Universiteit

4 Leiden
The Netherlands

Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257

Version: Corrected Publisher’s Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257

Chapter 4

The OMEGA Component
Model

Author: Joost Jacob

4.1 Introduction

In this paper we introduce a formal model of components as developed in the
IST project OMEGA (IST-2001-33522, [OME]) sponsored by the European
Commission. The aim of this project is the definition of a development
methodology in UML for embedded and real-time systems based on formal
techniques. The approach followed in OMEGA is based on a formal semantics
of a suitable subset of UML 1.4 which includes class and state diagrams,
Object Constraint Language (OCL), use case diagrams, and Live Sequence
Charts ([DHO1], an extension of UML’s sequence diagrams). Some of the
OMEGA members have been involved in the design of a component model
for UML 2.0 that will be finished in the course of 2004 and the OMEGA
component model has influenced the UML 2.0 component model; therefore
the approach presented in this paper is compatible with the approach taken
in UML 2.0.

The main rationale of our component model is to extend the above sub-
set of UML as used in OMEGA with additional structuring and abstraction
mechanisms which allow a modeling discipline and the application of formal
techniques based on “interfaces”. The basic idea of a component presented

79

80 CHAPTER 4. THE OMEGA COMPONENT MODEL

in this paper is that of a high-level software abstraction like a module which
encapsulates its internal structure and which provides an interface specifying
the exported (also called provided) and imported (also called required) oper-
ations and signals. Components can be hierarchically composed from basic
components and relations between provided and required interfaces. Basic
components are defined as sets of classes together with the provided and
required interfaces. Components interact via Ports. In our model a Port is
an object realizing an interface and/or depending on an interface of another
component. Ports, like any other object-instances, can be created dynami-
cally. In this sense our notion of a Port differs from the usual UML definition
of an interface. Since we view components as a software abstraction, compo-
nents themselves cannot be instantiated but only its Ports are instantiated.
If there is only one Port instantiated for a component then this Port can be
regarded as “the component instance” or “the component” and this phrase
is sometimes used to make text more readable.

We show how our component model provides a general framework for
the classification of and relationships between the UML concepts mentioned
above as used in OMEGA, by adding component diagrams and architectural
diagrams. Architectural diagrams are used to describe certain run—time prop-
erties of components which are independent of the actual deployment on a
certain platform. There is an analogy between component diagrams and class
diagrams and likewise between architectural diagrams and object diagrams,
and this analogy can be used to design our new diagrams using CASE tools
that do not support the new component model diagrams yet. Finally, we
discuss the possible usage of the OMEGA component model for verification
purposes.

The first version of our component model was presented as an OMEGA
milestone document in June 2002.

4.2 The Component Model

In this section, we present a meta-model for our notion of components. In
this meta—model we extend standard UML entities, the building blocks, like
class and interface. Since we only use a few UML entities it will be easy in
the future to make the meta-model compatible with UML 2.0 [OMG] once
that has reached a stable version, and to fit it in with the new MOF [MOF]
version that is under development. To avoid confusion with existing UML

4.2. THE COMPONENT MODEL 81

entities, in the rest of this paper we will use a capital for the first letters of
the names of entities that are our extensions to UML.

Component Models as high—level class diagrams

Our starting point is a model of components which provides a high-level
software abstraction like that of a module which encapsulates its internal
structure and which provides an interface specifying the exported (also called
provided) and imported (also called required) operations and signals (as de-
fined by the OMEGA kernel model language in [OME]| and [DJPVO03]|. The
interface of a component is structured into Component Interfaces. Compo-
nent Interfaces are like ordinary UML interfaces but they have to adhere to
the usage rules for Component Interfaces we specify below in this section.
A Component Interface consists of a collection of signatures of operations
and signals, but contrary to ordinary UML interfaces Component Interfaces
do not contain attributes. In comparison with UML diagrams, a component
model is similar to a class diagram. Later, in Sect. 4.4, we will introduce
diagrams for components, so-called architectural diagrams, that are similar
to UML object diagrams.

The underlying class diagram

In an OO setting there is always a class diagram underlying an applica-
tion. The same is true for a component based application designed with our
component model. In the OMEGA deliverable D1.1.2 we have presented a
formal reduction from a hierachical component model to a flat class diagram.
In this paper we will present in Sect. 4.5 a formal justification of our compo-
nent model in terms of a compositional trace semantics and its corresponding
logics.

Introducing Ports

Component Interfaces are grouped into Ports. Component Ports correspond
with special purpose classes inside components that provide the only inter-
action points between components. At runtime, all communication between
components is going via instantiated Ports. In our component model, a Port
is used as a class, and it is also used as a type specification for one or more
runtime objects. Ultimately these runtime objects are instances of classes

82 CHAPTER 4. THE OMEGA COMPONENT MODEL

in the underlying class diagram, because our model is designed in an OO
setting.

Why is an object-oriented component model useful?

The underlying class diagram can possibly be huge; this is one place where
a component model can be useful because one component can abstract from
many classes. Also, it is possible to design a component with a Port, and to
be specific about the services the Port requires and provides, without having
to specify already exactly what class will used for instantiating the Port; this
supports better top—down design methodologies. Our component diagram
groups classes in an underlying class diagram into components, and it groups
associations in that class diagram into Ports and Component Interfaces and
the associations and connections between them. As such it provides a high-
level view of a class-based application which is both suited for top-down
design and compositional analysis.

UML 2.0

Syntactically the components in our component model are much like the
components in the UML 2.0 submission by U2Partners in September 2002
and in Januari 2003. One of our main objectives in OMEGA is the develop-
ment of an OMEGA component model which is compatible with their UML
2.0 submissions. But there are some semantic differences that will appear
in the rest of this paper. We can mention here already one of the most im-
portant differences: in the submissions by U2Partners a component itself is
instantiable whereas in our model it is the Component Ports that are in-
stantiated (as instances of UML classes); this way the component provides a
conservative extension of the underlying object-orientation so it can remain
a software abstraction. Another difference is that in order to keep our model
small, simple and elegant, we do not explicitly model connectors and there-
fore we have not defined new UML entities for connectors. This provides a
user of our component model with a choice: the user may decide to extend
our model and use the UML 2.0 connectors, or the user can choose to model
connectors as components themselves.

4.2. THE COMPONENT MODEL 83

4.2.1 Blackbox Components

A Blackbox Component gives a blackbozr view of a component in a blackbox
diagram. Inside a Blackbox Component nothing is visible, only the Interfaces
of the component that are to be used in a design outside of the component
are visible, and the grouping of these Interfaces into Ports is visible.

The meta—model for a Blackbox Component is contained in Fig. 4.1; the
Basic Component and UML Class and Component System boxes and their
relations do not belong to it but will be introduced later. As can be seen in
the figure, we have modeled a Blackbox Component as a specialization of a
UML Classifier. In a future MOF version a component could well be better
modeled specializing another (future?) MOF construct that is more suitable
for our purposes, or perhaps more than one construct. For now we are basing
our meta—models on UML 1.4 and therefore we use the Classifier.

The same goes for the other specializations from UML entities we use in
the figure, again for now we make do with UML 1.4 entitities. Adapting the
meta—model to the next MOF or UML version should pose no problems that
cannot be overcome easily.

In Fig. 4.1 we can see that Blackbox Components can have several Ports,
and a Port can have several Provided Component Interfaces and several Re-
quired Component Interfaces. The other way around, a Component Interface
is associated with one Port, and a Port belongs to one Blackbox Component.

A Blackbox Component is drawn as a box, optionally with the UML 1.x
component symbol in a corner to make it extra clear that the box is a compo-
nent. Ports are drawn as small squares on the edges of a component box. In
the blackbox view the association between a Port and Component Interfaces
can be shown with the “lollypop” notation, or with UML dependency and
UML realization associations to expanded interfaces (boxes with the name
of the interface and a stereotype indiciation and a list of services). This is in
accordance with standard UML 1.x notation; an example with the two nota-
tions is shown in Fig. 4.2. We therefore propose to extend the Kernel Model
Language with UML realization associations. Note that these associations
do not affect the semantics, i.e., they encode only static information which
can be checked by a preprocessor.

There can be UML dependency relations from Provided Component In-
terfaces to Required Component Interfaces on the same component. This
means that if a user wants to use one of the services of the Provided In-
terface, the Required Interface must be realized, or else the service is not

84 CHAPTER 4. THE OMEGA COMPONENT MODEL

UML Classifier

Blackbox Component
Component System
* 1
1
Basic Component UML Class
*
1 *
%

* provided, required

Port

* Required
Component
Interface

required

X

required

UML Interface

provided

provided * Provided *
Component —
Interface

Figure 4.1: The combined UML Meta-Model for our component models

4.2. THE COMPONENT MODEL

85

g]

Server Component

IFastServer

<< Required Component Interface >>
IClient

newClientUpdate (name: String)
receiveMessage (line: String)
receivePercept (line: String)

conferenceStart ()

Server Component

IClient

IFastLib
<< Provided Component Interface >>
IServer
register (name: String)
start ()
isStarted() Boolean
i IFastServer
1
IFastLib
IServer

Figure 4.2: A Blackbox Component; top: with 2 expanded interfaces, bot-
tom: with all interfaces in elided form.

86 CHAPTER 4. THE OMEGA COMPONENT MODEL

guaranteed. Note that we see here a coupling between a Provided and a Re-
quired Interface on the same component. This special dependency expresses
the fact that the same object that provides the services in the Provided In-
terface, depends on the services in the Required Interface. Such an object is
a Port, and this special case is one of the reasons to introduce Ports.

4.2.2 Basic Components

Blackbox views of basic components form the basic building blocks of the
hiearchical composition of components. The structure of a Basic Component
consists of a set of classes and their relations (as defined by the OMEGA
kernel model language), a subset of some of its classes associated with its
Ports, a set of (Provided and Required) Component Interfaces which are
associated with its Ports (same as with Blackbox Components), and, finally,
connections between Provided and Required Component Interfaces. There
are no other components inside a Basic Component. Some of the classes
inside a Basic Component have nothing to do with Ports, some of the classes
are helper classes that help realize Ports, other classes have (part of) their
interface(s), expressed in Component Interfaces, exposed to the outside world
via Ports. That ouside world consists of other components, as discussed in
Sect. 4.2.4.

Figure 4.1 shows the UML meta—model of the representation of the in-
ternal structure of a Basic Component, together with that of the Blackbox
Component we saw earlier. Just like a class definition in OO has a class name,
we define a component model name for a component model. A model for a
Basic Component and a model for a Blackbox Component refer to the same
component model if their component models have the same name. A Black-
box Component model and a Basic Component model with the same name
will have the same Provided Component Interfaces and the same Required
Component Interfaces.

4.2.3 Extensions to the OMEGA UML subset dis-
cussed so far (Fig. 4.1)
Provided Component Interface

A Provided Component Interface is modeled as a specialization of a
UML interface. The Provided Component Interface can be realized by

4.2. THE COMPONENT MODEL 87

a Class via a Port, or by one of the Ports of a Blackbox Component
(thus hiding, encapsulating, classes in a Basic Component).

Required Component Interface

A Required Component Interface is a specialization of a UML interface.
The Required Component Interface can be required by a Class via a
Port, or by one of the Ports of a Blackbox Component.

Port

A Port is a specialization of a both a UML Class and a UML Interface.
A Port can be regarded as a UML Class, whereby the interface of the
Class is known but the name of the Class is unknown. Creating an
instance of a Port means creating an object with a known interface,
but without the need of knowing the class of the object.

One Port can group several Component Interfaces, both Required and
Provided. More than one class inside a Basic Component can be in-
volved realizing a Port. More than one class can require services from
outside the component via a Port. In Basic Components there can be
dependency relations and realization relations from classes to Ports,
as shown in Fig. 4.1 with the required and provided rolenames respec-
tively. It is possible that one or more classes realize a port and one or
more other classes depend on the same port. A Blackbox Component,
and so by inheritance also a Basic Component, can have several Ports.
A designer can give names to Ports so they can be identified when the
same Port is appearing in different diagrams.

Blackbox Component

A Blackbox Component is a model for a component where only its
Ports and the Provided and Required Component Interfaces are visible
from the outside. It is a specialization of a UML Classifier.

Basic Component

A Basic Component is a component consisting of classes and their
relations as defined in the OMEGA kernel model [OME]. Some of the
classes are associated with Ports: they can depend on them or they can
realize them. The Basic Component is a specialization of a Blackbox
Component.

88 CHAPTER 4. THE OMEGA COMPONENT MODEL

A Basic Component inherits Ports with their Provided Component
Interfaces and Required Component Interfaces from a Blackbox Com-
ponent.

We would like to give a few extra remarks about the associations in
Fig. 4.1.

A class can depend on several Ports. Since Ports inherit from UML in-
terfaces we can draw dependency relations from classes to Ports. A class
depending on a Port implies that that Port depends on a Required Com-
ponent Interface. Via a dependency relation from a class to a Port a class
exports information about its implementation in terms of required services.
Our Component Interfaces inherit from UML interfaces so, when drawing a
component diagram, we can use the UML dependency relation from Ports
to Required Component Interfaces outside of the component, or the corre-
sponding lollypop notation. These notations are the same as for the Blackbox
Component. For every Required Component Interface there will be one Port
depending on it. For every Port there can be several classes depending on it.
In the case of Basic Components the same special dependency relation from
Provided Interface to Required Interface on the same component is possible
like mentioned in the case of Blackbox Components.

A class can realize a Port by itself, or it can realize "part” of the Port:
there can be more than one class realizing the same Port. A class can also
be involved in the realization of several Ports. In designing component based
systems this is where the designer can abstract from the underlying class
diagram; future versions of the component design can use a class diagram
that is different from earlier versions, corresponding to a new version of the
implementation of the component. In the diagram we can draw realization
relations from classes to Ports. A class realizing a Port implies that that
Port realizes a Provided Component Interface, drawn with a UML realization
relation from a Port to a Provided Component Interface that is outside the
component, or with the lollypop notation. For every Provided Component
Interface there will be one Port realizing it.

Next we describe some further aspects of the classifiers in our component
model.

The outside of a Basic Component is drawn like a Blackbox Component,
the inside of a Basic Component uses UML 1.4 syntax for class diagrams,
with dependency relations and realization relations from classes to Ports.
Figure 4.3 shows an example Basic Component. It models a Client compo-

4.2. THE COMPONENT MODEL 89

nent that needs services from a Server component via the IServer interface.
The Client offers services to outside components like receivePercept which
is used to send data to a Client. The SWC class inside the Client provides the
clients’” services in this specific application. The XMLRPC class inside the
Client is for making a connection with a Server component via its [Server in-
terface: it provides the protocol used between components and it establishes
proxies when they are needed.

Both classes and components can engage in provided-required relation-
ships, since a class can be a Port. Here we call the interfaces between them
Component Interfaces to make clear we are talking about components and
to ensure the interfaces adhere to the rules we give for Component Interfaces
in this section. There can be classes and components depending on the same
Required Component Interface via the same Port.

A Required Component Interface can not depend on something inside a
Basic Component. That would be a design error since the component can
supply the needed services by itself.

An interface (an ordinary UML interface, not a Component Interface) in
the class diagram inside the Basic Component that depends on something
from outside, should be modeled as a Component Interface. The designer
is free to allow class libraries from outside that can be used inside a Basic
Component, but this would be a strange design: it would raise the question
why the designer did not turn the interface into a Component Interface.
Although it would be a design some would frown upon, we do not want to
go as far as to forbid it completely. There can be practical considerations,
for example it could be difficult to use an existing library in a component
framework setting because there is not enough library source code available.

4.2.4 Component Systems

Now that we have defined Basic Components and Blackbox Components, we
can finally define components that have other components inside: a Compo-
nent System can be viewed as one component but with an internal structure
consisting of Blackbox Components. This recursive definition gives us the
hierarchical structure we need for modeling component based applications.
We use diagrams for Component Systems to show how components are
used together, and to show what components need services from which other
components. In Component System diagrams only components, their Ports,
and their Component Interfaces and their connections are shown, using the

CHAPTER 4. THE OMEGA COMPONENT MODEL

G £
conferenceGUI () Client
addLine (line) Component

qui
Client

______________ receivePercept (percept)| =

conferenceStart ()
sendMessage (1line)

interface
server
startServ () makeProxy ()

SWC XMLRPC

IClient IServer

Figure 4.3: A Basic Component, with a class diagram inside

4.2. THE COMPONENT MODEL 91

notation of Blackbox Components extended with notation to connect Black-
box Components. Such connections are given by dependency relations from
a Required Component Interface to a Provided Component Interface, nec-
essarily crossing a border between two components. There should not be
a dependency relation from a Required Component Interface to a Provided
Component Interface on the same component. This would mean that the Re-
quired Component Interface is depending on services from other components
while the component can provide for these services by itself, so the Required
Component Interface is redundant. A dependency relation of a Provided
Component Interface to a Required Component Interface on another compo-
nent can not readily be given a useful meaning: we consider such a relation
a syntax error.

A Component System is a specialization of a UML Classifier. As described
in the section about Blackbox Components, a future UML version could well
give us a more suitable entity to specialize from. A Component System is also
a collection where its internal Blackbox Components can be seen inside. This
is shown in Fig. 4.1 with the generalization association to UML Classifier and
the composite association from Component System to Blackbox Component.
A Component System also has Ports via the Blackbox Component inside.
This means that some of the Ports of its Blackbox Components are exported
in order to serve as its interaction points. In fact, a Component System also
has a blackbox view: the Component System as a whole can be seen as a
Blackbox Component that has the same name as the Component System
and the same Provided and Required Component Interfaces and the same
Port names, but nothing can be seen inside. Blackbox views of Component
Systems provide levels of abstraction: a Component System can contain
Blackbox Components that are Component Systems themselves.

Figure 4.4 shows an example Component System. It models how the
Client component from Fig. 4.3 is connected to a Server component. The
designer has also decided to turn the Graphical (GUI) User Interface part of
the Client (which was just a class called GUI in 4.3) into a separate compo-
nent, so the GUI of the client can be changed and replaced easily. The GUI
component forms a Component System together with the Client component
that could also be viewed as one “GUIClient” Blackbox component. Also,
all the components in Fig. 4.4 together form a Component System.

Inside a Component System, a Provided Component Interface of one
component can provide for several Required Component Interfaces of other
components, and a Required Component Interface can depend on several

92 CHAPTER 4. THE OMEGA COMPONENT MODEL

5]

Gui
Component |:

k’_{ IGui

|-
Client
Component
(]]

IClient Q @ IServer

] []
| -

Server

Component

Figure 4.4: A Component System

4.3. RUNTIME BEHAVIOUR 93

Provided Component Interfaces.

Figure 4.1 shows the meta—models for Basic Components, for Blackbox
Components, and for Component Systems in one figure. They have been
combined into one figure so the reader is given a good general overview.

What is not specified in the meta—model however, is the following im-
portant condition which ensures encapsulation: The signatures of operations
and signals in a Component Interface should only contain standard classes
and data—types from the implementation language (for example the OMEGA
kernel model language) and classes that are exported as Ports. Note that
thus encapsulation is ensured because we do not allow inheritance relation-
ship across component borders (we only allow dependency relation between
Required and Provided Interfaces).

4.3 Runtime Behaviour

In OMEGA we associate with each class a statechart which describes the
runtime behavior of its instances. Because ultimately an OMEGA component
model can be flattened to its underlying class diagram (this reduction is
formally worked out in an OMEGA deliverable), this association completely
defines the runtime behaviour of a component. It is important to observe
that here we are referring to the runtime behaviour which abstracts from the
actual deployment on a specific execution platform.

The labels on the arrows in these statecharts contain OMEGA action lan-
guage and they are of the form [guard] trigger / action where guard is
a boolean expression, trigger is an event or a method name with its parame-
ters and action is a primitive action in the OMEGA action language. These
primitive actions use standard OO dereferencing with the dot notation and
are of the form a := a0.al, a0.al := a, return := a and other simple
statements; see the OMEGA kernel model document [OME] and [DJPV03]
for a complete enumeration.

In our model the required services of a component are specified by means
of interfaces, as described formally in the meta—model. Acquiring an object
that provides the functionality of a component with interface I, requires the
instantiation of a class whose interface is known but not its definition (which
is given in another component). Therefore, in OMEGA we have extended
the UML action language used in statecharts with this notion of “instan-
tiable interfaces”, that is, in the action language we allow assignments x :=

94 CHAPTER 4. THE OMEGA COMPONENT MODEL

new(I), where I is a (required) interface. This way we can make instances of
classes that are defined in other components, but without the need to know
the name of the class in the other component (which would be impossible in
the case of a future implementation of the other component). There are sev-
eral ways to actually implement this scheme, in Fig. 4.3 it is the SWC class
that makes sure that the correct class is instantiated in a Client component.
This class is simply called Client in the figure, but in a future version it could
be a class called NewClient.

As such we are instantiating a class but we only know the interface (I)
of the class, we do not know the name of the class nor its implementation.
However, in the case of one complete component application it is known
which class implements I so we can simply compile x := new(I) into the
corresponding x := new(C), where class C implements I.

Our component model thus abstracts from the underlying component
framework (for instance CORBA). To provide services of class X to other
components in a component framework, the designer can assume that a class
Y exists that does introduce the services of X to the component framework.
This class Y is a class that realizes a Port in the model. There are several
ways class Y can do this: it can accept an object that is an instantiation of
class X as a parameter to one of its methods and delegate the desired services
to this object; or it can use a “mixin” technique that extends the interface
of class Y with the desired services of class X and instantiate a new object of
type XY; or it can create a new object of class X and delegate desired service
calls to this object; or it can use another mechanism.

To summarize, we do not have an explicit notion of “instances of com-
ponents” but we only have instances of Ports. Of course it is possible to
design software in such a way that objects, referenced by variables in the
source code, are created that act like instances of components. But we do
not enforce creation of component instances: if the designer wants to model
a component as a software abstraction only, it is possible.

4.4 Architectural Models

Architectural diagrams show component interaction configurations. They
are snapshots that can be used to describe the initialization of a component
system, invariant properties of the configuration, and others useful runtime
characteristics. In OMEGA we will use a very restricted subset of OCL for

4.4. ARCHITECTURAL MODELS 95

expressing the semantics of architectural diagrams formally. In architectural
diagrams components interact by means of Ports. These Ports are different
from the Ports in a component model, the emphasis here is on objects with a
specific interface, not classes. If there is a possible confusion then we will call
the Ports in architectural diagrams Runtime Ports, and Ports in component
diagrams Component Ports. In an architectural model the Runtime Ports
can be viewed as named interfaces. Although normal OO interfaces are not
instantiable, in our model, as discussed previously, Component Interfaces are
instantiable via their Component Ports, resulting in Runtime Port objects:
this gives us the possibility to model component interaction like other OO
interactions. In an architectural model, Runtime Ports are instantiated in-
terfaces. In an actual implementation a Runtime Port can be an object that
delegates to several other objects, or it can be a channel-like object with an
address and location; what choice is made exactly is not important for the
design: it is an object that realizes a Component Interface. In our model we
define interaction between Ports as standard OO interaction.

Figure 4.5 shows an example architectural model, together with a com-
ponent model above and an object diagram below. In the component model
can be seen that Component B requires services of Component A. In the archi-
tectural model can be seen that there are, at some point in runtime, exactly
two Ports of Component B connected with Component A and they are using
the same services but from different Ports. The connections are directed from
requiring to providing Port. In the case of two Ports that use services from
each other an undirected connection can be shown by drawing a line with-
out an arrow. The Ports of Component B are instances of PB, the Ports of
Component A are instances of PA. Such a configuration can be specified with
OCL, but the architectural model is also useful: it is easier to draw a picture
like this than to have to learn OCL. The bottom diagram in Fig. 4.5 shows
an object diagram that corresponds with the architectural model above. It
shows the objects that realize the Runtime Ports. This makes it clear that
the components in an architectural model are not software abstractions but
collections of objects.

Figure 4.6 shows the meta—model for architectural models. For the con-
nections between Ports we use UML associations, we are awaiting the next
MOF to decide what the final meta-—model will look like, viz. the Object
Collection entity.

96 CHAPTER 4. THE OMEGA COMPONENT MODEL

—

5] A g]
—O)—0
Component A — _/ L Component B

PA PB

Component Diagram

‘. £

al pbl
Component A P Component B

pa2 pb2

Architectural Diagram

oal D
D obl
0a2 b
ol
L]

Object Diagram

Figure 4.5: The same application modeled with a Component Diagram, an
Architectural Diagram and an Object Diagram

4.4. ARCHITECTURAL MODELS

Object Collection

Blackbox grouped into

Component
* 1

1 | belonging to

* providing services to

Port

*

using
services
from

o oea |

Figure 4.6: The Meta—Model for architectural models

Component
System

97

98 CHAPTER 4. THE OMEGA COMPONENT MODEL

4.4.1 Overview

As mentioned in the Introduction, in the OMEGA project we have chosen
a subset of UML 1.4 so we will be able to use formal techniques. This
subset consists of class diagrams and object diagrams for structural modeling,
and statecharts and OCL for behavioral modeling. We also use Live (LSC)
Sequence Charts [DHO1] in OMEGA but they are not part of UML. The
subject of this paper is about the extension of this OMEGA UML subset
with components. An overview of all the UML diagrams we now have is
available in Table 4.1.

Definition Deployment Behaviour

Component Diagrams Architectural Diagrams Specification:
Statecharts,
OCL

Class Diagrams Object Diagrams Implementation:
Statecharts

Table 4.1: UML Diagrams in the OMEGA project

In our component model we define component diagrams that relate to
architectural diagrams like class diagrams relate to object diagrams. When
designing OO software, both class diagrams and object diagrams are useful;
they serve different purposes: with class diagrams the designer gives a def-
inition view, with object diagrams a runtime view is given. Likewise, both
component diagrams and architectural diagrams are useful.

Summarized, class diagrams and component diagrams are used for mod-
eling definitions; object diagrams and architectural diagrams are used for
modeling configurations.

If a class diagram is complete and if there are constraints added with a
powerful enough constraint language like for example OCL, then all corre-
sponding possible object diagrams can in theory be derived from it. A design

4.5. TRACE SEMANTICS 99

goals of our component model was to offer similar diagrams and possibilities
for modeling components.

To model behaviour in UML statecharts can be used. They are associated
with class diagrams and they give an implementation. On the component
level we can also use statecharts to model behaviour. To be able to model
behaviour on the component level requires a different action language than
that used in statecharts associated with classes: statecharts associated with
components describe the interaction between, and coordination of, different
objects, whereas statecharts associated with classes describe the behaviour
of one object. On the component level we use statecharts together with
OCL to specify behaviour: this is indicated in Table 4.1 in the right—-most
column, with statecharts in the top row for Specification, and statecharts in
the bottom row for Implementation.

Table 4.1 gives a classification of the UML diagrams we use for modeling
components and their relation to the existing class diagrams, object diagrams
and statecharts. Together with the explanations in this paper we hope this
sufficiently answers often heard questions from users like “When to use what
UML diagram?”

4.5 Trace Semantics

In order to provide a semantic basis for the compositional verification of
components, in this section we briefly outline the formal trace semantics of
components which describes the external observable behavior of a component
as determined by its ports. OMEGA deliverable D1.1.2 describes a formal op-
erational semantics of UML class-diagrams where the behavior of the object
instances of each class is described by a statechart ([Har87]). This seman-
tics abstracts from the actual deployment unto a specific execution platform.
It is formalized in terms of a translation relation on object-diagrams which
specify for each existing object the values of its attributes and the values of
some system variables which encode some relevant control information (such
as the current state in the associated statechart).

On the basis of this operational semantics for UML class diagrams we can
define inductively the trace semantics of a component. For basic components,
the internal structure of which is given by an UML class diagram, we extend
the above transition relation to a labelled transition relation

A
o> 0o,

100 CHAPTER 4. THE OMEGA COMPONENT MODEL

where o and ¢’ denote object-diagrams which represent the internal object-
structure of the component before and after the transition and A is a label
indicating an internal computation step or an external event. An internal
computation step is indicated by 7. An external event is of the form

o.m(ol,pl, ce apn)7

where

e o denotes the callee of the event,
e 0 denotes the caller,
® p1,...,p, denote the actual parameters, and finally,

e m denotes the kind of message.

Note that adding the caller as an explicit parameter, together with the
encapsulation condition, implies that all interaction between components is
via their Port instances. That is, we do not allow an internal object of a
component (i.e., objects that are not instances of a Port class) to call the
provided services of a Port instance of another component.

For technical convenience only, we restrict in the current presentation to
messages of the following kind:

e op, which indicates the invocation of an operation call,

e return.op which indicates the return of an operation call, i.e.,
o.return.op(o’,v) denotes the return of a call from o’ to o with return
value v.

Object-instances are denoted by pairs of the form (id, I'), where id denotes
the identity of the object and I denotes its interface. An object is external (to
a given component) if its implementation is not known, that is, if its interface
is a Required Component Interface. For an internal object we identify its
interface with its class using existing UML. In an external event either the
caller of callee denotes an external object.

The above transition relation generates the traces of external events of a
basic component. The global behavior of a system of components
Compy, ..., Comp, we can now describe compositionally in terms of the

4.6. MODELING WITH COMPONENTS 101

traces of external events of its components by means of a projection opera-
tor: Given a global trace of events ¢, a component Comp, the trace Comp(t)
denotes the subtrace of ¢ consising of external events involving port-instances
of Comp. More specifically, we have also to rename the identity of an exter-
nal object (id,C) to (id, I), where I is the Required Component Interface of
Comp provided by port-class C' (defined by another component). It is impor-
tant to observe here that at the level of a component system the (high-level)
dependency-realization relations between Component Interfaces provide in-
formation about which are possible events. Namely, an event like 0.m(0’, ...)
is possible if 0 = (id, C') and o’ = (id’, C") implies that there exists a connec-
tion between the ports C' and C’.

Definition 1 Given a system of components C = {Comp,, ..., Comp,} we
define

Trace(C) = {t | Comp,(t) € Trace(Comp,),i =1,...,n}.

Note that Trace(C) specifies the global behavior of the component system
C. We can define the externally observable behavior of the blackbox view of
C in terms of a hiding operator which removes all internal events.

The above trace semantics forms the basis of a corresponding trace log-
ics for specifying invariant properties of the traces of components (see also
OMEGA deliverable D1.2.1). We are working on a tool based on the seman-
tic tableaux method which allows to check the compatibility of the trace-
invariants of the components in a system in terms of a logical formulation of
the above compositional definition.

4.6 Modeling with Components

In this section we discuss more practical aspects of modelling applications
with components in OMEGA. In the OMEGA User Guide the concrete syn-
tax for component models can be found, here we suffice to say that in the
absence of a CASE tool that supports UML 2.0 components, the correspon-
dence between component diagrams and class diagrams gives the possibility
to use class diagrams to model components. It will give the user a little
more administration to do to remember which diagrams are for components
and which are for classes. Likewise, object diagrams can be used to model
architectural diagrams.

102 CHAPTER 4. THE OMEGA COMPONENT MODEL

The notion of an interface as specifying a set of provided and required
operations (or signals), respectively, supports a development process of
component-based software systems in UML that distinguishes two main lev-
els of abstraction, promoting a separation of concerns between the external
communication of data and the internal processing of data. At the higher
level of abstraction, a system is described in terms of the interactions among
its components, abstracting from their actual internal implementation. This
level provides the black-box view of a component. The lower level concerns
the modeling of the data-processing aspects within each component. The
resulting hierarchy object-class-component provides a natural and powerful
scheme for distribution and abstraction, hiding and structuring the complex-
ity of large distributed object-oriented software systems. More specifically,
the dynamic creation of any number of port-instances allows a component
to interact in a really distributed manner. This is to be contrasted with the
run-time notion of a component as a group of objects associated with an in-
stance of an active class which share a single thread of control and an event
queue of asynchronous signals.

The additional structuring and abstraction mechanism provided by the
notion of component allows a considerable simplification of an underlying
kernel model language like in OMEGA, which basically consists of removing
the distinction between active and passive classes. More specifically, every
instance of any class has its own single thread of control and its own event
queue. Acceptance of signals and operation calls by an object are defined
only in terms of the local state of the object itself. Objects are grouped
together only by means of the static structuring mechanism of components.

This simplification of the OMEGA kernel model language (and its seman-
tics) allows both for more transparant models and more efficient verification
techniques. The additional complexity provided by components then can be
dealt with by means of the application of compositional verification tech-
niques.

4.6.1 Examples of software developed with the com-
ponent model

We have developed several applications with our component model to see
whether it is useful practice. New versions of the component model reflected
the experiences with the designs. Most figures in this paper are based on an

4.7. CONCLUSION AND RELATED WORK 103

example called ” Conference”. With this system users can have a distributed
conference where they communicate with each other by typing messages,
somewhat like IRC chat on the internet. The system consist of a server
application and a client application. The central server of a conference can be
setup by any of the users and is accessible at a HT'TP URI via XMLRPC. This
means that the client application that is used to connect to the server can be
written in any programming language. We have example clients written in
Python and in Java. As another example the OMEGA partner FTRD has
modeled their OMEGA application with our component model.

Using the component model turned out to be a natural and intuitive
way of designing software. The software engineer can concentrate on high
level system designs first and design lower levels later. Of course this could
also be done with a class hierarchy but there the designer has for example
no ”instantiable interfaces” (our component ports), forcing the designer to
make decisions about class names and class hierarchies and the like much
earlier in the design phase.

The example applications are available at our OMEGA component model
website [Jacc].

4.7 Conclusion and related work

In this paper we have presented a model for components to address architec-
ture and component based development. The main idea is that a component
is an abstraction, like a class or a module, A component is a grouping of
classes, some internal and others, the so—called Ports, denoting interaction
points with the component environment. Only Ports are visible to the envi-
ronment. Each Port is attached to a set of provided and required interfaces.

Components are used in two type of diagrams: component diagrams and
architectural diagrams. Component diagrams are for describing the structural
dependencies among the provided and required interfaces of components in
a system, while architectural diagrams are for the description of the run-
time architecture of the system. In architectural diagrams Port instances
are linked together by means of UML associations which indicate that the
connected Port instances know each other.

Considering component as an abstraction of its internal parts, in contrast
to the concept of component used for deployment in UML 1.4 [SP99], implies
that components are not units of instantiation and do not need to have a

104 CHAPTER 4. THE OMEGA COMPONENT MODEL

unique run-time identity. Moreover, having Ports as instantiable interfaces,
in comparison with the recent component model proposed by the U2 partners
for UML 2.0 [U20], has the advantage of permitting the existence at run time
of multiple Ports with the same set of interfaces per component, each Port
attached to the necessary number of runtime links. These runtime links are
modeled as connectors in UML 2.0.

Our model offers a coherent view for the design of architecture and
component-based systems. Components serve as a naming mechanisms
for abstracting from the internal parts, interfaces as declaration mecha-
nisms of services (either provided or required) and Ports together with the
dependency-realization relations as abstraction mechanisms of object inter-
actions.

Architecture description languages (ADLs) define also high-level concepts
for the design and modelling of architectures of systems, such as compo-
nents, Ports, and configurations. A large number of ADLs have been pro-
posed, some of them with a sound formal foundation. We only mention here
Wright [AG97], Rapide [LKAT95] and ACME [GMWO97]. Closer to UML
are the architectural descriptions provided by SDL [BH89], ROOM [SGW94]
and UML-RT [Sel98] (the latter is in fact a UML profile interpreting ROOM
concepts in terms of UML stereotypes). In [GCK02] and [MRRRO02], several
strategies for modelling components and other architectural concepts within
UML are investigated, with as conclusion that these concepts are hard to
describe in UML as it is.

Many models for components have been proposed in the last years, some
informal and remaining within the realm of the existing UML (see for example
[CDO00]), and others founded on a logical and mathematical basis (e.g. Broy’s
component model based on streams of messages [BS01]. Similar to Broy’s
component model, the semantics of our model is also based on sequences
of messages (like those used for the semantics of CSP [Hoa85]). However
OMEGA components have dynamic aspects (e.g. Port instances) not fully
covered by Broy’s model. Moreover our component model is a conservative
extension of an object-oriented model and therefore it requires the addition
of only a couple of extra concepts to the standard UML 1.4. Tt is interesting
to note that these additional concepts are also required by the component
model proposed for UML 2.0 by the U2 partners [U20]. As described above,
however, the semantics of these concepts is different between the two models.

Other interesting approaches are the one taken by Catalysis [DW98] and
the precise UML group [pUM]. In OMEGA we are currently investigating

4.7. CONCLUSION AND RELATED WORK 105

the relationships between these approaches and our model and possible ways
of integration.

Finally, we have shown how to exploit in a formal mathematical man-
ner the hierarchical structure of components in compositional verification.
Currently, we are working on the development of a tool for checking mutual
consistency of the behavioral specifications of a set of components.

Acknowledgement The author is grateful for the input and helpful dis-
cussions with members of OMEGA, especially Frank de Boer and Marcello
Bonsangue, in the design and evaluation of this component model.

106 CHAPTER 4. THE OMEGA COMPONENT MODEL

