiver
of the call have to synchronize on the execution of an operation call by the
sender and a corresponding trigger by the receiver. Such a synchronization
results in the sending of the actual parameters which are stored by the re-
ceiver in the corresponding formal parameters of the operation. During the
execution of the operation by the receiver, the sender is suspended. Upon
termination of the call, the return value is send back to the sender, after
which both sender and receiver resume their own execution.

On the other hand, an asynchronous operation call is stored in the event-
queue of the receiver. The execution of a trigger involving an asynchronous
operation consists of checking whether a corresponding operation call appears
as the first element of the event-queue (of the receiver) and storing its actual
parameters in the formal parameters. It suspends otherwise.

The above communication mechanisms between active and passive ob-
jects is coordinated by means of activity groups. Activity groups are run-
time components which are created dynamically. Each object belongs to an
unique activity group, and each activity group contain exactly one active
object at each time.. The objects of an activity group share both one thread
of control and the event queue. The sharing of control means that at most
one object of the group is executing. Control is passed on by a synchronous
operation call to another object belonging to the same group. On the other
hand a synchronous call to an operation of an object not belonging to the
same activity group suspends the executing object and a fortiori its activity
group. An asynchronous operation call to an object will be stored to the
event queue of its activity group.

5.3.1 Components in Ω-UML

In order to represent all the aspects important for real-time system design
at an appropriate level of abstraction, Ω-UML incorporates the component
model introduced in Section 5.2. The model allow the definition of visibility
and communication constraints needed for the design of large systems and
provide a basis for proper abstraction, compositional refinement and verifi-
cation.

To properly model the communication mechanism of a component-based
system, the action language of Ω-UML is extended to allow actions for port

118 CHAPTER 5. COMPONENT COORDINATION IN UML

instantiation. They are of the form

x := new(P)

where P is the name of a port owned by a component and x is an attribute of
type compatible with one of the required interface owned by the port P . This
action can be executed by any object instance of an internal class depending
on the port P .

A component system diagram can be reduced to a large class-based Ω-
UML model, using information from the white-box and black-box view of
each component involved in the diagram. The basic idea is to recursively
(because of the hierarchical structure of a component) transform each com-
ponent into a the class it encapsulate. The classifiers for ports, component
interfaces and components are omitted from this diagram, as well as all rela-
tions on which they are involved. Action for port instantiation x := new(P)
are transformed into action for class instantiation x := new(C), where C
is the name of the class indirectly instantiated by the port to which P is
connected.

The basic semantic model obtained in this way is not compositional with
respect to the concept of component. It is formalized in terms of a translation
relation on object-diagrams which specify for each existing object the values
of its attributes and the values of some system variables which encode some
relevant control information (such as the current state in the associated stat-
echart). Transitions are labeled by external events or by a label indicating
an internal computation step. An external event is of the form

callee.op(caller,parameters)

denoting the call of a (synchronous or asynchronous) operation op by the
caller to the callee with a list parameters, or

caller.return-op(callee, actual-parameters)

denoting the return from callee of a synchronous operation call op, initially
called by caller. This semantics defines a very fine-grained notion of ob-
servability, making roughly every choice point and every interaction between
distinct objects observable.

A more abstract notion of observability should be preferred, to capture
only those interactions between the component and its environment. This

5.4. INTRA-COMPONENT COORDINATION 119

can be obtained by transforming the labels of above transition system as
follows. If the callee is a port instance then the transition step should be
observable. In case the caller is also a port instance, the label should not
change, otherwise caller should be renamed to the port on which its class
depend. All other steps should be treated as internal steps. By means of
a corresponding projection operation on traces of events we can define the
traces of a system of components in a compositional manner along the lines of
the compositional trace semantics of CSP [SS99] (generalized to components
and object-orientation).

5.4 Intra-component coordination

In this section we discuss how our component model can be used in UML
to express the coordination mechanism between active and passive classes
as prescribed by Ω-UML by means of activity groups. That is, we see a
component as a unit of reaction, which statically determines the run-time
coordination of a reactive system with active and passive objects. Instances
of an active classes are like Real-Time Operating System tasks, having their
own thread of control, and running concurrently with other instances of active
classes. Instances of passive classes are more like sequential objects whose
operations are under the control of the active object that controls the caller.

In this section we will concentrate on the basic communication mecha-
nism of UML: objects communicate and synchronize only via synchronous
operation calls. For modeling purposes this suffices because asynchronous
operation calls can be modeled by synchronous ones.

The basic idea is to replace an activity group from a model of Ω-UML
by a component with a port which describes the coordination model of this
activity group, that is, port instances will generate and coordinate activity
groups. Since activity groups do not provide any encapsulation, the port will
own a provided interface for each class specifying the activity group. The
port instance is the only object that external objects can interact with, in
the style of ordinary message interaction: p.operation(parameters). Further,
the port instance p does not have attributes that are accessible by external
objects.

Interactions between an external object and an internal object are del-
egated via the component port instance p: The external object is now in-
teracting with p instead of with an internal object directly: every operation

120 CHAPTER 5. COMPONENT COORDINATION IN UML

call
callee. op(parameters)

to an internal object callee is transformed into a call

p.op (caller, callee, parameters)

which involves the storage of the corresponding call to the operation op in
the pending request table discussed below and which is immediately followed
by a transition with a trigger

return-op(return-value)

which will involve the return from the call op by the callee and the reception
of the return value.

On the other hand, the internal objects have to be modified so the port-
instance can be informed about what triggers they will accept in their current
state. We do so by adding to every state of an internal object a loop consisting
of a poll() trigger and a return statement that returns the names of the
triggered operations that can be accepted in the state.

Finally, a component port is an instance of a port class with an attribute
which stores operation calls from external objects to objects of the activity
group. This pending request table has four columns: every row has entries
that consist of the caller object, the callee object, the operation name, and
a sequence of actual parameters. Furthermore a port will contain other
attributes for expressing certain relevant information about the state of the
activity group, e.g., its objects, the executing object, etc.. This additional
information will be used in the method select that selects an object from
the set of internal objects for execution. A port has also a method choose
that can select an entry in the pending request table. These two methods
together will implement the coordination mechanism used and will involve a
particular scheduling policy.

The behavior of a port consists of two main loops: one for receiving
operation calls from external objects and storing these in the pending request
table and one for dispatching calls from the pending request table and for
forwarding these calls to an internal object and returning the result to the
external object.

The first loop starts with a transition for each operation op that consists
of a corresponding trigger

op(parameters)

5.5. INTER-COMPONENTS COORDINATION 121

where the list of parameters contains the caller and callee of the call. This
trigger is followed by a local computation step which involves a corresponding
update of the pending request table. After this local update the call to the
operation op of the port-instance is completed. Note however, as described
above, that the caller object, after completion of the call to the operation op
of the port-instance will wait for a call to the operation return-op which will
coincide with the completion of the operation op by the internal object.

The second loop starts with the selection of a call in the pending request
table. The port-instance subsequently calls the corresponding operation of
the callee. When this call is completed the port-instance resumes its activity
by sending the received return value to the initial caller object.

5.5 Inter-components coordination

Reactive systems are systems that reacts continuously to their environment,
at a speed imposed by the latter [HP85]. Among reactive systems are most
of the industrial real-time systems, like control systems and signal processing
systems. These systems are distributed in their own nature: think for exam-
ple at the different location of the sensors and actuators of a system. Further-
more they are subject to temporal requirements concerning both the input
rate and the response time. This requirements must be taken into account
when modeling a system, for example, by considering an architectural design
employing the globally asynchronous locally synchronous paradigm [Cha85]:
communication within a unit of distribution may be synchronous, whereas
communication between different unit of distribution must be asynchronous.

The semantic model of Ω-UML is rich enough to support communica-
tion through shared attributes, operation calls, and signals. Synchronous
operation calls use rendez-vous as communication mechanism. It involves
a synchronization between the sender and the receiver of the operation call
for the message (and parameters) passing, an asynchronous establishment
of the rendez-vouz, and another synchronization between the sender and re-
ceiver for passing the return values. Rendez-vous lead to useless waiting time
and reduce parallelism and efficiency [Fox88]. That is why in this section we
restrict the communication model of Ω-UML so to support the globally asyn-
chronous locally synchronous paradigm: all inter-component communication
are purely asynchronous (via signal events), while intra-component commu-
nication is unrestricted. This way, components are units of distribution of

122 CHAPTER 5. COMPONENT COORDINATION IN UML

reactive real-time systems.
A consequence of the inter-component communication by signal events is

that each port instance (the receivers of all the signals directed to a com-
ponents) must be equipped with an event-queue, so that incoming requests
are processed in a first-in-first-out fashion. This is equivalent to say that
communication between components is performed by means of send and
receive primitives over a network of FIFO channels: The processes in the
network are the ports and the port instances. while the channels are the
event-queue associated with each port instance. An asynchronous opera-
tion call p.signal(parameters) correspond to sending the structured signal
signal(parameters) to the channel p (the identity of the port instance owning
the event-queue), while the trigger of the signal correspond to the reception
of the first signal from the channel with sink attached to the process. Notice
that channels can be dynamically created, and passed to other processes by
means of a signal. Therefore, communications are performed over a dynam-
ically reconfigurable networks of channels and processes.

In other words, by loose coupling the inter-component communication
mechanism (here obtained by forbidding synchronous operation call) one
obtain a system of dynamic processes communicating through mobile chan-
nels. There is, however, an asymmetry in the above coordination mecha-
nism: channels are mobile only at their source. This is due to the fact that
in UML, the triggering of an operation is implicitly directed to the event
queue of the active object controlling it. If we relax this constraint, and
introduce trigger operations directed to a channel (introducing, for exam-
ple, a syntax for trigger operation similar to a CSP [Hoa85] read operation
c?signal(parameters)) then we obtain a the coordination model of mobile
channels proposed in [ABdB00, SAdBB03]: Processes can be created dy-
namically and have an independent activity that proceeds in parallel with all
the other processes in the system and interact only by sending and receiving
messages asynchronously via channels which are (unbounded) FIFO buffers.
Channels are created dynamically. In fact, the creation of a process consists
of the creation of a channel which connects it with its creator. This channel
has a unique identity which is initially known only to the created process
and its creator. As with any channel, the identity of this initial channel too
can be communicated to other processes via other channels, so that which
processes are connected by which channels, is completely dynamic, without
any regular structure imposed on it a priori.

A compositional formal semantics based on histories of signals sent

5.6. CONCLUSION 123

and received by each process has been given for the above coordination
model [dBB00], together with a logic-based component interface description
language that conveys this observable semantics [AdBB00]. This interface
description language allows for deriving properties of a component-based
system out of the logical interfaces of each port of the constituent compo-
nents [AdBB00]. Finally, the model has also been implemented as a middle-
ware for distributed communication and collaboration [SAdBB02].

5.6 Conclusion

In this paper we have presented a UML model for components to address
architecture and component based development. Components are units of
abstraction that can be independently developed, like classes or modules.
Unlike classes, they components are also unit of encapsulation that can be
extended by subtyping of the interfaces, but not by inheritance of their im-
plementation. Component-based systems are described by means of two new
UML diagrams: component system diagrams and architectural diagrams.
Component system diagrams are for describing the structural dependencies
among the provided and required interfaces of the components in a system,
while architectural diagrams are for the description of a runtime configura-
tions of the architecture of a component-based system.

Our model offers a coherent view for the design of architecture and
component-based systems: components serve as a naming mechanisms for ab-
stracting from the internal parts, interfaces as declaration mechanisms of ser-
vices (either provided or required) and ports together with the dependency-
realization relations as abstraction mechanisms of object interactions.

Contrary to the component concept used in deployment diagrams of UML
1.4 [SP99], our components are not units of instantiation and do not need to
have a unique run-time identity. Our model of component is similar to the
recently approved proposal by the U2 partners for UML 2.0 [OMG03], but
components have no state, are not instatiable, and allow for the existence at
run time of multiple ports with the same set of interfaces, each Port attached
to the necessary number of runtime links. For example, in UML 2.0 a class
is also a component, while this is not the case for our notion of component.

Our model has been largely influenced by the main concepts offered by
architecture description languages (ADLs): components, ports, and con-
figurations. A large number of ADLs have been proposed, some of them

124 CHAPTER 5. COMPONENT COORDINATION IN UML

with a sound formal foundation. We only mention here Wright [AG97],
Rapide [LKA+95] and ACME [GMW97]. Closer to our architectural dia-
grams are the architectural descriptions provided by ROOM [SGW94] and
UML-RT [Sel98] (the latter is in fact a UML profile interpreting ROOM
concepts in terms of UML stereotypes).

Many models for components have been proposed in the last years, some
informal and remaining within the realm of the existing UML (see for exam-
ple [CD00]), and others founded on a logical and mathematical basis (e.g.
Broy’s component model based on streams of messages [BS01]. In [GCK02]
and [MRRR02], several strategies for modeling components and other archi-
tectural concepts within UML are investigated, with as conclusion that these
concepts are hard to describe in UML as it is. Similar to Broy’s component
model, the semantics of our model is also based on sequences of messages (like
those used for the semantics of CSP [Hoa85]). However our components have
dynamic aspects (e.g. Port instances) not fully covered by Broy’s model.

Moreover our component model is a conservative extension of an object-
oriented model and therefore it requires the addition of only a couple of extra
concepts to the standard UML 1.4. It is interesting to note that these addi-
tional concepts are also required by the component model proposed for UML
2.0 by the U2 partners [U20]. As described above, however, the semantics of
these concepts is different between the two models.

Acknowledgement The work reported in this paper has been funded by
the European IST-2001-33522 project OMEGA.

