Universiteit

4 Leiden
The Netherlands

Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257

Version: Corrected Publisher’s Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257

Chapter 3

The RML Tutorial

Author: Joost Jacob

When reading this tutorial you could go directly to Sect. 3.4 Installing
and running now if you are in a hurry and just want to learn RML quickly.
There are examples in Sect. 3.5 Examples that will introduce everything
incrementally and step by step. You can treat the examples as exercises
and try to solve them before looking at the solutions. When trying to solve
such exercises you can use Table 2.1 for an overview of all the RML con-
structs that are defined in the current version (September 23, 2008) of RML.
Sections 3.1-3.3 are meant for readers who prefer a little more introduction
and explanations.

RML (Rule Markup Language) was designed for ease of use. You do not
have to be an experienced programmer to use RML. My experiences with
the existing transformation methods for XML were such that I felt it was a
good idea to come up with something much more simple and elegant.

It is assumed that the reader does have at least a superficial knowledge
of XML, like what are XML element names and attributes and for example
the fact that well-formed XML only has one root element. With this tuto-
rial the reader can learn how to transform XML with RML, according to
transformation rules that are defined using the input XML itself.

41



42 CHAPTER 3. THE RML TUTORIAL

Other approaches for XML transformations do not make much use of the
problem domain XML for defining transformation rules. They define the
transformations in (complex!) special purpose XML [Cla] or they are more
low level, defined in various programming languages.

It is not my goal to replace existing technology for XML transformations,
but to add a new, easy to use and interoperable technology. If you have a
transformation that is easily done with XSLT for instance, then by all means
use XSLT. But sometimes you will need transformations that are hard to
program with XSLT, for example removing duplicate child elements, and
then RML provides an easy solution for your transformation problem.

Your ideas for improving this tutorial are welcome. I have been trying
to make this tutorial easy to understand and readable, but English is not
my native language so there are probably lots of grammar and style errors.
Please do send your suggestions by email to Joost.Jacob@gmail. com.

3.1 The XML vocabulary for the examples

The example XML vocabulary in this tutorial is an XML vocabulary for
modeling business processes. Such a vocabulary can be defined with a DTD
or with an XML Schema but to save space here Fig. 3.1 gives just an informal
definition.

element attributes explanation

model the root element

process id, name

role id, name

collaboration id, name

event id, name

object id, name

triggering id, name must contain a from and to element
realisation id, name must contain a from and to element
use id, name must contain a from and to element
from href

to href

Figure 3.1: The XML vocabulary for the examples



3.2. HOW RML WORKS 43

The exact meaning of the elements and attributes is not important here,
this is left to the imagination of the reader. Also there is no required hierarchy
or ordering of elements. Later on in this tutorial, if appropriate, ordering
requirements can be assumed and explained for some example.

3.2 How RML works

Details will be explained in Sect. 3.5 but here is already a short description
of how RML works.

The simplest RML tool is called applyrule. It is a Python[vR95] library
that can also be used as as command-line program, and it takes as input some
problem domain XML and an RML-rule. Both the XML and the RML-rule
will normally be provided in files. The applyrule program then transforms
the problem XML according to the rule and outputs the result.

3.2.1 Rules

An empty rule looks like shown in Figure 3.2.

<div class="rule">
<div class="antecedent">
<!-- Insert matching pattern here -->
</div>

<div class="consequence">
<!-- Insert output pattern here -->
</div>
</div>

Figure 3.2: An empty RML-rule

As can be seen in Fig. 3.2 an empty rule consists of div elements like
in XHTML. A rule consists of an antecedent (input) and a consequence
(output), marked with class attributes of div elements. The XML comments
in Fig. 3.2 show what must be done to change this empty rule template to
rules that actually do something. How this is done is explained later. The



44 CHAPTER 3. THE RML TUTORIAL

empty rule defines an emptry transformation: the output is the same as the
input.

3.2.2 Literal matching

Any XML in the antecedent of a rule that is pure problem domain XML is
matched literally. An exception is how the attributes are matched: if the
(attributes, value) pairs of an element in the antecedent are a subset of the
pairs of an element in the input, and if the elements have the same name,
then it is considered a match. This means that input elements can have more
attributes that are not involved in the matching process.

3.2.3 Wildcard matching

A core idea of RML is to define XML notation for an XML version of con-
structs like the * and ? and + and others in expressions for text matching
with wildcards, as illustrated in Fig. 3.3.

d:\tutorial>dir
Directory of d:\tutorial
11/21/2003 05:14 PM <DIR>

11/21/2003 05:14 PM <DIR> ..
11/21/2003 05:11 PM 19 g.bat

11/21/2003 05:07 PM 74 make.bat
11/21/2003 05:07 PM 7,764 tutorial.dvi
11/21/2003 05:07 PM 6,962 tutorial.tex

d:\tutorial>dir tutorial.x*
Directory of d:\tutorial

11/21/2003 05:07 PM 7,764 tutorial.dvi
11/21/2003 05:07 PM 6,962 tutorial.tex

Figure 3.3: The * wildcard in action in the Windows XP shell



3.2. HOW RML WORKS 45

These wildcard constructs can then be used for matching (parts of)
XML. The input that matches a wildcard can then be remembered in RML-
variables. The constructs are called XML wildcard expressions.

RML uses XML wildcard expressions to bind parts of the input XML
into RML-variables. There are XML wildcard elements and XML wildcard
attributes. The XML wildcards elements are special RML elements that can
be mixed with the problem domain XML in the antecedent of a rule. The
XML wildcard attributes are used for binding attribute values into RML-
variables. Exactly how it is done will be made clear later with examples.
All the RML constructs are shown in Table 2.1 in the Appendix. As can
be seen it all fits in one table, and the RML constructs are designed to be
easy to remember. Future versions of RML may add extra constructs, but
the ones shown in Table 2.1 are all that were needed so far for the XML
transformations I encountered in practice.

3.2.4 Search and replace

The applyrule program tries to find the pattern in the antecedent of a rule
in the input XML. If it finds a piece of input XML that matches the pattern,
then it replaces that piece of input by the consequence of the rule.

3.2.5 The dorules tool

The dorules program takes as input some problem XML and a list of RML
rules. The RML rules are passed as filenames separated by + characters. For
instance:

dorules -i myinput.xml -r rulel.xml+rule2.xml

It then applies the first rule of the list to the input, just like the applyrule
program, and if there is a match (the output is different from the input)
then the program restarts, taking the generated output and the list of rules as
input. If a rule does not match the input then the next rule in the list is tried.
If no rule in the list matches the input then the program stops. This program
turned out to be useful in practice, alleviating the writing of commandline
scripts. Such commandline scripts can perform complex transformations by
executing applyrule and dorules repeatedly with varying rules.



46 CHAPTER 3. THE RML TUTORIAL

3.2.6 The dorecipe tool

To avoid writing commandline scripts at all, the dorecipe program is avail-
able. With the dorecipe program the user can define a sequence of ap-
plyrule and dorules executions in XML. The XML used is Recipe RML
(RRML). An example RRML recipe is shown in Fig. 3.4.

<rml-recipe>
<apply>
<rule>
<variable name="ID" value="commandline-ID" />
<directory name="rules" />
<filename name="effectl.xml" />
</rule>
</apply>
<iterate>
<rule>
<directory name="rules" />
<filename name="effect3.xml" />
</rule>
<rule>
<directory name="rules" />
<filename name="effect2.xml" />
</rule>
</iterate>
</rml-recipe>

Figure 3.4: An RRML recipe

An RRML recipe has a root element called rml-recipe. This root ele-
ment can contain apply elements and iterate elements. The apply element
corresponds to the execution of the applyrule program and the iterate ele-
ment corresponds to the dorules program. An apply element must constain
exactly 1 rule element, an iterate element must contain 1 or more rule
elements. Finally, a rule element must contain a filename element and it
can contain a directory element and 0 or more variable elements. Later
in this tutorial there will be examples showing the usage of recipes.



3.3. FUTURE VERSIONS OF RML 47

3.2.7 XML parsing details

RML was designed to transform XML elements and their text content. In
the current version of RML only XML elements and their text contents are
preserved. This means that for instance XML comments or processing in-
structions are removed. The reason for this is to make the RML tools as
portable as possible, independent of the capabilities of the available XML
parsers on a platform. There are many XML tools available outside RML
to extract and handle things like processing instructions so I suggest you
use those if you need to use XML constructs that are not XML elements.
However, contact the author if you have suggestions.

In XML elements produced by the RML tools, the order of attributes in
the set of attributes may be changed with respect to the input, this depends
on the XML parser on your system that is used by the RML tools. This
should not be a problem: relying on attribute order in XML is generally
considered bad XML usage.

The RML tools look for the pyRXP module and use that if available. The
pyRXP module uses the very fast RXP parser, that is an example of a parser
that does not preserve attribute order. If your system is missing the pyRXP
parser then the old xmllib Python parser is used, this one is available since
Python version 1.5.2 from 1999. Support for more parsers may be added in
the future.

3.3 Future versions of RML

Some ideas for future versions of RML that would be simple to implement
but were not necessary in the XML languages in the projects it was used for
are listed here.

e String concatenation.

Example: <newprefix+rml-X /> in the consequence. If X is
bound (in the antecedent) to "MyName” then this will produce a
<newprefixMyName /> element.

o Arithmetic

Example: <... ...= 10+rml-X /> in the consequence. If X is bound
to a string representing a number, then the sum of 10 and this number
becomes the attribute value.



48

CHAPTER 3. THE RML TUTORIAL

e XPath support.

Example: <rml-if xpath="model/*/process" /> will let a match
only succeed if the previous element is a processs element with a
model ancestor.



3.4. INSTALLING AND RUNNING 49

3.4 Installing and running

Unzip the supplied zipfile, this will create a directory called rml, containing
several other subdirectories. The RML tools, applyrule and dorules and
dorecipe, are in the rml directory. It is assumed the reader does know
how to run commandline programs and how to go to directories on his or
her operating system. If you have a default Python [vR95] installation on a
Windows computer then you can call Python files as executable programs,
because the .py filename extension will be marked as executable. To get
Python, go to http://www.python.org and download the executable installer.
In the example commands you can then use
C:\mystuff\rml\applyrule.py -i myinput.xml -r myrule.xml

from any other directory, assuming you did install RML in C: \mystuff. With
linux or unix systems you usually have to prepend python to commands,
for instance

$ python applyrule.py -i myinput.xml -r myrule.xml

If one of the tool programs is run without arguments then a short usage
help is output.

The tutorial examples are in subdirectory examples below tutorial be-
low rml. If you go to the examples directory you can run the applyrule pro-
gram on file 7input.xml” there using the empty rule in file "rule.empty.xml”
by issuing the
..\..\applyrule.py -i input.xml -r rule.empty.xml
command. This will output the contents of the file ”input.xml”, since noth-
ing was matched. The output is pretty printed, with more indentation for
elements deeper down the tree hierarchy, and with attributes indented from
the element name and below each other. Figure 3.5 shows an input and the
output from applying the empty rule.



20 CHAPTER 3. THE RML TUTORIAL

Input:

<model xmlns="Concepts.ArchiMate.Generic"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="Concepts Generic.xsd">

<event id="008" name="request for insurance"/>
<process id="009" name="investigate"/>

<triggering id="015" name="triggers"><from href="008"/>
<to href="009"/></triggering>
</model>

Output:

<model
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="Concepts.ArchiMate.Generic"
xsi:schemalocation="Concepts Generic.xsd" >

<event
name="request for insurance"
id="008" />
<process
name="investigate"
id="009" />
<triggering
name="triggers"
id="015" >
<from
href="008" />
<to

href="009" />
</triggering>

</model>

Figure 3.5: Input and output when using the empty rule



3.5. EXAMPLES o1

3.5 Examples

3.5.1 Deleting an element
Deleting an element using a literal match

Example 001 Suppose you want to transform

<model>
<event name="request for insurance" id="008" />
<process name="investigate" id="009" />
<process name="formalize request" id="010" />
</model>

availabe in file input.001.xml

to

<model>
<event name="request for insurance" id="008" />
<process name="formalize request" id="010" />
</model>

, removing the process element with name investigate. This can be done

with the RML rule

<div class="rule">
<div class="antecedent">
<process name="investigate" id="009" />
</div>
<div class="consequence" />
</div>

rule.001.xml

If you have the input in file input.001.xml and the rule in file
rule.001.xml then you can do this transformation on the commandline with
the command
applyrule --input input.001.xml --rule rule.001.xml

The files for the examples, in this case input.001.xml and
rule.001.xml, are in your examples directory.



52 CHAPTER 3. THE RML TUTORIAL

How does RML apply this rule to the input? What happens is that
the applyrule program looks in the antecedent of the rule and finds the
process element there. This is a literal element, there are no special RML
features in the element. The program then loads the input in its memory
and searches the input for such an element. In our case it finds such an
element and then replaces it by the contents of the consequence of the rule
(in this case nothing). The program then outputs the modified input. If the
program would not have found a matching element then the output would
be the same as the input, but “pretty-printed” (see Fig. 3.5).

Output is printed to screen, there are no special features to produce files.
The normal I/O redirection of the operating system can be used to produce
files, for instance
applyrule --input input.xml --rule rule.xml > myoutput.xml

Deleting an element with a specific attribute

Example 002 Now suppose you want to remove a process element from
input.001.xml and you do know it has a name="investigate" and an id
attribute but you don’t know the value of the id attribute. This RML rule
does what you want:

<div class="rule">
<div class="antecedent">
<process name="investigate" id="rml-X" />
</div>
<div class="consequence" />
</div>

rule.002.xml

This is an RML rule with a special RML feature in it: the "rml-X"
attribute value of the id attribute. In RML, if an attribute value starts with
rml- then it is considered an RML variable. The name of the variable is
what comes after the rm1-. If you use this rule, what happens is that the
applyrule program does the same thing as in example 001, but instead of
looking for an id="009" it now only looks for an id attribute and it puts
the value of the attribute it finds into RML variable X. This variable X is
not used anywhere else in the rule so for the rest of applyrule’s program
execution it is just ignored.



3.5. EXAMPLES 23

But what if there are 2 process elements with name="investigate" and
an id attribute? Then the first one in the input XML will be removed, the
first being the first one encountered when reading the XML input file from
top to bottom.

Example 002 can reuse the file input.001.xml so there is no need for a
input.002.xml file, but there is a rule.002.xml in your examples directory.

Deleting an element with a specific attribute value

Example 003 The following rule removes a process element if it has an
id attribute with value 009, ignoring all other attributes and values.

<div class="rule">
<div class="antecedent">
<process id="009" />
</div>
<div class="consequence" />
</div>

rule.003.xml

This rule works because RML does subset matching: if the element name
and all the attributes of a pattern element match, then it is considered a
match even if the matching input element has more attributes.

If <process 1d="009" /> is replaced by <process id="rml-X" /> then
even the attribute value does not matter: the first process element with an
id attribute is removed.

3.5.2 Changing an element

So far we did see only rules that delete elements. The emphasis was on how
to match input elements, how to select elements that are to be deleted. In
this Section we will see how element names and attributes can be changed
into something else. This will also explain more about RML-variables.

Changing an element name

Example 004 Suppose you want to change the name of the
<process name="investigate" id="009" /> element to MyProcess. The
rule in file rule.004.xml does just that.



o4 CHAPTER 3. THE RML TUTORIAL

<div class="rule">
<div class="antecedent">
<process name="investigate" id="009" />
</div>
<div class="consequence">
<MyProcess name="investigate" id="009" />
</div>
</div>

rule.004.xml

But this rule only works for a process with attributes
name="investigate" and id="009".

Changing an element name and copying all attributes

Example 005 What if you just want to change the element name like in
Example 004 and copy all the other attributes. This is useful for instance if
you don’t know all the attributes. Then you need the special RML attribute
rml-others. It puts all attributes that do not appear elsewhere in the ele-
ment into an RML variable. An RML variable is denoted by a leading rml-.
Rule rule.005.xml shows the solution.

<div class="rule">
<div class="antecedent">
<process rml-others="rml-X" />
</div>
<div class="consequence">
<MyProcess rml-others="rml-X" />
</div>
</div>

rule.005.xml

Changing all process element names: Iterating a rule

Example 006 But rule.005.xml only changes 1 element. If you want
to change all process elements to MyProcess elements then you could just
repeatedly use applyrule until there are no more process elements left. But
you can also use the dorules program here. The dorules program has a



3.5. EXAMPLES 25

--rules parameter instead of a —-rule parameter, it takes a set of rules as
the value of that parameter, where rules are separated by a + character. In
this example there is only one rule. Run

dorules -i input.002.xml -r rule.005.xml for the desired effect.

Changing attribute values

Example 007 Example 006 did bind a set of attributes to an RML variable.
We can also bind an attribute value to an RML variable. We did that already
in Example 002, but here we will also use the value of the attribute in the
output.

Rule rule.007.xml shows how to search for a process
with name="investigate" and to change it to a process with
name="SomethingElse". The id attribute with its value is copied to
the output. This works even when you don’t know the value of the id
attribute, the RML variable with name A is used for that.

<div class="rule">
<div class="antecedent">
<process name="investigate" id="rml-A" />
</div>
<div class="consequence">
<process name="SomethingElse" id="rml-A" />
</div>
</div>

rule.007.xml

3.5.3 RMUL variables for elements

Section 3.5.2 introduced RML variables. This Section will say more about
RML variables. The antecedent of an RML rule contains XML from the
problem domain XML vocabulary, mixed with other RML constructs. To-
gether they form a matching pattern. When the rule is applied, this matching
pattern is matched against the XML input. When a match occurs, the RML
variables in the antecedent are filled with values. The type of these values
can be:

e a string (element name, or attribute value),



56 CHAPTER 3. THE RML TUTORIAL
e a set of attributes and their values,
e one XML element,

e a list of XML elements from the problem domain.

The last two are introduced next.

RML variables for lists of elements and their children

Example 008 Duplicate all childs of a model element.

<div class="rule">
<div class="antecedent" >

<model>
<rml-list name="A" />
</model>
</div>
<div class="consequence">
<model>

<rml-use name="A" />
<rml-use name="A" />
</model>
</div>
</div>

rule.008.xml

The rml1-1list RML element stores a list of elements at that position in
the pattern into an RML variable. The RML variable can be output in the
consequence of a rule with the rml-use RML element. All children elements
of elements in the list will also be copied.

RML variables for complete elements and their children

Example 009 Duplicate the first child of a model element.



3.5. EXAMPLES 57

<div class="rule">
<div class="antecedent" >
<model>
<rml-tree name="A" />
<rml-list name="B" />
</model>
</div>
<div class="consequence">
<model>
<rml-use name="A" />
<rml-use name="A" />
<rml-use name="B" />
</model>
</div>
</div>

rule.009.xml

The rml-tree element matches only 1 element (and all its possible chil-
dren), the rml1-1ist element after it in the antecedent of the rule matches
the rest of the elements in that list.

Defining RML variables for elements or lists of element with
rml-bind

New in RML 1.6.

You can bind RML variables for elements (or for lists of elements) in the
matching process, but you can also define them “manually” with rml-bind:



o8 CHAPTER 3. THE RML TUTORIAL

<div class="rule">
<div class="antecedent" >
<model>
<rml-bind name="A">
<MyNewElement />
</rml-bind>
<rml-list name="B" />
</model>
</div>
<div class="consequence">
<model>
<rml-use name="A" />
</model>
</div>
</div>

rule.009a.xml

This rule replaces all children of model with the MyNewElement ele-
ment. Here <MyNewElement/> is bound to RML variable A. Instead of only
<MyNewElement/> you can also put a list of elements there, and you can
use RML variables to define the elements (for example RML variables for
element names and attribute values). The rule.009a.xml is equivalent with
a rule that has no rml-bind element and just has <MyNewElement/> in the
consequent of the rule in place of the rml-use element there. So why bother
with rm1-bind? In Section 3.5.5 in example 011a we will see how manually
binding with rm1-bind can be useful.

3.5.4 RML variables for text content

The <rml-text name="SomeName" /> construct is used to bind XML text-
content. It is used in the same way as the rml-tree element, but it will only
match if there is XML text-content to be found in the matching position of
the input. So you can not match an element and put it in the SomeName
variable, if you want that, then you have to use rml-tree. You can use
the SomeName RML variable just like any other RML variable; use it like
rml-SomeName for an element name in the output or for an attribute name
or attribute value, or use it like <rml-use name="SomeName" /> for text-
content of an XML element.



3.5. EXAMPLES
3.5.5 Adding constraints with rml-if

Example 010 Transform

<model>
<collaboration id="004" name="Negotiation">
<role id="001" name="Intermediary"/>
<role id="002" name="Customer"/>
</collaboration>
<process id="009" name="investigate"/>
<role id="002" name="Customer"/>
<process id="010" name="formalize request" />
</model>

input.010.xml

into

<model>
<collaboration id="004" name="Negotiation">
<role id="001" name="Intermediary"/>
<role id="002" name="Customer"/>
</collaboration>
<process id="009" name="investigate"/>
<role id="002" name="Customer"/>
<process id="010" name="formalize request" />
<role id="001" name="Intermediary"/>
</model>

by executing this rule:

29



60 CHAPTER 3. THE RML TUTORIAL

<div class="rule">
<div class="antecedent" >
<model>
<collaboration rml-others="CollAttrs">
<rml-tree name="A" />
<rml-tree name="B" />
</collaboration>
<rml-list name="L1" />
<rml-if child="B" />
<rml-list name="L2" />
</model>
</div>
<div class="consequence">
<model>
<collaboration rml-others="CollAttrs">
<rml-use name="A" />
<rml-use name="B" />
</collaboration>
<rml-use name="L1" />
<rml-use name="L2" />
<rml-use name="A" />
</model>
</div>
</div>

rule.010.xml

In the example the Intermediary is added as a child of model. The
rule looks for a model element with a collaboration child that in turn has
exactly 2 children elements, where the second child elements is also a child
of the model element. If that is the case, the rule adds the first child to the
children of model.

The rml-if elements are elements that constrain whether a match suc-
ceeds or not. The rml-if child="SomeVar" element only succeeds if the
element bound to SomeVar appears somewhere in the current list of ele-
ments. SomeVar has to be bound earlier in the rule with an rml-tree
name="SomeVar" element. There is also a rml-if nochild=X /> element
that succeeds only if X does not appear in the current list. These 2 constraint
adding elements are more complex than I would like, but I have found good



3.5. EXAMPLES 61
usage for them in practice.

Example 011 If you repeat rule.010.xml, using the output as input,
then you add Intermediary elements every time. To prevent that, rewrite
the rule as:

<div class="rule">
<div class="antecedent" >
<model>
<collaboration rml-others="CollAttrs">
<rml-tree name="A" />
<rml-tree name="B" />
</collaboration>
<rml-list name="L1" />
<rml-if child="B" />
<rml-if nochild="A" />
<rml-list name="L2" />
</model>
</div>
<div class="consequence">
<model>
<collaboration rml-others="CollAttrs">
<rml-use name="A" />
<rml-use name="B" />
</collaboration>
<rml-use name="L1" />
<rml-use name="L2" />
<rml-use name="A" />
</model>
</div>
</div>

rule.011.xml

The only difference is the line with <rml1-if nochild="A" /> in the an-
tecedent of the rule. If T execute ..\..\dorules.py -i input.010.xml -r
rule.010.xml on my computer, then the program hangs until the system
runs out of memory: It tries to add an infinite number of Intermediary
elements and I have to use the Break key to stop it. But if I use dorules



62 CHAPTER 3. THE RML TUTORIAL

with rule.011.xml then it stops with the desired effect. It stops because
the second time it tries to apply the rule, the match fails because nochild
fails because there is an Intermediary. The dorules program stops when
it can not change the input anymore with any of its rules.

Example 011a In example 011 we were able to stop iteration by simple
adding a <rml-if nochild="A"> element. The value for the A variable was
found earlier in the rule. But sometimes we can not do this, especially when
the value that we want to bind to the variable is not present in the input.
An example is when we want to create a completely new element and bind
it to an RML variable such that we we can use the RML variable in rm1-if
constructs
Suppose we want to transform input.01la.xml:

<model>
<collaboration id="004" name="Negotiation">
<role id="001" name="Intermediary"/>
<role id="002" name="Customer"/>
</collaboration>
</model>

input.0lla.xml
into output.0lla.xml:

<model>
<collaboration id="004" name="Negotiation'">
<role id="001" name="Intermediary"/>
<role id="002" name="Customer"/>
</collaboration>
<Intermediary id="001"/>
</model>

output.0lla.xml

creating a new element with name Intermediary. Then we can use
rule.011a.xml:



3.5. EXAMPLES

<div class="rule">
<div class="antecedent" >
<model>
<collaboration rml-others="CollAttrs">
<rml-list name="PreRoles"/>
<role id="rml-idA" name="rml-A" />
<rml-list name="PostRoles"/>

</collaboration>
<rml-list name="Tail"/>
</model>
</div>
<div class="consequence">
<model>
<collaboration rml-others="CollAttrs">
<rml-use name="PreRoles"/>
<role id="rml-idA" name="rml-A" />
<rml-use name="PostRoles"/>
</collaboration>
<rml-use name="Tail"/>
<rml-A id="rml-idA" />
</model>
</div>
</div>

rule.011la.xml

63

But when we apply rule.011a.xml to the result (in output.01la.xml) again,
it produces another Intermediary element. We want to stop that, and instead

add a Customer element, like in output.011b.xml:

<model>
<collaboration id="004" name="Negotiation">
<role id="001" name="Intermediary"/>
<role id="002" name="Customer"/>
</collaboration>
<Intermediary id="001"/>
<Customer id="002"/>
</model>

output.011b.xml



64 CHAPTER 3. THE RML TUTORIAL

To achieve this, use rule.011b.xml:

<div class="rule">
<div class="antecedent" >
<model>
<collaboration rml-others="CollAttrs">
<rml-list name="PreRoles"/>
<role id="rml-idA" name="rml-A" />
<rml-list name="PostRoles"/>
</collaboration>
<rml-bind name="New">
<rml-A id="rml-idA" />
</rml-bind>
<rml-if nochild="New"/>
<rml-list name="Tail"/>
</model>
</div>
<div class="consequence">
<model>
<collaboration rml-others="CollAttrs">
<rml-use name="PreRoles"/>
<role id="rml-idA" name="rml-A" />
<rml-use name="PostRoles"/>
</collaboration>
<rml-use name="Tail"/>
<rml-A id="rml-idA" />
</model>
</div>
</div>

rule.011b.xml

When we apply rule.011b.xml iteratively until the output is stable (with
the dorules tool: ”dorules.py -i input.011la.xml -r rule.011b.xml”) we get the
desired output.011b.xml. The rule works by binding the desired new element
to an RML variable with the name New, and using this New variable in the
<rml-if nochild="New"/> test; preventing a match if the new element is
already there.



3.5. EXAMPLES

65

Example 012 Suppose you want to output the second role in the first

collaboration in input.010.xml, producing

<role id="002" name="Customer"/>

This rule:

<div class="rule">
<div class="antecedent">
<model>
<collaboration>
<role/>
<rml-tree name="A"/>
</collaboration>
</model>
</div>

<div class="consequence">
<rml-use name="A" />
</div>
</div>

rule.012a.xml
produces the desired output. And when applying that rule to

<model>
<collaboration id="004" name="Negotiation'">
<role id="001" name="Intermediary"/>
<role id="002" name="Customer"/>
<role id="003" name="0ffice"/>
</collaboration>
<process id="009" name="investigate"/>
<role id="002" name="Customer"/>
<process id="010" name="formalize request" />
</model>

input.012.xml

it also outputs the Customer. But what if you want the rule only to work
if there are exactly 2 child elements in the collaboration? Then use rule:



66 CHAPTER 3. THE RML TUTORIAL

<div class="rule">
<div class="antecedent">
<model>
<collaboration>
<role/>
<rml-tree name="A"/>
<rml-if last="true"/>
</collaboration>
</model>
</div>

<div class="consequence">
<rml-use name="A" />
</div>
</div>

rule.012.xml

The <rml-if last="true"/> element makes the matching of the rule
only succeed if the previous element is the last in a list. If you apply
rule.012.xml to input.012.xml then you get the contents of the input
back: no match. But rule.012.xml does work on input.010.xml.

3.5.6 Match choice with rml-type="or"

Example 013 If you want to match

<model>

<role id="001" name="Intermediary"/>
</model>

input.013a.xml
or

<model>

<role id="002" name="Customer"/>
</model>

input.013b.xml



3.5. EXAMPLES 67

but not

<model>
<role id="003" name="Insurance Company"/>
</model>

input.013c.xml
then you can use rule rule.13.xml:

<div class="rule">
<div class="antecedent">
<model>
<role 1d="001" name="Intermediary"
rml-type="or" />
<role id="002" name="Customer"
rml-type="or" />
</model>
</div>

<div class="consequence">
<matched how="allright" />
</div>
</div>

rule.13.xml

With the special attribute rml1-type="or", the RML tools try the next
element if a match fails on an element, but only if that next element also has
this special attribute.

3.5.7 How to remove duplicate siblings

Example 014 Some of the inspiration leading to RML came when I had
to transform something like



68 CHAPTER 3. THE RML TUTORIAL

<model>
<role id="003" name="Insurance Company"/>
<whatever />
<role id="003" name="Insurance Company"/>
<evenmore />

</model>
input.014.xml
to

<model>
<role id="003" name="Insurance Company"/>
<whatever />
<evenmore />

</model>

, just removing duplicate siblings. This looks simple but I found out it was
very hard to do with for example XSLT. The RML rule for this is not difficult:

<div class="rule">
<div class="antecedent">
<model>
<rml-list name="listl" />
<role rml-others="A" />
<rml-list name="list2" />
<role rml-others="A" />
<rml-list name="1list3" />
</model>
</div>

<div class="consequence">
<model>
<rml-list name="listl" />
<role rml-others="A" />
<rml-list name="list2" />
<rml-list name="1list3" />
</model>
</div>
</div>

rule.014.xml



3.5. EXAMPLES 69

This rule also shows a typical usage of rml1-1ist elements: all the el-
ements, and their children, around the elements you are interested in, are
remembered in variables (here 1list1 and 1ist2 and 1ist3. With this pat-
tern you can "preserve the context” of the elements you want to match.
Example 016 also shows this pattern.

Example 015 And for Example 014 even this rule works:
<div class="rule">
<div class="antecedent">
<model>
<rml-list name="listl" />
<rml-tree name="A" />
<rml-list name="list2" />
<rml-use name="A" />
<rml-list name="1ist3" />
</model>
</div>

<div class="consequence">
<model>
<rml-use name="listl" />
<rml-use name="A" />
<rml-use name="list2" />
<rml-use name="1list3" />
</model>
</div>
</div>

rule.015.xml
, not only for duplicate role elements, but for any duplicate elements in the
model. This rule makes use of the fact that variable A has been bound in
the line with <rml-tree name="A" />, and then a <rml-use name="A" />
is allowed not only in the consequence, but also in the antecedent of a rule.

3.5.8 Iterating sets of rules

The dorules tool accepts a list of rulefilenames in parameter --rules (or-r),
instead of just one rule like the applyrule tool.



70 CHAPTER 3. THE RML TUTORIAL

It then applies the first rule of the list to the input, just like the applyrule
program, and if the rule can be successfully applied (the output is different
from the input) then the program restarts, taking the generated output and
the list of rules as input. If a rule does not match the input then the next
rule in the list is tried. If no rule in the list matches the input then the
program stops.

Iterating sets of rules is often useful. A typical usage pattern is when
you want to create new elements with data from 2 original elements, but
you don’t know the order of the 2. Then you write 2 rules and let dorules
handle it.

Example 016 Transform

<model>

<triggering id="016" name="triggers">
<from href="009"/>
<to href="010"/>

</triggering>

<triggering id="015" name="triggers">
<from href="008"/>
<to href="009"/>

</triggering>
</model>
input.016.xml
into
<model>
<triggering id="016" name="triggers">
<from href="008"/>
<to href="010"/>
</triggering>
</model>

by executing dorules with this rule:



3.5. EXAMPLES 71

<div class="rule">
<div class="antecedent">
<model rml-others="modelAttrs">

<rml-list name="Prelude" />

<rml-R1 name="rml-N1">
<from href="rml-F1i"/>
<to href="rml-ID" />

</rml-R1>

<rml-list name="Between" />

<rml-R1 name="rml-N1" rml-others="AttrRest">
<from href="rml-ID"/>
<to href="rml-T1" />

</rml-R1>
<rml-list name="Epilog" />
</model>

</div>

<div class="consequence">
<model rml-others="modelAttrs">
<rml-use name="Prelude" />
<rml-R1 name="rml-N1" rml-others="AttrRest">
<from href="rml-F1"/>
<to href="rml-T1" />
</rml-R1>
<rml-use name="Between" />
<rml-use name="Epilog" />
</model>
</div>
</div>

rule.016a.xml

and this rule:



72 CHAPTER 3. THE RML TUTORIAL

<div class="rule">
<div class="antecedent">
<model rml-others="modelAttrs">

<rml-list name="Prelude" />

<rml-R1 name="rml-N1" rml-others="AttrRest">
<from href="rml-ID"/>
<to href="rml-T1" />

</rml-R1>

<rml-list name="Between" />

<rml-R1 name="rml-N1">
<from href="rml-F1i"/>
<to href="rml-ID" />

</rml-R1>
<rml-list name="Epilog" />
</model>

</div>

<div class="consequence">
<model rml-others="modelAttrs">
<rml-use name="Prelude" />
<rml-R1 name="rml-N1" rml-others="AttrRest">
<from href="rml-F1"/>
<to href="rml-T1" />
</rml-R1>
<rml-use name="Between" />
<rml-use name="Epilog" />
</model>
</div>
</div>

rule.016b.xml

issuing the command:
dorules -i input.016.xml -r rule.Ol6a.xml+rule.016b.xml

Note that the order of the rules in the list is significant. The order is not
important in this example but in another it could be. This example is also
another example of “context preserving” with rml-1list elements, storing
the context in Prelude, Between and Epilog.



3.5. EXAMPLES

3.5.9 Turning a list into a hierarchy

Example 017 Transform

<model>
<role id="001" name="Intermediary"/>
<collaboration id="004" name="Negotiation"/>
<process id="009" name="investigate"/>
<process id="010" name="formalize request"/>
</model>

input.017.xml

into

<model>
<role id="001" name="Intermediary" >
<collaboration >
<process id="009" name="investigate" >
<process id="010" name="formalize request"/>
</process>
</collaboration>
</role>
</model>

by executing dorules with this rule:

73



74 CHAPTER 3. THE RML TUTORIAL

<div class="rule">
<div class="antecedent" >
<rml-Top>
<rml-Name rml-others="A" />
<rml-Name2 rml-others="B" />
<rml-list name="L" />
</rml-Top>
</div>
<div class="consequence">
<rml-Top>
<rml-Name rml-others="A">
<rml-Name2 rml-others="B">
<rml-use name="L" />
</rml-Name2>
</rml-Name>
</rml-Top>
</div>
</div>

rule.017.xml

This rule "deepens” all lists in the input when applied iteratively wih
dorules.

3.5.10 Pre-binding string variables on the command-
line
Example 018 If you have this input:

<model>
<event name="request for insurance" id="008" />
<process name="investigate" id="009" />
<process name="investigate" id="010" />
</model>

availabe in file input.018.xml

and you would like to remove the process with id="010", then you need
somthing very similar to the rule.002.xml you wrote earlier. But that rule



3.5. EXAMPLES 5

removes the id="009" process, because that is the first that matches the
antecedent of the rule (<process name="investigate" id="rml-X" />).
A solution is to bind commandline variables to RML variables. If you
issue the command:
applyrule -i input.018.xm -r rule.002.xml X=010 then the id="010"
will be removed.
What happens is that the string 010 is bound to RML variable X, meaning
that the RML tools now treat "rml-X” in a rule as 7010”.

3.5.11 Using recipes

RML recipes are stated in Recipe RML (RRML), an XML vocabulary for
RML recipes. With RML recipes the user can define sequences of applyrule
and dorules executions. See Sect. 3.2.6 and Fig. 3.4, there is an example
recipe. There are plans for a future version of RRML with rule elements
that can execute XSLT transformations too. Or that can execute arbitrary
programs...let me know what you would like.

I hope you enjoyed this tutorial. Good luck with your XML transforma-
tions!



76

CHAPTER 3. THE RML TUTORIAL



