
Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257

Chapter 2

RML and its application to
UML

Author: Joost Jacob

2.1 Introduction

The work in this paper was initiated and motivated by work in the IST
project OMEGA (IST-2001-33522, [OME]) sponsored by the European Com-
mission. The main goal of OMEGA is the correct development of real-time
embedded systems in the Unified Modeling Language [SWB03]. This goal in-
volves the integration of formal methods based on model-checking techniques
[BDJ+03] and deductive verification using PVS [ORR+96].

The eXtensible Markup Language XML (XML [XML]) is used to encode
the static structure of UML models in OMEGA. The XML encoding is gen-
erated by Computer Aided Software Engineering (CASE) tools; it captures
classes, interfaces, associations, state machines, and other software engineer-
ing concepts. The OMEGA tools for model-checking and deductive verifica-
tion are based on a particular implementation of the semantics of the UML
models in a tool-specific format ([BGM01], [DJPV03], [ORR+96]). This com-
plicates interoperability of such tools. In order to ensure that these different
implementations are consistent, a formal semantics of UML models is de-
veloped in OMEGA in the mathematical formalism of transition systems

23

24 CHAPTER 2. RML

[Plo81]. However, it still requires considerable effort to ensure that these
different implementations are indeed compatible with the abstract mathe-
matical semantics. Some of the motivation for RML came in helping with
this effort. Since the models produced by the CASE tools are encoded in
XML it was a natural choice to look for an XML transformation technique
instead of encoding a model and semantics in a special-purpose format. Sim-
ulating and analyzing in XML adds the interoperability benefit of XML and
the many available XML tools can be used on the results.

In this paper a general-purpose method for XML transformations is intro-
duced and its application to the specification and execution of UML models.
The underlying idea of this method is to specify XML transformations by
means of rules which are formulated in a problem domain XML vocabulary of
choice: the rules consist of a mix of XML from the problem domain and the
Rule Markup Language (RML, Sect. 2.3). The input and output of a trans-
formation are pure problem domain XML; RML is only used to help to define
transformation rules. The RML approach re-uses the problem domain XML
as much as possible, with a “programming by example” technique. With
this rule–based approach it becomes possible to define transformations that
are very hard to do when using for example XSLT [XSL], the official W3C
[W3C] Recommendation for XML transformations, as discussed in Section
2.2.1.

The RML tools are available as platform-independent command–line tools
so they can easily be used together with other tools that have XML as input
and output.

RML is not trying to solve harder or bigger transformations than other
approaches. Instead of concentrating on speed or power, RML is designed
to be something that is very usable and interoperable. Experience in several
projects has shown that programmers can learn to use RML in only a few
hours with the tutorial in Chapter 3, and even non-programmers put RML
to good use. With respect to the RML application to UML models, only
knowledge of XML and RML suffices to be able to define and execute their
semantics.

As such, RML provides a promising basis for the further development of
XML-based debugging and analysis tools for UML models.

XML itself is not intended for human consumption, but we have developed
the ASCII Markup Language (AML) representation that helps considerably
in this respect. The example model in this paper is presented in AML because
AML is more readable than XML, but otherwise equivalent for this purpose.

2.2. XML AND XML TRANSFORMATIONS 25

More details about AML and an AML to XML translation, and back, are
available at [Jaca].

Plan of the paper The next section starts with describing XML. Section
2.3 presents RML as a new approach to solve XML transformation problems
and describes how to use RML for defining transformation rules. Section
2.4 shows examples of applications of RML, the main example being an
application that results in executable UML models. The conclusion and a
discussion of related work is in Sect. 2.5.

2.2 XML and XML transformations

With XML, data can be annotated and structured hierarchically. There are
several ways to do this and there is no single best way under all circumstances:
designing good XML vocabularies is still an art. For instance, suppose you
want to describe a family in XML: a grandmother named Beth, a father
named John, a mother name Lucy and son named Bill. One way to do this
is:

<family>

<grandma name="Beth" />

<father name="John" />

<mother name="Lucy" />

<son name="Bill" />

</family>

The example shows five different XML elements: family, grandma, fat-
her, mother, and son. The XML hierarchy is a tree, with nodes called XML
elements, and there has to be one and only one XML element that is the root
of the tree, in the example the family element. An XML element consists
of its name, optional attributes and an ordered list of subelements, where a
subelement can also be a string. Attributes of XML elements are mappings
from keys to values, where the keys are text strings and the values are text
strings too.

A string enclosed with angle brackets is called a tag. A minimum tag only
contains the element name, like the <family> in the example. The element
name is not the only thing that can appear between the angle brackets, there
can also be attributes like name="John" in the example. Attributes consist
of the attribute name, an = and the attribute value (a text string) enclosed
in double quotes.

26 CHAPTER 2. RML

An XML element that does not contain other elements, a so called empty
element, has its tag closed by an /, as in <X />, where X is the element name.
An XML element that has children consists of two tags: one for the element
name (and its attributes), and one for closing the element after its children.
In the example the family element is the only element with children. There
are several rules that define if XML is well formed, for instance every opening
tag <X> has to be closed by a closing tag </X>, and these rules can be checked
by tools.

But the XML in the example does not reflect the tree like structure of
the family. Another way is:

<family>

<female>

<name>Beth</name>

<male marriedTo="Lucy">

<name>John</name>

<male>

<name>Bill</name>

</male>

</male>

</female>

<female marriedTo="John">

<name>Lucy</name>

</female>

</family>

Here Beth is not the value of an attribute but it is the text content of a
name element. The structure of this example may better indicate that Beth
is the mother of John, but the XML is more verbose than the first example.

An XML vocabulary can be formally defined in a DTD (see the XML
Specification in [XML]) or an XML Schema [XMS], both W3C Recommen-
dations. There is also an ISO standard for defining vocabularies called Re-
laxNG [Cla01]. The definition can express that for instance every female in
the example must have a name child and can have optional female or male

childs. With such a definition, called schema, there are XML tools available
that can validate if XML is conforming to a schema. Note that validating
is different from checking well-formedness. It is possible to refer to the def-
inition of the vocabulary used from inside XML, and there are many more
XML concepts that can not be discussed here due to lack of space, for which
I refer to the XML Specification [XML].

A schema only defines syntax, the meaning of the XML constructs defined
has to be defined somewhere else. The W3C is working on standard ways
for doing this (viz. the Semantic Web project) but currently this is usually

2.2. XML AND XML TRANSFORMATIONS 27

done in plain text documents. The family from the example has a tree
like structure so in this respect it is an easy example to describe in XML
that also has a tree structure. But a tree is not the only kind of structure
that can be modeled conceptually with a schema. Other structures can also
be modeled in XML because the XML elements can refer to each other by
means of cross-references with identifiers, as in the second example with the
marriedTo attributes.

A lot of XML vocabularies have been designed in recent years, for all kinds
of problem domains. Often these vocabularies are W3C Recommendations,
like RDF, XSLT and MathML [Mat03]; another example is XMI [XMI] as
developed for UML [SWB03] by the Object Management Group [OMG]. The
OMEGA project works with XMI and other XML vocabularies for software.

In general, when having a structure stated in XML data, a dynamics of the
structure can be captured by rules for transforming the XML data. The rules
that define XML transformations can be stated in XML itself too, but the
problem domain XML vocabulary will usually not be rich enough to be able
to state a rule. For this it has to be combined with XML that is suitable for
expressing transformation rules, containing for example constructs to point
out what to replace with what, and where. Section 2.2.1 shows how an
XML vocabulary that is different from the problem domain vocabulary can
be used, which is the current way of doing transformations in industry, and
Sect. 2.3 shows the new RML approach that is based on extension.

2.2.1 XSLT

Extensible Stylesheet Language Transformations (XSLT, [XSL]) is a W3C
recommendation for XML transformations. It is designed primarily for the
kinds of transformations that have to do with visual presentation of XML
data, hence the style element in the name. A popular use of XSLT is to
transform a dull XHTML page to a colorful and stylized one. Or to generate
visualizations from XML data. However, nowadays XSLT is being used more
and more for general purpose XML transformations, from XML to XML, but
also from XML to text. In the OMEGA project we have used XSLT to do
transformations of software models (UML models stated in XMI [XMI]) re-
sulting in models encoded in other XML vocabularies and also resulting in
textual syntax like PVS [ORR+96]. The static structure of the models was
transformed. But when we wanted to capture the semantics of execution of
these software models we found that XSLT is not very usable for the partic-

28 CHAPTER 2. RML

ular kind of transformations that describe dynamics. These transformations
use a match pattern that is distributed over several parts of an XML tree,
whereas the matching technique used in XSLT is designed to match in a
linear way, from root to target node in a tree. This linear matching is not
suitable for matching of a pattern with several branches.

For instance, matching duplicate children of an element is very hard with
XSLT. The MathML expression

<math>

<apply>

<and />

<ci>p</ci>

<ci>p</ci>

<ci>q</ci>

</apply>

</math>

meaning p ∧ p ∧ q in propositional logic, is logically equivalent to
<math>

<apply>

<and />

<ci>p</ci>

<ci>q</ci>

</apply>

</math>

meaning p ∧ q. In the MathML the <ci> element is used for pointing out
constant identifiers and the apply element is used for building up mathe-
matical expressions. Suppose we would like to transform all p ∧ p ∧ q into
p∧ q, where p and q can be anything but two p’s in an expression are equal.
To perform such a transformation a tool has to look for a pattern with
two identical children and then remove one of the children. Since XSLT
is a Turing–complete functional programming language, it is possible to do
this transformation, but XSLT templates for these kinds of transformations
are extremely long and complex. XSLT simply was not designed for these
kinds of transformations; the designers did not feel much need for them in
the webwide world of HTML and webpublishing. The MathML+RML rule
for removing duplicate children is simple, it is one of the examples in the
RML tutorial in Chapter 3.

2.3 RML

This section first introduces the idea of XML wildcard elements. After that
the RML syntax is introduced in Sect. 2.3.2, before Section 2.3.3 describes
the RML tools.

2.3. RML 29

2.3.1 XML Wildcard Elements

The transformation problem as shown in Sect. 2.2.1 reminds one of the
use of wildcards for solving similar problems in text string matching. The
idea of using an XML version of wildcards is a core idea of our method and
of this paper. The idea is to define XML notation for an XML version of
constructs like the * and ? and + and others in text–based wildcards as in
Perl regular expressions, and then using these constructs for matching and
variable binding. These constructs are called XML wildcard elements. They
consist of complete XML elements and attributes as can be formally defined
with a schema, but they also consist of extensions for denoting wildcard
variables inside a problem domain XML. These variables are just like the
variables as they are used in the various languages available for text–based
wildcard matching, for instance Perl regular expressions. The variables have
a name, and they are given a value when a match succeeds. This value can
then be used in the output of a transformation rule.

2.3.2 The RML syntax

RML rules are stated in XML. The basis of a rule is that in the antecedent
of the rule the input is matched, and then whatever matched is replaced by
the consequent of the rule.

RML was designed to be mixed with any problem domain XML, to be
able to define transformations while re-using the problem domain XML as
much as possible. RML is a mixture of XML elements, conventions for XML-
attribute names, and conventions for attribute values, to mix in with XML
from the problem domain vocabulary at hand. RML introduces some new
XML elements and uses an element from XHTML. From XHTML only the
div element is used and it is used to distinguish a rule, the antecedent of a
rule, and the consequence of a rule by means of the class attribute of the
div tag. We use the div tag from XHTML for reasons that have to do with
a presentation in browsers.

The Table in Fig. 2.1 lists all the current RML constructs with a short
explanation of their usage in the last column. These have been found to be
sufficient for all transformations encountered so far in practice in the projects
where RML is being used. An X in the XML tags can be replaced by a string
of choice. The position that is sometimes mentioned in the explanations is the
position in the sequential list that results from a root-left-right tree traversal

30 CHAPTER 2. RML

of the XML tree for the rule. It corresponds with how people in the western
world reading an XML document encounter elements: top-down and left to
right. A position in the rule tree corresponds with zero or more positions in
the input tree, just like the * in the wildcard expression a*b corresponds with
c on input acb and with cd on input acdb and with nothing on input ab.
With the constructs in the Table in Fig. 2.1 the user can define variables for
element names, attribute names, attribute values, whole elements (with their
children) and lists of elements. An XML+RML version of the a*b wildcard
pattern is

<a /> <rml-list name="Star" />

and this can be used as part of the antecedent of an RML rule that uses
the contents of the Star variable in the consequent of the rule. The a and
b elements are from some XML vocabulary, the rml-list element is from
RML and described in the Table in Fig. 2.1. Section 2.4.1 shows a small
but complete RML rule. Examples of input and rules take up much space
and although we would have preferred to present more rule examples here
now, there is simply not enough space to do that and we strongly invite
the reader to look at the examples in the RML tutorial in Chapter 3 where
there are examples for element name renaming, element replacing, removing
duplicates, copying, attribute copying, adding hierarchy and many more.

It is easy to think of more useful elements for RML than in the Table,
but not everything imaginable is implemented because a design goal of RML
is to keep it as simple and elegant as possible. Only constructs that have
proven themselves useful in practice are added in the current version.

The execution of a rule consists of binding variables in the matching
process, and then using these variables to produce the output. Variable
binding in RML happens in the order of a root-left-right traversal of the
input XML tree. If an input XML tree contains more than one match for
a variable then only the first match is used for a transformation. The part
of the input that matches the rule antecedent is replaced by the consequent
of the rule. If a rule does not match then the unchanged input is returned
as output. If a rule matches input in more than one place and you want to
transform all matches then you will have to repeat applying the rule on the
input until the output is stable. There is a special RML tool called dorules

for this purpose.

2.3. RML 31

2.3.3 The RML tools and libraries

Open-source tools and libraries can be downloaded and also the RML tutorial
in Chapter 3 is available online. The tutorial contains information about
installing and running the tool, and there is also more technical information
on the website, for instance about a matching algorithm. The tools and
libraries have been successfully used under Windows, Linux, Solaris, and
Apple.

A typical usage pattern of the applyrule command–line tool is
$ python applyrule.py --rule myrule.xml --input myinput.xml that
will print the result to console, or it can be redirected to a file.

The rule and the input are parameterized, not only as command–line pa-
rameters but also in the internal applyrule function; this makes the tool
program also usable as a library and thus suitable for example for program-
ming a simulation engine. There is an interface to additional hook functions
so tools can be extended, for instance for programming new kinds of con-
straints on the matching. However, the set of RML constructs in the current
version has proven to be sufficient for various XML transformation work, so
adding functions via the hooks will normally not be necessary. An example
of when it is desirable to add functions is when a tool designer for example
wants to add functionality that does calculations on floating point values
in the XML. The RML tools are written in Python [vR95] and the Python
runtime can use the fast rxp parser written in, and compiled from, C, so the
XML parsing, often the performance bottleneck in such tools, is as fast and
efficient as anything in the industry. If the rxp module is not installed with
your Python version then RML automatically uses another XML parser on
your system.

The RML tutorial in Chapter 3 also describes a very simple XML vo-
cabulary for defining RML recipes, called Recipe RML (RRML), and a tool
called dorecipe for executing recipe–based transformations. RRML is used
to define sequences of transformations and has proven itself useful in alle-
viating the need for writing shell scripts, also called batch files, containing
sequences of calls to the RML tools.

32 CHAPTER 2. RML

2.4 RML examples

The main example presented in this paper is the executable specification of
the semantics of UML models in XML and this is the topic of Section 2.4.1.
Section 2.4.2 briefly mentions other projects wherein RML is applied.

2.4.1 Executable UML models

The application of RML to the semantics of UML models and its resulting
execution platform is based on the separation of concerns betweeen coor-
dination/communication and computation. This exploits the distinction in
UML between so-called triggered and primitive operations. The behavior of
classes is specified in UML statemachines with states and transitions, and
every transition can have a trigger, guard, and action. A transition does not
need to have all three, it may for example have only an action or no trigger
or no guard. Triggered operations are associated with events: if an object
receives an event that is a trigger for a transition, and the object is in the
right location for the transition, and the guard for that transition evaluates
to True, then the action that is specified in the transition is executed. The
triggered operations can be synchronous (the caller blocks until an answer is
returned) or asynchronous. Events can be stored in event queues, and the
queues can be implemented in several ways (FIFO, LIFO, random choice,
. . .). There are also primitive operations: they correspond to statements in
a programming language, without event association or interaction with an
event mechanism. The primitive operations are concerned with computa-
tions, i.e. data-transformations, the triggered operations instead are primar-
ily used for coordination and communication. More details can be found in
[DJPV03].

This distinction between triggered and primitive operations and the cor-
responding separation of concerns between coordination/communicaion and
computation is reflected in the RML specification and execution of UML
models which delegates (or defers) the specification of the semantics and the
execution of primitive operations to the underlying programming language
of choice. This delegation is not trivial, because the result of primitive oper-
ations has to be reflected in the values of the object attributes in the XML,
but the details of the delegation mechanism can not be given here due to a
lack of space.

In our example the problem domain is UML and we will use a new XML

2.4. RML EXAMPLES 33

vocabulary that is designed for readability and elegance. This language
is called km, for kernel model; a RelaxNG [Cla01] schema is at http://-
homepages.cwi.nl/˜jacob/km/km.rnc.

The online example is a prime sieve, it was chosen because it shows all
the different kinds of transitions and it has dynamic object creation. It
generates objects of class Sieve with an attribute p that will contain a prime
number. But the user can edit the example online or replace it with his or
her own example, if the implementation language for actions and guards is
the Python programming language. A similar application can be written
for the Java language, and UML models from CASE tools can be translated
automatically to the km language. The example can be executed online in an
interactive webapplication on the internet at [Jacd]. In the km application
the user fills in a form with an object identity and a transition identity, and
pressing a button sends the form to the webapplication that performs the
corresponding transition. Instead of a user filling in a form, a program can
be written that calls the website and fills in the form, thus automating the
tool. We did so, but for this paper we consider a discussion of the automated
version out of scope.

The km language defines XML for class diagrams and object diagrams.
The classes consist of attribute names and a statemachine definition. The
statemachines have states and transitions, where the transitions have a guard,
trigger and action like usual in UML. The objects in the object diagram have
attributes with values and an event queue that will store events sent to the
object. An example of an object is

objectdiagram

obj class=Sieve id=2 location=start target=None

attr name=p value=None

attr name=z value=None

attr name=itsSieve value=None

queue

op name=e

param value=2

where the object is of type Sieve, finds itself in the start state of the
statemachine of the Sieve class, and has an eventqueue with one event in it
with name e and event parameter 2.

A detailed description of the km language and its design would take too
much space here, but the interested reader who knows UML will have no
trouble recognizing the UML constructs in the models since the km language
was designed for readability.

34 CHAPTER 2. RML

In the km language the event semantics is modelled, but the so-called
primitive operations that change attribute values are deferred to a program-
ming language. So the models will have event queues associated with objects
and executing a model will for example show events being added to queues,
but operations that are not involved with events but only perform calcula-
tions are stored in the model as strings from the programming language of
choice. Such an operation can be seen in the example as

transition id=t3

source state=state_3

target state=state_1

action

implementation

"""x = x + 1"""

where we see a transition in the statemachine with an action, the statement
executed by the programming language (Python in this case) is x = x + 1.
Transitions can also have a guard with an expression in a programming lan-
guage, also encoded as text content of an implementation element.

We can now show a simple example RML rule.

<div class="rule" name="set location">

<div class="antecedent">

<obj id="rml-IDOBJ" location="rml-L" target="rml-T" rml-others="rml-O" >

<rml-list name="ObjChildren"/>

</obj>

</div>

<div class="consequence">

<obj id="rml-IDOBJ" location="rml-T" target="None" rml-others="rml-O">

<rml-use name="ObjChildren"/>

</obj>

</div>

</div>

This is a rule that is used after a transition has been taken successfully
by an object modeled with km. With this rule the location attribute of the
object is assigned the value of the target attribute and the target attribute
is set to None. An example of the effect of the rule would be that

<obj id="id538" location="state_3" target="state_5" ... >

<queue>

...

</queue>

</obj>

is changed into

<obj id="id538" location="state_5" target="None" ... >

<queue>

...

</queue>

</obj>

2.4. RML EXAMPLES 35

for an object with identifier id538.
When applying this rule, the RML transformation tool first searches for

an obj element in the input, corresponding with the obj element in the
antecedent of the rule. These obj elements match if the obj in the input has
an id attribute with the value bound to the RML IDOBJ variable mentioned
in the antecedent, in the example this value is id538 and it is bound to the
RML variable IDOBJ before the rule is applied. This pre-binding of some
of the variables is how the tool can manage and schedule the execution of
the RML transformation rules. The IDOBJ is a value the user of the online
webapplication supplies in the form there. If the obj elements match, then
the other RML variables (L, T, O and ObjChildren) are filled with variables
from the input obj. The L, T and O variables are bound to strings, the
ObjChildren variable is bound to the children of the obj element: a list of
elements and all their children. The consequence of the rule creates a new
obj element, using the values bound to the RML variables, and replaces the
obj element in the input with this new obj element.

Due to lack of space we restrict the description of the formalization in
RML to the rule for the removal of an event from the event-queue, the an-
tecedent is shown in AML notation:

km

classdiagram

...

class name=rml-ClassName

statemachine

transition id=rml-IDTRANS

trigger

op name=rml-TriggerName

rml-list name=Params

...

objectdiagram

...

obj class=rml-ClassName id=rml-IDOBJ

rml-others=rml-OtherObjAttrs

queue

rml-list name=PreEvents

op name=rml-TriggerName

rml-list name=PostEvents

and this contains some lines with ... in places where rml-list and rml-use

constructs are used to preserve input context in the output. Here we see that
in RML a pattern can be matched that is distributed over remote parts in the
XML, the remoteness of the parts is why the rule has so many lines. In short,
this rule looks for the name of the trigger that indicates the event that has
to be removed from the event-queue, and then simply copies the event-queue

36 CHAPTER 2. RML

without that event. But to find that name of the trigger, a search through
the whole km XML model has to take place, involving the following steps.

During application of this rule, the matching algorithm first tries to match
the input with the antecedent of the rule, where IDOBJ and IDTRANS are
pre-bound RML variables, input to the tool. With these pre-bound variables
it can find the correct obj, then it finds the ClassName for that object. With
the ClassName the class of the object can be found in the classdiagram

in km XML. When the class of the object is found, the transition in that
class with id TRANSID can be found and in that transition element in the
input we can finally find the desired TriggerName. The algorithm then looks
for an op (operation) event with name TriggerName in the event-queue of
the obj, and binds all other events in the event-queue to RML variables
PreEvents and PostEvents. In the consequence of the rule then, all these
bound RML variables are available to produce a copy of the input, with the
exception that the correct event is removed. As given, the rule removes the
first event that matches. It is trivial to change the rule to one that removes
only the first event in a queue (by removing the PreEvents), or only the last.
This is an example that shows that the semantics defined in the RML rules
can be easily adapted, even during a simulation, and this makes such rules
particulary suitable for experimental analysis.

The km application gives comments, for example about the result of the
evaluation of a guard of a transition. If the user for instance selects a transi-
tion identity that does not correspond with the current state of the object, in
the online example if you select (ObjID,TransitionID)=(1,t1) twice, a mes-
sage is displayed on top of the model, like
Exiting: Wrong location (object:state_1 transition:start)

meaning that transition t1 can not be taken because the object is in state
state_1 and the transition is defined for a source state with name start.
Such messages do not interfere with the model itself, they are encoded as
comments, and the model is unchanged after this message.

The only software a user needs to use the interactive application is a
standards compliant browser like Mozilla or Internet Explorer. A user can
not only go forward executing a model, but also go backward with browser’s
Back button. This is an example of the benefit of interoperability that XML
offers, together with a software architecture and design that is platform in-
dependent.

2.5. RELATED WORK AND CONCLUSION 37

2.4.2 Other examples

If a formalism is expressed in mathematics, then MathML is a generally
usable way to express structure, and RML rules extending MathML can
capture the dynamics. As an example of this, RML is used for an online
interactive theorem prover that can be used to derive proofs for tautologies
in propositional logic1.

Although defining models and semantics in MathML will appeal to the
mathematically educated, sometimes it is better to define a new special-
purpose XML vocabulary; to make it more concise, better readable, more
efficient, and for several other reasons. This was the case in the Archimate
[Arc] project where RML has been applied successfully to Enterprise Archi-
tecture and Business Models. Rule–based transformations are being used
for analysis of models and for visualizations. The RML tutorial in Chapter
3 and the downloadable RML package contain examples in the Archimate
language.

2.5 Related work and conclusion

Standards related to RML are XML [XML], MathML [Mat03] and XSLT
[XSL]. MathML is a W3C specification for describing mathematics in XML,
and it is the problem domain language for the proof example in this paper.
XSLT is a W3C language for transforming XML documents into other XML
documents, and is discussed in Section 2.2.1. There are also standards that
are indirectly connected with XML transformations, like XQuery that can
treat XML as a database that can be queried, but a discussion of the many
XML standards here is out of scope.

The RuleML community [RUL] is working on a standard for rule-based
XML transformations. Their approach differs from the RML approach: RML
re-uses the problem domain XML, extended with only a few constructs (in
the table in Fig. 2.1) to define rules; whereas RuleML superimposes a special
XML vocabulary for rules. This makes the RuleML approach complex and
thus difficult to use in certain cases. The idea of using wildcard elements
for XML has not been incorporated as such in the RuleML approach, but
perhaps it can be added to RuleML and working together with the RuleML
community in the future can be interesting.

1http://homepages.cwi.nl/˜jacob/MathMLcalc/MathMLcalc.html

38 CHAPTER 2. RML

There are a number of tools, many of them commercial, that can parse
XML and store data in tables like those in a relational database. The user
has to define rules for extracting the data, to define what is in the columns
and the rows of the tables, to define an entity-relationship model, and other
things. Once the data the user is interested in is in the database, a standard
query language like SQL can be used to extract data. And then that data
can be used to construct new XML. The XML application called XQuery
can be used in a similar way, and it is the approach taken by ATL [BDJ+03].
It would be possible to do any transformation with these techniques, but it
would be very complex.

The Relational Meta-Language [Pet94] is a language that is also called
RML, but intended for compiler generation, which is much more roundabout
and certainly not usable for rapid application development like with RML in
this paper.

An example of another recent approach is fxt [BS02], which, like RML,
defines an XML syntax for transformation rules. Important drawbacks of
fxt are that it is rather limited in its default possibilities and relies on hooks
to the SML programming language for more elaborate transformations. For
using SML a user has to be proficient in using a functional programming
language. An important disadvantage of a language like SML is that it
is not a mainstream programming language like Python with hundreds of
thousands or users worldwide, which makes it unattractive to invest in tools
based on SML. The fxt tools are available online but installing them turned
out to be problematic.

The experience with several tools as mentioned above leads to the concept
of usability of a tool in general. Here, a tool is not considered usable enough
if it is too difficult to install and configure it and get it to run, or if the most
widely used operating system Windows is not supported, or if working with
the tool requires a too steep or too high learning curve, for example because
the user has to learn a whole new programming language that is not a main-
stream programming language. Although the fxt article [BS02] interestingly
mentions ”XML transformation . . . for non-programmers”, fxt is unfortu-
nately an example of an approach that is not usable enough according to
this usability definition.

XML is still gaining momentum and becoming more important and as a
result there are many more tools from academic research available, rather too
much to mention here as an internet search for “XML tool” reveals hundreds
of search results. Unfortunately none of them turned out to be useful in

2.5. RELATED WORK AND CONCLUSION 39

practice for our work according to the above definition of usability, after
spending considerable time trying them out.

Other popular academic research topics that could potentially be useful
for rule–based XML transformations are term–rewriting systems and systems
based on graph grammars for graph reduction. However, the tested available
tools for these systems suffer from the same kind of problems as mentioned
above: the tools are generally not portable and most will never be portable
for technical reasons, and using these tools for XML transformations is an
overly complex way of doing things. To use these kind of systems, there
has to be first a translation from the problem XML to the special-purpose
data structure of the system. And only then, in the tool–specific format, the
semantics is defined. But the techniques used in these systems are interesting,
especially for very complex or hard transformations, and it looks worthwhile
to see how essential concepts of these techniques can be incorporated in RML
in the future.

Compared with the related work mentioned above, a distinguishing fea-
ture of the RML approach is that RML re-uses the language of the problem
itself for matching patterns and generating output. This leads in a natu-
ral way to a much more usable and clearly defined set of rule–based trans-
formation definitions, and an accompanying set of tools that is being used
successfully in practice.

40 CHAPTER 2. RML

Elements that designate rules

div class="rule"

div class="antecedent" context="yes"

div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element at this position to RML
variable X.

rml-text name="X" * Bind XML text-content to variable X.
rml-list name="X" * Bind a sequence of elements to X.
rml-use name="X" * Output the contents of the RML variable

X at this position.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already

bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the

next element in the antecedent if that also
has rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element,
and occurs somewhere in the current se-
quence of elements.

rml-if nochild="X" * Match if X does not occur in the current
sequence.

rml-if last="true" * Match if the preceding sibling of this ele-
ment is the last in the current sequence.

A * in the A column means the construct can appear in a rule
antecedent. A * in the C column is for the consequence.

Figure 2.1: All the RML constructs

