
Domain specific modeling and analysis
Jacob, J.F.

Citation
Jacob, J. F. (2008, November 13). Domain specific modeling and analysis. Retrieved from
https://hdl.handle.net/1887/13257

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13257

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13257

Domain Specific Modeling and Analysis

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 13 november 2008

klokke 15.00 uur

door

Joost Ferdinand Jacob

geboren te Haarlem
in 1963

Promotiecommissie

Promotor: Prof. Dr. F.S. de Boer

Co-promotor: Dr. M.M. Bonsangue

Referent: Prof. Dr. H.A. Proper
University of Nijmegen

Overige leden: Prof. Dr. J.N. Kok

Prof. Dr. F. Arbab

Prof. Dr. W.-P. de Roever
Christian-Albrechts-University of Kiel, Germany

The work reported in this thesis has been carried out at the Center for
Mathematics and Computer Science (CWI) in Amsterdam.

Contents

1 Introduction 1
1.1 Problem statement . 3

1.1.1 The OMEGA project 3
1.1.2 The Archimate project 5

1.2 Objectives . 8
1.3 Approach . 9
1.4 Working with XML and other structured data 12
1.5 Structure of the thesis . 13
1.6 Conclusion . 16

I RML, a tool for model analysis 21

2 RML 23
2.1 Introduction . 23
2.2 XML and XML transformations 25

2.2.1 XSLT . 27
2.3 RML . 28

2.3.1 XML Wildcard Elements 29
2.3.2 The RML syntax . 29
2.3.3 The RML tools and libraries 31

2.4 RML examples . 32
2.4.1 Executable UML models 32
2.4.2 Other examples . 37

2.5 Related work and conclusion 37

3 The RML Tutorial 41
3.1 The XML vocabulary for the examples 42

i

ii CONTENTS

3.2 How RML works . 43
3.2.1 Rules . 43
3.2.2 Literal matching . 44
3.2.3 Wildcard matching . 44
3.2.4 Search and replace . 45
3.2.5 The dorules tool . 45
3.2.6 The dorecipe tool . 46
3.2.7 XML parsing details 47

3.3 Future versions of RML . 47
3.4 Installing and running . 49
3.5 Examples . 51

3.5.1 Deleting an element . 51
3.5.2 Changing an element 53
3.5.3 RML variables for elements 55
3.5.4 RML variables for text content 58
3.5.5 Adding constraints with rml-if 59
3.5.6 Match choice with rml-type="or" 66
3.5.7 How to remove duplicate siblings 67
3.5.8 Iterating sets of rules 69
3.5.9 Turning a list into a hierarchy 73
3.5.10 Pre-binding string variables on the commandline 74
3.5.11 Using recipes . 75

II Component Models and Analysis 77

4 The OMEGA Component Model 79
4.1 Introduction . 79
4.2 The Component Model . 80

4.2.1 Blackbox Components 83
4.2.2 Basic Components . 86
4.2.3 Extensions to the OMEGA UML subset discussed so

far (Fig. 4.1) . 86
4.2.4 Component Systems 89

4.3 Runtime Behaviour . 93
4.4 Architectural Models . 94

4.4.1 Overview . 98
4.5 Trace Semantics . 99

CONTENTS iii

4.6 Modeling with Components 101

4.6.1 Examples of software developed with the component
model . 102

4.7 Conclusion and related work 103

5 Component Coordination in UML 107

5.1 Introduction . 107

5.2 A component model . 109

5.3 Ω-UML . 116

5.3.1 Components in Ω-UML 117

5.4 Intra-component coordination 119

5.5 Inter-components coordination 121

5.6 Conclusion . 123

6 UnCL 125

6.1 Introduction . 125

6.2 Semantics of UnCL . 127

6.3 The UnCL Execution Platform 131

6.4 UnCL and Mobile Channels 136

6.4.1 MoCha’s Mobile Channels 136

6.4.2 Channel Types . 138

6.4.3 Implementation . 138

6.4.4 UnCL and MoCha . 138

6.5 Conclusions and Related Work 140

7 ATL 143

7.1 Introduction . 143

7.2 ASCII Transformation Language (ATL) 145

7.2.1 Preliminary: λ–calculus 146

7.2.2 ATL . 148

7.2.3 Implementation . 151

7.2.4 Definition of the γ–reduction 151

7.3 A webapplication . 152

7.3.1 Equivalence classes and conflict relations 155

7.3.2 Adding user–defined rules 156

7.4 The Sieve example . 157

7.5 Related work and the future 159

iv CONTENTS

III Modeling and Analysing Architectures 161

8 Analysis with XML 163
8.1 Introduction . 163
8.2 ArchiMate: a running example 164
8.3 The tools: XML, AML and RML 167
8.4 Static analysis . 171

8.4.1 A formal basis for static analysis 172
8.4.2 XML for static analysis 177

8.5 Dynamic analysis . 180
8.5.1 A formal basis for dynamic analysis 180
8.5.2 XML+RML for dynamic analysis 182

8.6 Summary and outlook . 187

9 A Logical Viewpoint 189
9.1 Introduction . 189
9.2 Archimate: a running example 192

9.2.1 Systems and architectures 193
9.3 Semantic models . 199
9.4 Design support . 203
9.5 Tool support . 205

9.5.1 The Rule Markup Language 205
9.5.2 RML as a tool for architectural description 207

9.6 Summary and outlook . 208

10 Transformations 211
10.1 Introduction . 211

10.1.1 Enterprise Architectures 211
10.1.2 ArchiMate . 212
10.1.3 XML . 212
10.1.4 Research methodology 213
10.1.5 Document layout . 214

10.2 The Rule Markup Language 214
10.2.1 Comparison with other techniques 215

10.3 Running Example . 216
10.3.1 An XML description of the example 218

10.4 Selection and Visualisation . 219
10.4.1 Selection . 219

CONTENTS v

10.4.2 Visualization . 220
10.5 Analysis . 222
10.6 Summary . 223

10.6.1 Question 1 . 224
10.6.2 Question 2 . 224
10.6.3 Question 3 . 225
10.6.4 Conclusions . 225

Summary 237

Samenvatting 238

Curriculum Vitae 239

vi CONTENTS

Chapter 1

Introduction

In the year 2002 I accepted an invitation to work for four years in research
projects at the Centrum voor Wiskunde en Informatica (CWI) in Amster-
dam. During that time I would investigate possibilities to leverage scientific
research projects with the latest computer science knowledge and skills, such
as I could deliver. This thesis and the publications herein are the result of
that work.

Only my more successful contributions resulted in publications in this
thesis, so the reader might get a rosier impression of the application of new
techniques to research projects than was actually the case in practice. How-
ever, looking back, it was very well worth the effort, and important lessons
have been learned that hopefully help improve future projects.

My main projects for CWI where the OMEGA [OME] and Archimate
[Arc] projects. A brief description of these projects is in section 1.1.1 for
OMEGA and section 1.1.2 for Archimate. In both projects we worked with
several types of model data. The model data is usually a static representation
of a state or states in the problem domain. Apart from the precise meaning
of the static data, a key problem in projects is usually how to specify the
transition from one set of data into another, and, if possible, how to do
this in such a way that it is formal but also understandable for the various
project participants. Preferably such specifications should lead to insights
that guide the implementation of tools. In a typical innovative project such as
Archimate or OMEGA, as funded by national governments or international
bodies, not only scientific researchers are involved but also representatives
from industry. The latter do acknowledge the importance of formal proofs
and descriptions concerning the problem domain, but the usual scientific

1

2 CHAPTER 1. INTRODUCTION

presentation of formal results is difficult to comprehend without a thorough
background in mathematics and formal methods. This is unfortunate because
in this way good results may miss the impact they deserve.

This thesis describes several approaches aimed at bridging the gap
between science and industry. A recurring theme is the development of
demonstration tools, like web applications, that give an insight into formal
methods, and that can serve as an intermediate between pure scientists and
others. Due to the nature of such tools1 and due to the limited time available
for their development, it is not always possible to give complete results in this
way, but this approach is still important because it makes a full formal result,
a project deliverable on paper, more acceptable for the non-scientific partners
in a project. Another important theme is communication. It is of paramount
importance that the scientists and developers in a project communicate well.
A thorough study of the core concepts in a project and an agreement on
their names and definition is worth the time invested in it. This is closely
related to the design of modeling languages, where a good choice of names
and abstractions is essential.

Leveraging domain specific concepts in tools helps to make them
more accessible and also helps in shortening the tool development
time. In every specialized field there are well-known earlier results that
can be re-used without the need for a full proof and corresponding full im-
plementation, like it would be necessary if using a general purpose tool. As a
very simplified example consider a tool that helps with automating algebra.
This tool would not need to prove everything from the ground up, it can use
established axioms like x + y = y + x and it does not have to verify the data
types of x and y as long as the tool is not abused. These relaxations makes
the implementation much simpler and cheaper to develop. A danger in this
approach is that users may unknowingly abuse the tool, providing input like
5.0 + "1.2", where x is a valid number and y incorrectly is a number in
string representation. Such errors are usually easy to spot but they stress
the fact that domain specific approaches for tools and modeling, as devel-
oped in this thesis, are not primarily intended for delivering full proofs or

1Tools like web applications are developed using the latest and popular methods and
languages so they are familiar to industry, despite the problem that the latest techniques
typically do not have a stable formal basis yet.

1.1. PROBLEM STATEMENT 3

fully conclusive results, but they are designed in the first place to help with
experimenting and with finding results in a timely and cost-effective manner.

With domain specific modeling and analysis, as in the title of this
thesis, an approach is intended that leverages as much of the ear-
lier existing work in the problem domain as possible. It does this
by re–using parts of the languages and formats, typically XML[XML] vocab-
ularies, that are in common use in the problem domain, in order to be able
to model and analyse with a formal basis but in a transparant way and in an
affordable way with respect to time and cost contraints, concentrating on the
original work. A situation often encountered in projects is that even before
an attempt to a formal specification is started, there is already a lot of work
done on proof–of–concept systems and tools. Domain specific techniques as
developed during my projects capture essential concepts and definitions from
this earlier work, and give them a name, an abstraction, that is familiar to
the early workers. If a truly formal specification, developed at a later point
in time, re–uses these concepts, it is better understood and more readily ac-
cepted, even if it does not agree in all aspects with early implementations. To
be able to reason about the captured concepts algebraically is desirable, and
this is a prime example of the usefulness of the transformation capabilities of
the techniques introduced in this thesis. However, the main use of the trans-
formation techniques developed in my projects is to translate from a model
with domain specific elements to a model that is suitable for other purposes,
like a graphical display for visualization or simulation. This improves the
level of understanding and communication considerably.

1.1 Problem statement

In order to introduce the more general problem statements, I will first de-
scribe the research projects and the problems encountered there.

1.1.1 The OMEGA project

The OMEGA2 project was a 3-year IST project, IST-2001-33522 OMEGA, in
which the CWI, my employer at the time, participated as a research partner.

2(http://www-omega.imag.fr/index.php)

4 CHAPTER 1. INTRODUCTION

The full title of the project was Correct Development of Real-Time Embedded
Systems. Besides research partners there were also several industrial partners
in the project, and it was sponsored by the European Commission. As a re-
sult of this profile the project aimed to achieve not only theoretical results but
also some results that have direct practical benefits, as shown by the official
aim of the project that is stated Definition of a development methodology in
UML for embedded and real-time systems based on formal techniques on the
project website. The research partners were teams from VERIMAG from
France, also acting as project coordinator, Christian-Albrechts-Universität
from Germany, University of Nijmegen from The Netherlands, OFFIS from
Germany, The Weismann Institute from Israel, and Centrum voor Wiskunde
en Informatica from The Netherlands. The industrial partners were EADS
SPACE Transportation from France, France Telecom R&D from France, Is-
raeli Aircraft Industries from Israel, and The National Aerospace Laboratory
from The Netherlands.

Project OMEGA achieved many results, in the form of publications but
also in conferences, workshops and standard contributions to UML 2.0. Be-
cause of the pluriformity of the OMEGA work, there were several work pack-
ages: Modeling, System Verification, Synthesis, Development Methodology,
and Applications. I started working in Modeling, but soon I directed most
of my efforts at System Verification. There were also a few contributions
for the Development Methodology, such as the coordination language UnCL
from chapter six.

In the OMEGA project the Unified Markup Language (UML) is used
for modeling, and as a basis for verification. However, UML itself does not
have a formal semantics, there is no mathematical definition of UML. This
is not an omission in UML but one of its strong points because it gives
more freedom in designing and using UML models, which would be harder if
UML, for instance, insisted rigidly on a certain model of execution. Instead
of incorporating a formal semantics, UML semantics is given by various UML
tools, as encountered in the project. There are tools for model building and
model checking and simulation.

An important OMEGA result is the development of the OMEGA Kernel
Model language. It is a subset of the UML language, capturing core UML
concepts that are important for the users in OMEGA. The Kernel Model
is used as a reference point for discussions and comparisons of the various
verification tools in the project. It incorporates UML extensions for real–time
software.

1.1. PROBLEM STATEMENT 5

The consistency problem

The OFFIS and VERIMAG teams worked on model–checking tools and the
university partners worked with PVS, a theorem prover. These different tools
all have different internal formats and unfortunately this resulted in a consis-
tency problem, which turned out to be a major challenge. The problem with
the tools that we used is that they have internal details that are not part of
the model, for instance the use of certain stacks and tables for namespace
administration purposes in the software. This leads to practical problems
with the consistency of the results acquired with the tools, because the inner
workings of the tools differ and it is not feasible to translate semantics from
one tool to the other, and to relate these back to the original model, in a
consistent way. The Kernel Model semantics is being mangled by adhering
to a specific internal tool format and this has damaging effects on the con-
sistency. It is very hard to explain the semantics of a model when using
another, specific, semantics.

The CWI team contributed by defining an abstract semantics for the
Kernel Model. An abstract semantics may function as some sort of bridge
between different more concrete semantics. In order to remedy some of the
consistency problems the CWI team decided to investigate the possibility
of a proof–of–concept tool that provides an implementation for the abstract
semantics of the OMEGA Kernel Model. The goal was to achieve a complete
separation between the event–based operations and the primitive operations.
An example of an event–base operation is a method call in OOP software, an
example of a primitive operation is the addition of numbers. We also wanted
to separate all operations from the scheduling in the executing environment.
Chapter 2 presents this work.

1.1.2 The Archimate project

During my stay at CWI I also put a lot of work in the ArchiMate3 project,
a research initiative that aims to provide concepts and techniques to sup-
port architects in the visualization and analysis of integrated architectures.
The Archimate consortium consists of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematica In-
stitute, Centrum voor Wiskunde en Informatica, Radboud University of Ni-
jmegen, and the Leiden Institute for Advanced Computer Science. One of

3(http://archimate.telin.nl)

6 CHAPTER 1. INTRODUCTION

the results of Archimate is a book publised by Springer with the title Enter-
prise Architectures at Work, and I am one of the authors of that book. The
Archimate language developed for enterprise architectures has been adopted
as a standard in the Netherlands, Belgium and Luxemburg.

During the project several enterprise architecture description languages
were developed, where each language was intended for different stakeholders.
A language intended to describe a complete architecture would be too large,
and the resulting model would be far too complex. With their own specific
language the stakeholders could create a model of an enterprise architec-
ture that would model the parts they were interested in, while abstracting
from other parts. Such languages need to capture properties of the system
in their bare essence without forcing the architect to include irrelevant de-
tail. The models created in Archimate with these languages were primarily
intended for visualisations and simulations, there was no deep investigation
into semantics like in the OMEGA project. The work in Archimate was more
one of language design than language analysis. An appropriate level of ab-
straction for the description languages was required, and during the project
the languages were subject to change, while searching for such an optimal
level in an iterative design process. To complicate matters, since there were
different stakeholders in the project with different interests and priorities,
their requirements led to very different languages, resulting in a consistency
problem similar to that in the OMEGA project. However, in Archimate the
consistency problem was of lesser importance, since a unified semantics was
not an important goal.

The adaptation problem

The Archimate project developed and used several tools, and the continual
rapid changes of the languages posed several problems for the tools that had
to work with them. Especially in the early stages there was an adaptation
problem and this was a bigger problem in Archimate than the consistency
problem. The tools had to be able to adapt themselves to new versions of
the model languages used, and they had to be able to do that quickly and
without too much effort during the course of the project. The model lan-
guages used in Archimate were XML[XML] languages, called vocabularies in
XML terminology, complete with XML schemas for the language definitions.
If vocabularies are often subject to change, it is best to concentrate on the
schemas when developing tools. This is the standard approach when devel-

1.1. PROBLEM STATEMENT 7

oping XML tools in such circumstances and it was generally followed by the
Archimate tools. The goal is to develop tools that take a schema as input,
creating a new tool as it where. This virtual new tool can then handle a
model in the schema’s language, making the original tool rather independent
of the specific language used. This approach is not easy and not straightfor-
ward, since development has to take place on the basis of a meta–language
rather than a final language that can be used immediately for testing pur-
poses. During development it would be hard to envision what the final tool
would be like, adding extra uncertainties to the development process.

As one of the participants in the Archimate project, the CWI team drew
attention to other XML work being done at CWI and suggested to investigate
if new developments there could be used in Archimate. It was at this point
that I joined Archimate to see how I could contribute with XML language
design and tool development, primarily focusing on the adaptation problem.
Part III of this thesis bundles the work in the Archimate project.

The practical problems encountered in the projects lead to the problem
statements of my work:

• How can the consistency of project results acquired with various dif-
ferent tools be improved upon? This consistency problem is first intro-
duced in section 1.1.1.

• How to develop tools for a project while the underlying modeling lan-
guages are still in flux, being designed and changed in an iterative
process? This adaptation problem is first introduced in section 1.1.2.

• How can project results be communicated well to other project stake-
holders, and how can the design of model languages help in this respect?

• How to create a common language of discourse that is still close to the
semantics modelled, again with the design of model languages in mind?

• How can modern techniques in software design and programming be
leveraged in research projects? Not as a theoretical research topic, but
to enhance the project practically, making use of the latest develop-
ments. For instance in the area of web-based systems, protocols, and
languages, what is hype and what is useful?

8 CHAPTER 1. INTRODUCTION

• As a specific example of a hyped technique: Can the definition of new
XML vocabularies, defining domain specific XML languages, help in a
scientific research context?

• What extra contributions to a typical research project, lasting three
or more years, are possible with a domain specific approach? Does it
open up new ways of getting results, does it bring new insights?

• How valuable are domain specific techniques? Are they only suitable
for simulations and demonstrations or can they also help to obtain more
formal results?

• Can domain specific tools be developed and used in the timespan of
only a few years as is usually the case in a typical research project?

1.2 Objectives

There are several objectives my work tries to achieve. First of all the practical
objectives of immediate use in the projects I was involved in: to solve the
consistency problem and the adaptation problems from section 1.1, or at least
ameliorate them. This is part of the more general objective to find answers
to all the other problem statements from that section.

Another, more long-term, objective is to bridge the gap between formal
methods and mathematics on the one hand, and software engineering practice
on the other hand. This should lead to a better theoretical basis for UML
and other models, and ultimately it should lead to software engineering based
on sound formal approaches.

Software engineering today roughly uses three types of models. With
increasing formality they are: programming language level models (API’s)
with written comments, standardized diagrams like UML, and formal spec-
ifications. This thesis advocates the use of the latter, but its use is still
very rare in industry. Reasons why formal specifications are not popular
are that many developers would have to be better trained mathematically,
and scaling to real–life size systems has not been accomplished often enough.
Also, communicating formal models is complicated since there is a problem
of choice. There are many formal methods to choose from, and each has its
own notations and techniques.

1.3. APPROACH 9

One objective of the use of domain specific techniques in my work is
to turn models that have a feeble formal basis into models that are better
suitable for formal methods. Even when this does not immediately lead to
a full–fledged formal specification, the results do bring much insight and
starting points to arrive at such an enhanced specification later.

But perhaps the most important objective of my work has to do with
the human aspect: the domain specific techniques help with understanding
results, with analysis, with discussions and with communication. Results
can be presented with concepts and definitions that have familiar names for
everyone involved. The importance of an excellent mutual understanding
and a high level of communication is paramount in research projects.

1.3 Approach

To explain the approach of my work, let me start with a summary of it.
The research starting point in this thesis is operational semantics, taken as
the foundation to understand systems. This is enhanced with term rewriting
techniques in order to describe behavior. In order to facilitate the term
rewriting, several pattern matching techniques have been developed that are
capable of working with modern data formats like XML[XML]. It turns out
that these techniques are very useful for dynamic aspects like simulations and
visualisations, where they have been succesfully applied, while the underlying
operational semantics, or at least the possibility to envision a clear route to
such, provides a good understanding of the whole. In what follows I shall
give more background to the research approach, using a lot more lines than
this summary, but I wanted to present the summary here first to guide the
reader with respect to the direction of the work.

A good approach in research based on other research, is to keep the good
things and remove the bad, and to add new good things. This seems obvious
and this is the approach chosen in my work. However, to use this approach,
one has to identify first what is good and what is bad. This may look trivial,
but in computer science, which is a relatively young field, good and bad are
not so well–established yet and it is hard to get many experts to agree on a
certain topic.

I should note here too that all research described here is conducted in
the context of projects. This influences the research approach because this
means that there have to be things like feasability studies and the research

10 CHAPTER 1. INTRODUCTION

always has to keep project goals in mind.
Part of my research approach was to look for promising new techniques

and how they could be applied to the project topics. If a technique looked
promising enough then I would design and develop a proof–of–concept tool. A
presentation to research partners in the project would then provide valuable
input from them about the usefulness and suitability. While not a research
question or goal in itself, it was very interesting to find out what others, with
a different background, had to say about new development techniques and
systems. Not every new technique or approach received a warm welcome,
even though it was very popular in the world of development specialists. My
domain specific approach was also received with healthy scepticism, but it be-
came readily accepted when application of it in the OMEGA and Archimate
projects addressed several research questions and fulfilled several research
goals.

In the research projects several different kinds of models were used. Many
of these models were UML models like class diagrams, message sequence
charts, and use cases. Usually, the complexity of a system is such that
many different models are needed to model it. This was also the case in the
projects, because the projects wanted to achieve practical results and several
real–world systems were under investigation. Each different model is used to
describe certain aspects of a system, where only parts of the system important
for a certain stakeholder are modeled, and other parts of the system are
ignored or modeled in much less detail. There is an analogy with blueprints
for a building since there we see different ones for the electricity system, the
plumbing and the concrete structure. Such modular design and separation
of concerns are all very nice indeed, but it is of paramount importance that
the different models are consistent. An ideal plumbing system with very
desirable properties is useless if the building is not prepared for it. How to
arrive at a consistent set of models is the consistency problem.

In order to solve the consistency problem, the UML community devotes
much research to meta-modeling techniques. The idea is to define a core
model and to be able to derive all other models from it and to be able to
integrate existing model types. Unfortunately this does not address a major
shortcoming of UML: it being unable to provide consistent analysis tools.

Most existing tools as used in the projects, are based on rather traditional
techniques and classic ways of dealing with classes and inheritance and other
object oriented paradigms (OOP). The tools themselves are written in tra-
ditional and well–known programming languages, like C++ and Java. They

1.3. APPROACH 11

are being designed with a rigid top–down design using mostly imperative
and OOP techniques. This ties them closely to the model of execution of the
programming language chosen and to the intricate details of the compilers
used, and these ties are generally incompatible with the chosen core model.
Their design and implementation makes the tools rather big and unwieldy to
use in novel circumstances, like the introduction of real–time aspects. During
my work I kept looking for modern techniques that could be of assistance
here. I was also looking for small tools rather than big ones, looking for a
combination of small tools that could be better than their sum. Another
aspect is the way that tools may exchange models. In order to be able to
exchange models an XML vocabulary has been designed by a consortium of
UML users, and this XML vocabulary was called XMI. XMI can be seen as a
common collection of structures and names and definitions that the various
UML tool vendors agreed upon. This leads to the idea of also using it as a
basis for analysis techniques and even for formalisations of behavior, since a
recurring problem in these is often the establishment of a common language
of discourse and good set of definitions that is commonly understood. XMI
is very complete but because of this unfortunately also very complex, and
less complex solutions were needed for analysis and for dealing with behav-
ior. In the projects I kept looking around for new developments to find such
solutions.

With respect to useful specific “latest” computer science techniques, I
have used a dynamic programming language to be able to provide an execut-
ing environment for the various models, and I have chosen data–centric tech-
niques to arrive at open and transparant systems with interchangeable data.
The choice of a popular modern dynamic programming language proved to
work out well, since it was capable of providing more flexible solutions in a
shorter time span than would have been possible with traditional languages
like C++ and Java. It also provided us with very up–to–date libraries for
working with XML and other structured data, where we would have had
to wait a significant time period, like months, for similar C++ and Java
libraries.

I would like to note here, perhaps again, the importance of taking the
existing original structured data, such as XMI, as starting point. This in-
creases the level of trust and understanding in the new, smaller, more formal,
model. It also makes validation easier and it can better be verified how the
new model relates to the old situation. It is important that familiar names re-
appear, familiar structures re-appear, and in the case of an executing model

12 CHAPTER 1. INTRODUCTION

the same familiar execution steps can be recognized. In an ideal situation
one should start with formal specifications, and be free in the choice of names
and concepts, but in reality this is not always possible. For instance, Project
Management may have decided to use certain UML tools, or to use certain
existing software libraries, for reasons that are not always disclosed and any-
way beyond the scope of this discussion. Such circumstances however have
to be accepted as part of project reality, and I have encountered them in
every single project I have been involved in during my twenty–five years in
ICT.

While the UML community spends much effort on meta–modeling tech-
niques, my approach concentrates on the integration of models by trying to
find similarities while avoiding as much as possible having to put a tree hi-
erarchy on the models. Complementary to the meta–modeling, which is a
top–down approach, the domain specific techniques give a bottom–up ap-
proach to arrive at an adequate model core. Or, if a single core can not be
achieved, the approach still provides methods to relate models to each other,
based on an improved mutual understanding of domain specific notions and
concepts.

1.4 Working with XML and other structured

data

Models, formulas and other data are nowadays often expressed in XML
[XML]. It is believed that next–generation programming systems will have
computer programs stored as XML or XML–like documents, to increase in-
teroperability, the goal being that data and meta–data can be represented
and processed uniformly [Wil05]. XML is seeing an continually increasing
use as the format of choice for modeling language, and it is now the most
popular choice. A large part of the thesis is about using XML, and about
an XML extension called the Rule Markup Language (RML), described in
Chapter 3, in particular. It is shown how to define XML languages, with the
emphasis on XML for formal methods, and approaches and methodologies
are discussed. With RML it is possible to define rule–based transformations
of XML in XML itself, and more importantly, this can be defined in the
XML vocabulary for the topic at hand itself. RML uses the general technique
of pattern–matching and variable–binding, known from the world of regular

1.5. STRUCTURE OF THE THESIS 13

expression tools like Perl, where in the case of RML the patterns match
XML–parts. These patterns are also expressed with reuse of the domain
specific XML vocabulary of choice. Variable bindings with domain specific
data can be stored and used at a later time to modify or create other data.
An important result in my work is that the freedom given by this approach
makes it possible to study and demonstrate formal methods and their ap-
plications to models expressed in XML without any restrictions due to the
design or implementation of the underlying tools such as modelcheckers and
theorem provers.

Besides RML I introduced two other XML techniques to the projects I was
involved in: AML [Jaca], see section 8.3, a simpler representation for XML
for presentation purposes that is also used to be able to create XML with a
simple text-editor, and OOXML, an object-oriented databinding for XML in
a high–level scripting language. Like RML, AML and OOXML proved to be
very useful to get various work with XML done in a timely fashion in typical
research projects.

The pattern–matching and variable–binding approach taken for the XML
case with RML can also be applied to other structured data, like text–based
notations for formulas. For this purpose ATL has been developed, a wildcard-
matching technique for structured text with an as-simple-as-possible design
that has a much lower learning curve than typical classical regular expression
libraries like those found in Perl, making it applicable without having to
learn a full programming language. As a practical example of ATL, a web
application is developed that assists with proofs using the tableau method,
and a non-trivial proof is derived for the OMEGA project.

1.5 Structure of the thesis

Because of the nature of my work in the projects, the following chapters in
this thesis are a number of publications, where every paper forms a chapter
by itself. So far the presentation in this thesis has been from abstract to more
concrete, but in this section I will revert to a more general bird’s eye view of
the publications, relating them to each other and to the problem statements,
the objectives, and the chosen approach.

There are several scientifically refereed publications, they are:

• Chapter 2. RML and its application to UML. Author: Joost Jacob.
Published by Springer in the ISOLA conference proceedings in the

14 CHAPTER 1. INTRODUCTION

series Lecture Notes in Computer Science, volume 4313, year 2006.
[Jac04a]

• Chapter 4. The OMEGA Component Model. Author: Joost Jacob.
Published by Springer in the journal Electronic Notes in Theoretical
Computer Science, volume 101, year 2004, pages 25-49. [Jac04b]

• Chapter 8. Enterprise Architecture Analysis with XML. Authors: Frank
de Boer, Marcello Bonsangue, Joost Jacob, Andries Stam, Leendert van
der Torre. Publised by the IEEE Computer Society in the 2005 HICSS
conference proceedings. [dBBJ+05]

• Chapter 9. A Logical Viewpoint on Architectures. Authors: Frank de
Boer, Marcello Bonsangue, Joost Jacob, Andries Stam, Leendert van
der Torre. Publised by the IEEE Computer Society in the 2004 EDOC
conference proceedings. [dBBJ+04]

• Chapter 10. Using XML Transformation for Enterprise Architecture.
Authors: Frank de Boer, Marcello Bonsangue, Joost Jacob, Andries
Stam, Leendert van der Torre. Publised by Springer in the ISOLA
conference proceedings in the series Lecture Notes in Computer Science,
volume 4313, year 2006. [SJdB+04]

The following chapters are grouped into three parts. Part I introduces
RML and its tool support, and contains a paper with results in the OMEGA
project. Part II is about work on component models in OMEGA and in
distributed environments and introduces another pattern matching technique
similar to RML as it was used in OMEGA. Part III is also about models
and analysis, but here it is enterprise architectures that are modeled in the
Archimate project and RML returns as it is used for their analysis.

Part I is named RML, a tool for model analysis. In chapter 2 it
starts with a paper titled A Rule Markup Language and Its Application to
UML[Jac04a]. In this paper RML is introduced and an application to UML
models is exhibited. This was my first example where a domain specific
technique was succesfully applied. Chapters 2 and 3 contain the main intro-
duction to RML. In the OMEGA work described in chapter 2 we were able
to demonstrate that models could indeed be executed based on the abstract
semantics we designed. This was important since the abstract semantics of
the OMEGA Kernel Model helped to relate the other results in the project

1.5. STRUCTURE OF THE THESIS 15

to each other. Also in Part I, in chapter 3, is the RML Tutorial, with ex-
amples of all kinds of XML transformations and how to perform these with
RML. Part I lays a foundation for the rest of the thesis. RML was used in
the majority of my work, and the pattern matching and term–rewriting ideas
from RML did play an important role in the rest of it.

Part II has the title Component Models and Analysis and consists
of four chapters, chapters 4 to 7. Chapter 4 is a paper that reflects the CWI
contribution to the OMEGA project with respect to component modeling
in UML. Several ideas from the paper can be found in UML standards that
appeared later, starting with UML 2.0, for instance the way to model com-
ponent ports. In Chapter 5 is an OMEGA publication called Component
Coordination in UML. It has soms overlap with Chapter 4 because it also
uses the OMEGA modeling, but it is focusing on coordination of compo-
nents. Chapter 6 is a publication from the Software Engineering department
of CWI, SEN report E0511 from 2005, titled The unified coordination lan-
guage UnCL. It is a fusion of my work in OMEGA on components and the
work of my colleague Juan Guillen Scholten at CWI on distributed channels,
resulting in a coordination language. Chapter 7 is a CWI publication titled
ATL Applied to the Tableau Method. This paper shows a novel technique
that was used in OMEGA to aid in the proof of a software property. The
software was modeled with the OMEGA kernel model from chapter 4 but
instead of transforming model data in XML, here we wanted to transform
formulas with statements about the models. The ATL approach resulted in
additional insights, enhancing earlier proofs that were performed in OMEGA
using more conventional methods. Part II shows a progression from static
models to more dynamic models and their analysis, with a few digressions in
order to explain the techniques used.

Part III consists of three papers on enterprise architectures and is titled
Modeling and Analysing Architectures. Chapters 8 and 9 are papers
with the titles Enterprise Architecture Analysis with XML [dBBJ+05] and A
Logical Viewpoint on Architectures [dBBJ+04]. Chapter 10 is the paper titled
Using XML Transformation for Enterprise Architecture [SJdB+04]. With
respect to my contribution to these papers, the results build on the experience
gained with models and analysis in part I and part II, but since they are all
papers from the Archimate project and their common theme is enterprise
architectures, these papers are presented last and bundled together.

My contribution to Archimate consists of XML language design for busi-
ness processes and their visualizations and simulations and especially the

16 CHAPTER 1. INTRODUCTION

RML tool for performing transformations on models in XML. Tools for vi-
sualization or simulation use RML for the necessary XML transformations.
With RML it becomes practically feasible to tune XML languages to the
desired goals in an iterative process, while still using the same tool for visu-
alization and the like, without having to recompile or rebuild the tool. The
data–centric nature of the RML tools is helpful in this respect: as much logic
and behavior as possible is stated in rules and scripts, removing the need to
program them in a much more lower level programming language. Language
changes are easy to incorporate in the RML rules, since those rules are as
close to the language itself as we could design. RML makes it readily possible
to transform systems described in one language to another, to analyse and
query systems, and RML also provides an executable framework wherein the
dynamic behavior of systems defined in the languages can be quickly tested
and analysed, before committing too much resources to the development of
fully optimized and specialized tools. The RML contribution to the Archi-
mate project is also described by me in chapter 10 of the Springer book
Enterprise Architecture at Work [ea05].

Since several chapters contain complete papers as published, some chapter
contents have a little overlap. This overlap is not removed but preserved in
order to support the reader when reading a chapter by itself, without having
to direct the reader to other parts of the thesis, for instance for a short
introduction of RML.

1.6 Conclusion

The most successful domain specific approaches in the research projects I
have contributed to were the development of new XML vocabularies for mod-
eling and analysis purposes, and the RML and AML tools for handling the
new XML that was created with the new vocabularies.

Developing new XML vocabularies has been beneficial in both the OMEGA
and Archimate projects. The new XML vocabularies formed a basis for tool
development and also for discussions of various data–related topics, both
static and dynamically. AML made it possible to use the new XML vo-
cabulary in such discussions in a readable form. For instance, discussions
about the flow of events in the OMEGA kernel model could be illuminated

1.6. CONCLUSION 17

with simple classes and objects represented in AML and they could even be
dynamically executed with a tool for demonstration purposes. The domain
specific techniques did help to achieve a much higher level of communication
and understanding between the various project members.

Looking back, especially the development of RML was very helpful in
producing results in the OMEGA and Archimate projects. The existing
XML tools that were in use in industry at the time were too cumbersome
and producing tools with them would take too long in a research project
setting. However, today RML has not attained a top–rate status when it
comes to XML tools. Reasons are that the CWI research institution where it
was developed is not a commercial software house, meaning it has no incentive
nor facilities to produce industry–strength competitive software, and it does
not have a marketing department that can draw attention to its products.
There is also the fact that the main RML virtues are its simplicity and
minimalism, and those virtues do not have much marketing value in today’s
ICT world. Anyway, it is not the tool itself, but its underlying principle of
using a domain specific approach, that I consider an important result of my
work.

Domain specific languages and models and methods deserve attention
from the scientific world. They are popular and they are found everywhere.
As an example, consider the HL7 [SRMM00] [7] language that is used in
the healthcare domain. The aim is to support hospital workflows through
electronic messages exchange between administrative, logistical, financial as
well as clinical processes (for instance to send patient data to a radiology
department). While it initially used a proprietary (non-XML) syntax, the
most recent version uses only XML as a syntax for messages.

Almost all hospitals in The Netherlands use HL7 messages and documents
for exchanging medical information. A large number of tools are available
for developers, implementers and users of HL7, mostly concentrating on sim-
ulation, editing, viewing and validating the XML specific vocabulary of HL7.
For these tools, either their formal basis seems feeble, or, as in the case of
commercial products, their formal basis is undisclosed. Most of the tools
that are available commercially to work with HL7 are complex, often not
satisfactory, cumbersome and require users to follow courses to even learn to
work with them.

In my CWI research projects I concluded that several small tools may to-
gether produce a better result than one large system, on the condition that
their results are consistent. But this requires more time spent on design and

18 CHAPTER 1. INTRODUCTION

discussions, and a less strict product–manager–like attitude. In my opin-
ion, theoretical and hard–core computer scientist are definitely able to give
a valuable contribution to the use of various domain specific languages. But
they are sometimes not invited when I feel they should be. As a result, sev-
eral real–world domain specific languages have a basis that is not as formal
as would be desirable. And the other way around, computer scientists are
sometimes not interested in a domain specific language project, being afraid
of being dragged into tool development with little scientific value. This situ-
ation is unfortunate for both sides, and I feel there are many improvements
possible, for instance the use of domain specific techniques with a design like
I used for RML.

Why do projects spend so much time and effort to define domain specific
languages instead of first defining a formal specification and then building a
language on top of that? With a formal specification in hand, designing a
domain specific language is much more robust and also simpler, even when
the foqmal specification is only halfway ready. There are several reasons.
Unfamiliarity of managers, directors, and other decision makers with formal
methods is one. Scarcity of mathematically schooled developers is another.
Yet another reason is that there is often an earlier body of work, for instance
an existing implementation of part of the desired functionality, and manage-
ment decides that it is cost–efficient and wise to reuse it. All such reasons
obstruct a good design of a domain specific language. This is unfortunate,
since it is my experience that especially in the early stages of a project, re-
sults are obtained faster when working with a well–designed domain specific
language for the data rather than by taking the traditional route of defining
the data in a full fledged programming language, for instance an object ori-
ented class library in Java or a complex datastructure in C. And still, this is
what happens often when the decision is made to reuse existing software or
an existing tool, thereby making a formal basis problematical.

Modifications to a data design are easier when it is more separated from
the tool implementation, and such modifications are frequently needed in the
early stages of a project. A modification like changing a naming convention
in the data may seem unsignificant but it is not, because the data language
serves as a language of discourse in project discussions. A new naming con-
vention for a group of data elements is much simpler to implement within
a domain specific language than in an object oriented class library, and this
is just another example of why it is advantageous to use a domain specific
approach.

1.6. CONCLUSION 19

Most research questions from chapter one, the Introduction, have been
anwered in the publications in the later chapters. It has been found possible
to introduce new techniques in scientific research projects in a beneficial way.
Mainly to produce tools for visualisations and simulations, but also contribut-
ing in a more fundamental way and resulting in proof–of–concept tools. On
several occasions the tool developement led to fruitful discussions and new
ideas. Usage of XML and the design of new XML vocabularies proved to be
valuable. The development of new small tools to work with the XML also
proved to be worthwhile, working on the XML itself or for instance to trans-
late from XML to PVS. It was sometimes possible to combine a set of small
tools resulting in a whole that was better than their sum. This is reminding
us of the well–known ways a combination of tools in the UNIX world would
be used to produce new tools, an art that has become less popular in these
days of big computer languages like Java and C# and their massive devel-
opment environments. Making use of new dynamic programming languages
and data–centric techniques, we were able to develop such new small tools
within the timespan of the projects, and here I feel that it was important that
there were not too much restrictions on the implementation. It was impor-
tant that the programmer was free in the choice of a programming language
and in the design of the tools. Programmers need freedom to be creative and
productive, and it seems that the better the programmer, the more freedom
is necessary. On first sight, this principle advises against the use of formal
specifications, but I believe this is not the case. If the formal specification
is able to stay close to the world of the programmer, using concepts and
definitions the programmer is familiar with, then the insights acquired from
the mathematics are a joy to work with. The development of domain specific
techniques and their application helps to bring formal methods closer to the
many existing and popular domain specific languages that are already being
used on a large scale but lack a real formal basis.

Finding new techniques, determining their usefulness, and introducing
them to projects, remains a considerable task. Some new techniques proved
to be helpful, like the XML modeling that could quickly yield new tools,
while other new techniques turned out to be mostly hype and they could not
withstand scrutiny by scientific minds.

20 CHAPTER 1. INTRODUCTION

Part I

RML, a tool for model analysis

21

Chapter 2

RML and its application to
UML

Author: Joost Jacob

2.1 Introduction

The work in this paper was initiated and motivated by work in the IST
project OMEGA (IST-2001-33522, [OME]) sponsored by the European Com-
mission. The main goal of OMEGA is the correct development of real-time
embedded systems in the Unified Modeling Language [SWB03]. This goal in-
volves the integration of formal methods based on model-checking techniques
[BDJ+03] and deductive verification using PVS [ORR+96].

The eXtensible Markup Language XML (XML [XML]) is used to encode
the static structure of UML models in OMEGA. The XML encoding is gen-
erated by Computer Aided Software Engineering (CASE) tools; it captures
classes, interfaces, associations, state machines, and other software engineer-
ing concepts. The OMEGA tools for model-checking and deductive verifica-
tion are based on a particular implementation of the semantics of the UML
models in a tool-specific format ([BGM01], [DJPV03], [ORR+96]). This com-
plicates interoperability of such tools. In order to ensure that these different
implementations are consistent, a formal semantics of UML models is de-
veloped in OMEGA in the mathematical formalism of transition systems

23

24 CHAPTER 2. RML

[Plo81]. However, it still requires considerable effort to ensure that these
different implementations are indeed compatible with the abstract mathe-
matical semantics. Some of the motivation for RML came in helping with
this effort. Since the models produced by the CASE tools are encoded in
XML it was a natural choice to look for an XML transformation technique
instead of encoding a model and semantics in a special-purpose format. Sim-
ulating and analyzing in XML adds the interoperability benefit of XML and
the many available XML tools can be used on the results.

In this paper a general-purpose method for XML transformations is intro-
duced and its application to the specification and execution of UML models.
The underlying idea of this method is to specify XML transformations by
means of rules which are formulated in a problem domain XML vocabulary of
choice: the rules consist of a mix of XML from the problem domain and the
Rule Markup Language (RML, Sect. 2.3). The input and output of a trans-
formation are pure problem domain XML; RML is only used to help to define
transformation rules. The RML approach re-uses the problem domain XML
as much as possible, with a “programming by example” technique. With
this rule–based approach it becomes possible to define transformations that
are very hard to do when using for example XSLT [XSL], the official W3C
[W3C] Recommendation for XML transformations, as discussed in Section
2.2.1.

The RML tools are available as platform-independent command–line tools
so they can easily be used together with other tools that have XML as input
and output.

RML is not trying to solve harder or bigger transformations than other
approaches. Instead of concentrating on speed or power, RML is designed
to be something that is very usable and interoperable. Experience in several
projects has shown that programmers can learn to use RML in only a few
hours with the tutorial in Chapter 3, and even non-programmers put RML
to good use. With respect to the RML application to UML models, only
knowledge of XML and RML suffices to be able to define and execute their
semantics.

As such, RML provides a promising basis for the further development of
XML-based debugging and analysis tools for UML models.

XML itself is not intended for human consumption, but we have developed
the ASCII Markup Language (AML) representation that helps considerably
in this respect. The example model in this paper is presented in AML because
AML is more readable than XML, but otherwise equivalent for this purpose.

2.2. XML AND XML TRANSFORMATIONS 25

More details about AML and an AML to XML translation, and back, are
available at [Jaca].

Plan of the paper The next section starts with describing XML. Section
2.3 presents RML as a new approach to solve XML transformation problems
and describes how to use RML for defining transformation rules. Section
2.4 shows examples of applications of RML, the main example being an
application that results in executable UML models. The conclusion and a
discussion of related work is in Sect. 2.5.

2.2 XML and XML transformations

With XML, data can be annotated and structured hierarchically. There are
several ways to do this and there is no single best way under all circumstances:
designing good XML vocabularies is still an art. For instance, suppose you
want to describe a family in XML: a grandmother named Beth, a father
named John, a mother name Lucy and son named Bill. One way to do this
is:

<family>

<grandma name="Beth" />

<father name="John" />

<mother name="Lucy" />

<son name="Bill" />

</family>

The example shows five different XML elements: family, grandma, fat-
her, mother, and son. The XML hierarchy is a tree, with nodes called XML
elements, and there has to be one and only one XML element that is the root
of the tree, in the example the family element. An XML element consists
of its name, optional attributes and an ordered list of subelements, where a
subelement can also be a string. Attributes of XML elements are mappings
from keys to values, where the keys are text strings and the values are text
strings too.

A string enclosed with angle brackets is called a tag. A minimum tag only
contains the element name, like the <family> in the example. The element
name is not the only thing that can appear between the angle brackets, there
can also be attributes like name="John" in the example. Attributes consist
of the attribute name, an = and the attribute value (a text string) enclosed
in double quotes.

26 CHAPTER 2. RML

An XML element that does not contain other elements, a so called empty
element, has its tag closed by an /, as in <X />, where X is the element name.
An XML element that has children consists of two tags: one for the element
name (and its attributes), and one for closing the element after its children.
In the example the family element is the only element with children. There
are several rules that define if XML is well formed, for instance every opening
tag <X> has to be closed by a closing tag </X>, and these rules can be checked
by tools.

But the XML in the example does not reflect the tree like structure of
the family. Another way is:

<family>

<female>

<name>Beth</name>

<male marriedTo="Lucy">

<name>John</name>

<male>

<name>Bill</name>

</male>

</male>

</female>

<female marriedTo="John">

<name>Lucy</name>

</female>

</family>

Here Beth is not the value of an attribute but it is the text content of a
name element. The structure of this example may better indicate that Beth
is the mother of John, but the XML is more verbose than the first example.

An XML vocabulary can be formally defined in a DTD (see the XML
Specification in [XML]) or an XML Schema [XMS], both W3C Recommen-
dations. There is also an ISO standard for defining vocabularies called Re-
laxNG [Cla01]. The definition can express that for instance every female in
the example must have a name child and can have optional female or male

childs. With such a definition, called schema, there are XML tools available
that can validate if XML is conforming to a schema. Note that validating
is different from checking well-formedness. It is possible to refer to the def-
inition of the vocabulary used from inside XML, and there are many more
XML concepts that can not be discussed here due to lack of space, for which
I refer to the XML Specification [XML].

A schema only defines syntax, the meaning of the XML constructs defined
has to be defined somewhere else. The W3C is working on standard ways
for doing this (viz. the Semantic Web project) but currently this is usually

2.2. XML AND XML TRANSFORMATIONS 27

done in plain text documents. The family from the example has a tree
like structure so in this respect it is an easy example to describe in XML
that also has a tree structure. But a tree is not the only kind of structure
that can be modeled conceptually with a schema. Other structures can also
be modeled in XML because the XML elements can refer to each other by
means of cross-references with identifiers, as in the second example with the
marriedTo attributes.

A lot of XML vocabularies have been designed in recent years, for all kinds
of problem domains. Often these vocabularies are W3C Recommendations,
like RDF, XSLT and MathML [Mat03]; another example is XMI [XMI] as
developed for UML [SWB03] by the Object Management Group [OMG]. The
OMEGA project works with XMI and other XML vocabularies for software.

In general, when having a structure stated in XML data, a dynamics of the
structure can be captured by rules for transforming the XML data. The rules
that define XML transformations can be stated in XML itself too, but the
problem domain XML vocabulary will usually not be rich enough to be able
to state a rule. For this it has to be combined with XML that is suitable for
expressing transformation rules, containing for example constructs to point
out what to replace with what, and where. Section 2.2.1 shows how an
XML vocabulary that is different from the problem domain vocabulary can
be used, which is the current way of doing transformations in industry, and
Sect. 2.3 shows the new RML approach that is based on extension.

2.2.1 XSLT

Extensible Stylesheet Language Transformations (XSLT, [XSL]) is a W3C
recommendation for XML transformations. It is designed primarily for the
kinds of transformations that have to do with visual presentation of XML
data, hence the style element in the name. A popular use of XSLT is to
transform a dull XHTML page to a colorful and stylized one. Or to generate
visualizations from XML data. However, nowadays XSLT is being used more
and more for general purpose XML transformations, from XML to XML, but
also from XML to text. In the OMEGA project we have used XSLT to do
transformations of software models (UML models stated in XMI [XMI]) re-
sulting in models encoded in other XML vocabularies and also resulting in
textual syntax like PVS [ORR+96]. The static structure of the models was
transformed. But when we wanted to capture the semantics of execution of
these software models we found that XSLT is not very usable for the partic-

28 CHAPTER 2. RML

ular kind of transformations that describe dynamics. These transformations
use a match pattern that is distributed over several parts of an XML tree,
whereas the matching technique used in XSLT is designed to match in a
linear way, from root to target node in a tree. This linear matching is not
suitable for matching of a pattern with several branches.

For instance, matching duplicate children of an element is very hard with
XSLT. The MathML expression

<math>

<apply>

<and />

<ci>p</ci>

<ci>p</ci>

<ci>q</ci>

</apply>

</math>

meaning p ∧ p ∧ q in propositional logic, is logically equivalent to
<math>

<apply>

<and />

<ci>p</ci>

<ci>q</ci>

</apply>

</math>

meaning p ∧ q. In the MathML the <ci> element is used for pointing out
constant identifiers and the apply element is used for building up mathe-
matical expressions. Suppose we would like to transform all p ∧ p ∧ q into
p∧ q, where p and q can be anything but two p’s in an expression are equal.
To perform such a transformation a tool has to look for a pattern with
two identical children and then remove one of the children. Since XSLT
is a Turing–complete functional programming language, it is possible to do
this transformation, but XSLT templates for these kinds of transformations
are extremely long and complex. XSLT simply was not designed for these
kinds of transformations; the designers did not feel much need for them in
the webwide world of HTML and webpublishing. The MathML+RML rule
for removing duplicate children is simple, it is one of the examples in the
RML tutorial in Chapter 3.

2.3 RML

This section first introduces the idea of XML wildcard elements. After that
the RML syntax is introduced in Sect. 2.3.2, before Section 2.3.3 describes
the RML tools.

2.3. RML 29

2.3.1 XML Wildcard Elements

The transformation problem as shown in Sect. 2.2.1 reminds one of the
use of wildcards for solving similar problems in text string matching. The
idea of using an XML version of wildcards is a core idea of our method and
of this paper. The idea is to define XML notation for an XML version of
constructs like the * and ? and + and others in text–based wildcards as in
Perl regular expressions, and then using these constructs for matching and
variable binding. These constructs are called XML wildcard elements. They
consist of complete XML elements and attributes as can be formally defined
with a schema, but they also consist of extensions for denoting wildcard
variables inside a problem domain XML. These variables are just like the
variables as they are used in the various languages available for text–based
wildcard matching, for instance Perl regular expressions. The variables have
a name, and they are given a value when a match succeeds. This value can
then be used in the output of a transformation rule.

2.3.2 The RML syntax

RML rules are stated in XML. The basis of a rule is that in the antecedent
of the rule the input is matched, and then whatever matched is replaced by
the consequent of the rule.

RML was designed to be mixed with any problem domain XML, to be
able to define transformations while re-using the problem domain XML as
much as possible. RML is a mixture of XML elements, conventions for XML-
attribute names, and conventions for attribute values, to mix in with XML
from the problem domain vocabulary at hand. RML introduces some new
XML elements and uses an element from XHTML. From XHTML only the
div element is used and it is used to distinguish a rule, the antecedent of a
rule, and the consequence of a rule by means of the class attribute of the
div tag. We use the div tag from XHTML for reasons that have to do with
a presentation in browsers.

The Table in Fig. 2.1 lists all the current RML constructs with a short
explanation of their usage in the last column. These have been found to be
sufficient for all transformations encountered so far in practice in the projects
where RML is being used. An X in the XML tags can be replaced by a string
of choice. The position that is sometimes mentioned in the explanations is the
position in the sequential list that results from a root-left-right tree traversal

30 CHAPTER 2. RML

of the XML tree for the rule. It corresponds with how people in the western
world reading an XML document encounter elements: top-down and left to
right. A position in the rule tree corresponds with zero or more positions in
the input tree, just like the * in the wildcard expression a*b corresponds with
c on input acb and with cd on input acdb and with nothing on input ab.
With the constructs in the Table in Fig. 2.1 the user can define variables for
element names, attribute names, attribute values, whole elements (with their
children) and lists of elements. An XML+RML version of the a*b wildcard
pattern is

<a /> <rml-list name="Star" />

and this can be used as part of the antecedent of an RML rule that uses
the contents of the Star variable in the consequent of the rule. The a and
b elements are from some XML vocabulary, the rml-list element is from
RML and described in the Table in Fig. 2.1. Section 2.4.1 shows a small
but complete RML rule. Examples of input and rules take up much space
and although we would have preferred to present more rule examples here
now, there is simply not enough space to do that and we strongly invite
the reader to look at the examples in the RML tutorial in Chapter 3 where
there are examples for element name renaming, element replacing, removing
duplicates, copying, attribute copying, adding hierarchy and many more.

It is easy to think of more useful elements for RML than in the Table,
but not everything imaginable is implemented because a design goal of RML
is to keep it as simple and elegant as possible. Only constructs that have
proven themselves useful in practice are added in the current version.

The execution of a rule consists of binding variables in the matching
process, and then using these variables to produce the output. Variable
binding in RML happens in the order of a root-left-right traversal of the
input XML tree. If an input XML tree contains more than one match for
a variable then only the first match is used for a transformation. The part
of the input that matches the rule antecedent is replaced by the consequent
of the rule. If a rule does not match then the unchanged input is returned
as output. If a rule matches input in more than one place and you want to
transform all matches then you will have to repeat applying the rule on the
input until the output is stable. There is a special RML tool called dorules

for this purpose.

2.3. RML 31

2.3.3 The RML tools and libraries

Open-source tools and libraries can be downloaded and also the RML tutorial
in Chapter 3 is available online. The tutorial contains information about
installing and running the tool, and there is also more technical information
on the website, for instance about a matching algorithm. The tools and
libraries have been successfully used under Windows, Linux, Solaris, and
Apple.

A typical usage pattern of the applyrule command–line tool is
$ python applyrule.py --rule myrule.xml --input myinput.xml that
will print the result to console, or it can be redirected to a file.

The rule and the input are parameterized, not only as command–line pa-
rameters but also in the internal applyrule function; this makes the tool
program also usable as a library and thus suitable for example for program-
ming a simulation engine. There is an interface to additional hook functions
so tools can be extended, for instance for programming new kinds of con-
straints on the matching. However, the set of RML constructs in the current
version has proven to be sufficient for various XML transformation work, so
adding functions via the hooks will normally not be necessary. An example
of when it is desirable to add functions is when a tool designer for example
wants to add functionality that does calculations on floating point values
in the XML. The RML tools are written in Python [vR95] and the Python
runtime can use the fast rxp parser written in, and compiled from, C, so the
XML parsing, often the performance bottleneck in such tools, is as fast and
efficient as anything in the industry. If the rxp module is not installed with
your Python version then RML automatically uses another XML parser on
your system.

The RML tutorial in Chapter 3 also describes a very simple XML vo-
cabulary for defining RML recipes, called Recipe RML (RRML), and a tool
called dorecipe for executing recipe–based transformations. RRML is used
to define sequences of transformations and has proven itself useful in alle-
viating the need for writing shell scripts, also called batch files, containing
sequences of calls to the RML tools.

32 CHAPTER 2. RML

2.4 RML examples

The main example presented in this paper is the executable specification of
the semantics of UML models in XML and this is the topic of Section 2.4.1.
Section 2.4.2 briefly mentions other projects wherein RML is applied.

2.4.1 Executable UML models

The application of RML to the semantics of UML models and its resulting
execution platform is based on the separation of concerns betweeen coor-
dination/communication and computation. This exploits the distinction in
UML between so-called triggered and primitive operations. The behavior of
classes is specified in UML statemachines with states and transitions, and
every transition can have a trigger, guard, and action. A transition does not
need to have all three, it may for example have only an action or no trigger
or no guard. Triggered operations are associated with events: if an object
receives an event that is a trigger for a transition, and the object is in the
right location for the transition, and the guard for that transition evaluates
to True, then the action that is specified in the transition is executed. The
triggered operations can be synchronous (the caller blocks until an answer is
returned) or asynchronous. Events can be stored in event queues, and the
queues can be implemented in several ways (FIFO, LIFO, random choice,
. . .). There are also primitive operations: they correspond to statements in
a programming language, without event association or interaction with an
event mechanism. The primitive operations are concerned with computa-
tions, i.e. data-transformations, the triggered operations instead are primar-
ily used for coordination and communication. More details can be found in
[DJPV03].

This distinction between triggered and primitive operations and the cor-
responding separation of concerns between coordination/communicaion and
computation is reflected in the RML specification and execution of UML
models which delegates (or defers) the specification of the semantics and the
execution of primitive operations to the underlying programming language
of choice. This delegation is not trivial, because the result of primitive oper-
ations has to be reflected in the values of the object attributes in the XML,
but the details of the delegation mechanism can not be given here due to a
lack of space.

In our example the problem domain is UML and we will use a new XML

2.4. RML EXAMPLES 33

vocabulary that is designed for readability and elegance. This language
is called km, for kernel model; a RelaxNG [Cla01] schema is at http://-
homepages.cwi.nl/˜jacob/km/km.rnc.

The online example is a prime sieve, it was chosen because it shows all
the different kinds of transitions and it has dynamic object creation. It
generates objects of class Sieve with an attribute p that will contain a prime
number. But the user can edit the example online or replace it with his or
her own example, if the implementation language for actions and guards is
the Python programming language. A similar application can be written
for the Java language, and UML models from CASE tools can be translated
automatically to the km language. The example can be executed online in an
interactive webapplication on the internet at [Jacd]. In the km application
the user fills in a form with an object identity and a transition identity, and
pressing a button sends the form to the webapplication that performs the
corresponding transition. Instead of a user filling in a form, a program can
be written that calls the website and fills in the form, thus automating the
tool. We did so, but for this paper we consider a discussion of the automated
version out of scope.

The km language defines XML for class diagrams and object diagrams.
The classes consist of attribute names and a statemachine definition. The
statemachines have states and transitions, where the transitions have a guard,
trigger and action like usual in UML. The objects in the object diagram have
attributes with values and an event queue that will store events sent to the
object. An example of an object is

objectdiagram

obj class=Sieve id=2 location=start target=None

attr name=p value=None

attr name=z value=None

attr name=itsSieve value=None

queue

op name=e

param value=2

where the object is of type Sieve, finds itself in the start state of the
statemachine of the Sieve class, and has an eventqueue with one event in it
with name e and event parameter 2.

A detailed description of the km language and its design would take too
much space here, but the interested reader who knows UML will have no
trouble recognizing the UML constructs in the models since the km language
was designed for readability.

34 CHAPTER 2. RML

In the km language the event semantics is modelled, but the so-called
primitive operations that change attribute values are deferred to a program-
ming language. So the models will have event queues associated with objects
and executing a model will for example show events being added to queues,
but operations that are not involved with events but only perform calcula-
tions are stored in the model as strings from the programming language of
choice. Such an operation can be seen in the example as

transition id=t3

source state=state_3

target state=state_1

action

implementation

"""x = x + 1"""

where we see a transition in the statemachine with an action, the statement
executed by the programming language (Python in this case) is x = x + 1.
Transitions can also have a guard with an expression in a programming lan-
guage, also encoded as text content of an implementation element.

We can now show a simple example RML rule.

<div class="rule" name="set location">

<div class="antecedent">

<obj id="rml-IDOBJ" location="rml-L" target="rml-T" rml-others="rml-O" >

<rml-list name="ObjChildren"/>

</obj>

</div>

<div class="consequence">

<obj id="rml-IDOBJ" location="rml-T" target="None" rml-others="rml-O">

<rml-use name="ObjChildren"/>

</obj>

</div>

</div>

This is a rule that is used after a transition has been taken successfully
by an object modeled with km. With this rule the location attribute of the
object is assigned the value of the target attribute and the target attribute
is set to None. An example of the effect of the rule would be that

<obj id="id538" location="state_3" target="state_5" ... >

<queue>

...

</queue>

</obj>

is changed into

<obj id="id538" location="state_5" target="None" ... >

<queue>

...

</queue>

</obj>

2.4. RML EXAMPLES 35

for an object with identifier id538.
When applying this rule, the RML transformation tool first searches for

an obj element in the input, corresponding with the obj element in the
antecedent of the rule. These obj elements match if the obj in the input has
an id attribute with the value bound to the RML IDOBJ variable mentioned
in the antecedent, in the example this value is id538 and it is bound to the
RML variable IDOBJ before the rule is applied. This pre-binding of some
of the variables is how the tool can manage and schedule the execution of
the RML transformation rules. The IDOBJ is a value the user of the online
webapplication supplies in the form there. If the obj elements match, then
the other RML variables (L, T, O and ObjChildren) are filled with variables
from the input obj. The L, T and O variables are bound to strings, the
ObjChildren variable is bound to the children of the obj element: a list of
elements and all their children. The consequence of the rule creates a new
obj element, using the values bound to the RML variables, and replaces the
obj element in the input with this new obj element.

Due to lack of space we restrict the description of the formalization in
RML to the rule for the removal of an event from the event-queue, the an-
tecedent is shown in AML notation:

km

classdiagram

...

class name=rml-ClassName

statemachine

transition id=rml-IDTRANS

trigger

op name=rml-TriggerName

rml-list name=Params

...

objectdiagram

...

obj class=rml-ClassName id=rml-IDOBJ

rml-others=rml-OtherObjAttrs

queue

rml-list name=PreEvents

op name=rml-TriggerName

rml-list name=PostEvents

and this contains some lines with ... in places where rml-list and rml-use

constructs are used to preserve input context in the output. Here we see that
in RML a pattern can be matched that is distributed over remote parts in the
XML, the remoteness of the parts is why the rule has so many lines. In short,
this rule looks for the name of the trigger that indicates the event that has
to be removed from the event-queue, and then simply copies the event-queue

36 CHAPTER 2. RML

without that event. But to find that name of the trigger, a search through
the whole km XML model has to take place, involving the following steps.

During application of this rule, the matching algorithm first tries to match
the input with the antecedent of the rule, where IDOBJ and IDTRANS are
pre-bound RML variables, input to the tool. With these pre-bound variables
it can find the correct obj, then it finds the ClassName for that object. With
the ClassName the class of the object can be found in the classdiagram

in km XML. When the class of the object is found, the transition in that
class with id TRANSID can be found and in that transition element in the
input we can finally find the desired TriggerName. The algorithm then looks
for an op (operation) event with name TriggerName in the event-queue of
the obj, and binds all other events in the event-queue to RML variables
PreEvents and PostEvents. In the consequence of the rule then, all these
bound RML variables are available to produce a copy of the input, with the
exception that the correct event is removed. As given, the rule removes the
first event that matches. It is trivial to change the rule to one that removes
only the first event in a queue (by removing the PreEvents), or only the last.
This is an example that shows that the semantics defined in the RML rules
can be easily adapted, even during a simulation, and this makes such rules
particulary suitable for experimental analysis.

The km application gives comments, for example about the result of the
evaluation of a guard of a transition. If the user for instance selects a transi-
tion identity that does not correspond with the current state of the object, in
the online example if you select (ObjID,TransitionID)=(1,t1) twice, a mes-
sage is displayed on top of the model, like
Exiting: Wrong location (object:state_1 transition:start)

meaning that transition t1 can not be taken because the object is in state
state_1 and the transition is defined for a source state with name start.
Such messages do not interfere with the model itself, they are encoded as
comments, and the model is unchanged after this message.

The only software a user needs to use the interactive application is a
standards compliant browser like Mozilla or Internet Explorer. A user can
not only go forward executing a model, but also go backward with browser’s
Back button. This is an example of the benefit of interoperability that XML
offers, together with a software architecture and design that is platform in-
dependent.

2.5. RELATED WORK AND CONCLUSION 37

2.4.2 Other examples

If a formalism is expressed in mathematics, then MathML is a generally
usable way to express structure, and RML rules extending MathML can
capture the dynamics. As an example of this, RML is used for an online
interactive theorem prover that can be used to derive proofs for tautologies
in propositional logic1.

Although defining models and semantics in MathML will appeal to the
mathematically educated, sometimes it is better to define a new special-
purpose XML vocabulary; to make it more concise, better readable, more
efficient, and for several other reasons. This was the case in the Archimate
[Arc] project where RML has been applied successfully to Enterprise Archi-
tecture and Business Models. Rule–based transformations are being used
for analysis of models and for visualizations. The RML tutorial in Chapter
3 and the downloadable RML package contain examples in the Archimate
language.

2.5 Related work and conclusion

Standards related to RML are XML [XML], MathML [Mat03] and XSLT
[XSL]. MathML is a W3C specification for describing mathematics in XML,
and it is the problem domain language for the proof example in this paper.
XSLT is a W3C language for transforming XML documents into other XML
documents, and is discussed in Section 2.2.1. There are also standards that
are indirectly connected with XML transformations, like XQuery that can
treat XML as a database that can be queried, but a discussion of the many
XML standards here is out of scope.

The RuleML community [RUL] is working on a standard for rule-based
XML transformations. Their approach differs from the RML approach: RML
re-uses the problem domain XML, extended with only a few constructs (in
the table in Fig. 2.1) to define rules; whereas RuleML superimposes a special
XML vocabulary for rules. This makes the RuleML approach complex and
thus difficult to use in certain cases. The idea of using wildcard elements
for XML has not been incorporated as such in the RuleML approach, but
perhaps it can be added to RuleML and working together with the RuleML
community in the future can be interesting.

1http://homepages.cwi.nl/˜jacob/MathMLcalc/MathMLcalc.html

38 CHAPTER 2. RML

There are a number of tools, many of them commercial, that can parse
XML and store data in tables like those in a relational database. The user
has to define rules for extracting the data, to define what is in the columns
and the rows of the tables, to define an entity-relationship model, and other
things. Once the data the user is interested in is in the database, a standard
query language like SQL can be used to extract data. And then that data
can be used to construct new XML. The XML application called XQuery
can be used in a similar way, and it is the approach taken by ATL [BDJ+03].
It would be possible to do any transformation with these techniques, but it
would be very complex.

The Relational Meta-Language [Pet94] is a language that is also called
RML, but intended for compiler generation, which is much more roundabout
and certainly not usable for rapid application development like with RML in
this paper.

An example of another recent approach is fxt [BS02], which, like RML,
defines an XML syntax for transformation rules. Important drawbacks of
fxt are that it is rather limited in its default possibilities and relies on hooks
to the SML programming language for more elaborate transformations. For
using SML a user has to be proficient in using a functional programming
language. An important disadvantage of a language like SML is that it
is not a mainstream programming language like Python with hundreds of
thousands or users worldwide, which makes it unattractive to invest in tools
based on SML. The fxt tools are available online but installing them turned
out to be problematic.

The experience with several tools as mentioned above leads to the concept
of usability of a tool in general. Here, a tool is not considered usable enough
if it is too difficult to install and configure it and get it to run, or if the most
widely used operating system Windows is not supported, or if working with
the tool requires a too steep or too high learning curve, for example because
the user has to learn a whole new programming language that is not a main-
stream programming language. Although the fxt article [BS02] interestingly
mentions ”XML transformation . . . for non-programmers”, fxt is unfortu-
nately an example of an approach that is not usable enough according to
this usability definition.

XML is still gaining momentum and becoming more important and as a
result there are many more tools from academic research available, rather too
much to mention here as an internet search for “XML tool” reveals hundreds
of search results. Unfortunately none of them turned out to be useful in

2.5. RELATED WORK AND CONCLUSION 39

practice for our work according to the above definition of usability, after
spending considerable time trying them out.

Other popular academic research topics that could potentially be useful
for rule–based XML transformations are term–rewriting systems and systems
based on graph grammars for graph reduction. However, the tested available
tools for these systems suffer from the same kind of problems as mentioned
above: the tools are generally not portable and most will never be portable
for technical reasons, and using these tools for XML transformations is an
overly complex way of doing things. To use these kind of systems, there
has to be first a translation from the problem XML to the special-purpose
data structure of the system. And only then, in the tool–specific format, the
semantics is defined. But the techniques used in these systems are interesting,
especially for very complex or hard transformations, and it looks worthwhile
to see how essential concepts of these techniques can be incorporated in RML
in the future.

Compared with the related work mentioned above, a distinguishing fea-
ture of the RML approach is that RML re-uses the language of the problem
itself for matching patterns and generating output. This leads in a natu-
ral way to a much more usable and clearly defined set of rule–based trans-
formation definitions, and an accompanying set of tools that is being used
successfully in practice.

40 CHAPTER 2. RML

Elements that designate rules

div class="rule"

div class="antecedent" context="yes"

div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element at this position to RML
variable X.

rml-text name="X" * Bind XML text-content to variable X.
rml-list name="X" * Bind a sequence of elements to X.
rml-use name="X" * Output the contents of the RML variable

X at this position.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already

bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the

next element in the antecedent if that also
has rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element,
and occurs somewhere in the current se-
quence of elements.

rml-if nochild="X" * Match if X does not occur in the current
sequence.

rml-if last="true" * Match if the preceding sibling of this ele-
ment is the last in the current sequence.

A * in the A column means the construct can appear in a rule
antecedent. A * in the C column is for the consequence.

Figure 2.1: All the RML constructs

Chapter 3

The RML Tutorial

Author: Joost Jacob

When reading this tutorial you could go directly to Sect. 3.4 Installing
and running now if you are in a hurry and just want to learn RML quickly.
There are examples in Sect. 3.5 Examples that will introduce everything
incrementally and step by step. You can treat the examples as exercises
and try to solve them before looking at the solutions. When trying to solve
such exercises you can use Table 2.1 for an overview of all the RML con-
structs that are defined in the current version (September 23, 2008) of RML.
Sections 3.1–3.3 are meant for readers who prefer a little more introduction
and explanations.

RML (Rule Markup Language) was designed for ease of use. You do not
have to be an experienced programmer to use RML. My experiences with
the existing transformation methods for XML were such that I felt it was a
good idea to come up with something much more simple and elegant.

It is assumed that the reader does have at least a superficial knowledge
of XML, like what are XML element names and attributes and for example
the fact that well-formed XML only has one root element. With this tuto-
rial the reader can learn how to transform XML with RML, according to
transformation rules that are defined using the input XML itself.

41

42 CHAPTER 3. THE RML TUTORIAL

Other approaches for XML transformations do not make much use of the
problem domain XML for defining transformation rules. They define the
transformations in (complex!) special purpose XML [Cla] or they are more
low level, defined in various programming languages.

It is not my goal to replace existing technology for XML transformations,
but to add a new, easy to use and interoperable technology. If you have a
transformation that is easily done with XSLT for instance, then by all means
use XSLT. But sometimes you will need transformations that are hard to
program with XSLT, for example removing duplicate child elements, and
then RML provides an easy solution for your transformation problem.

Your ideas for improving this tutorial are welcome. I have been trying
to make this tutorial easy to understand and readable, but English is not
my native language so there are probably lots of grammar and style errors.
Please do send your suggestions by email to Joost.Jacob@gmail.com.

3.1 The XML vocabulary for the examples

The example XML vocabulary in this tutorial is an XML vocabulary for
modeling business processes. Such a vocabulary can be defined with a DTD
or with an XML Schema but to save space here Fig. 3.1 gives just an informal
definition.

element attributes explanation

model the root element

process id, name

role id, name

collaboration id, name

event id, name

object id, name

triggering id, name must contain a from and to element

realisation id, name must contain a from and to element

use id, name must contain a from and to element

from href

to href

Figure 3.1: The XML vocabulary for the examples

3.2. HOW RML WORKS 43

The exact meaning of the elements and attributes is not important here,
this is left to the imagination of the reader. Also there is no required hierarchy
or ordering of elements. Later on in this tutorial, if appropriate, ordering
requirements can be assumed and explained for some example.

3.2 How RML works

Details will be explained in Sect. 3.5 but here is already a short description
of how RML works.

The simplest RML tool is called applyrule. It is a Python[vR95] library
that can also be used as as command-line program, and it takes as input some
problem domain XML and an RML-rule. Both the XML and the RML-rule
will normally be provided in files. The applyrule program then transforms
the problem XML according to the rule and outputs the result.

3.2.1 Rules

An empty rule looks like shown in Figure 3.2.

<div class="rule">

<div class="antecedent">

<!-- Insert matching pattern here -->

</div>

<div class="consequence">

<!-- Insert output pattern here -->

</div>

</div>

Figure 3.2: An empty RML-rule

As can be seen in Fig. 3.2 an empty rule consists of div elements like
in XHTML. A rule consists of an antecedent (input) and a consequence
(output), marked with class attributes of div elements. The XML comments
in Fig. 3.2 show what must be done to change this empty rule template to
rules that actually do something. How this is done is explained later. The

44 CHAPTER 3. THE RML TUTORIAL

empty rule defines an emptry transformation: the output is the same as the
input.

3.2.2 Literal matching

Any XML in the antecedent of a rule that is pure problem domain XML is
matched literally. An exception is how the attributes are matched: if the
(attributes, value) pairs of an element in the antecedent are a subset of the
pairs of an element in the input, and if the elements have the same name,
then it is considered a match. This means that input elements can have more
attributes that are not involved in the matching process.

3.2.3 Wildcard matching

A core idea of RML is to define XML notation for an XML version of con-
structs like the * and ? and + and others in expressions for text matching
with wildcards, as illustrated in Fig. 3.3.

d:\tutorial>dir

Directory of d:\tutorial

11/21/2003 05:14 PM <DIR> .

11/21/2003 05:14 PM <DIR> ..

11/21/2003 05:11 PM 19 g.bat

11/21/2003 05:07 PM 74 make.bat

11/21/2003 05:07 PM 7,764 tutorial.dvi

11/21/2003 05:07 PM 6,962 tutorial.tex

d:\tutorial>dir tutorial.*

Directory of d:\tutorial

11/21/2003 05:07 PM 7,764 tutorial.dvi

11/21/2003 05:07 PM 6,962 tutorial.tex

Figure 3.3: The * wildcard in action in the Windows XP shell

3.2. HOW RML WORKS 45

These wildcard constructs can then be used for matching (parts of)
XML. The input that matches a wildcard can then be remembered in RML-
variables. The constructs are called XML wildcard expressions.

RML uses XML wildcard expressions to bind parts of the input XML
into RML-variables. There are XML wildcard elements and XML wildcard
attributes. The XML wildcards elements are special RML elements that can
be mixed with the problem domain XML in the antecedent of a rule. The
XML wildcard attributes are used for binding attribute values into RML-
variables. Exactly how it is done will be made clear later with examples.
All the RML constructs are shown in Table 2.1 in the Appendix. As can
be seen it all fits in one table, and the RML constructs are designed to be
easy to remember. Future versions of RML may add extra constructs, but
the ones shown in Table 2.1 are all that were needed so far for the XML
transformations I encountered in practice.

3.2.4 Search and replace

The applyrule program tries to find the pattern in the antecedent of a rule
in the input XML. If it finds a piece of input XML that matches the pattern,
then it replaces that piece of input by the consequence of the rule.

3.2.5 The dorules tool

The dorules program takes as input some problem XML and a list of RML
rules. The RML rules are passed as filenames separated by + characters. For
instance:
dorules -i myinput.xml -r rule1.xml+rule2.xml

It then applies the first rule of the list to the input, just like the applyrule
program, and if there is a match (the output is different from the input)
then the program restarts, taking the generated output and the list of rules as
input. If a rule does not match the input then the next rule in the list is tried.
If no rule in the list matches the input then the program stops. This program
turned out to be useful in practice, alleviating the writing of commandline
scripts. Such commandline scripts can perform complex transformations by
executing applyrule and dorules repeatedly with varying rules.

46 CHAPTER 3. THE RML TUTORIAL

3.2.6 The dorecipe tool

To avoid writing commandline scripts at all, the dorecipe program is avail-
able. With the dorecipe program the user can define a sequence of ap-
plyrule and dorules executions in XML. The XML used is Recipe RML
(RRML). An example RRML recipe is shown in Fig. 3.4.

<rml-recipe>

<apply>

<rule>

<variable name="ID" value="commandline-ID" />

<directory name="rules" />

<filename name="effect1.xml" />

</rule>

</apply>

<iterate>

<rule>

<directory name="rules" />

<filename name="effect3.xml" />

</rule>

<rule>

<directory name="rules" />

<filename name="effect2.xml" />

</rule>

</iterate>

</rml-recipe>

Figure 3.4: An RRML recipe

An RRML recipe has a root element called rml-recipe. This root ele-
ment can contain apply elements and iterate elements. The apply element
corresponds to the execution of the applyrule program and the iterate ele-
ment corresponds to the dorules program. An apply element must constain
exactly 1 rule element, an iterate element must contain 1 or more rule

elements. Finally, a rule element must contain a filename element and it
can contain a directory element and 0 or more variable elements. Later
in this tutorial there will be examples showing the usage of recipes.

3.3. FUTURE VERSIONS OF RML 47

3.2.7 XML parsing details

RML was designed to transform XML elements and their text content. In
the current version of RML only XML elements and their text contents are
preserved. This means that for instance XML comments or processing in-
structions are removed. The reason for this is to make the RML tools as
portable as possible, independent of the capabilities of the available XML
parsers on a platform. There are many XML tools available outside RML
to extract and handle things like processing instructions so I suggest you
use those if you need to use XML constructs that are not XML elements.
However, contact the author if you have suggestions.

In XML elements produced by the RML tools, the order of attributes in
the set of attributes may be changed with respect to the input, this depends
on the XML parser on your system that is used by the RML tools. This
should not be a problem: relying on attribute order in XML is generally
considered bad XML usage.

The RML tools look for the pyRXP module and use that if available. The
pyRXP module uses the very fast RXP parser, that is an example of a parser
that does not preserve attribute order. If your system is missing the pyRXP
parser then the old xmllib Python parser is used, this one is available since
Python version 1.5.2 from 1999. Support for more parsers may be added in
the future.

3.3 Future versions of RML

Some ideas for future versions of RML that would be simple to implement
but were not necessary in the XML languages in the projects it was used for
are listed here.

• String concatenation.

Example: <newprefix+rml-X /> in the consequence. If X is
bound (in the antecedent) to ”MyName” then this will produce a
<newprefixMyName /> element.

• Arithmetic

Example: <... ...= 10+rml-X /> in the consequence. If X is bound
to a string representing a number, then the sum of 10 and this number
becomes the attribute value.

48 CHAPTER 3. THE RML TUTORIAL

• XPath support.

Example: <rml-if xpath="model/*/process" /> will let a match
only succeed if the previous element is a processs element with a
model ancestor.

3.4. INSTALLING AND RUNNING 49

3.4 Installing and running

Unzip the supplied zipfile, this will create a directory called rml, containing
several other subdirectories. The RML tools, applyrule and dorules and
dorecipe, are in the rml directory. It is assumed the reader does know
how to run commandline programs and how to go to directories on his or
her operating system. If you have a default Python [vR95] installation on a
Windows computer then you can call Python files as executable programs,
because the .py filename extension will be marked as executable. To get
Python, go to http://www.python.org and download the executable installer.
In the example commands you can then use
C:\mystuff\rml\applyrule.py -i myinput.xml -r myrule.xml

from any other directory, assuming you did install RML in C:\mystuff. With
linux or unix systems you usually have to prepend python to commands,
for instance
$ python applyrule.py -i myinput.xml -r myrule.xml

If one of the tool programs is run without arguments then a short usage
help is output.

The tutorial examples are in subdirectory examples below tutorial be-
low rml. If you go to the examples directory you can run the applyrule pro-
gram on file ”input.xml” there using the empty rule in file ”rule.empty.xml”
by issuing the
..\..\applyrule.py -i input.xml -r rule.empty.xml

command. This will output the contents of the file ”input.xml”, since noth-
ing was matched. The output is pretty printed, with more indentation for
elements deeper down the tree hierarchy, and with attributes indented from
the element name and below each other. Figure 3.5 shows an input and the
output from applying the empty rule.

50 CHAPTER 3. THE RML TUTORIAL

Input:

<model xmlns="Concepts.ArchiMate.Generic"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="Concepts Generic.xsd">

<event id="008" name="request for insurance"/>

<process id="009" name="investigate"/>

<triggering id="015" name="triggers"><from href="008"/>

<to href="009"/></triggering>

</model>

Output:

<model

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="Concepts.ArchiMate.Generic"

xsi:schemaLocation="Concepts Generic.xsd" >

<event

name="request for insurance"

id="008" />

<process

name="investigate"

id="009" />

<triggering

name="triggers"

id="015" >

<from

href="008" />

<to

href="009" />

</triggering>

</model>

Figure 3.5: Input and output when using the empty rule

3.5. EXAMPLES 51

3.5 Examples

3.5.1 Deleting an element

Deleting an element using a literal match

Example 001 Suppose you want to transform

<model>

<event name="request for insurance" id="008" />

<process name="investigate" id="009" />

<process name="formalize request" id="010" />

</model>

availabe in file input.001.xml

to

<model>

<event name="request for insurance" id="008" />

<process name="formalize request" id="010" />

</model>

, removing the process element with name investigate. This can be done
with the RML rule

<div class="rule">

<div class="antecedent">

<process name="investigate" id="009" />

</div>

<div class="consequence" />

</div>

rule.001.xml

If you have the input in file input.001.xml and the rule in file
rule.001.xml then you can do this transformation on the commandline with
the command
applyrule --input input.001.xml --rule rule.001.xml

The files for the examples, in this case input.001.xml and
rule.001.xml, are in your examples directory.

52 CHAPTER 3. THE RML TUTORIAL

How does RML apply this rule to the input? What happens is that
the applyrule program looks in the antecedent of the rule and finds the
process element there. This is a literal element, there are no special RML
features in the element. The program then loads the input in its memory
and searches the input for such an element. In our case it finds such an
element and then replaces it by the contents of the consequence of the rule
(in this case nothing). The program then outputs the modified input. If the
program would not have found a matching element then the output would
be the same as the input, but “pretty-printed” (see Fig. 3.5).

Output is printed to screen, there are no special features to produce files.
The normal I/O redirection of the operating system can be used to produce
files, for instance
applyrule --input input.xml --rule rule.xml > myoutput.xml

Deleting an element with a specific attribute

Example 002 Now suppose you want to remove a process element from
input.001.xml and you do know it has a name="investigate" and an id

attribute but you don’t know the value of the id attribute. This RML rule
does what you want:

<div class="rule">

<div class="antecedent">

<process name="investigate" id="rml-X" />

</div>

<div class="consequence" />

</div>

rule.002.xml

This is an RML rule with a special RML feature in it: the "rml-X"

attribute value of the id attribute. In RML, if an attribute value starts with
rml- then it is considered an RML variable. The name of the variable is
what comes after the rml-. If you use this rule, what happens is that the
applyrule program does the same thing as in example 001, but instead of
looking for an id="009" it now only looks for an id attribute and it puts
the value of the attribute it finds into RML variable X. This variable X is
not used anywhere else in the rule so for the rest of applyrule’s program
execution it is just ignored.

3.5. EXAMPLES 53

But what if there are 2 process elements with name="investigate" and
an id attribute? Then the first one in the input XML will be removed, the
first being the first one encountered when reading the XML input file from
top to bottom.

Example 002 can reuse the file input.001.xml so there is no need for a
input.002.xml file, but there is a rule.002.xml in your examples directory.

Deleting an element with a specific attribute value

Example 003 The following rule removes a process element if it has an
id attribute with value 009, ignoring all other attributes and values.

<div class="rule">

<div class="antecedent">

<process id="009" />

</div>

<div class="consequence" />

</div>

rule.003.xml

This rule works because RML does subset matching: if the element name
and all the attributes of a pattern element match, then it is considered a
match even if the matching input element has more attributes.

If <process id="009" /> is replaced by <process id="rml-X" /> then
even the attribute value does not matter: the first process element with an
id attribute is removed.

3.5.2 Changing an element

So far we did see only rules that delete elements. The emphasis was on how
to match input elements, how to select elements that are to be deleted. In
this Section we will see how element names and attributes can be changed
into something else. This will also explain more about RML-variables.

Changing an element name

Example 004 Suppose you want to change the name of the
<process name="investigate" id="009" /> element to MyProcess. The
rule in file rule.004.xml does just that.

54 CHAPTER 3. THE RML TUTORIAL

<div class="rule">

<div class="antecedent">

<process name="investigate" id="009" />

</div>

<div class="consequence">

<MyProcess name="investigate" id="009" />

</div>

</div>

rule.004.xml

But this rule only works for a process with attributes
name="investigate" and id="009".

Changing an element name and copying all attributes

Example 005 What if you just want to change the element name like in
Example 004 and copy all the other attributes. This is useful for instance if
you don’t know all the attributes. Then you need the special RML attribute
rml-others. It puts all attributes that do not appear elsewhere in the ele-
ment into an RML variable. An RML variable is denoted by a leading rml-.
Rule rule.005.xml shows the solution.

<div class="rule">

<div class="antecedent">

<process rml-others="rml-X" />

</div>

<div class="consequence">

<MyProcess rml-others="rml-X" />

</div>

</div>

rule.005.xml

Changing all process element names: Iterating a rule

Example 006 But rule.005.xml only changes 1 element. If you want
to change all process elements to MyProcess elements then you could just
repeatedly use applyrule until there are no more process elements left. But
you can also use the dorules program here. The dorules program has a

3.5. EXAMPLES 55

--rules parameter instead of a --rule parameter, it takes a set of rules as
the value of that parameter, where rules are separated by a + character. In
this example there is only one rule. Run
dorules -i input.002.xml -r rule.005.xml for the desired effect.

Changing attribute values

Example 007 Example 006 did bind a set of attributes to an RML variable.
We can also bind an attribute value to an RML variable. We did that already
in Example 002, but here we will also use the value of the attribute in the
output.

Rule rule.007.xml shows how to search for a process

with name="investigate" and to change it to a process with
name="SomethingElse". The id attribute with its value is copied to
the output. This works even when you don’t know the value of the id

attribute, the RML variable with name A is used for that.

<div class="rule">

<div class="antecedent">

<process name="investigate" id="rml-A" />

</div>

<div class="consequence">

<process name="SomethingElse" id="rml-A" />

</div>

</div>

rule.007.xml

3.5.3 RML variables for elements

Section 3.5.2 introduced RML variables. This Section will say more about
RML variables. The antecedent of an RML rule contains XML from the
problem domain XML vocabulary, mixed with other RML constructs. To-
gether they form a matching pattern. When the rule is applied, this matching
pattern is matched against the XML input. When a match occurs, the RML
variables in the antecedent are filled with values. The type of these values
can be:

• a string (element name, or attribute value),

56 CHAPTER 3. THE RML TUTORIAL

• a set of attributes and their values,

• one XML element,

• a list of XML elements from the problem domain.

The last two are introduced next.

RML variables for lists of elements and their children

Example 008 Duplicate all childs of a model element.

<div class="rule">

<div class="antecedent" >

<model>

<rml-list name="A" />

</model>

</div>

<div class="consequence">

<model>

<rml-use name="A" />

<rml-use name="A" />

</model>

</div>

</div>

rule.008.xml

The rml-list RML element stores a list of elements at that position in
the pattern into an RML variable. The RML variable can be output in the
consequence of a rule with the rml-use RML element. All children elements
of elements in the list will also be copied.

RML variables for complete elements and their children

Example 009 Duplicate the first child of a model element.

3.5. EXAMPLES 57

<div class="rule">

<div class="antecedent" >

<model>

<rml-tree name="A" />

<rml-list name="B" />

</model>

</div>

<div class="consequence">

<model>

<rml-use name="A" />

<rml-use name="A" />

<rml-use name="B" />

</model>

</div>

</div>

rule.009.xml

The rml-tree element matches only 1 element (and all its possible chil-
dren), the rml-list element after it in the antecedent of the rule matches
the rest of the elements in that list.

Defining RML variables for elements or lists of element with
rml-bind

New in RML 1.6.

You can bind RML variables for elements (or for lists of elements) in the
matching process, but you can also define them “manually” with rml-bind:

58 CHAPTER 3. THE RML TUTORIAL

<div class="rule">

<div class="antecedent" >

<model>

<rml-bind name="A">

<MyNewElement />

</rml-bind>

<rml-list name="B" />

</model>

</div>

<div class="consequence">

<model>

<rml-use name="A" />

</model>

</div>

</div>

rule.009a.xml

This rule replaces all children of model with the MyNewElement ele-
ment. Here <MyNewElement/> is bound to RML variable A. Instead of only
<MyNewElement/> you can also put a list of elements there, and you can
use RML variables to define the elements (for example RML variables for
element names and attribute values). The rule.009a.xml is equivalent with
a rule that has no rml-bind element and just has <MyNewElement/> in the
consequent of the rule in place of the rml-use element there. So why bother
with rml-bind? In Section 3.5.5 in example 011a we will see how manually
binding with rml-bind can be useful.

3.5.4 RML variables for text content

The <rml-text name="SomeName" /> construct is used to bind XML text-
content. It is used in the same way as the rml-tree element, but it will only
match if there is XML text-content to be found in the matching position of
the input. So you can not match an element and put it in the SomeName

variable, if you want that, then you have to use rml-tree. You can use
the SomeName RML variable just like any other RML variable; use it like
rml-SomeName for an element name in the output or for an attribute name
or attribute value, or use it like <rml-use name="SomeName" /> for text-
content of an XML element.

3.5. EXAMPLES 59

3.5.5 Adding constraints with rml-if

Example 010 Transform

<model>

<collaboration id="004" name="Negotiation">

<role id="001" name="Intermediary"/>

<role id="002" name="Customer"/>

</collaboration>

<process id="009" name="investigate"/>

<role id="002" name="Customer"/>

<process id="010" name="formalize request" />

</model>

input.010.xml

into

<model>

<collaboration id="004" name="Negotiation">

<role id="001" name="Intermediary"/>

<role id="002" name="Customer"/>

</collaboration>

<process id="009" name="investigate"/>

<role id="002" name="Customer"/>

<process id="010" name="formalize request" />

<role id="001" name="Intermediary"/>

</model>

by executing this rule:

60 CHAPTER 3. THE RML TUTORIAL

<div class="rule">

<div class="antecedent" >

<model>

<collaboration rml-others="CollAttrs">

<rml-tree name="A" />

<rml-tree name="B" />

</collaboration>

<rml-list name="L1" />

<rml-if child="B" />

<rml-list name="L2" />

</model>

</div>

<div class="consequence">

<model>

<collaboration rml-others="CollAttrs">

<rml-use name="A" />

<rml-use name="B" />

</collaboration>

<rml-use name="L1" />

<rml-use name="L2" />

<rml-use name="A" />

</model>

</div>

</div>

rule.010.xml

In the example the Intermediary is added as a child of model. The
rule looks for a model element with a collaboration child that in turn has
exactly 2 children elements, where the second child elements is also a child
of the model element. If that is the case, the rule adds the first child to the
children of model.

The rml-if elements are elements that constrain whether a match suc-
ceeds or not. The rml-if child="SomeVar" element only succeeds if the
element bound to SomeVar appears somewhere in the current list of ele-
ments. SomeVar has to be bound earlier in the rule with an rml-tree

name="SomeVar" element. There is also a rml-if nochild=X /> element
that succeeds only if X does not appear in the current list. These 2 constraint
adding elements are more complex than I would like, but I have found good

3.5. EXAMPLES 61

usage for them in practice.

Example 011 If you repeat rule.010.xml, using the output as input,
then you add Intermediary elements every time. To prevent that, rewrite
the rule as:

<div class="rule">

<div class="antecedent" >

<model>

<collaboration rml-others="CollAttrs">

<rml-tree name="A" />

<rml-tree name="B" />

</collaboration>

<rml-list name="L1" />

<rml-if child="B" />

<rml-if nochild="A" />

<rml-list name="L2" />

</model>

</div>

<div class="consequence">

<model>

<collaboration rml-others="CollAttrs">

<rml-use name="A" />

<rml-use name="B" />

</collaboration>

<rml-use name="L1" />

<rml-use name="L2" />

<rml-use name="A" />

</model>

</div>

</div>

rule.011.xml

The only difference is the line with <rml-if nochild="A" /> in the an-
tecedent of the rule. If I execute ..\..\dorules.py -i input.010.xml -r

rule.010.xml on my computer, then the program hangs until the system
runs out of memory: It tries to add an infinite number of Intermediary

elements and I have to use the Break key to stop it. But if I use dorules

62 CHAPTER 3. THE RML TUTORIAL

with rule.011.xml then it stops with the desired effect. It stops because
the second time it tries to apply the rule, the match fails because nochild

fails because there is an Intermediary. The dorules program stops when
it can not change the input anymore with any of its rules.

Example 011a In example 011 we were able to stop iteration by simple
adding a <rml-if nochild="A"> element. The value for the A variable was
found earlier in the rule. But sometimes we can not do this, especially when
the value that we want to bind to the variable is not present in the input.
An example is when we want to create a completely new element and bind
it to an RML variable such that we we can use the RML variable in rml-if

constructs.

Suppose we want to transform input.011a.xml:

<model>

<collaboration id="004" name="Negotiation">

<role id="001" name="Intermediary"/>

<role id="002" name="Customer"/>

</collaboration>

</model>

input.011a.xml

into output.011a.xml:

<model>

<collaboration id="004" name="Negotiation">

<role id="001" name="Intermediary"/>

<role id="002" name="Customer"/>

</collaboration>

<Intermediary id="001"/>

</model>

output.011a.xml

creating a new element with name Intermediary. Then we can use
rule.011a.xml:

3.5. EXAMPLES 63

<div class="rule">

<div class="antecedent" >

<model>

<collaboration rml-others="CollAttrs">

<rml-list name="PreRoles"/>

<role id="rml-idA" name="rml-A" />

<rml-list name="PostRoles"/>

</collaboration>

<rml-list name="Tail"/>

</model>

</div>

<div class="consequence">

<model>

<collaboration rml-others="CollAttrs">

<rml-use name="PreRoles"/>

<role id="rml-idA" name="rml-A" />

<rml-use name="PostRoles"/>

</collaboration>

<rml-use name="Tail"/>

<rml-A id="rml-idA" />

</model>

</div>

</div>

rule.011a.xml

But when we apply rule.011a.xml to the result (in output.011a.xml) again,
it produces another Intermediary element. We want to stop that, and instead
add a Customer element, like in output.011b.xml:

<model>

<collaboration id="004" name="Negotiation">

<role id="001" name="Intermediary"/>

<role id="002" name="Customer"/>

</collaboration>

<Intermediary id="001"/>

<Customer id="002"/>

</model>

output.011b.xml

64 CHAPTER 3. THE RML TUTORIAL

To achieve this, use rule.011b.xml:

<div class="rule">

<div class="antecedent" >

<model>

<collaboration rml-others="CollAttrs">

<rml-list name="PreRoles"/>

<role id="rml-idA" name="rml-A" />

<rml-list name="PostRoles"/>

</collaboration>

<rml-bind name="New">

<rml-A id="rml-idA" />

</rml-bind>

<rml-if nochild="New"/>

<rml-list name="Tail"/>

</model>

</div>

<div class="consequence">

<model>

<collaboration rml-others="CollAttrs">

<rml-use name="PreRoles"/>

<role id="rml-idA" name="rml-A" />

<rml-use name="PostRoles"/>

</collaboration>

<rml-use name="Tail"/>

<rml-A id="rml-idA" />

</model>

</div>

</div>

rule.011b.xml

When we apply rule.011b.xml iteratively until the output is stable (with
the dorules tool: ”dorules.py -i input.011a.xml -r rule.011b.xml”) we get the
desired output.011b.xml. The rule works by binding the desired new element
to an RML variable with the name New, and using this New variable in the
<rml-if nochild="New"/> test; preventing a match if the new element is
already there.

3.5. EXAMPLES 65

Example 012 Suppose you want to output the second role in the first
collaboration in input.010.xml, producing

<role id="002" name="Customer"/>

This rule:

<div class="rule">

<div class="antecedent">

<model>

<collaboration>

<role/>

<rml-tree name="A"/>

</collaboration>

</model>

</div>

<div class="consequence">

<rml-use name="A" />

</div>

</div>

rule.012a.xml

produces the desired output. And when applying that rule to

<model>

<collaboration id="004" name="Negotiation">

<role id="001" name="Intermediary"/>

<role id="002" name="Customer"/>

<role id="003" name="Office"/>

</collaboration>

<process id="009" name="investigate"/>

<role id="002" name="Customer"/>

<process id="010" name="formalize request" />

</model>

input.012.xml

it also outputs the Customer. But what if you want the rule only to work
if there are exactly 2 child elements in the collaboration? Then use rule:

66 CHAPTER 3. THE RML TUTORIAL

<div class="rule">

<div class="antecedent">

<model>

<collaboration>

<role/>

<rml-tree name="A"/>

<rml-if last="true"/>

</collaboration>

</model>

</div>

<div class="consequence">

<rml-use name="A" />

</div>

</div>

rule.012.xml

The <rml-if last="true"/> element makes the matching of the rule
only succeed if the previous element is the last in a list. If you apply
rule.012.xml to input.012.xml then you get the contents of the input
back: no match. But rule.012.xml does work on input.010.xml.

3.5.6 Match choice with rml-type="or"

Example 013 If you want to match

<model>

<role id="001" name="Intermediary"/>

</model>

input.013a.xml

or

<model>

<role id="002" name="Customer"/>

</model>

input.013b.xml

3.5. EXAMPLES 67

but not

<model>

<role id="003" name="Insurance Company"/>

</model>

input.013c.xml

then you can use rule rule.13.xml:

<div class="rule">

<div class="antecedent">

<model>

<role id="001" name="Intermediary"

rml-type="or" />

<role id="002" name="Customer"

rml-type="or" />

</model>

</div>

<div class="consequence">

<matched how="allright" />

</div>

</div>

rule.13.xml

With the special attribute rml-type="or", the RML tools try the next
element if a match fails on an element, but only if that next element also has
this special attribute.

3.5.7 How to remove duplicate siblings

Example 014 Some of the inspiration leading to RML came when I had
to transform something like

68 CHAPTER 3. THE RML TUTORIAL

<model>

<role id="003" name="Insurance Company"/>

<whatever />

<role id="003" name="Insurance Company"/>

<evenmore />

</model>

input.014.xml

to

<model>

<role id="003" name="Insurance Company"/>

<whatever />

<evenmore />

</model>

, just removing duplicate siblings. This looks simple but I found out it was
very hard to do with for example XSLT. The RML rule for this is not difficult:

<div class="rule">

<div class="antecedent">

<model>

<rml-list name="list1" />

<role rml-others="A" />

<rml-list name="list2" />

<role rml-others="A" />

<rml-list name="list3" />

</model>

</div>

<div class="consequence">

<model>

<rml-list name="list1" />

<role rml-others="A" />

<rml-list name="list2" />

<rml-list name="list3" />

</model>

</div>

</div>

rule.014.xml

3.5. EXAMPLES 69

This rule also shows a typical usage of rml-list elements: all the el-
ements, and their children, around the elements you are interested in, are
remembered in variables (here list1 and list2 and list3. With this pat-
tern you can ”preserve the context” of the elements you want to match.
Example 016 also shows this pattern.

Example 015 And for Example 014 even this rule works:

<div class="rule">

<div class="antecedent">

<model>

<rml-list name="list1" />

<rml-tree name="A" />

<rml-list name="list2" />

<rml-use name="A" />

<rml-list name="list3" />

</model>

</div>

<div class="consequence">

<model>

<rml-use name="list1" />

<rml-use name="A" />

<rml-use name="list2" />

<rml-use name="list3" />

</model>

</div>

</div>

rule.015.xml
, not only for duplicate role elements, but for any duplicate elements in the
model. This rule makes use of the fact that variable A has been bound in
the line with <rml-tree name="A" />, and then a <rml-use name="A" />

is allowed not only in the consequence, but also in the antecedent of a rule.

3.5.8 Iterating sets of rules

The dorules tool accepts a list of rulefilenames in parameter --rules (or-r),
instead of just one rule like the applyrule tool.

70 CHAPTER 3. THE RML TUTORIAL

It then applies the first rule of the list to the input, just like the applyrule
program, and if the rule can be successfully applied (the output is different
from the input) then the program restarts, taking the generated output and
the list of rules as input. If a rule does not match the input then the next
rule in the list is tried. If no rule in the list matches the input then the
program stops.

Iterating sets of rules is often useful. A typical usage pattern is when
you want to create new elements with data from 2 original elements, but
you don’t know the order of the 2. Then you write 2 rules and let dorules

handle it.

Example 016 Transform

<model>

<triggering id="016" name="triggers">

<from href="009"/>

<to href="010"/>

</triggering>

<triggering id="015" name="triggers">

<from href="008"/>

<to href="009"/>

</triggering>

</model>

input.016.xml

into

<model>

<triggering id="016" name="triggers">

<from href="008"/>

<to href="010"/>

</triggering>

</model>

by executing dorules with this rule:

3.5. EXAMPLES 71

<div class="rule">

<div class="antecedent">

<model rml-others="modelAttrs">

<rml-list name="Prelude" />

<rml-R1 name="rml-N1">

<from href="rml-F1"/>

<to href="rml-ID" />

</rml-R1>

<rml-list name="Between" />

<rml-R1 name="rml-N1" rml-others="AttrRest">

<from href="rml-ID"/>

<to href="rml-T1" />

</rml-R1>

<rml-list name="Epilog" />

</model>

</div>

<div class="consequence">

<model rml-others="modelAttrs">

<rml-use name="Prelude" />

<rml-R1 name="rml-N1" rml-others="AttrRest">

<from href="rml-F1"/>

<to href="rml-T1" />

</rml-R1>

<rml-use name="Between" />

<rml-use name="Epilog" />

</model>

</div>

</div>

rule.016a.xml

and this rule:

72 CHAPTER 3. THE RML TUTORIAL

<div class="rule">

<div class="antecedent">

<model rml-others="modelAttrs">

<rml-list name="Prelude" />

<rml-R1 name="rml-N1" rml-others="AttrRest">

<from href="rml-ID"/>

<to href="rml-T1" />

</rml-R1>

<rml-list name="Between" />

<rml-R1 name="rml-N1">

<from href="rml-F1"/>

<to href="rml-ID" />

</rml-R1>

<rml-list name="Epilog" />

</model>

</div>

<div class="consequence">

<model rml-others="modelAttrs">

<rml-use name="Prelude" />

<rml-R1 name="rml-N1" rml-others="AttrRest">

<from href="rml-F1"/>

<to href="rml-T1" />

</rml-R1>

<rml-use name="Between" />

<rml-use name="Epilog" />

</model>

</div>

</div>

rule.016b.xml

issuing the command:
dorules -i input.016.xml -r rule.016a.xml+rule.016b.xml

Note that the order of the rules in the list is significant. The order is not
important in this example but in another it could be. This example is also
another example of “context preserving” with rml-list elements, storing
the context in Prelude, Between and Epilog.

3.5. EXAMPLES 73

3.5.9 Turning a list into a hierarchy

Example 017 Transform

<model>

<role id="001" name="Intermediary"/>

<collaboration id="004" name="Negotiation"/>

<process id="009" name="investigate"/>

<process id="010" name="formalize request"/>

</model>

input.017.xml

into

<model>

<role id="001" name="Intermediary" >

<collaboration >

<process id="009" name="investigate" >

<process id="010" name="formalize request"/>

</process>

</collaboration>

</role>

</model>

by executing dorules with this rule:

74 CHAPTER 3. THE RML TUTORIAL

<div class="rule">

<div class="antecedent" >

<rml-Top>

<rml-Name rml-others="A" />

<rml-Name2 rml-others="B" />

<rml-list name="L" />

</rml-Top>

</div>

<div class="consequence">

<rml-Top>

<rml-Name rml-others="A">

<rml-Name2 rml-others="B">

<rml-use name="L" />

</rml-Name2>

</rml-Name>

</rml-Top>

</div>

</div>

rule.017.xml

This rule ”deepens” all lists in the input when applied iteratively wih
dorules.

3.5.10 Pre-binding string variables on the command-

line

Example 018 If you have this input:

<model>

<event name="request for insurance" id="008" />

<process name="investigate" id="009" />

<process name="investigate" id="010" />

</model>

availabe in file input.018.xml

and you would like to remove the process with id="010", then you need
somthing very similar to the rule.002.xml you wrote earlier. But that rule

3.5. EXAMPLES 75

removes the id="009" process, because that is the first that matches the
antecedent of the rule (<process name="investigate" id="rml-X" />).

A solution is to bind commandline variables to RML variables. If you
issue the command:
applyrule -i input.018.xm -r rule.002.xml X=010 then the id="010"

will be removed.
What happens is that the string 010 is bound to RML variable X, meaning

that the RML tools now treat ”rml-X” in a rule as ”010”.

3.5.11 Using recipes

RML recipes are stated in Recipe RML (RRML), an XML vocabulary for
RML recipes. With RML recipes the user can define sequences of applyrule
and dorules executions. See Sect. 3.2.6 and Fig. 3.4, there is an example
recipe. There are plans for a future version of RRML with rule elements
that can execute XSLT transformations too. Or that can execute arbitrary
programs...let me know what you would like.

I hope you enjoyed this tutorial. Good luck with your XML transforma-
tions!

76 CHAPTER 3. THE RML TUTORIAL

Part II

Component Models and
Analysis

77

Chapter 4

The OMEGA Component
Model

Author: Joost Jacob

4.1 Introduction

In this paper we introduce a formal model of components as developed in the
IST project OMEGA (IST-2001-33522, [OME]) sponsored by the European
Commission. The aim of this project is the definition of a development
methodology in UML for embedded and real-time systems based on formal
techniques. The approach followed in OMEGA is based on a formal semantics
of a suitable subset of UML 1.4 which includes class and state diagrams,
Object Constraint Language (OCL), use case diagrams, and Live Sequence
Charts ([DH01], an extension of UML’s sequence diagrams). Some of the
OMEGA members have been involved in the design of a component model
for UML 2.0 that will be finished in the course of 2004 and the OMEGA
component model has influenced the UML 2.0 component model; therefore
the approach presented in this paper is compatible with the approach taken
in UML 2.0.

The main rationale of our component model is to extend the above sub-
set of UML as used in OMEGA with additional structuring and abstraction
mechanisms which allow a modeling discipline and the application of formal
techniques based on “interfaces”. The basic idea of a component presented

79

80 CHAPTER 4. THE OMEGA COMPONENT MODEL

in this paper is that of a high-level software abstraction like a module which
encapsulates its internal structure and which provides an interface specifying
the exported (also called provided) and imported (also called required) oper-
ations and signals. Components can be hierarchically composed from basic
components and relations between provided and required interfaces. Basic
components are defined as sets of classes together with the provided and
required interfaces. Components interact via Ports. In our model a Port is
an object realizing an interface and/or depending on an interface of another
component. Ports, like any other object-instances, can be created dynami-
cally. In this sense our notion of a Port differs from the usual UML definition
of an interface. Since we view components as a software abstraction, compo-
nents themselves cannot be instantiated but only its Ports are instantiated.
If there is only one Port instantiated for a component then this Port can be
regarded as “the component instance” or “the component” and this phrase
is sometimes used to make text more readable.

We show how our component model provides a general framework for
the classification of and relationships between the UML concepts mentioned
above as used in OMEGA, by adding component diagrams and architectural
diagrams. Architectural diagrams are used to describe certain run–time prop-
erties of components which are independent of the actual deployment on a
certain platform. There is an analogy between component diagrams and class
diagrams and likewise between architectural diagrams and object diagrams,
and this analogy can be used to design our new diagrams using CASE tools
that do not support the new component model diagrams yet. Finally, we
discuss the possible usage of the OMEGA component model for verification
purposes.

The first version of our component model was presented as an OMEGA
milestone document in June 2002.

4.2 The Component Model

In this section, we present a meta–model for our notion of components. In
this meta–model we extend standard UML entities, the building blocks, like
class and interface. Since we only use a few UML entities it will be easy in
the future to make the meta–model compatible with UML 2.0 [OMG] once
that has reached a stable version, and to fit it in with the new MOF [MOF]
version that is under development. To avoid confusion with existing UML

4.2. THE COMPONENT MODEL 81

entities, in the rest of this paper we will use a capital for the first letters of
the names of entities that are our extensions to UML.

Component Models as high–level class diagrams

Our starting point is a model of components which provides a high-level
software abstraction like that of a module which encapsulates its internal
structure and which provides an interface specifying the exported (also called
provided) and imported (also called required) operations and signals (as de-
fined by the OMEGA kernel model language in [OME] and [DJPV03]. The
interface of a component is structured into Component Interfaces. Compo-
nent Interfaces are like ordinary UML interfaces but they have to adhere to
the usage rules for Component Interfaces we specify below in this section.
A Component Interface consists of a collection of signatures of operations
and signals, but contrary to ordinary UML interfaces Component Interfaces
do not contain attributes. In comparison with UML diagrams, a component
model is similar to a class diagram. Later, in Sect. 4.4, we will introduce
diagrams for components, so-called architectural diagrams, that are similar
to UML object diagrams.

The underlying class diagram

In an OO setting there is always a class diagram underlying an applica-
tion. The same is true for a component based application designed with our
component model. In the OMEGA deliverable D1.1.2 we have presented a
formal reduction from a hierachical component model to a flat class diagram.
In this paper we will present in Sect. 4.5 a formal justification of our compo-
nent model in terms of a compositional trace semantics and its corresponding
logics.

Introducing Ports

Component Interfaces are grouped into Ports. Component Ports correspond
with special purpose classes inside components that provide the only inter-
action points between components. At runtime, all communication between
components is going via instantiated Ports. In our component model, a Port
is used as a class, and it is also used as a type specification for one or more
runtime objects. Ultimately these runtime objects are instances of classes

82 CHAPTER 4. THE OMEGA COMPONENT MODEL

in the underlying class diagram, because our model is designed in an OO
setting.

Why is an object-oriented component model useful?

The underlying class diagram can possibly be huge; this is one place where
a component model can be useful because one component can abstract from
many classes. Also, it is possible to design a component with a Port, and to
be specific about the services the Port requires and provides, without having
to specify already exactly what class will used for instantiating the Port; this
supports better top–down design methodologies. Our component diagram
groups classes in an underlying class diagram into components, and it groups
associations in that class diagram into Ports and Component Interfaces and
the associations and connections between them. As such it provides a high-
level view of a class-based application which is both suited for top-down
design and compositional analysis.

UML 2.0

Syntactically the components in our component model are much like the
components in the UML 2.0 submission by U2Partners in September 2002
and in Januari 2003. One of our main objectives in OMEGA is the develop-
ment of an OMEGA component model which is compatible with their UML
2.0 submissions. But there are some semantic differences that will appear
in the rest of this paper. We can mention here already one of the most im-
portant differences: in the submissions by U2Partners a component itself is
instantiable whereas in our model it is the Component Ports that are in-
stantiated (as instances of UML classes); this way the component provides a
conservative extension of the underlying object-orientation so it can remain
a software abstraction. Another difference is that in order to keep our model
small, simple and elegant, we do not explicitly model connectors and there-
fore we have not defined new UML entities for connectors. This provides a
user of our component model with a choice: the user may decide to extend
our model and use the UML 2.0 connectors, or the user can choose to model
connectors as components themselves.

4.2. THE COMPONENT MODEL 83

4.2.1 Blackbox Components

A Blackbox Component gives a blackbox view of a component in a blackbox
diagram. Inside a Blackbox Component nothing is visible, only the Interfaces
of the component that are to be used in a design outside of the component
are visible, and the grouping of these Interfaces into Ports is visible.

The meta–model for a Blackbox Component is contained in Fig. 4.1; the
Basic Component and UML Class and Component System boxes and their
relations do not belong to it but will be introduced later. As can be seen in
the figure, we have modeled a Blackbox Component as a specialization of a
UML Classifier. In a future MOF version a component could well be better
modeled specializing another (future?) MOF construct that is more suitable
for our purposes, or perhaps more than one construct. For now we are basing
our meta–models on UML 1.4 and therefore we use the Classifier.

The same goes for the other specializations from UML entities we use in
the figure, again for now we make do with UML 1.4 entitities. Adapting the
meta–model to the next MOF or UML version should pose no problems that
cannot be overcome easily.

In Fig. 4.1 we can see that Blackbox Components can have several Ports,
and a Port can have several Provided Component Interfaces and several Re-
quired Component Interfaces. The other way around, a Component Interface
is associated with one Port, and a Port belongs to one Blackbox Component.

A Blackbox Component is drawn as a box, optionally with the UML 1.x
component symbol in a corner to make it extra clear that the box is a compo-
nent. Ports are drawn as small squares on the edges of a component box. In
the blackbox view the association between a Port and Component Interfaces
can be shown with the “lollypop” notation, or with UML dependency and
UML realization associations to expanded interfaces (boxes with the name
of the interface and a stereotype indiciation and a list of services). This is in
accordance with standard UML 1.x notation; an example with the two nota-
tions is shown in Fig. 4.2. We therefore propose to extend the Kernel Model
Language with UML realization associations. Note that these associations
do not affect the semantics, i.e., they encode only static information which
can be checked by a preprocessor.

There can be UML dependency relations from Provided Component In-
terfaces to Required Component Interfaces on the same component. This
means that if a user wants to use one of the services of the Provided In-
terface, the Required Interface must be realized, or else the service is not

84 CHAPTER 4. THE OMEGA COMPONENT MODEL

������� ���
	����	��������

��������� �����
�
	����	��������
��������� ����� �

!"��	�#�� �"���
�
	��$�	��������
��������� ����� �

%&

&

%

%

�������"� �����

"� 	�#�� �"���

!�	�� �

&

�
	��$�	��������
'�(�)�*���

&

��������� �����

%

&

%

"��	�#�� �����

%

"��	�#�� �"����+,�����-��� � ���%

%

%

��. ���0/01�	�2
�
	����	��������

3,4�5��6. ���7��� �8� ���

36495��:. ���;�

364959��� �<�"� �����;�

Figure 4.1: The combined UML Meta-Model for our component models

4.2. THE COMPONENT MODEL 85

�����������	��
����
�������

������������� � ��� ��!#"%$&!�'��#'�(*) '�(�+� , -&./�010
) �32 � �#'�(

newClientUpdate(name: String)

receiveMessage(line: String)

receivePercept(line: String)

conferenceStart()

�����������4��
�5�%
�������

6 � ���/�%���6 �	7 8 �����

�1�:9+� !�;#� �#���%��!#"%$&!#'+�#'�(*) '&(�#� , -�.<�0=0
) >+�#� ;��#�

register(name: String)

start()

isStarted() Boolean

6@?BA�C ��� ���������

6@?=A%C �3DB8 E

6@?BA�C �3DF8 E

6@?=A%C ��� ���������

Figure 4.2: A Blackbox Component; top: with 2 expanded interfaces, bot-
tom: with all interfaces in elided form.

86 CHAPTER 4. THE OMEGA COMPONENT MODEL

guaranteed. Note that we see here a coupling between a Provided and a Re-
quired Interface on the same component. This special dependency expresses
the fact that the same object that provides the services in the Provided In-
terface, depends on the services in the Required Interface. Such an object is
a Port, and this special case is one of the reasons to introduce Ports.

4.2.2 Basic Components

Blackbox views of basic components form the basic building blocks of the
hiearchical composition of components. The structure of a Basic Component
consists of a set of classes and their relations (as defined by the OMEGA
kernel model language), a subset of some of its classes associated with its
Ports, a set of (Provided and Required) Component Interfaces which are
associated with its Ports (same as with Blackbox Components), and, finally,
connections between Provided and Required Component Interfaces. There
are no other components inside a Basic Component. Some of the classes
inside a Basic Component have nothing to do with Ports, some of the classes
are helper classes that help realize Ports, other classes have (part of) their
interface(s), expressed in Component Interfaces, exposed to the outside world
via Ports. That ouside world consists of other components, as discussed in
Sect. 4.2.4.

Figure 4.1 shows the UML meta–model of the representation of the in-
ternal structure of a Basic Component, together with that of the Blackbox
Component we saw earlier. Just like a class definition in OO has a class name,
we define a component model name for a component model. A model for a
Basic Component and a model for a Blackbox Component refer to the same
component model if their component models have the same name. A Black-
box Component model and a Basic Component model with the same name
will have the same Provided Component Interfaces and the same Required
Component Interfaces.

4.2.3 Extensions to the OMEGA UML subset dis-
cussed so far (Fig. 4.1)

Provided Component Interface

A Provided Component Interface is modeled as a specialization of a
UML interface. The Provided Component Interface can be realized by

4.2. THE COMPONENT MODEL 87

a Class via a Port, or by one of the Ports of a Blackbox Component
(thus hiding, encapsulating, classes in a Basic Component).

Required Component Interface

A Required Component Interface is a specialization of a UML interface.
The Required Component Interface can be required by a Class via a
Port, or by one of the Ports of a Blackbox Component.

Port

A Port is a specialization of a both a UML Class and a UML Interface.
A Port can be regarded as a UML Class, whereby the interface of the
Class is known but the name of the Class is unknown. Creating an
instance of a Port means creating an object with a known interface,
but without the need of knowing the class of the object.

One Port can group several Component Interfaces, both Required and
Provided. More than one class inside a Basic Component can be in-
volved realizing a Port. More than one class can require services from
outside the component via a Port. In Basic Components there can be
dependency relations and realization relations from classes to Ports,
as shown in Fig. 4.1 with the required and provided rolenames respec-
tively. It is possible that one or more classes realize a port and one or
more other classes depend on the same port. A Blackbox Component,
and so by inheritance also a Basic Component, can have several Ports.
A designer can give names to Ports so they can be identified when the
same Port is appearing in different diagrams.

Blackbox Component

A Blackbox Component is a model for a component where only its
Ports and the Provided and Required Component Interfaces are visible
from the outside. It is a specialization of a UML Classifier.

Basic Component

A Basic Component is a component consisting of classes and their
relations as defined in the OMEGA kernel model [OME]. Some of the
classes are associated with Ports: they can depend on them or they can
realize them. The Basic Component is a specialization of a Blackbox
Component.

88 CHAPTER 4. THE OMEGA COMPONENT MODEL

A Basic Component inherits Ports with their Provided Component
Interfaces and Required Component Interfaces from a Blackbox Com-
ponent.

We would like to give a few extra remarks about the associations in
Fig. 4.1.

A class can depend on several Ports. Since Ports inherit from UML in-
terfaces we can draw dependency relations from classes to Ports. A class
depending on a Port implies that that Port depends on a Required Com-
ponent Interface. Via a dependency relation from a class to a Port a class
exports information about its implementation in terms of required services.
Our Component Interfaces inherit from UML interfaces so, when drawing a
component diagram, we can use the UML dependency relation from Ports
to Required Component Interfaces outside of the component, or the corre-
sponding lollypop notation. These notations are the same as for the Blackbox
Component. For every Required Component Interface there will be one Port
depending on it. For every Port there can be several classes depending on it.
In the case of Basic Components the same special dependency relation from
Provided Interface to Required Interface on the same component is possible
like mentioned in the case of Blackbox Components.

A class can realize a Port by itself, or it can realize ”part” of the Port:
there can be more than one class realizing the same Port. A class can also
be involved in the realization of several Ports. In designing component based
systems this is where the designer can abstract from the underlying class
diagram; future versions of the component design can use a class diagram
that is different from earlier versions, corresponding to a new version of the
implementation of the component. In the diagram we can draw realization
relations from classes to Ports. A class realizing a Port implies that that
Port realizes a Provided Component Interface, drawn with a UML realization
relation from a Port to a Provided Component Interface that is outside the
component, or with the lollypop notation. For every Provided Component
Interface there will be one Port realizing it.

Next we describe some further aspects of the classifiers in our component
model.

The outside of a Basic Component is drawn like a Blackbox Component,
the inside of a Basic Component uses UML 1.4 syntax for class diagrams,
with dependency relations and realization relations from classes to Ports.
Figure 4.3 shows an example Basic Component. It models a Client compo-

4.2. THE COMPONENT MODEL 89

nent that needs services from a Server component via the IServer interface.
The Client offers services to outside components like receivePercept which
is used to send data to a Client. The SWC class inside the Client provides the
clients’ services in this specific application. The XMLRPC class inside the
Client is for making a connection with a Server component via its IServer in-
terface: it provides the protocol used between components and it establishes
proxies when they are needed.

Both classes and components can engage in provided–required relation-
ships, since a class can be a Port. Here we call the interfaces between them
Component Interfaces to make clear we are talking about components and
to ensure the interfaces adhere to the rules we give for Component Interfaces
in this section. There can be classes and components depending on the same
Required Component Interface via the same Port.

A Required Component Interface can not depend on something inside a
Basic Component. That would be a design error since the component can
supply the needed services by itself.

An interface (an ordinary UML interface, not a Component Interface) in
the class diagram inside the Basic Component that depends on something
from outside, should be modeled as a Component Interface. The designer
is free to allow class libraries from outside that can be used inside a Basic
Component, but this would be a strange design: it would raise the question
why the designer did not turn the interface into a Component Interface.
Although it would be a design some would frown upon, we do not want to
go as far as to forbid it completely. There can be practical considerations,
for example it could be difficult to use an existing library in a component
framework setting because there is not enough library source code available.

4.2.4 Component Systems

Now that we have defined Basic Components and Blackbox Components, we
can finally define components that have other components inside: a Compo-
nent System can be viewed as one component but with an internal structure
consisting of Blackbox Components. This recursive definition gives us the
hierarchical structure we need for modeling component based applications.

We use diagrams for Component Systems to show how components are
used together, and to show what components need services from which other
components. In Component System diagrams only components, their Ports,
and their Component Interfaces and their connections are shown, using the

90 CHAPTER 4. THE OMEGA COMPONENT MODEL

�����������	���
�� �����

conferenceGUI()
addLine(line)
...

�� �	���

���

����������

� �

 ���������� "!#�

receivePercept(percept)
conferenceStart()
sendMessage(line)
...

makeProxy()

�� �	���

%$'&)(�$*���	���

�,+-

startServ()

. �������	�

Figure 4.3: A Basic Component, with a class diagram inside

4.2. THE COMPONENT MODEL 91

notation of Blackbox Components extended with notation to connect Black-
box Components. Such connections are given by dependency relations from
a Required Component Interface to a Provided Component Interface, nec-
essarily crossing a border between two components. There should not be
a dependency relation from a Required Component Interface to a Provided
Component Interface on the same component. This would mean that the Re-
quired Component Interface is depending on services from other components
while the component can provide for these services by itself, so the Required
Component Interface is redundant. A dependency relation of a Provided
Component Interface to a Required Component Interface on another compo-
nent can not readily be given a useful meaning: we consider such a relation
a syntax error.

A Component System is a specialization of a UML Classifier. As described
in the section about Blackbox Components, a future UML version could well
give us a more suitable entity to specialize from. A Component System is also
a collection where its internal Blackbox Components can be seen inside. This
is shown in Fig. 4.1 with the generalization association to UML Classifier and
the composite association from Component System to Blackbox Component.
A Component System also has Ports via the Blackbox Component inside.
This means that some of the Ports of its Blackbox Components are exported
in order to serve as its interaction points. In fact, a Component System also
has a blackbox view: the Component System as a whole can be seen as a
Blackbox Component that has the same name as the Component System
and the same Provided and Required Component Interfaces and the same
Port names, but nothing can be seen inside. Blackbox views of Component
Systems provide levels of abstraction: a Component System can contain
Blackbox Components that are Component Systems themselves.

Figure 4.4 shows an example Component System. It models how the
Client component from Fig. 4.3 is connected to a Server component. The
designer has also decided to turn the Graphical (GUI) User Interface part of
the Client (which was just a class called GUI in 4.3) into a separate compo-
nent, so the GUI of the client can be changed and replaced easily. The GUI
component forms a Component System together with the Client component
that could also be viewed as one “GUIClient” Blackbox component. Also,
all the components in Fig. 4.4 together form a Component System.

Inside a Component System, a Provided Component Interface of one
component can provide for several Required Component Interfaces of other
components, and a Required Component Interface can depend on several

92 CHAPTER 4. THE OMEGA COMPONENT MODEL

����� � ���
	 ������������

����������
����������������	

��� �
����������������	

� ��� �

��� � ���
	
���������������
	

Figure 4.4: A Component System

4.3. RUNTIME BEHAVIOUR 93

Provided Component Interfaces.

Figure 4.1 shows the meta–models for Basic Components, for Blackbox
Components, and for Component Systems in one figure. They have been
combined into one figure so the reader is given a good general overview.

What is not specified in the meta–model however, is the following im-
portant condition which ensures encapsulation: The signatures of operations
and signals in a Component Interface should only contain standard classes
and data–types from the implementation language (for example the OMEGA
kernel model language) and classes that are exported as Ports. Note that
thus encapsulation is ensured because we do not allow inheritance relation-
ship across component borders (we only allow dependency relation between
Required and Provided Interfaces).

4.3 Runtime Behaviour

In OMEGA we associate with each class a statechart which describes the
runtime behavior of its instances. Because ultimately an OMEGA component
model can be flattened to its underlying class diagram (this reduction is
formally worked out in an OMEGA deliverable), this association completely
defines the runtime behaviour of a component. It is important to observe
that here we are referring to the runtime behaviour which abstracts from the
actual deployment on a specific execution platform.

The labels on the arrows in these statecharts contain OMEGA action lan-
guage and they are of the form [guard] trigger / action where guard is
a boolean expression, trigger is an event or a method name with its parame-
ters and action is a primitive action in the OMEGA action language. These
primitive actions use standard OO dereferencing with the dot notation and
are of the form a := a0.a1, a0.a1 := a, return := a and other simple
statements; see the OMEGA kernel model document [OME] and [DJPV03]
for a complete enumeration.

In our model the required services of a component are specified by means
of interfaces, as described formally in the meta–model. Acquiring an object
that provides the functionality of a component with interface I, requires the
instantiation of a class whose interface is known but not its definition (which
is given in another component). Therefore, in OMEGA we have extended
the UML action language used in statecharts with this notion of “instan-
tiable interfaces”, that is, in the action language we allow assignments x :=

94 CHAPTER 4. THE OMEGA COMPONENT MODEL

new(I), where I is a (required) interface. This way we can make instances of
classes that are defined in other components, but without the need to know
the name of the class in the other component (which would be impossible in
the case of a future implementation of the other component). There are sev-
eral ways to actually implement this scheme, in Fig. 4.3 it is the SWC class
that makes sure that the correct class is instantiated in a Client component.
This class is simply called Client in the figure, but in a future version it could
be a class called NewClient.

As such we are instantiating a class but we only know the interface (I)
of the class, we do not know the name of the class nor its implementation.
However, in the case of one complete component application it is known
which class implements I so we can simply compile x := new(I) into the
corresponding x := new(C), where class C implements I.

Our component model thus abstracts from the underlying component
framework (for instance CORBA). To provide services of class X to other
components in a component framework, the designer can assume that a class
Y exists that does introduce the services of X to the component framework.
This class Y is a class that realizes a Port in the model. There are several
ways class Y can do this: it can accept an object that is an instantiation of
class X as a parameter to one of its methods and delegate the desired services
to this object; or it can use a “mixin” technique that extends the interface
of class Y with the desired services of class X and instantiate a new object of
type XY; or it can create a new object of class X and delegate desired service
calls to this object; or it can use another mechanism.

To summarize, we do not have an explicit notion of “instances of com-
ponents” but we only have instances of Ports. Of course it is possible to
design software in such a way that objects, referenced by variables in the
source code, are created that act like instances of components. But we do
not enforce creation of component instances: if the designer wants to model
a component as a software abstraction only, it is possible.

4.4 Architectural Models

Architectural diagrams show component interaction configurations. They
are snapshots that can be used to describe the initialization of a component
system, invariant properties of the configuration, and others useful runtime
characteristics. In OMEGA we will use a very restricted subset of OCL for

4.4. ARCHITECTURAL MODELS 95

expressing the semantics of architectural diagrams formally. In architectural
diagrams components interact by means of Ports. These Ports are different
from the Ports in a component model, the emphasis here is on objects with a
specific interface, not classes. If there is a possible confusion then we will call
the Ports in architectural diagrams Runtime Ports, and Ports in component
diagrams Component Ports. In an architectural model the Runtime Ports
can be viewed as named interfaces. Although normal OO interfaces are not
instantiable, in our model, as discussed previously, Component Interfaces are
instantiable via their Component Ports, resulting in Runtime Port objects:
this gives us the possibility to model component interaction like other OO
interactions. In an architectural model, Runtime Ports are instantiated in-
terfaces. In an actual implementation a Runtime Port can be an object that
delegates to several other objects, or it can be a channel–like object with an
address and location; what choice is made exactly is not important for the
design: it is an object that realizes a Component Interface. In our model we
define interaction between Ports as standard OO interaction.

Figure 4.5 shows an example architectural model, together with a com-
ponent model above and an object diagram below. In the component model
can be seen that Component B requires services of Component A. In the archi-
tectural model can be seen that there are, at some point in runtime, exactly
two Ports of Component B connected with Component A and they are using
the same services but from different Ports. The connections are directed from
requiring to providing Port. In the case of two Ports that use services from
each other an undirected connection can be shown by drawing a line with-
out an arrow. The Ports of Component B are instances of PB, the Ports of
Component A are instances of PA. Such a configuration can be specified with
OCL, but the architectural model is also useful: it is easier to draw a picture
like this than to have to learn OCL. The bottom diagram in Fig. 4.5 shows
an object diagram that corresponds with the architectural model above. It
shows the objects that realize the Runtime Ports. This makes it clear that
the components in an architectural model are not software abstractions but
collections of objects.

Figure 4.6 shows the meta–model for architectural models. For the con-
nections between Ports we use UML associations, we are awaiting the next
MOF to decide what the final meta–model will look like, viz. the Object

Collection entity.

96 CHAPTER 4. THE OMEGA COMPONENT MODEL

���������	��
�����

� �

���������	��
�����

���������	��
����� ���������	��
�����

� � � �

�����

�����

�����

�����

���������	��
������� ����� �!�

�"�$#�%�� &
�#')(��$��*!�+� ����� ���

,-�/.&
�#0��"� �����$���

�����

�!���

�����

�	���

Figure 4.5: The same application modeled with a Component Diagram, an
Architectural Diagram and an Object Diagram

4.4. ARCHITECTURAL MODELS 97

��� �����	��
��
�
����
��������

� ��������� �
�� � �������
��

��
�� �

�
����
��������
 	!�" ���#

$

%

$

%

%

%

� ���&�'���

(�)
�*'���'+,� �	�&

�����
�� (� � (��

* " � � (
" ��� -#� �.� "

/ �)
�

�#�)
�-�� +�� � (" ��� -�� �.� " �0

Figure 4.6: The Meta–Model for architectural models

98 CHAPTER 4. THE OMEGA COMPONENT MODEL

4.4.1 Overview

As mentioned in the Introduction, in the OMEGA project we have chosen
a subset of UML 1.4 so we will be able to use formal techniques. This
subset consists of class diagrams and object diagrams for structural modeling,
and statecharts and OCL for behavioral modeling. We also use Live (LSC)
Sequence Charts [DH01] in OMEGA but they are not part of UML. The
subject of this paper is about the extension of this OMEGA UML subset
with components. An overview of all the UML diagrams we now have is
available in Table 4.1.

Definition Deployment Behaviour

Component Diagrams Architectural Diagrams Specification:
Statecharts,
OCL

Class Diagrams Object Diagrams Implementation:
Statecharts

Table 4.1: UML Diagrams in the OMEGA project

In our component model we define component diagrams that relate to
architectural diagrams like class diagrams relate to object diagrams. When
designing OO software, both class diagrams and object diagrams are useful;
they serve different purposes: with class diagrams the designer gives a def-
inition view, with object diagrams a runtime view is given. Likewise, both
component diagrams and architectural diagrams are useful.

Summarized, class diagrams and component diagrams are used for mod-
eling definitions; object diagrams and architectural diagrams are used for
modeling configurations.

If a class diagram is complete and if there are constraints added with a
powerful enough constraint language like for example OCL, then all corre-
sponding possible object diagrams can in theory be derived from it. A design

4.5. TRACE SEMANTICS 99

goals of our component model was to offer similar diagrams and possibilities
for modeling components.

To model behaviour in UML statecharts can be used. They are associated
with class diagrams and they give an implementation. On the component
level we can also use statecharts to model behaviour. To be able to model
behaviour on the component level requires a different action language than
that used in statecharts associated with classes: statecharts associated with
components describe the interaction between, and coordination of, different
objects, whereas statecharts associated with classes describe the behaviour
of one object. On the component level we use statecharts together with
OCL to specify behaviour: this is indicated in Table 4.1 in the right–most
column, with statecharts in the top row for Specification, and statecharts in
the bottom row for Implementation.

Table 4.1 gives a classification of the UML diagrams we use for modeling
components and their relation to the existing class diagrams, object diagrams
and statecharts. Together with the explanations in this paper we hope this
sufficiently answers often heard questions from users like “When to use what
UML diagram?”

4.5 Trace Semantics

In order to provide a semantic basis for the compositional verification of
components, in this section we briefly outline the formal trace semantics of
components which describes the external observable behavior of a component
as determined by its ports. OMEGA deliverable D1.1.2 describes a formal op-
erational semantics of UML class-diagrams where the behavior of the object
instances of each class is described by a statechart ([Har87]). This seman-
tics abstracts from the actual deployment unto a specific execution platform.
It is formalized in terms of a translation relation on object-diagrams which
specify for each existing object the values of its attributes and the values of
some system variables which encode some relevant control information (such
as the current state in the associated statechart).

On the basis of this operational semantics for UML class diagrams we can
define inductively the trace semantics of a component. For basic components,
the internal structure of which is given by an UML class diagram, we extend
the above transition relation to a labelled transition relation

σ
λ
→ σ′,

100 CHAPTER 4. THE OMEGA COMPONENT MODEL

where σ and σ′ denote object-diagrams which represent the internal object-
structure of the component before and after the transition and λ is a label
indicating an internal computation step or an external event. An internal
computation step is indicated by τ . An external event is of the form

o.m(o′, p1, . . . , pn),

where

• o denotes the callee of the event,

• o′ denotes the caller,

• p1, . . . , pn denote the actual parameters, and finally,

• m denotes the kind of message.

Note that adding the caller as an explicit parameter, together with the
encapsulation condition, implies that all interaction between components is
via their Port instances. That is, we do not allow an internal object of a
component (i.e., objects that are not instances of a Port class) to call the
provided services of a Port instance of another component.

For technical convenience only, we restrict in the current presentation to
messages of the following kind:

• op, which indicates the invocation of an operation call,

• return.op which indicates the return of an operation call, i.e.,
o.return.op(o′, v) denotes the return of a call from o′ to o with return
value v.

Object-instances are denoted by pairs of the form (id , I), where id denotes
the identity of the object and I denotes its interface. An object is external (to
a given component) if its implementation is not known, that is, if its interface
is a Required Component Interface. For an internal object we identify its
interface with its class using existing UML. In an external event either the
caller of callee denotes an external object.

The above transition relation generates the traces of external events of a
basic component. The global behavior of a system of components
Comp1, . . . ,Compn we can now describe compositionally in terms of the

4.6. MODELING WITH COMPONENTS 101

traces of external events of its components by means of a projection opera-
tor: Given a global trace of events t, a component Comp, the trace Comp(t)
denotes the subtrace of t consising of external events involving port-instances
of Comp. More specifically, we have also to rename the identity of an exter-
nal object (id , C) to (id , I), where I is the Required Component Interface of
Comp provided by port-class C (defined by another component). It is impor-
tant to observe here that at the level of a component system the (high-level)
dependency–realization relations between Component Interfaces provide in-
formation about which are possible events. Namely, an event like o.m(o′, ...)
is possible if o = (id , C) and o′ = (id ′, C ′) implies that there exists a connec-
tion between the ports C and C ′.

Definition 1 Given a system of components C = {Comp1, . . . ,Compn} we
define

Trace(C) = {t | Compi(t) ∈ Trace(Compi), i = 1, . . . , n}.

Note that Trace(C) specifies the global behavior of the component system
C. We can define the externally observable behavior of the blackbox view of
C in terms of a hiding operator which removes all internal events.

The above trace semantics forms the basis of a corresponding trace log-
ics for specifying invariant properties of the traces of components (see also
OMEGA deliverable D1.2.1). We are working on a tool based on the seman-
tic tableaux method which allows to check the compatibility of the trace-
invariants of the components in a system in terms of a logical formulation of
the above compositional definition.

4.6 Modeling with Components

In this section we discuss more practical aspects of modelling applications
with components in OMEGA. In the OMEGA User Guide the concrete syn-
tax for component models can be found, here we suffice to say that in the
absence of a CASE tool that supports UML 2.0 components, the correspon-
dence between component diagrams and class diagrams gives the possibility
to use class diagrams to model components. It will give the user a little
more administration to do to remember which diagrams are for components
and which are for classes. Likewise, object diagrams can be used to model
architectural diagrams.

102 CHAPTER 4. THE OMEGA COMPONENT MODEL

The notion of an interface as specifying a set of provided and required
operations (or signals), respectively, supports a development process of
component-based software systems in UML that distinguishes two main lev-
els of abstraction, promoting a separation of concerns between the external
communication of data and the internal processing of data. At the higher
level of abstraction, a system is described in terms of the interactions among
its components, abstracting from their actual internal implementation. This
level provides the black-box view of a component. The lower level concerns
the modeling of the data-processing aspects within each component. The
resulting hierarchy object-class-component provides a natural and powerful
scheme for distribution and abstraction, hiding and structuring the complex-
ity of large distributed object-oriented software systems. More specifically,
the dynamic creation of any number of port-instances allows a component
to interact in a really distributed manner. This is to be contrasted with the
run-time notion of a component as a group of objects associated with an in-
stance of an active class which share a single thread of control and an event
queue of asynchronous signals.

The additional structuring and abstraction mechanism provided by the
notion of component allows a considerable simplification of an underlying
kernel model language like in OMEGA, which basically consists of removing
the distinction between active and passive classes. More specifically, every
instance of any class has its own single thread of control and its own event
queue. Acceptance of signals and operation calls by an object are defined
only in terms of the local state of the object itself. Objects are grouped
together only by means of the static structuring mechanism of components.

This simplification of the OMEGA kernel model language (and its seman-
tics) allows both for more transparant models and more efficient verification
techniques. The additional complexity provided by components then can be
dealt with by means of the application of compositional verification tech-
niques.

4.6.1 Examples of software developed with the com-
ponent model

We have developed several applications with our component model to see
whether it is useful practice. New versions of the component model reflected
the experiences with the designs. Most figures in this paper are based on an

4.7. CONCLUSION AND RELATED WORK 103

example called ”Conference”. With this system users can have a distributed
conference where they communicate with each other by typing messages,
somewhat like IRC chat on the internet. The system consist of a server
application and a client application. The central server of a conference can be
setup by any of the users and is accessible at a HTTP URI via XMLRPC. This
means that the client application that is used to connect to the server can be
written in any programming language. We have example clients written in
Python and in Java. As another example the OMEGA partner FTRD has
modeled their OMEGA application with our component model.

Using the component model turned out to be a natural and intuitive
way of designing software. The software engineer can concentrate on high
level system designs first and design lower levels later. Of course this could
also be done with a class hierarchy but there the designer has for example
no ”instantiable interfaces” (our component ports), forcing the designer to
make decisions about class names and class hierarchies and the like much
earlier in the design phase.

The example applications are available at our OMEGA component model
website [Jacc].

4.7 Conclusion and related work

In this paper we have presented a model for components to address architec-
ture and component based development. The main idea is that a component
is an abstraction, like a class or a module, A component is a grouping of
classes, some internal and others, the so–called Ports, denoting interaction
points with the component environment. Only Ports are visible to the envi-
ronment. Each Port is attached to a set of provided and required interfaces.

Components are used in two type of diagrams: component diagrams and
architectural diagrams. Component diagrams are for describing the structural
dependencies among the provided and required interfaces of components in
a system, while architectural diagrams are for the description of the run-
time architecture of the system. In architectural diagrams Port instances
are linked together by means of UML associations which indicate that the
connected Port instances know each other.

Considering component as an abstraction of its internal parts, in contrast
to the concept of component used for deployment in UML 1.4 [SP99], implies
that components are not units of instantiation and do not need to have a

104 CHAPTER 4. THE OMEGA COMPONENT MODEL

unique run-time identity. Moreover, having Ports as instantiable interfaces,
in comparison with the recent component model proposed by the U2 partners
for UML 2.0 [U20], has the advantage of permitting the existence at run time
of multiple Ports with the same set of interfaces per component, each Port
attached to the necessary number of runtime links. These runtime links are
modeled as connectors in UML 2.0.

Our model offers a coherent view for the design of architecture and
component-based systems. Components serve as a naming mechanisms
for abstracting from the internal parts, interfaces as declaration mecha-
nisms of services (either provided or required) and Ports together with the
dependency–realization relations as abstraction mechanisms of object inter-
actions.

Architecture description languages (ADLs) define also high-level concepts
for the design and modelling of architectures of systems, such as compo-
nents, Ports, and configurations. A large number of ADLs have been pro-
posed, some of them with a sound formal foundation. We only mention here
Wright [AG97], Rapide [LKA+95] and ACME [GMW97]. Closer to UML
are the architectural descriptions provided by SDL [BH89], ROOM [SGW94]
and UML-RT [Sel98] (the latter is in fact a UML profile interpreting ROOM
concepts in terms of UML stereotypes). In [GCK02] and [MRRR02], several
strategies for modelling components and other architectural concepts within
UML are investigated, with as conclusion that these concepts are hard to
describe in UML as it is.

Many models for components have been proposed in the last years, some
informal and remaining within the realm of the existing UML (see for example
[CD00]), and others founded on a logical and mathematical basis (e.g. Broy’s
component model based on streams of messages [BS01]. Similar to Broy’s
component model, the semantics of our model is also based on sequences
of messages (like those used for the semantics of CSP [Hoa85]). However
OMEGA components have dynamic aspects (e.g. Port instances) not fully
covered by Broy’s model. Moreover our component model is a conservative
extension of an object-oriented model and therefore it requires the addition
of only a couple of extra concepts to the standard UML 1.4. It is interesting
to note that these additional concepts are also required by the component
model proposed for UML 2.0 by the U2 partners [U20]. As described above,
however, the semantics of these concepts is different between the two models.

Other interesting approaches are the one taken by Catalysis [DW98] and
the precise UML group [pUM]. In OMEGA we are currently investigating

4.7. CONCLUSION AND RELATED WORK 105

the relationships between these approaches and our model and possible ways
of integration.

Finally, we have shown how to exploit in a formal mathematical man-
ner the hierarchical structure of components in compositional verification.
Currently, we are working on the development of a tool for checking mutual
consistency of the behavioral specifications of a set of components.

Acknowledgement The author is grateful for the input and helpful dis-
cussions with members of OMEGA, especially Frank de Boer and Marcello
Bonsangue, in the design and evaluation of this component model.

106 CHAPTER 4. THE OMEGA COMPONENT MODEL

Chapter 5

Component Coordination in
UML

Authors: Frank de Boer, Marcello Bonsangue, Joost Jacob

5.1 Introduction

Modeling is an essential part of large software projects. The Unified Modeling
Language (UML) has become the de-facto standard language for specifying,
modeling and documenting software systems, visualizing software systems.
The basic innovative ideas of UML, which are the main reasons for its popu-
larity, are the unification of the concepts and notations used in the life-cycle
of software development as well as the recognition of the importance of mod-
eling and analysis as a means to improve quality. UML consists of a number
of diagrams used for expressing the goals of the system (use case diagrams),
for specifying the structure of the system (class diagrams) and the behavior
of the system (state diagrams, activity diagrams, sequence diagrams).

In this paper we introduce a formal model of components in UML.
This model has been developed in the context of the European IST project
OMEGA. The aim of this project is the correct development of real-time
embedded systems based on formal techniques. The approach followed is
based on a formal semantics of a suitable subset of UML which includes
class and state diagrams, a version of the Object Constraint Language, use
case diagrams, and live sequence charts (an extension of UML’s sequence

107

108 CHAPTER 5. COMPONENT COORDINATION IN UML

diagrams [DH01]). The semantics of the UML subset, here called Ω-UML, is
defined in terms of a formal interleaving semantics obtained by associating
with each model of Ω-UML a symbolic transition system [DJPV03].

Our component model generalizes the basic concepts of object-orientation
by providing additional structuring and abstraction mechanisms which allow
a modeling discipline and the application of formal techniques based on in-
terfaces. More specifically, it allows to structure the class diagrams of a
UML model into components and to abstract from the internal details of
these encapsulated class diagrams. Because of the encapsulation provided
by components we can compose them hierarchically in a natural manner.

In this paper we also discuss the formal semantics of our component
model. First we discuss the formal relation between a system of components
and the underlying UML class diagrams. This relation is defined in terms of
a reduction which ‘compiles away’ the additional structuring and abstraction
mechanisms provided by components. However, we also show how we can
describe the externally observable behavior of a component at a high-level of
abstraction and compositionally in terms of its structuring and abstraction
mechanisms. This latter view provides the formal justification of the model-
ing to interfaces discipline and it provides a formal basis for the application
of formal techniques to components.

Furthermore, we discuss different coordination patterns in the context
of our component model. First we show how high-level components can be
used to model the low-level coordination patterns underlying the computa-
tional model of Ω-UML. These coordination patterns form an intricate com-
bination of the asynchronous communication supported by an event-driven
computational model (along the lines of the Actor model [Agh86]) and the
synchronous communication supported by the usual rendez-vous mechanisms
of operation calls in object-orientation. Finally, we show how to generalize
our component model to a model of component coordination based on mobile
channels which allow a clear separation of concerns between coordination and
computation.

This paper is structured as follows: Section 2 introduces the component
model. In Section 3 we discuss the formal semantics of our component model.
Section 4 then proceeds with a discussion of how to model the low-level coor-
dination patterns underlying Ω-UML by means of high-level inter-component
coordination. Finally, Section 5 discusses a generalization to mobile channels.
In Section 6 we draw some conclusions.

5.2. A COMPONENT MODEL 109

5.2 A component model

In this section, we introduce an extension of UML addressing the area of
component-based software systems. Following Szypersky [Szy02], we see a
software component as a unit of composition with well-defined interfaces,
that can be independently developed and subject to composition by third
parties. In the context of UML, this means that we consider a component
as a mean to provide a high-level software abstraction like that of a mod-
ule, which encapsulates its internal structure and which provides interfaces
specifying the provided and required operations. The rationale is to provide
a structuring and abstraction mechanism which allows a modeling discipline
based on interfaces.

More technically, a component is a UML classifier, which is intended to
be self-contained and re-usable during development and deployment. It is
identifiable by a name but it has no attributes and operations. It cannot
be instantiated or be part of associations, but it can be generalized since it
has a type, defined by the set of its provided and required interfaces. This
means that a component is a unit of substitution that can be replaced by a
component that offers at least the same provided interfaces and demand at
most the same required interface.

A component interface is just a UML interface, that is, a non-instantiable
classifier with operations and attributes. We distinguish between two kind
of component interfaces: required interfaces and provided interfaces. A pro-
vided interface specifies a set of operations that the component offers to
the environment. A required interface specifies a set of operations that are
needed by the component to guarantee the correct functionalities of some
provided interfaces. We allow for generalization relations among component
interfaces.

A component is also a package, and therefore a structural em unit of
abstraction of the classes realizing its behavior. Other UML elements may
be owned by a component. In particular, other components may be owned
by a component allowing for hierarchical specifications. Encapsulation of the
internal structure is guaranteed because interaction points with its environ-
ment are exclusively defined via ports, the software concept equivalent of the
hardware port on a board.

A port is a class and also an interface, that is, it is an instantiable interface.
A components owns a set of ports, and each port owns a set of the component
provided interfaces, and a set of the required interfaces. The same component

110 CHAPTER 5. COMPONENT COORDINATION IN UML

interface may be owned by more than one port. The set of ports defines
the border between the internal implementation of the component and its
environment. Internal classes may realize a port or depend on a port.

Incoming communications defined in the provided interface of a port are
handled within instances of an internal class of the component realizing that
port. If a class realizes a port it realizes also one of its provided interfaces. We
assume that at most one internal class may realize a provided interface of a
port (but we allow for different classes to realize the same provided interface if
each class realize a different port). A port introduces an indirection, and each
request of instantiation for that port is resolved at run-time by instantiating
an internal class realizing a provided interface owned by the port (which
class is resolved statically by the type of the object expected by the requester
from the instantiation). This indirection mechanism abstract from the actual
implementation of an operation and allows for a very late binding of an
operation implementation with its declaration in a component interface. We
call port instances the object instance of internal classes instantiated by a
port.

If an internal class depends on a port then it depends also on one of
its required interfaces. From the environment point of view, outgoing com-
munications of an object instance of an internal class are identified with
communications from the port owning the required interface on which that
class depends. Communications at the border (that is, between two port
instances) are observable.

A component has two structural vies: a black-box view and a white-box
view. In the black-box view, only the component provided and required inter-
faces and their grouping into ports is visible. Optionally, behavioral elements
such as a state machines may be attached to each port, to define more ex-
plicitly a sequence of operation calls. For a black-box component it must
hold that every type or class used in a provided interface must be declared
in one of the provided or required interface of the component itself. This
self-containment property, together with not allowing generalization across
the border, ensures a complete encapsulation of the internal implementation.
Notationally, a black-box component is drawn as a classifier rectangle with in
the right hand corner a component icon: a rectangle with two smaller rectan-
gles protruding from its left hand side. Ports are shown as small squares on
the edge of the component rectangle, with association to interfaces, shown
as labeled ball and socket for the provided and required interface interface,
respectively. Provided and required interface can also be shown more explic-

5.2. A COMPONENT MODEL 111

Server Component

PServerPClient1 PClient2

Figure 5.1: A black-box view of a component

itly as the classifier rectangles. Figure 5.1 shows an example of a component
with two ports: one with a provided interface and another with a provided
and a required interface.

Black-box views of components are used in component system diagrams
to visualize the structural connections in a component-based system. There
can be dependency relations from a provided interface of a component to
a required interfaces of another component (but not vice-versa). Option-
ally, a coarser specification of the structural collaboration can be made using
connectors. A connector is a specialized association between ports, used
to indicate that all required interfaces of a port must be compatible with
the provided interfaces of the other connected port. The wiring between
components in a system is used at run-time for the instantiation across com-
ponents. If an internal objects (i.e., an instance of an internal class) requests
the instantiation of a port P with interface I on which it depend, then this
request is resolved at deployment time in a request for instantiation of the
port Q with a provided interface wired with the required interface I of P .
In other words, a port through its required interfaces act as placeholders for
port names that become known only at deployment time, when connectors
or dependency relations are statically fixed in a component system diagram.

Figure 5.2 shows a component system diagram. Dependency relations
between provided and required ports implicitly given by the ball-in-socket
notation. The association between a port of component B and one of com-
ponent C is a connector: the set of provided and required ports of those ports
must be compatible.

In the white-box view, the internal elements of a component are revealed,

112 CHAPTER 5. COMPONENT COORDINATION IN UML

� ��� � ���	� �
���� ����

���� ����
���������������	�

��� �
�������	�������	�

� ��� �

��� � ���	�
���������������	�

Figure 5.2: A component system diagram

5.2. A COMPONENT MODEL 113

in order to show the implementation of the external behavior of the compo-
nent ports. To this end, dependency and realization relations must be given
between internal classes or internal components and the component ports:
a dependency relation provides information about an internal class imple-
mentation in terms of its required services. An internal class can depend
on several ports. Since ports are UML interfaces we can draw dependency
relations from an internal class to a port, with the intended meaning that
the class depend on one of the required interface of that port. On the other
hand, a required component interface or a port cannot depend on something
inside a component. That would be a design error since the component can
supply the needed services by itself. Since ports are UML interfaces, we can
draw realization relations from internal classes to ports. An internal class
can realize several port, but port can only realize provided interfaces. A
connector between the port of an internal component and an external port
is used to graphically show the export of a port of an internal component to
the environment.

Figure 5.3 show the white-box view of component A: the upper port is
connected with a port of the internal components B, while the other port is
realized by class C. Class C depends on the same port and also on a provided
interface of the internal component B.

Run-time component interaction configurations are modeled in architec-
tural diagrams. They are snapshots that can be used to describe the ini-
tialization of a component system, invariant properties of the configuration,
and others useful runtime characteristics. In architectural diagrams only
instances of ports, ports and components are shown, together with their re-
lationships. Instances of ports handle all interactions from the environment
into the component they belong to, as well as the interaction between dif-
ferent port instances. Interaction from the inside of a component to the
environment is handled by the ports of the component (and not by their
instances).

In Figure 5.4 we show an architectural diagram of the component system
depicted in Figure 5.2. Port instances are represented by filled squares, while
port classes are denoted by plain squares. Arrows denote directed relations
either between port instances (representing the possibility of executing oper-
ation calls from a port instance to another one), or from port classes to port
instances (representing the possibility of executing operation calls from the
internal of the component to the port instance of another component).

114 CHAPTER 5. COMPONENT COORDINATION IN UML

addClient(string name)

send(string server; string event)

...other operations...

sendCommand(string command)

sendMessage(string line)

connectServer(string location)

conferenceStart()

receivePercept(string line)

receiveMessage(string line)

newClientUpdate(string clientnames)

newClientUpdate(string clientnames)

receiveMessage(string line)

receivePercept(string line)

conferenceStart()

− GuiPart gui

setupGUI(int x; int y)

redrawClients()

conferenceGUI()

isWaiting()

addLine(string line)

Client

RPC_Class

PClient<< Port >>

GuiPart

Figure 5.3: A white-box view of a component

5.2. A COMPONENT MODEL 115

�����������
	�����

�

������������	��
���

�����������
	����� ������������	��
���

� � �

�����

�����

�����

�����

������������	��
����� ����� ���

�� �
 �� � 	��!� "�� ��#��$� ����� ���

%&�(' 	��!����� ����� ���

�����

�����

�����

�����

Figure 5.4: An architectural diagram of a component system

116 CHAPTER 5. COMPONENT COORDINATION IN UML

5.3 Ω-UML

Building embedded real-time systems of guaranteed quality, in a cost-effective
manner, is an important technological challenge. There is a general agree-
ment that a means to achieve this is a model-based approach. UML aims
at providing an integrated modeling framework encompassing structural de-
scriptions, as well as behavioral descriptions. Although there is a large num-
ber tools available that implement a dynamic semantics of UML, none of
these tools integrates state-of-the-art formal validation tools, as required in
many industrial sectors for a proper development process.

The aim of the European IST project OMEGA is the correct development
of real-time embedded systems based on formal techniques. The approach
followed is based on a formal semantics of a suitable subset of UML which
includes class and state diagrams, Object Constraint Language, use case
diagrams, and live sequence charts (an extension of UML’s sequence dia-
grams [DH01]). The semantics of the UML subset, here called Ω-UML, is a
formal interleaving semantic obtained by associating with each model of Ω-
UML a symbolic transition system [DJPV03]. Due to space restrictions, we
only sketches here the main concepts of Ω-UML and their intuitive semantics.

Similarly to the standard UML [SWB03], classes in Ω-UML may be either
active or passive. An active object (i.e., an instance of an active class) is like
an event-driven task, which processes its incoming requests in a first-in-first-
out fashion. It has only one thread of control, so that active objects are
internally sequential. As only one message may be treated at a time, there
must be a mechanism for queuing the calls. For a passive object only one
operation may be active at a time, and, although passive, it has certain
degree of control over the invocations made toward them, as explained later
in this section. Furthermore, in Ω-UML all objects are assumed to be reactive,
that is, their behavior can be made dependent on the current state of the
system.

In Ω-UML state-machines are used to describe the computational be-
havior of the instances of a class. These state machines are composed of
transitions which are labeled by a (guarded) trigger and an action. A trigger
specifies the reception of an operation call. An action involves assignments
to the attributes, class instantiation and operation calls.

The semantics model of Ω-UML captures three different kinds of inter-
object communication: share variables (via public attributes), synchronous
(via triggered operation calls, i.e. operation calls whose return value depend

5.3. Ω-UML 117

on the current state of the system) and asynchronous (via signal events).
The execution of a synchronous operation call involves a rendez-vous be-

tween the sender and the receiver of the call: First, the sender and receiver
of the call have to synchronize on the execution of an operation call by the
sender and a corresponding trigger by the receiver. Such a synchronization
results in the sending of the actual parameters which are stored by the re-
ceiver in the corresponding formal parameters of the operation. During the
execution of the operation by the receiver, the sender is suspended. Upon
termination of the call, the return value is send back to the sender, after
which both sender and receiver resume their own execution.

On the other hand, an asynchronous operation call is stored in the event-
queue of the receiver. The execution of a trigger involving an asynchronous
operation consists of checking whether a corresponding operation call appears
as the first element of the event-queue (of the receiver) and storing its actual
parameters in the formal parameters. It suspends otherwise.

The above communication mechanisms between active and passive ob-
jects is coordinated by means of activity groups. Activity groups are run-
time components which are created dynamically. Each object belongs to an
unique activity group, and each activity group contain exactly one active
object at each time.. The objects of an activity group share both one thread
of control and the event queue. The sharing of control means that at most
one object of the group is executing. Control is passed on by a synchronous
operation call to another object belonging to the same group. On the other
hand a synchronous call to an operation of an object not belonging to the
same activity group suspends the executing object and a fortiori its activity
group. An asynchronous operation call to an object will be stored to the
event queue of its activity group.

5.3.1 Components in Ω-UML

In order to represent all the aspects important for real-time system design
at an appropriate level of abstraction, Ω-UML incorporates the component
model introduced in Section 5.2. The model allow the definition of visibility
and communication constraints needed for the design of large systems and
provide a basis for proper abstraction, compositional refinement and verifi-
cation.

To properly model the communication mechanism of a component-based
system, the action language of Ω-UML is extended to allow actions for port

118 CHAPTER 5. COMPONENT COORDINATION IN UML

instantiation. They are of the form

x := new(P)

where P is the name of a port owned by a component and x is an attribute of
type compatible with one of the required interface owned by the port P . This
action can be executed by any object instance of an internal class depending
on the port P .

A component system diagram can be reduced to a large class-based Ω-
UML model, using information from the white-box and black-box view of
each component involved in the diagram. The basic idea is to recursively
(because of the hierarchical structure of a component) transform each com-
ponent into a the class it encapsulate. The classifiers for ports, component
interfaces and components are omitted from this diagram, as well as all rela-
tions on which they are involved. Action for port instantiation x := new(P)
are transformed into action for class instantiation x := new(C), where C

is the name of the class indirectly instantiated by the port to which P is
connected.

The basic semantic model obtained in this way is not compositional with
respect to the concept of component. It is formalized in terms of a translation
relation on object-diagrams which specify for each existing object the values
of its attributes and the values of some system variables which encode some
relevant control information (such as the current state in the associated stat-
echart). Transitions are labeled by external events or by a label indicating
an internal computation step. An external event is of the form

callee.op(caller,parameters)

denoting the call of a (synchronous or asynchronous) operation op by the
caller to the callee with a list parameters, or

caller.return-op(callee, actual-parameters)

denoting the return from callee of a synchronous operation call op, initially
called by caller. This semantics defines a very fine-grained notion of ob-
servability, making roughly every choice point and every interaction between
distinct objects observable.

A more abstract notion of observability should be preferred, to capture
only those interactions between the component and its environment. This

5.4. INTRA-COMPONENT COORDINATION 119

can be obtained by transforming the labels of above transition system as
follows. If the callee is a port instance then the transition step should be
observable. In case the caller is also a port instance, the label should not
change, otherwise caller should be renamed to the port on which its class
depend. All other steps should be treated as internal steps. By means of
a corresponding projection operation on traces of events we can define the
traces of a system of components in a compositional manner along the lines of
the compositional trace semantics of CSP [SS99] (generalized to components
and object-orientation).

5.4 Intra-component coordination

In this section we discuss how our component model can be used in UML
to express the coordination mechanism between active and passive classes
as prescribed by Ω-UML by means of activity groups. That is, we see a
component as a unit of reaction, which statically determines the run-time
coordination of a reactive system with active and passive objects. Instances
of an active classes are like Real-Time Operating System tasks, having their
own thread of control, and running concurrently with other instances of active
classes. Instances of passive classes are more like sequential objects whose
operations are under the control of the active object that controls the caller.

In this section we will concentrate on the basic communication mecha-
nism of UML: objects communicate and synchronize only via synchronous
operation calls. For modeling purposes this suffices because asynchronous
operation calls can be modeled by synchronous ones.

The basic idea is to replace an activity group from a model of Ω-UML
by a component with a port which describes the coordination model of this
activity group, that is, port instances will generate and coordinate activity
groups. Since activity groups do not provide any encapsulation, the port will
own a provided interface for each class specifying the activity group. The
port instance is the only object that external objects can interact with, in
the style of ordinary message interaction: p.operation(parameters). Further,
the port instance p does not have attributes that are accessible by external
objects.

Interactions between an external object and an internal object are del-
egated via the component port instance p: The external object is now in-
teracting with p instead of with an internal object directly: every operation

120 CHAPTER 5. COMPONENT COORDINATION IN UML

call
callee. op(parameters)

to an internal object callee is transformed into a call

p.op (caller, callee, parameters)

which involves the storage of the corresponding call to the operation op in
the pending request table discussed below and which is immediately followed
by a transition with a trigger

return-op(return-value)

which will involve the return from the call op by the callee and the reception
of the return value.

On the other hand, the internal objects have to be modified so the port-
instance can be informed about what triggers they will accept in their current
state. We do so by adding to every state of an internal object a loop consisting
of a poll() trigger and a return statement that returns the names of the
triggered operations that can be accepted in the state.

Finally, a component port is an instance of a port class with an attribute
which stores operation calls from external objects to objects of the activity
group. This pending request table has four columns: every row has entries
that consist of the caller object, the callee object, the operation name, and
a sequence of actual parameters. Furthermore a port will contain other
attributes for expressing certain relevant information about the state of the
activity group, e.g., its objects, the executing object, etc.. This additional
information will be used in the method select that selects an object from
the set of internal objects for execution. A port has also a method choose
that can select an entry in the pending request table. These two methods
together will implement the coordination mechanism used and will involve a
particular scheduling policy.

The behavior of a port consists of two main loops: one for receiving
operation calls from external objects and storing these in the pending request
table and one for dispatching calls from the pending request table and for
forwarding these calls to an internal object and returning the result to the
external object.

The first loop starts with a transition for each operation op that consists
of a corresponding trigger

op(parameters)

5.5. INTER-COMPONENTS COORDINATION 121

where the list of parameters contains the caller and callee of the call. This
trigger is followed by a local computation step which involves a corresponding
update of the pending request table. After this local update the call to the
operation op of the port-instance is completed. Note however, as described
above, that the caller object, after completion of the call to the operation op
of the port-instance will wait for a call to the operation return-op which will
coincide with the completion of the operation op by the internal object.

The second loop starts with the selection of a call in the pending request
table. The port-instance subsequently calls the corresponding operation of
the callee. When this call is completed the port-instance resumes its activity
by sending the received return value to the initial caller object.

5.5 Inter-components coordination

Reactive systems are systems that reacts continuously to their environment,
at a speed imposed by the latter [HP85]. Among reactive systems are most
of the industrial real-time systems, like control systems and signal processing
systems. These systems are distributed in their own nature: think for exam-
ple at the different location of the sensors and actuators of a system. Further-
more they are subject to temporal requirements concerning both the input
rate and the response time. This requirements must be taken into account
when modeling a system, for example, by considering an architectural design
employing the globally asynchronous locally synchronous paradigm [Cha85]:
communication within a unit of distribution may be synchronous, whereas
communication between different unit of distribution must be asynchronous.

The semantic model of Ω-UML is rich enough to support communica-
tion through shared attributes, operation calls, and signals. Synchronous
operation calls use rendez-vous as communication mechanism. It involves
a synchronization between the sender and the receiver of the operation call
for the message (and parameters) passing, an asynchronous establishment
of the rendez-vouz, and another synchronization between the sender and re-
ceiver for passing the return values. Rendez-vous lead to useless waiting time
and reduce parallelism and efficiency [Fox88]. That is why in this section we
restrict the communication model of Ω-UML so to support the globally asyn-
chronous locally synchronous paradigm: all inter-component communication
are purely asynchronous (via signal events), while intra-component commu-
nication is unrestricted. This way, components are units of distribution of

122 CHAPTER 5. COMPONENT COORDINATION IN UML

reactive real-time systems.
A consequence of the inter-component communication by signal events is

that each port instance (the receivers of all the signals directed to a com-
ponents) must be equipped with an event-queue, so that incoming requests
are processed in a first-in-first-out fashion. This is equivalent to say that
communication between components is performed by means of send and
receive primitives over a network of FIFO channels: The processes in the
network are the ports and the port instances. while the channels are the
event-queue associated with each port instance. An asynchronous opera-
tion call p.signal(parameters) correspond to sending the structured signal
signal(parameters) to the channel p (the identity of the port instance owning
the event-queue), while the trigger of the signal correspond to the reception
of the first signal from the channel with sink attached to the process. Notice
that channels can be dynamically created, and passed to other processes by
means of a signal. Therefore, communications are performed over a dynam-
ically reconfigurable networks of channels and processes.

In other words, by loose coupling the inter-component communication
mechanism (here obtained by forbidding synchronous operation call) one
obtain a system of dynamic processes communicating through mobile chan-
nels. There is, however, an asymmetry in the above coordination mecha-
nism: channels are mobile only at their source. This is due to the fact that
in UML, the triggering of an operation is implicitly directed to the event
queue of the active object controlling it. If we relax this constraint, and
introduce trigger operations directed to a channel (introducing, for exam-
ple, a syntax for trigger operation similar to a CSP [Hoa85] read operation
c?signal(parameters)) then we obtain a the coordination model of mobile
channels proposed in [ABdB00, SAdBB03]: Processes can be created dy-
namically and have an independent activity that proceeds in parallel with all
the other processes in the system and interact only by sending and receiving
messages asynchronously via channels which are (unbounded) FIFO buffers.
Channels are created dynamically. In fact, the creation of a process consists
of the creation of a channel which connects it with its creator. This channel
has a unique identity which is initially known only to the created process
and its creator. As with any channel, the identity of this initial channel too
can be communicated to other processes via other channels, so that which
processes are connected by which channels, is completely dynamic, without
any regular structure imposed on it a priori.

A compositional formal semantics based on histories of signals sent

5.6. CONCLUSION 123

and received by each process has been given for the above coordination
model [dBB00], together with a logic-based component interface description
language that conveys this observable semantics [AdBB00]. This interface
description language allows for deriving properties of a component-based
system out of the logical interfaces of each port of the constituent compo-
nents [AdBB00]. Finally, the model has also been implemented as a middle-
ware for distributed communication and collaboration [SAdBB02].

5.6 Conclusion

In this paper we have presented a UML model for components to address
architecture and component based development. Components are units of
abstraction that can be independently developed, like classes or modules.
Unlike classes, they components are also unit of encapsulation that can be
extended by subtyping of the interfaces, but not by inheritance of their im-
plementation. Component-based systems are described by means of two new
UML diagrams: component system diagrams and architectural diagrams.
Component system diagrams are for describing the structural dependencies
among the provided and required interfaces of the components in a system,
while architectural diagrams are for the description of a runtime configura-
tions of the architecture of a component-based system.

Our model offers a coherent view for the design of architecture and
component-based systems: components serve as a naming mechanisms for ab-
stracting from the internal parts, interfaces as declaration mechanisms of ser-
vices (either provided or required) and ports together with the dependency-
realization relations as abstraction mechanisms of object interactions.

Contrary to the component concept used in deployment diagrams of UML
1.4 [SP99], our components are not units of instantiation and do not need to
have a unique run-time identity. Our model of component is similar to the
recently approved proposal by the U2 partners for UML 2.0 [OMG03], but
components have no state, are not instatiable, and allow for the existence at
run time of multiple ports with the same set of interfaces, each Port attached
to the necessary number of runtime links. For example, in UML 2.0 a class
is also a component, while this is not the case for our notion of component.

Our model has been largely influenced by the main concepts offered by
architecture description languages (ADLs): components, ports, and con-
figurations. A large number of ADLs have been proposed, some of them

124 CHAPTER 5. COMPONENT COORDINATION IN UML

with a sound formal foundation. We only mention here Wright [AG97],
Rapide [LKA+95] and ACME [GMW97]. Closer to our architectural dia-
grams are the architectural descriptions provided by ROOM [SGW94] and
UML-RT [Sel98] (the latter is in fact a UML profile interpreting ROOM
concepts in terms of UML stereotypes).

Many models for components have been proposed in the last years, some
informal and remaining within the realm of the existing UML (see for exam-
ple [CD00]), and others founded on a logical and mathematical basis (e.g.
Broy’s component model based on streams of messages [BS01]. In [GCK02]
and [MRRR02], several strategies for modeling components and other archi-
tectural concepts within UML are investigated, with as conclusion that these
concepts are hard to describe in UML as it is. Similar to Broy’s component
model, the semantics of our model is also based on sequences of messages (like
those used for the semantics of CSP [Hoa85]). However our components have
dynamic aspects (e.g. Port instances) not fully covered by Broy’s model.

Moreover our component model is a conservative extension of an object-
oriented model and therefore it requires the addition of only a couple of extra
concepts to the standard UML 1.4. It is interesting to note that these addi-
tional concepts are also required by the component model proposed for UML
2.0 by the U2 partners [U20]. As described above, however, the semantics of
these concepts is different between the two models.

Acknowledgement The work reported in this paper has been funded by
the European IST-2001-33522 project OMEGA.

Chapter 6

The unified coordination
language UnCL

Authors: Frank de Boer, Marcello Bonsangue, Joost Jacob

6.1 Introduction

In this paper we introduce a subset of UML called the Unified Coordination
Language (UnCL) as an unified model for exogenous coordination. The main
purpose of UnCL is to provide a separation of concerns between coordination
and computation. In Fig. 6.1 we give an overview of our coordination model.
UnCL provides a special class for every UML class (or group of UML classes)
that is relevant for the coordination. This UnCL class imports operations
(methods) of the application’s class(es). It contains only attributes with
references to objects within UnCL or to objects of the application.

In UnCL the additional coordination behavior is specified by associating
state-machines with its classes. Such a state-machine in UnCL consists of
transitions that involve two kinds of operations. The first kind are the appli-
cation operations (app-ops) that are implemented (and executed) by the co-
ordinated application. The second kind are coordination operations (co-ops).
Objects in UnCL coordinate their interaction by means of these operations
which are communicated via an event-queue system. Every UnCL object is
associated with a queue which stores the messages involving its co-ops and
that are sent to it.

125

126 CHAPTER 6. UNCL

UML

State−Machine UnCL Object Diagram

UnCL Class Diagram

has instance

UnCL

Event−Queue System

Class Diagram

Object Diagram

Application

Modeling

Implementation

Coordination

App−ops

Co−ops

Subset
corresponds to

Smalltalk

Python
Java
Eiffel
C#
C++

instance

Figure 6.1: UnCL.

There are three dynamic aspects to UML models: (1)app-op semantics,
(2) co-op semantics, and (3) scheduling; namely, which transition is to be
fired at a precise moment. The computations inside an application involve
(1), and the coordination involves aspects (2) and (3). In this paper we ab-
stract away from the scheduling because we want to provide a separation of
concerns between (2) and (3). This gives us the possibility to choose differ-
ent scheduling algorithms for the same UnCL model. Thus, the scheduling
semantics becomes a parameter of the model itself.

UnCL
XML

XML Specification

RML

UML
XML

Execute

Co−ops and Ap−ops

Update

UML

Tool
Simulation

Update Object(s) State
Read

Object(s) State

Result

Execute Ap−ops

Update Execute

Co−ops and Ap−ops

UnCL
XML

XML Specification

RML

Ap−ops

(Table)
Interface

Execute Ap−ops

ResultResult

(a) (b)

Application

(C++, C#, Eiffel,

Java, etc.)UnCL−Tool UnCL−Tool

Figure 6.2: UnCL Tool Architecture.

In this paper we introduce a precise semantics of the coordination behav-
ior of an UnCL model and its formalization in a new extension of XML [XML]
called the Rule Markup Language (RML). RML is designed for the specifica-
tion and execution of general transformations of XML data and is therefore

6.2. SEMANTICS OF UNCL 127

very well suited for the specification and execution of the semantics of UML
models. The application of RML to UnCL allows for both simulation within
UML as well as the coordination of external applications at run-time.

In figure 6.2a we give the tool architecture for the simulation. The UnCL
classes, state-machines, objects, and coordination mechanism are fully speci-
fied and given in XML. For every co-op a transformation rule in RML is given
that describes how the UnCL XML specification of the input object-diagram
changes by performing the operation. However, for executing an app-op the
simulation needs a UML simulation tool that reads the relevant parts of the
object-diagram, performs the operation, and changes the object diagram ac-
cordingly. The advantage of this architecture is that both the execution steps
and the state of the UML application are fully given in XML, making it easy
to see step-by-step how the state of the application evolves.

Using the same UnCL specification we can also coordinate run-time ap-
plication(s). Such an application then basically serves as a kind of library
whose objects are driven and coordinated by the UnCL model. Fig. 6.2b
shows the corresponding coordination architecture. The attributes of UnCL
classes now indirectly refer to run-time objects of the underlying application
instead of UML objects specified by XML. The state of the application is hid-
den in the application itself and not part anymore of the XML specification.
App-ops are now being performed by the run-time objects of the application.
This means that we need an interface that binds the UnCL object references
in XML to the run-time object references of the application. The interface
maintains a table which relates these two different name spaces.

Plan of the paper: after describing UnCL in this section, we continue
with the presentation of a precise semantics of UnCL. Then we discuss the
execution platform and its main component RML. We finish with related
work and conclusions.

6.2 Semantics of UnCL

In UnCL objects are coordinated by means of state machines. These state
machines are associated with classes and consist of transitions of the form

l
[g]t/a
−→ l′

where l is the entry location and l′ is the exit location of the transition.
Furthermore, g denotes its boolean guard, t its trigger, and a its action.

128 CHAPTER 6. UNCL

More specifically, given a set of attributes, with typical element A, defined
by the associated UnCL class the boolean guard g of a transition involves a
call

A.op(A1, . . . , An)

to a boolean app-op op of the object denoted by A which is provided by
the underlying application. We require that the execution of such a boolean
app-op does not affect the values of the attributes defined by the UnCL
diagram.

A trigger t is of the form

op(A1, . . . , An)

which specifies a co-op op defined by the UnCL class itself and a correspond-
ing parameter list A1, . . . , An of attributes.

Finally, an action involves a call

A.op(A1, . . . , An)

where op is either a co-op defined by the UnCL class of the object denoted
by A or op is a app-op provided by its class of the underlying application.

We model object creation by means of a call C.NEW (A) of an app-
op NEW provided by the underlying application. This operation has a
value/result parameter so the above call with actual parameter A will
assign to A the identity of a new object in class C. In general we
model assignments by means of value/result parameters, i.e., an assign-
ment B = A.op(A1, . . . , An) involving an operation-call is modeled by a call
A.op(B, A1, . . . , An) with value/result parameter B.

In order to formally define the operational semantics of state machines in
UnCL we assume for each class c of a given UnCL class diagram a set Oc of
references to objects in class c. In case class c extends c′ (according to the
UnCL diagram) we have that Oc is a subset of Oc′. (For classes which are not
related by the inheritance hierarchy these sets are assumed to be disjoint.)

Definition 2 An object diagram of a given UnCL class diagram with classes
c1, . . . , cn can be specified mathematically by functions σc, for c ∈ {c1, . . . , cn},
which specify for each object in class c existing in the object diagram the values
of its attributes, i.e., σc(o.A) denotes the value of attribute A of the object o,
i.e., it denotes an object reference in Oc′, where c′ is the (static) type of the
attribute A (defined in the class c in the UnCL diagram).

6.2. SEMANTICS OF UNCL 129

Often we omit the information about the class and write simply σ(o.A).
Control information of each object o in an object-diagram is given by σ(o.L),
assuming for each class an attribute L which is used to refer to the current
location of the state machine of o. Furthermore, the event-queue of each
object is given by the attribute E.

Given an UnCL class diagram consisting of a finite set of classes c1, . . . , cn

and associated state machines, we define its behavior in terms of a transi-
tion relation on object diagrams. Object diagrams correspond to states in
our semantic model. This transition relation is defined parametric in the
semantics of the application operations and the way messages are stored and
removed from the event-queue. More specifically, we assume for each action
a = A.op(A1, . . . , An) involving an app-op op a labeled transition relation

σ
o.a
−→ σ′

which specifies σ′ as a possible result of the execution of the call a by the
caller object o in σ. Such a labeled transition describes the observable effect
on the UnCL object diagram of the execution of the corresponding call by
the underlying application. As a special case we assume for each guard
g = A.op(A1, . . . , An) involving a boolean app-op op a labeled transition
relation

σ
o.g
−→ b

where b denotes a boolean value which indicates the result of the operation
(note that we assume that boolean operations does not affect the attributes
of the UnCL diagram).

Furthermore, for each trigger op(A1, . . . , An) we assume the semantic
function

pop − op(A1, . . . , An))

which, given an input object diagram σ and an executing object o, returns
the object diagram σ′ that results from removing a message op(o1, . . . , on)
from the event-queue σ(o.E) of o in σ and assigning the object references oi

to σ(o.Ai), i = 1, . . . , n, i.e., σ′(o.Ai) = oi. In case there does not exist such
a message this function is undefined.

On the other hand, given an input object diagram σ and a caller object
o, the semantic function

push − op(A, A1, . . . , An)

130 CHAPTER 6. UNCL

returns the object diagram σ′ that results from adding the message
op(o1, . . . , on) involving the co-op op sent by o to the event-queue σ(o′.E)
of the callee o′ = σ(o.A), where oi = σ(o.Ai), for i = 1, . . . , n.

Definition 3 Formally, given an UnCL class-diagram and the semantic in-
terpretations of the app-op’s, we have a transition σ → σ ′ from the object-
diagram σ to the object-diagram σ′ if the following holds: there exists an
object o and a transition

l
[g]t/a
−→ l′

in its state machine such that

Location σ(o.L) = l and σ′(o.L) = l′;

Guard σ
o.g
−→ true;

Trigger pop − op(A1, . . . , An)(σ, o) = σ′′, in case of a trigger t =
op(A1, . . . , An);

Action We distinguish between the following two cases:

• in case of a call a = B.op(B1, . . . , Bk) involving a co-op op we
have

push − op(B, B1, . . . , Bk)(σ
′′, o) = σ′

• in case of a call a involving an app-op we have

σ′′ o.a
−→ σ′.

The first clause above describes the flow of control. The second clause
states that the guard evaluates to true (without side-effects). The third
clause describes the execution of the trigger by the executing object o in the
initial object diagram σ in terms of the corresponding pop-op function. Note
that the evaluation of the guard and the execution of the trigger are strictly
sequentialized. This implies that the guard cannot refer to the new values
of the actual parameters of the trigger which are stored in the event-queue.
However, a slight modification would suffice to allow for this. For technical
convenience only we restricted to a simpler semantic model. Finally, the
execution of the action distinguishes between a co-op and an app-op. In
both cases, the input diagram is the diagram resulting from the execution of

6.3. THE UNCL EXECUTION PLATFORM 131

the trigger and the diagram resulting from the execution of the action is the
final result of the transition. A call to a co-op op is described in terms of the
corresponding push-op which consists of pushing the message on the event-
queue of the callee. Note that a call to a co-op is asynchronous and does
not involve a rendez-vous with the callee. However such a synchronization
can be modeled easily. Finally, a call to an app-op is described in terms of
a corresponding labeled transition which models the execution of the call by
the underlying application.

Note that the execution of a transition of a state-machine is atomic. How-
ever, more fine-grained modes of execution can be introduced in a straight-
forward manner.

6.3 The UnCL Execution Platform

The kernel of the UnCL tool consists of an algorithm for taking transitions
in the state-machine, scheduling the transitions, calling the coordinated ap-
plication and managing a user interface. The part of the algorithm that
concerns the coordination, i.e., the processing of the co-op’s, is defined using
RML rules.

RML tools

ID:ref
table

RML

rules

Coordinated
application

Table manager
UnCL dispatcher

OBJID
TRANSID

User or UnCL scheduler

UnCLXML

co−op

app−op

OBJID

OBJID

Figure 6.3: RML in UnCL

Fig. 6.3 shows how the RML tools are combined with the UnCL tool, the
XML for UnCL models in a new XML vocabulary called UnCLXML, and

132 CHAPTER 6. UNCL

the coordinated application. A RelaxNG schema for UnCLXML is available
at [Jacb]. What is not displayed is a scheduler that decides what transitions
to take at a specific moment, this scheduler can be implemented indepen-
dently, useful for real-time applications, or the scheduler can be a human
being using a UnCL system as the web-application at [Jacb]. In the Figure
we see a document icon for the UnCLXML document that is publicly visible.
We see two other document icons for the RML rules, visible only to the RML
tools part of UnCL, and the table relating object references in XML to the
run-time object references of the application, visible only to the UnCL table
manager that has to be implemented in the same language as the coordi-
nated application. Both the table manager and the RML tools can modify
the UnCLXML document, so the document has to be protected by a lock-
ing mechanism. The UnCL dispatcher receives an object identifier (OBJID)
and a transition identifier (TRANSID) in the case of more than one possible
transition for the object, and the dispatcher sends the necessary information
to the RML tools in the case of a co-op and to the Table manager in the case
of an app-op.

In the following we will show how state-machines and their semantics as
defined in Sect. 6.2 can be encoded in the Rule Markup Language (RML)
which is a new extension of XML for specifying and executing XML data.
RML can be combined with an XMLvoc in order to define transformations
of corresponding XML data using the XMLvoc itself. In the case of UnCL
we combine RML with UnCLXML. With RML we can now define also the
semantics of UML models in XML. Furthermore, using the RML tool we can
execute these models. UnCL users do not have to learn RML, but just write
state machines in UnCLXML.

The rules defined with RML consist of an antecedent (the input) and a
consequence (the output). The antecedent and the consequence consist of
XML+RML, where XML is the problem domain vocabulary and RML is
used to specify RML-variables in the XML. The antecedent of a rule will be
matched with input XML, resulting in a binding for all the RML variables to
corresponding XML constructs in the input XML. These constructs can be
XML element names, XML attribute names, XML attribute values, whole
XML elements including their children, or sequences of XML elements with
their children. If a match of the input XML with the antecedent of a rule is
possible then there will be a specific XML element in the input XML that
matches the antecedent, and this XML element will be replaced with the
consequence of the rule. The consequence of a rule also contains XML+RML.

6.3. THE UNCL EXECUTION PLATFORM 133

The RML-variable names will be replaced with the corresponding contents
of the RML variables in the output.

The table in Fig. 2.1 sums up all current RML elements with a short
description of their usage. Due to a lack of space we have to refer to the
RML tutorial in Chapter 3 for a longer description of all the RML elements.
It is easy to think of many more useful elements in RML than appear in the
table. Not everything imaginable is implemented because a design goal of
RML is to keep it as concise and elegant as possible. Only constructs that
have proven themselves useful in practice are added.

Variable binding of RML-variables during the matching of the antecedent
of a rule is attempted in the order of the elements in the input XML tree. If
an input XML tree contains more than one match for a variable then only
the first match is used for a transformation. If you want to transform all
matches then you will have to repeat applying the rule on the input.

Binding of RML-variables can also be done before a rule is applied if the
RML-variables are supposed to contain string values; in that case the match-
ing will only succeed if the supplied string values appear in the input XML in
the position where the RML variable appears. An example of this pre-binding
of variables in the UnCL tool is when the user supplies an object ID (variable
IDOBJ in the examples that follow later) when the user wants that object to
take a transition. To pre-bind a value of id002 to RML variable IDOBJ, the
user can supply an extra argument for the RML tools: IDOBJ=id002. Such
pre-binding can also be done when using the RML libraries instead of the
command-line tools.

The RML tutorial also describes a concise XML vocabulary for defining
RML recipes, called Recipe RML (RRML). RRML is used to define sequences
of, possibly iterated, transformations and has proven itself useful in alleviat-
ing the need for writing shell scripts or functions in a programming language
containing sequences of calls to the RML tools. The idea is to avoid pro-
gramming and to define as much as possible in XML in a data driven design.

Figure 6.4 shows a simple example RML rule. This is a rule that is used
after a transition has been taken successfully by an object modeled with
UnCL. With this rule the location attribute of the object is assigned the
value of the target attribute. An example of the effect of the rule would be
that

134 CHAPTER 6. UNCL

...

<obj id="id538" location="state_3" target="state_5" ... >

<queue>

...

</queue>

</obj>

...

is changed into

...

<obj id="id538" location="state_5" target="None" ... >

<queue>

...

</queue>

</obj>

...

for an object with identifier id538.

<div class="rule" name="set location">

<div class="antecedent">

<obj id="rml-IDOBJ" location="rml-L" target="rml-T"

rml-others="rml-O" >

<rml-list name="ObjChildren"/>

</obj>

</div>

<div class="consequence">

<obj id="rml-IDOBJ" location="rml-T" target="None"

rml-others="rml-O">

<rml-use name="ObjChildren"/>

</obj>

</div>

</div>

Figure 6.4: The example RML rule

When applying this rule, the RML transformation tool first searches for
an obj element in the input, corresponding with the obj element in the
antecedent of the rule. These obj elements match if the obj in the input has
an id attribute with the value bound to the RML IDOBJ variable mentioned
in the antecedent, in the example this value is id538 and it is bound to the
RML variable IDOBJ before the rule is applied. This pre-binding of some of
the variables is how UnCL can manage and schedule the execution of the
RML transformation rules. If the obj elements match, then the other RML
variables (L, T, O and ObjChildren) are filled with variables from the input
obj. The L, T and O variables are bound to strings, the ObjChildren variable
is bound to the children of the obj element: a list of elements and all their
children. The consequence of the rule creates a new obj element, using

6.3. THE UNCL EXECUTION PLATFORM 135

<div class="rule"> <div class="consequence">

<div class="antecedent"> <UnCL>

<UnCL> <classdiagram>

<classdiagram> ...

... <class name="rml-ClassName">

<class name="rml-ClassName"> ...

... <statemachine>

<statemachine> ...

... <transition id="rml-IDTRANS">

<transition id="rml-IDTRANS"> ...

... <trigger>

<trigger> <op name="rml-TriggerName">

<op name="rml-TriggerName"> <rml-use name="Params"/>

<rml-list name="Params"/> </op>

</op> </trigger>

</trigger> ...

... </transition>

</transition> ...

... </statemachine>

</statemachine> </class>

</class> ...

... </classdiagram>

</classdiagram> <objectdiagram>

<objectdiagram> ...

... <obj class="rml-ClassName"

<obj class="rml-ClassName" id="rml-IDOBJ"

id="rml-IDOBJ" rml-others="rml-OtherObjAttrs">

rml-others="rml-OtherObjAttrs"> ...

... <queue>

<queue> <rml-use name="PreEvents"/>

<rml-list name="PreEvents"/> <rml-use name="PostEvents"/>

<op name="rml-TriggerName"/> </queue>

<rml-list name="PostEvents"/> </obj>

</queue> ...

</obj> </objectdiagram>

... </UnCL>

</objectdiagram> </div>

</UnCL> </div>

</div>

Figure 6.5: RML rule for removing an event from the event-queue

the values bound to the RML variables, and replaces the obj element in the
input with this new obj element.

Due to lack of space we restrict the description of the formalization in
RML of the processing of the co-op’s to the removal of a message from the
event-queue, as shown in Fig. 6.5. The figure contains some lines with ...

in places where rml-list and rml-use constructs are used to preserve input
context in the output. Here we see that in RML a pattern can be matched
that is distributed over remote parts in the XML, the remoteness of the parts
is why the rule has so many lines. In short, this rule looks for the name of
the trigger that indicates the message that has to be removed from the event-
queue, and then simply copies the event-queue without that event. But to
find that name of the trigger, a search through the whole UnCLXML model
has to take place, involving the following steps.

During application of this rule, the matching algorithm first tries to match
the input with the antecedent of the rule, where IDOBJ and IDTRANS are

136 CHAPTER 6. UNCL

pre-bound RML variables. With these pre-bound variables it can find the
correct obj, then it finds the ClassName for that object. With the ClassName
the class of the object can be found in the classdiagram in UnCLXML.
When the class of the object is found, the transition in that class with id
TRANSID can be found and in that transition element in the input we can
finally find the desired TriggerName. The algorithm then looks for a message
with name TriggerName in the event-queue of the obj, and binds all other
events in the event-queue to RML variables PreEvents and PostEvents. In
the consequence of the rule then, all these bound RML variables are available
to produce a copy of the input, with the exception that the correct event is
removed.

6.4 UnCL and Mobile Channels

In UnCL state machines model communication between objects in terms of
the coordination operations which involve a simple event-queue mechanism.
This provides a separation of concerns between the computational part spec-
ified by the application and the coordination part specified by UnCL. Due
to this separation of concerns it is possible to replace the event-queue mech-
anism with any other coordination mechanism. Preferably, with one that
preserves the separation of concerns and is easy to implement in concurrent
and distributed systems. An example of such coordination mechanisms are
shared data spaces like Linda [CG90] and JavaSpaces [EFA90]. In this sec-
tion we discuss the replacement of the event-queue by another coordination
mechanism called MoCha [SAdBB03]. MoCha is an exogenous coordination
framework for (distributed) communication and collaboration using mobile
channels as its medium.

6.4.1 MoCha’s Mobile Channels

SinkSource B
Writes Reads

Channel

A

Object Object

Figure 6.6: General View of a Channel.

6.4. UNCL AND MOBILE CHANNELS 137

A channel in MoCha, see figure 6.6, consists of two distinct ends: usually
(source, sink) for most common channel-types, but also (source, source) and
(sink, sink) for special types. These channel-ends are available to the objects
of an application. Objects can write by inserting values to the source-end,
and read by removing values from the sink-end of a channel; the data-flow
is locally one way: from an object into a channel or from a channel into an
object.

Channels are point-to-point, they provide a directed virtual path between
the (remote) objects involved in the connection. Therefore, using channels to
express the communication carried out within an application is architecturally
very expressive, because it is easy to see which objects (potentially) exchange
data with each other. This makes it easier to apply tools for dependencies
and data-flow analysis of an application.

Channels provide anonymous connections. This enables objects to ex-
change messages with other objects without having to know where in the net-
work those other objects reside, who produces and consumes the exchanged
messages, and when a particular message was produced or will be consumed.
Since the objects do not know each other, it is easy to update or exchange
any one of them without the knowledge of the object at the other side of the
channel. This provides objects that are loosely coupled in space and time.

The ends of a channel are mobile. We introduce here two definitions of
mobility: logical and physical. The first is defined as the property of passing
on channel-end identities through channels themselves to other objects in the
application; spreading the knowledge of channel-ends references by means of
channels. The second is defined as physically moving a channel-end from
one location to another location in a distributed system, where location is
a logical address space where objects execute. Both kinds of mobility are
supported by MoCha.

Because the communication via channels is also anonymous, when a
channel-end moves, the object at the other side of the channel is not aware
nor affected by this movement. Mobility allows dynamic reconfiguration of
channel connections among the objects in an application, a property that is
very useful and even crucial in systems where objects are mobile. An object
is called mobile when, in a distributed system, it can move from one location
(where its code is executing) to another.

Channels provide transparent exogenous coordination. Channels allow
several different types of connections among objects without them knowing
which channel types they are dealing with. Only the creator of the connection

138 CHAPTER 6. UNCL

knows the type of the channel, which is either synchronous or asynchronous.
This makes it possible to coordinate objects from the ’outside’ (exogenous),
and, thus, change the application’s behavior without having to change the
code of it’s classes.

6.4.2 Channel Types

MoCha supports eleven types of channels. All with the same interface, but
with different behavior. We give a short description of three major channel
types. For more details and the remaining channel types we refer to the
MoCha middleware manual [SAdBB02].

• Synchronous channel. The I/O operations on the two ends are syn-
chronized. A write on the source-end can succeed only when a take
operation also atomically succeeds on the sink-end, and vice-versa. A
take operation is the destructive version of the read operation.

• Lossy synchronous channel. If there is no I/O operation performed on
the sink channel-end while writing a value to the source-end, then the
write operation always succeeds but the value gets lost. In all other
cases, the channel behaves like a normal synchronous type.

• Asynchronous unbounded FIFO channel. The I/O operations per-
formed on the two channel-ends succeeds asynchronously. Values writ-
ten into the source channel-end are stored in the channel in a FIFO
distributed buffer until taken from the sink-end.

6.4.3 Implementation

The MoCha framework is implemented in the Java language using the Remote
Method Invocation package (RMI). This MoCha middleware can be used for
both distributed and non-distributed applications. The middleware has a
clear and easy high-level application programming interface (API).

6.4.4 UnCL and MoCha

Replacing the event-queues by MoCha channels requires the introduction of
channel-ends in UnCL and the definition of their coordination operations in
the state-machine semantics. Since channel-ends are also UML classes, we

6.4. UNCL AND MOBILE CHANNELS 139

accomplish the first, by allowing the UnCL class attributes to also refer to
these channel-end objects. The state-machine coordination operations are
defined as:

- T.new(L, E1, E2) creates a new channel, where {E1, E2} are attributes
storing the created channel-ends. T is an attribute that refers to the
type of the channel, and L is an attribute that refers to a particular
location. In the MoCha middleware such a creation is translated into
the expression chan = new MobileChannel(L,T), where chan.E1 and
chan.E2 are the attributes that refer to the ends of the new created
channel.

- E.write(V) writes the reference value of attribute V to the source
channel-end E.

- E.take(V) takes a reference from the sink channel-end E and stores it
in attribute V .

- E.read(V) reads a reference from the sink channel-end E and stores it
in attribute V . (read is the non-destructive version of take).

- E.move(L) moves a channel-end E to location L.

Observe that, in cases where we are not concerned with modeling locations
we can take the same first four operations and remove the location attribute
L.

Using MoCha in UnCL has four major advantages. First, since the
MoCha framework is implemented in the Java language, there is a straight-
forward implementation for every UnCL model. Straightforward in the sense
that the MoCha middleware implements the same operations and channels
as the ones of the UnCL + MoCha model, providing a one-to-one relation
between a UnCL channel and a MoCha middleware channel. Second, since
MoCha supports distributed environments, every UnCL model automatically
does as well. Third, the UnCL model now provides the means for more high-
level exogenous coordination. In addition of changing the state-machines,
with MoCha we can also change the application’s behavior by simple choos-
ing a different type of channel between objects. And finally four, MoCha
enhances the, already present, separation of concerns between the computa-
tional part and the coordination part of an application.

140 CHAPTER 6. UNCL

6.5 Conclusions and Related Work

In this paper we presented an Unified Coordination Language (UnCL) that
is based on a separation of concerns between coordination and computation.
UnCL provides a general language for coordination given in UML that can be
used both for simulation and coordination of an application at run-time. We
discussed a precise semantics of UnCL state machines, the UnCL execution
platform, and how to use an executable extension of XML specifications
within this platform. Finally, we discussed the possibility of incorporating
MoCha into UnCL.

UnCL relates to other coordination languages like Linda [CG90], JavaS-
paces [EFA90], and MANIFOLD [Arb96]. For the majority of these models
UML interfaces are made. However, as far as we know, UnCL is the first
coordination language that fully integrates with UML. Besides modeling co-
ordination a UnCL UML-specification can also coordinate an application in
runtime. UnCL + MoCha relates to Reo[Arb04], an exogenous coordination
language where complex channel connections are compositionally build out
of simpler ones.

Other related work on coordination modeling are SOCCA [EG94] and
CSP-OZ [MORW04]. SOCCA is an object-oriented specification language
supporting the arbitrarily fine-grained synchronization of processes. Despite
the fact that SOCCA is related to UML it is a separate language and not an
extension like UnCL. CSP-OZ is an integrated formal method combining the
process algebra CSP with the specification language Object-Z. It provides the
means for putting special information (tags) in UML class diagrams. The
full CSP-OZ specification is obtained after compiling these class diagrams,
unlike UnCL where the specification is fully given in UML. Both CSP-OZ
and UnCL + MoCha use channels as the coordination mechanisms. However,
CSP-OZ channels are static while UnCL + MoCha channels are dynamic.
This enables UnCL to specify dynamic reconfigurable coordination patterns.

In our approach we abstract away from a particular scheduling algorithm.
This gives us the advantage to make such an algorithm a parameter of an
UnCL model. This is different from other work like [vdB01], [LMM99], and
[PL99] where scheduling is already integrated into the semantics, making it
more difficult to change the already present scheduling algorithm (if desired).

Instead of using RML for the UnCL transformation rules we could have
used other tools for XML transformations, like XSLT [Cla]. We chose RML
because it was developed with more complex matching patterns in mind: The

6.5. CONCLUSIONS AND RELATED WORK 141

XML wild-cards defined with RML can be distributed over several places in
the input. Such a distributed matching pattern is hard to define with XSLT,
because XSLT templates are path oriented instead of pattern oriented.

We have successfully used the UnCL architecture in project OMEGA IST-
2001-33522, sponsored by the European Commission, where we formalized
the OMEGA subset of UML and will apply it to industrial case studies. A
first test case is demonstrated on-line at [Jacb].

142 CHAPTER 6. UNCL

Chapter 7

ATL Applied to the Tableau
Method

Author: Joost Jacob

7.1 Introduction

We have created a transformation language called ATL1 that can be used
to define facts and rules in a convenient way that is also suitable for non–
programmers. We show how it can be used in a semantic tableau method to
generate proofs, where the facts define axioms and the rules define theories.
To do this, we create executable functions from ATL rules and these func-
tions are then used in the implementation of a tool for the semantic tableau
method. The tableau method we use is extended with equivalence classes in
order to provide automatic unification. The resulting proof system is pow-
erful but still transparant and easy to use since the axioms and theories are
defined in the user’s own notation. Although full automation is possible, the
prime goal of the proof system is not sophisticated automation of proof, but
rather to make it convenient for the user to define axioms and theorems and
to help with routine unification of equalities, in order to arrive at a kind of
proofs where the emphasis is on elegance and where a high level of abstraction

1ATL stands for ASCII Transformation Language, intended for manipulations of sym-
bols that can be formed with an ASCII keyboard. The ASCII aspect is now outdated
since also Unicode is supported, but the name stuck.

143

144 CHAPTER 7. ATL

is encouraged. Such proofs can generally not be created automatically, the
human contribution in the design of the proof is very significant. There is a
growing demand for such proofs, because they are often easier to understand
and thus more convincing2 than fully automatically generated versions, and
because they often help understand the subject matter better.

To demonstrate the above, and to provide a good motivation for the
work in this paper, we follow an example that we encountered in the
OMEGA[OME] project where we proof a property of a software model. Soft-
ware is often incorrect and using a well–known prover like PVS [ORR+96],
as we did in OMEGA, only works well for a correct model. What to do if
it is not correct? The tableau method, looking for a contradiction, seemed
especially suitable for, abstract, high–level, software model verification.

We did investigate literature and the internet to see if we could find a
tableau tool that we could use but we were unsuccessful. Our requirements
for such a tool were that it would not have a steep learning curve, without for
example having to learn a functional programming language like with ACL2
[KMM00], and we wished to be free in syntax notation and the tool should
be preferably independent of an operating system, versioning problems, or
software libraries. That is the reason we started this work. We have created
a web–application, wherein the user can define rules in ATL, that can be
used to derive the proof mentioned above. The development of ATL did help
considerably to make it possible to create the web–application on schedule
and in time and to make it easy to use. The tool also uses the Python [vR95]
programming language that generates HTML for presenting the user with
forms to fill in and that performs various bookkeeping tasks and is also used
for the implementation of unification. We have plans to develop a scripting
language that can be combined with ATL, or is an extension, to replace some
of the Python software. An ATL interpreter is already available that could
in theory already -do this, but we need to develop a very high–level language
so the user can more easily define for instance proof search strategies. As
it is now, the tool takes one derivation step at a time and the user is the
scheduler: the user has to click on a button with a rule–name to choose a
step. The web–application and the ATL tools are publicly accessible from
the URL given in Sect. 7.3. In the web–application the user can derive a
proof in the sandbox, or a new project can be started with new notation,
new axioms and new theories.

2especially for the executive kind of persons

7.2. ASCII TRANSFORMATION LANGUAGE (ATL) 145

Overview of the next Sections

In the next Section we introduce ATL and we give a language theoretic basis,
and an operational semantics for a new reduction rule that we need in Sect.
7.2.4. Following that is a Section about our tableau method. We demonstrate
how the α– and β–rules from the semantic tableau method are defined in
ATL and how the user can add new rules in possibly new notation. We also
discuss the addition of equivalence classes to the tableau to add considerable
unification power to the tableau method. Section 7.4 shows how we prove a
property of a software model with the tableau. Section 7.5 is a conclusion
with some related and future work.

7.2 ASCII Transformation Language (ATL)

The design goal for ATL was to be able to turn derivation rules for our tableau
into executable functions, in a general and convenient way. An important
aspect of the convenience is syntax independence, the ability to handle user–
defined notation. Suppose for example that a user defines the α4 semantic
tableau rule in the following syntax

~(X -> Y)

|

X,~Y

where it is clear for a human reader what the user means, especially for a
reader that is familiar with semantic tableaux, but for a computer program it
is not clear. The ”~” stands for not, the ”->” for implication, and the comma
”,” for and, or in our case rather the separator between two sentences in a
branch in the tableau.

Let us forget for a moment the meaning of this rule, and view this rule
as a string–rewrite. We note that the X and Y are like wildcard characters.
A wildcard character can be used to substitute for any other character or
characters in a string3. The rule accepts string of the form ~(+ -> +) where
the + is a wildcard for one or more characters. If we could name the wild-
cards, remembering the characters they substitute, we can re–use them in
the output of the rule. What we need then, is a way to distinguish wildcards

3This definition is from FS 1037C, a Telecommunications standard, at http://www.

its.bldrdoc.gov/fs-1037/fs-1037c.htm

146 CHAPTER 7. ATL

from the constant strings, and a way to name them. This idea is explained in
more detail and more formal in the rest of this Section, for an early intuitive
understanding we give the α4 rule here in ATL:

~(var:i -> var:j)

=def

var:i,~(var:j)

where var: is used to denote a wildcard, and the name that follows imme-
diately is the name of the wildcard. The =def is used to separate rule input
from rule output. This ATL encoding of the α4 rule can be input into an ATL
function that accepts as another argument an input string, and that produces
the desired transformation if the input string matches the ~(+ -> +) pat-
tern. The definition of this α4 rule is convenient for the user since the user
can use an own notation of choice. The meaning of the various symbols in
the notation remains the responsibility of the user. This approach is different
from the approach taken by tools that enforce a notation on the user or tools
that enforce a type system. We believe that our approach is more flexible,
and can still be extended to the other approaches.

We have created a transformation language, called ATL, that extends
the λ–calculus [Chu41] with pattern matching. The λ–calculus contains two
reduction rules and our extension consists of one extra reduction rule. With
the extra reduction rule it becomes practical to define transformations such as
are desired for the rule–based string transformations that we need to define
axioms and theorems in our tableau. The λ–calculus is Turing complete,
and ATL can mimic the λ–calculus by using only rules that correspond to
λ–expressions, with patterns that match only one variable, thereby turning
the extra reduction rule in ATL into a dummy transformation. This means
that ATL also is a universal model of computation, Turing complete, and
leads to a new computational model, but that is out of scope for this paper,
however what is interesting here is that as a consequence we are assured that
every theorem is expressable in ATL.

7.2.1 Preliminary: λ–calculus

In λ–calculus we have functions that accept input and produce output. The
λ–calculus uses the well–known notation with the λ character to distinguish a
function expression from an ordinary expression that is the result of applying
the function.

7.2. ASCII TRANSFORMATION LANGUAGE (ATL) 147

Suppose we have a painting function that produces the following outputs
for the corresponding inputs:

red -> painted red

blue -> painted blue

green -> painted green

We can use λ-calculus to describe such a function: Lx.painted x. This
is called a lambda–abstraction, a kind of lambda–expression. The other
kind of lambda–expressions are identifiers and function application. The L

is supposed to be a lowercase Greek λ character.4

We can identify a function with a name: doPaint === Lx.painted x.
Application of a function to an argument is written as:

(doPaint red) -> painted red

where application of function f to argument x is written as (f x), like in
the LISP programming language. Identifying a function with a name is a
useful abstraction, but note that this abstraction is not an official part of the
λ–calculus where every function is anonymous.

The evaluation of a λ–expression is from the application of two reduction
rules.

The α–reduction rule

The α–reduction rule says that we can consistently rename bindings of vari-
ables:

Lx.E -> Lz.E[z/x]

for any z which is neither free nor bound in E, where E[z/x] means the
substitution of z for x for any free occurance of x in E.

4We do not use a real λ character here because it is difficult to get it into the verbatim

character set that we want to use to show “code” examples. As such, the λ character itself
can be considered a disadvantage of the λ–calculus since it makes it harder to use in typical
source editors. It exemplifies the fact that λ–calculus was not meant for programming, it
has mainly theoretical purposes.

148 CHAPTER 7. ATL

The β–reduction rule

The β–reduction rule says that application of a λ–expression to an argument
is the consistent replacement of the argument for the λ–expression’s bound
variable in its body:

(Lx.E)Q -> E[Q/x]

where E[Q/x] means the substitution of Q for x for any free occurrance of
x in E. The Church–Rosser Theorem states that the final result of a chain
of substitutions does not depend on the order in which the substitutions are
performed.

7.2.2 ATL

- Like in λ–calculus, in ATL we also have functions that accept input and
produce output, we call them rules. The input for a rule is a string, and the
output of a rule is also a string.

The λ-expression Lx.2x is written in ATL as the rule var:x =def

2var:x. Everything before the =def we call the antecedent of the rule, ev-
erything after it we call the consequent of the rule. Roughly comparing ATL
with λ-calculus, the rule antecedent maps to ”λ”, and the =def maps to the
”.”. 5

The input for a function in λ–calculus is exactly one argument, whereas
the input for an ATL rule is a string, and from this string we can extract
more than one argument. The string is matched with a pattern (the rule
antecedent) that extracts the arguments from the input string and binds
them to variable names, like names of function formal parameters. ATL
applies the language–theoretic idea of regular expressions in its design; the
matching pattern is a template with variables. The consequent of an ATL
rule is also a pattern like that in the antecedent, this pattern is not used for
matching but for construction of the output: the variables are replaced with
their bindings from the match.

For a function expression in ATL that corresponds with ”Lx.painted x”
in the paint example we write var:x =def painted var:x where we see

5In the example the string 2 is used and as such it does not mean the number 2, but
it does after we have identified the string 2 with the Church integer, see [Chu41], defined
as Lf.(Lx.(f (f x))), a higher–order function that takes a function f as argument and
returns the 2–fold composition f ◦ f .

7.2. ASCII TRANSFORMATION LANGUAGE (ATL) 149

the var: notation to denote variables that together with the =def notation
is all that we need to define rules. Every variable name start with var: and
ends with a name-string, where we define the name—string like an XML–
name6.

To the α– and β–reduction rules in λ–calculus we add a γ reduction rule
that reduces a rule application to a consequent application. Where the λ–
calculus applies the β rule, in ATL we have to apply the γ rule first, so we
have a two–step reduction instead of one step:

((A =def C) inputstring) -> (C frame) -> output

where A =def C is the rule and C is the consequent of the rule. The match-
ing of the antecedent creates a frame7, a set of name–value pairs, that pro-
vides a binding for the variables. The frame dictionary is created from the
inputstring via a matching algorithm described below. We write a frame
between curly braces like {var:x=foo, var:y=bar} where the name var:x

is bound to foo and the name var:y is bound to bar.
We will now first show how the λ–calculus paint example is expressed in

ATL. The γ rule applied to the example:

((var:x =def painted var:x) red) ->

((painted var:x) {var:x=red)

removes the antecedent and the =def and builds a frame from the input
wherein variable var:x is bound to red.

For application of the ATL consequent we use the same parenthesis–
syntax as in λ–calculus, except that the input is now a frame. The application
of the consequent goes via simple substitution like in the β—reduction from
λ-calculus:

((painted var:x) {var:x=red}) -> painted red

In the given example the creation of a frame in the γ step looks pointless
since there is only one binding in the frame and the whole input string is
the value. To see why the two–step reduction is useful, suppose that our

6See the XML Specification at http://www.w3.org/TR/REC-xml. The choice for the
XML name definition is because of the Unicode support in XML, which is used in other
work were we combine ATL with XML transformations. For the purpose of this paper
consider name–strings just to be strings that start with a letter

7In this Section we use the concepts of a frame from [AwJS96]

150 CHAPTER 7. ATL

input is not just the string ”red” but the string ”bg=blue fg=red”. This is
a common situation, the longer string could for example be attributes of an
XML element that define foreground and background colors. This situation
can be handled with the rule

var:y fg=var:x

=def

painted var:x

The γ and β rule applications

((var:y fg=var:x =def painted var:x) bg=blue fg=red)

->

((painted var:x) {var:y=bg=blue,var:x=red})

->

painted red

now also result in ”painted red”. The γ–rule matches ”var:y” with
”bg=blue” and ”var:x” with ”red”, creating the frame {var:y=bg=blue
var:x=red}. The ”fg=” substring from the input is discarded. By adapting
the antecedent we extract the desired ”red” value from the input and bind
it to var:x. We leave the definition of the rule consequent unchanged.

We give another example of the usefulness of the two–step reduction. The
function f(x, y) = x + y is written in λ–calculus as Lx.Ly.x + y, a higher—
order function of one argument that returns a function of one argument.
The γ–reduction step in ATL can eliminate some need for higher–order,
this function is written more readable as ”var:x var:y =def var:x + var:y”,
expecting an inputstring with x and y separated by whitespace. A direct
translation of the λ–expression is also possible in ATL, but not recommended:
”var:x =def var:y =def var:x + var:y”. This one first accepts an inputstring
with the value for x, and then generates a new ATL rule with that value.
The new rule accepts the value for y and returns x + y. For the defini-
tion of axioms and theorems in our tableau method we avoid higher–order
functions. An example rule for AND elimination can be defined as simple
as ”var:x AND var:x =def var:x”, without the need for higher–order func-
tions and with the additional benefit of constraining valid input to two equal
strings separated by an AND string. It was this kind of rules that ATL was
designed for in the first place.

7.2. ASCII TRANSFORMATION LANGUAGE (ATL) 151

7.2.3 Implementation

A library is available8 that contains a function that takes an inpu-t-string
and an ATL rule as arguments, and returns the output–string.

7.2.4 Definition of the γ–reduction

The γ—reduction maps a rule application with an inputstring parameter to
a consequent application with a frame parameter:

(rule inputstring) 7→ (consequent frame)

The rule is a string that contains the substring =def. The antecedent of the
rule is everything before the =def and the consequent is everything after it,
so the production of consequent is a simple string tail extraction. The γ–
reduction results in a (possibly empty) frame if the inputstring is an element
of the set of strings defined by the pattern formed by the antecedent. A
pattern is an ordered list of interleaved constant strings cs1..n and named
wildcards v1..k and it defines the (infinite) set of strings that can be formed
by substituting every wildcard by any string. If a wildcard occurs at more
than one place in the pattern, i.e., with the same name, then it has to be
substituted by the same string. A wildcard vj, with 1 ≤ j ≤ k, that is
substituted by a substring s of inputstring adds the pair (name, s) to the set
frame, where name is the name of the wildcard. If the substring s contains
parens then it must be well–formed, i.e., all opening parens must be closed.
This is an important constraint on valid bindings, it makes it possible for the
user to disambiguate rules when necessary9. This well–formedness constraint
holds also for braces and square brackets in the current ATL implementation.
The tool can be configured to add a well–formedness constraint for angle
brackets, or to remove for example the constraint for braces. If there is more
than one way to match inputstring with pattern in this way, then we take
for every vi, with 1 ≤ i ≤ k, the shortest possible match before matching

8Library atl at http://homepages.cwi.nl/~jacob/atl/. The mentioned function is
called transform. Python was chosen because Python is very interoperable with other lan-
guages, Python code can for example be translated to Java byte code. The atl.transform
function is used in our semantic tableau web–application.

9Consider the difference between matching ”a and b and c” and ”(a and b) and c” with
the pattern ”var:x and var:y”. In the first case x will be bound to a, in the second case x

will be bound to (a and b), because (a, being the first match found from left–to–right,
is not well–formed and therefore rejected.

152 CHAPTER 7. ATL

vi+1. If inputstring is not an element of the set defined by antecedent, then
the γ–reduction returns the unchanged rule and inputstring.

7.3 A webapplication

In this Section we introduce the tableau method as we use it and we introduce
the web–application that can be used for the method. The web–application
is publicly available at http://homepages.cwi.nl/~jacob/st/index.html.
Because it is a web–application, a user does not have to download software
but always has the latest version via a browser, and browser–features like the
”Back”-button are available to redo steps in a derivation, making it suitable
to iteratively develop a proof. We will explain by example how to define
derivation rules with ATL and how our application handles them. First we
show how the standard α– and β—rule are implemented and then how the
user can add his or her own rules in a notation of choice.

For the notation of the α– and β–rule we had to decide on a notation for
propositional logic, it is:

~ NOT

& AND

v OR

-> IMPLIES

<-> IF AND ONLY IF

We did choose a text notation because the web–application has a HTML
Textarea that contains the derivation tree and we want the user to be able
to edit the derivation tree, so proof derivations can be varied and retried in
an easier way than would be the case if we choose real mathematic symbols
in a more comples user interface.

The webapplicaton consists of password–protected projects where each
project has the standard α– and β–rules predefined and where new rules
and notation can be added. An interested user could also experiment with
a redefinition of the α– and β–rules in his own notation if so desired, but
sticking to the predefined notation of choice is of course less work. There is
also one project without password that is called the Sandbox.

An example of the α–4 rule as implemented in ATL was already shown
in Section 7.2. If you skipped Section 7.2 but are familiar with wildcard
matching, a common technique in for example shell programming, then look

7.3. A WEBAPPLICATION 153

at α–4 example there, the rule can be understood by var: being prefix–
notation for a wildcard name and =def being a separator between input and
output.

We now show how to implement a β–rule in ATL, where branching in
the derivation tree occurs. The derivation tree in the textarea consists of
lines with sentences, where every line is a branch in the derivation tree.
This representation has the advantage that every line can now be worked on
independently, a disadvantage is that in the case of a β–rule applied to a
sentence, the other sentences in the branch have to be copied to a new line.
In our work we found that the advantage outweighs the disadvantage, but of
course this depends on the kind of proofs that you want to derive.

Beta–rule 2 rewrites implication, creating a new branch:

X -> Y

/ \

~X Y

In ATL this rule is implemented with

var:i -> var:j

=def

~var:i

var:j

changing a one–line sentence to two lines. The web–application copies all
the other sentences in a branch if a rule creates a new line like above.

Once more, it is not necessary to implement α– or β–rules yourself, they
are predefined for every project since the tool is make for a tableau method.

As an example let’s input modus ponens in the application, see if it
handles correctly

p -> q, p, ~(q)

as is done in example project called ”modus ponens” on the website. If
you go to this project then you see this formula in the textarea as shown in
Figure 7.1.

Pressing the Hint button will make the application try all the defined rules
for that project, and suggest one that changes the contents of the textarea.
This suggestion is shown beside the Hint button after clicking on it. The
application finds the β2–rule as expected, and pressing the b2 button that
implements it results in

154 CHAPTER 7. ATL

Figure 7.1: A project window

~(p),p,~(q)

q,p,~(q)

in the textarea. We see how the β2–rule was applied to the first sentence
and how the second and third sentences were copied to the new branches.
Pressing Hint again will suggest ”Close” for the first branch (line), since it
contains the contradiction notp, written as ~(p), and p. Two clicks on the
Close button will result in the line ”The proof succeeds.”.

The tool supplies input boxes to choose the branchnumber and the senten-
cenumber that you wish to apply a rule to. Sometimes only a branchenumber
is enough, suppose we want to close the second branch in the example above,
we must supply the number 2 in the input box labeled with branch:.

Besides the rule buttons, the ”Hint” button and a button to add ”New
Rules” there is a button called ”no duplicates” that removes duplicate sen-
tences from a branch, e.g., p,q,p will become p,q. An explanation of a

7.3. A WEBAPPLICATION 155

button is available via the ”View” link beside it, in the case of an ATL rule
the link leads to the ATL definition. The buttons ”eqvc” and ”auto normal”
are explained in the rest of this Section.

7.3.1 Equivalence classes and conflict relations

We have extended the basic tableau with propositional logic as presented
so far, with identity and equivalence classes, in order to add the power of
unification. If a branch contains a sentence that is an identity, notation
p = q, then the user can use the ”eqvc” button on that branch to turn this
identity into an equivalence class. The notation for an equivalence class is
[p;q], with p being the canonical representative of the class. Equivalence
classes are added upon creation to the end of the line that represents a branch
and they can contain more than two instances. If there is already a canonical
representative for one of the terms in the identity, then only the new term
will be added to the equivalence class. The negation of an equivalence class,
notation ~[p;q] can only contain two terms, it is a conflict relation, and it
is also generated via the ”eqvc” button, replacing a ~(p = q) sentence.

With the ”auto normal” button every occurence of q is rewritten as p if
p is a canonical representative of q. While not always strictly necessary for
a proof, this can help considerable in makeing a proof better readable, since
long formulas can be represented with a single short symbol.

Equivalence classes and conflict relations are useful for unification: a
contradictory situation results, after appropriate use of the ”eqvc” and ”auto
normal” buttons, in a conflict–relation of the form ~[P;P] and that means
the branch can be closed.

Here are some examples of using the ”eqvc” button:

p, x = y ---> p, [x;y]

p, z = x, [x;y] ---> p, [x;y;z]

p, [x;i], [y;j], ~(x = y) ---> p, [x;i], [y;j], ~[x;y]

p, [x;i], [y;j], ~(i = j) ---> p, [x;i], [y;j], ~[x;y]

As can be seen, a created conflict relation uses the canonical representatives
where possible: in the last line ~[i;j] is not created but ~[x;y], since i is
in an equivalence class with x as representative, and likewise for j and y.

156 CHAPTER 7. ATL

7.3.2 Adding user–defined rules

So far we have only seen formulas in propositional logic and equivalences.
In the next section we will see a proof of a property of software and for
that proof we wish to use additional notation for the concepts that occur in
the proof. New axioms and theories that are needed for the proof must be
definable in that new notation, and that is possible with ATL by defining
them as rules.

Figure 7.2: Editing a rule

The web–application has a ”New Rule” button that leads to a form like in
Figure 7.2 where the user can input a new rule and give it a name. After rule
submission with the ”Send” button, the new rule appears as a new button
with the rulename in the project window under the label ”User defined rules”.

In the next section we show how such new rules can be applied to a
derivation. It is the responsibility of the user that a new rule “makes sense”,
i.e., has a correct semantics in the context of the notation used. This is more
similar to modifying formulas in a proof on paper than to many proof tools
where it is not immediately possible to add rules, but only to add axioms.
Also, there is no such thing as typechecking a rule in ATL, since we only
deal with symbolic computations. For the kind of proofs we encountered,
the resulting simplicity was desirable, but your mileage may vary.

7.4. THE SIEVE EXAMPLE 157

In a proof we also want to be able to instantiate axioms, they have to
be instantiated with canonical representatives of the equivalence classes in
the branch where the axiom is to be placed. For this purpose in the web–
application we use the string axiom in the antecedent of a rule, the web–
application then generates a new button on the project screen just like a
new rule button, but now with drop down list input boxes where the user
can choose how the axiom is instantiated. In the next Section there are two
examples of axioms defined with ATL.

7.4 The Sieve example

In the OMEGA project[OME] we did prove several properties of software.
During this work we felt the need for an easy to use tool that can apply
a tableau method with equivalence classes and that resulted in the web–
application as introduced. As an example we will prove the ”Main sieve
property” of software that models the Sieve of Erastosthenes. The software is
modeled with UML classes and statemachines and was chosen as an example
because it has several interesting characteristics like the dynamic creation of
objects. In our proof we abstract from some implementation details and we
use a new notation for properties of the software and theories and axioms
about those properties.

The notation used is:

p a sequence of data, a pipeline of sieve objects

The complete list of sieve objects or any

consecutive part of it (at least 2 elements).

sieve(p) The sequence of data resulting from the sieve

process applied to p.

f(p) The first element of p

t(p) The tail of p

o A sieve object

??(o) The sequence received by object o

?(o) sent to o

!(o) sent by o

<= subsequence operator (infix)

~(...) negation of ...

[a;...] equivalence class with representative a

~[a;b] conflict relation between representatives a and b

158 CHAPTER 7. ATL

The ”Main Sieve Property” can now be written as

!(f(t(p))) <= sieve(!(f(p)))

meaning that what is sent by a second sieve object in a pipeline, is a sub-
sequence of the sieve process applied to that what is sent by the first sieve
object in the pipeline. For this proof we created a project with the name
sieve.

The proof can be derived automatically by following the ”Hint” button
as suggested by the tool at each step, except for the input in Step 1, the
definitions in Step 2 and the axiom instantiations in Steps 5 and 7.

Besides the functionality provided by the ”eqvc” and ”auto normal” but-
tons in the tool, there are four new user defined rules necessary for the proof:

The sieve monotonicity rule:

??(var:n) <= ?(var:n)

=def

sieve(??(var:n)) <= sieve(?(var:n))

The subsequence transitivity rule:

var:p <= var:q,var:q <= var:s

=def

var:p <= var:s

Two rules are axioms, they will be instantiated with canonical represen-
tatives.

The fifo axiom

axiom

=def

??(var:f) <= ?(var:f)

The sieve IO axiom

axiom

=def

!(var:sio) <= sieve(??(var:sio))

The two axioms are to be instantiated with sieve objects in a pipeline as
defined.

The proof itself10:

10right–justified indentation is used in Step 7 to fit the line on the page

7.5. RELATED WORK AND THE FUTURE 159

Step 1: Take the negation for the semantic tableau method

~(!(f(t(p))) <= sieve(!(f(p))))

Step 2: Add definitions

~(!(f(t(p))) <= sieve(!(f(p)))), o = f(t(p)), k = f(p), ?(f(t(p))) = !(f(p))

Step 3: (Hint) eqvc

~(!(f(t(p))) <= sieve(!(f(p)))), [o;f(t(p))], [k;f(p)], [?(f(t(p)));!(f(p))]

Step 4: (Hint) auto normal

~(!(o) <= sieve(?(o))), [o;f(t(p))], [k;f(p)], [?(o);!(k)]

Step 5: fifo AXIOM var:f=o

??(o) <= ?(o),~(!(o) <= sieve(?(o))), [o;f(t(p))], [k;f(p)], [?(o);!(k)]

Step 6: (Hint) RULE sieve monotonicity

sieve(??(o)) <= sieve(?(o)), ~(!(o) <= sieve(?(o))), [o;f(t(p))], [k;f(p)], [?(o);!(k)]

Step 7: Sieve IO AXIOM var:sio=o

!(o) <= sieve(??(o)), sieve(??(o)) <= sieve(?(o)), ~(!(o) <= sieve(?(o))),

[o;f(t(p))], [k;f(p)], [?(o);!(k)]

Step 8: (Hint) RULE subsequence transitivity

!(o) <= sieve(?(o)), ~(!(o) <= sieve(?(o))), [o;f(t(p))], [k;f(p)], [?(o);!(k)]

Step 9: (Hint) close: The proof succeeds.

7.5 Related work and the future

The Main Sieve Property was also proven with PVS [ORR+96] in the
OMEGA project, but that was much more work and resulted in a much
longer proof that could not be summarized in a short readable form. The
PVS theories incorporated much more detail about the software, and this
was necessary to be able to use PVS, so it is unfair to say that the PVS
proof was longer or worse. Although about the same topic, the PVS proof
was very different and targeted at different goals. Our ATL approach is hard
to compare with work in literature, were we find mostly full–blown theorem
provers, among many others there are PVS, ACL2 [KMM00] and Isabelle
[Pau94]: they are much more powerful and sophisticated. But the sophisti-
cation leads to some problems with using those tools in practice: although
for instance Isabelle is aiming for human–readable proofs, their success in
this respect is questionable, and the, excellently written, ACL2 documen-
tation for example is honest enough to state that it would take months for
a highly educated person, familiar with LISP, to use their tool efficiently.
The tableau approach with ATL is more like writing a proof on paper, but
with the computer helping with the bookkeeping, checking for various types

160 CHAPTER 7. ATL

of errors, and providing repetitious tasks like unification. We could not find
literature on applying the tableau method to high–level and human–readable
proofs like we like to have for software properties, but the tableau world is
not our field of specialization and we are very interested if there are people
who can point out relevant work that we overlooked.

With respect to future work we would like to replace much of the function-
ality that is now implemented in the programming language Python in the
web–application with a high–level special purpose scripting language that
captures ATL rules by name. Such a language can then also be used to
implement proof search stategies.

In the OMEGA project there was also a proof on paper created for the
example, and the notation chosen in the ATL proof was based on that. By
using ATL however we found that some of the theories and axioms as used
on the paper proof were not absolutely necessary, and we also were able to
avoid having to use induction. Of course, the rules used in the ATL proof
would formally be needed to be proven themselves, and there the induction
would return. However, the rules are rather obvious, and we consider it a
nice example of how the tableau method based on ATL can also be used to
make a proof shorter or more elegant.

Acknowledgments This work was made possible by the OMEGA [OME]
project, an EU sponsored research initiative, IST–2001–33522 OMEGA. Spe-
cial thanks go to Frank de Boer at CWI for the enlightening discussions.

Part III

Modeling and Analysing
Architectures

161

Chapter 8

Enterprise Architecture
Analysis with XML

Authors: F.S. de Boer, M.M. Bonsangue, J.F. Jacob, A. Stam, L. van der
Torre

8.1 Introduction

Architectures as defined in the IEEE 1471-2000 standard [Soc00] typically
consists of conceptual models visualized as diagrams. Architectural descrip-
tion languages such as UML have been used for information architectures,
and more recently similar languages are used for enterprise architectures,
such as the Zachman’s framework [Zac87]. The research question of this
paper is how to design tools for analysis of enterprise architectures. We dis-
tinguish between static and dynamic analysis, and we use XML technology.
Our approach is based on the following logical concepts[dBBJ+04].

Signature for static analysis. The signature of an architecture focuses on
the symbolic representation of the structural elements of an architecture
and their relationships, abstracting from other architectural aspects like
rationale, pragmatics and visualization. It emphasizes a separation of
concerns which allows to master the complexity of the architecture.
Notably, the signature of an architecture can easily be expressed in
XML for storage and communication purposes, and can be integrated

163

164 CHAPTER 8. ANALYSIS WITH XML

as an independent module with other tools including, e.g., graphics for
visualization.

Semantic model for dynamic analysis. The formal semantics of a sym-
bolic model of an architecture provides a formal basis for the develop-
ment and application of tools for the logical analysis of the dynamics of
an architecture. A signature of an architecture basically only specifies
the basic concepts by means of which the architecture is described, but
an interpretation contains much more detail. In general, there can be
a large number of different interpretations for a signature. This re-
flects the intuition that there are many possible architectures that fit
a specific architectural description.

By applying the techniques for static and dynamic analysis discussed in
this paper, we get a better understanding of how enterprise architectures
are to be interpreted and what we mean with the individual concepts and
relationships. In other words, these techniques allow enterprise architects
to validate the correctness of their architectures, to reduce the possibility of
misinterpretations and even to enrich their architectural descriptions with
relevant information in a smooth and controllable way.

The layout of this paper is as follows. In Section 8.2 we introduce a
running example to explain our definitions. In Section 8.3 we discuss tool
support, XML, AML and RML. In Section 8.4 and 8.5 we explain static and
dynamic analysis using these tools.

8.2 ArchiMate: a running example

To illustrate static and dynamic analysis in enterprise architectures, we use
an example from the ArchiMate project. ArchiMate is an enterprise architec-
ture modelling language [JvBA+03, ea04]. It provides through a metamodel
concepts for architectural design at a very general level, covering for example
the business, the application, and the technology architecture of a system.
The Archmate language resemble the business language Testbed [EJL+99]
but it has also a UML-flavor, introducing concepts like interfaces, services,
roles and collaborations.

The example modelled using the ArchiMate language concerns the enter-
prise architecture of a small company, called ArchiSell. In ArchiSell, employ-
ees sell products to customers. The products are delivered to ArchiSell by

8.2. ARCHIMATE: A RUNNING EXAMPLE 165

various suppliers. Employees of ArchiSell are responsible for ordering prod-
ucts and for selling them. Once products are delivered to ArchiSell, each
product is assigned an owner, responsible for selling the product.

To describe this enterprise we use the ArchiMate concepts and their rela-
tionships as presented in Figure 8.1. In particular, we use structural concepts
(product, role and object) and structural relationships (association), but also
a behavioral concepts (process) and behavioral relationships (triggering). Be-
havioral and structural concepts are connected by means of the assignment
and access relationships.

process

role

object

triggering

assignment

access

product

association

Figure 8.1: Some concepts and relations

A product is a physical entity that can be associated with roles. A role
is the representation of a collection of responsibility that may be fulfilled
some entity capable of performing behavior. The assignment relation links
processes with the roles that perform them. The triggering relation between
process describes the temporal relations between them. When executed, a
process may need to access data, whose representation is here called object.

We specifically look at the business process architecture for ordering prod-
ucts, depicted in Figure 8.2. In order to fulfill the business process for order-
ing a product, the employee has to perform the following activities:

• Before placing an order, an employee must register the order within
the Order Registry.

• After that, the employee places the order with the supplier.

166 CHAPTER 8. ANALYSIS WITH XML

• As soon as the supplier delivers the product(s), the employee first
checks if there is an order that refers to this delivery. Then, he/she
accepts the product(s).

• Next, the employee registers the acceptance of the product(s) within
the Product Registry and determines which employee will be the owner
of the product(s).

Employee

Accept product

Register

product

acceptance

Place order for
product

Register order
placement

Order

Registry

Product

Registry

owns

Product

Figure 8.2: A Business Process Architecture

Despite the apparent simplicity of the diagram, there are several issues
which can be analyzed. For example, when an architect presents this ar-
chitecture, he may explain that the role of the order registry is to coordi-
nate between the first two processes of placing orders and accepting them.
Whereas the same employee should see to it that an order which is placed is
also registered, there may be another employee which accepts the order.

Also variants can be analyzed. For example, given the fact that the
coordination between order placement and order acceptance is regulated via
the order registry, is it still necessary that placing the order for a product
triggers the process that accepts the product. In other words, what is the
impact if we change the architecture by removing this relation?

Before we can consider these questions, we need a language to represent
the architecture. The ArchiMate language is a visual modelling language not
well suited for representation or reasoning. We therefore represent architec-
tures like the one above in XML.

8.3. THE TOOLS: XML, AML AND RML 167

8.3 The tools: XML, AML and RML

Before we start to analyze the enterprise architecture of the running ex-
ample, we introduce our machinery. It consists of XML, AML and, most
importantly, RML.

The Extensible Markup Language (XML) [XML] is a universal format
for documents containing structured information using nested begin and end
labels, which can contain attributes. For example, a such as:

<product>

<weefer color="green">zyx</weefer>

<wafer color="blue">cis</wafer>

<weefer color="green">zyx</weefer>

</product>

The nested structure of the labels corresponds to a tree. They can be used
over the internet for web site content and several kinds of web services. It al-
lows developers to easily describe and deliver rich, structured data from any
application in a standard, consistent way. Today, XML can be considered
as a lingua franca in computer industry, increasing interoperability and ex-
tensibility of several applications. Terseness and human-understandability of
XML documents is of minimal importance, since XML documents are mostly
created by applications for importing or exporting data.

The ASCII Markup Language (AML) [Jaca] used to show examples in
this paper is an alternative for XML syntax. AML is designed to be concise
and elegant and easy to use. AML uses indentation to increase readability
and to define the XML tree hierarchy: indentation level corresponds to depth,
sometimes called level, in the tree. No indentation is required for the set of
attributes that immediately follows each attribute name.

product

weefer color="green"

zyx

wafer color="blue"

cis

weefer color="green"

zyx

The Rule Markup Language (RML) is a tool for transforming XML doc-
uments that can be used for analysis of architectural description, and in par-
ticular for the definition and simulation of the system behavior. It consists of

168 CHAPTER 8. ANALYSIS WITH XML

a set of XML constructs that can be added to an existing XML vocabulary
in order to define RML rules for that XML vocabulary. These rules can then
be executed by RML tools to transform the input XML according to the rule
definition. Consider for example the following rule which removes duplicates
from an XML document.

div class=rule name="Removeduplicates"

div class=antecedent

product

rml-list name=rml-A

rml-tree name=rml-B

rml-list name=rml-C

rml-tree name=rml-B

rml-list name=rml-D

div class=consequence

product

rml-use name=rml-A

rml-use name=rml-B

rml-use name=rml-C

rml-use name=rml-D

The example illustrates the main constructs. First, there is an input and
an output part of the rule, called antecedent and consequent. The antecedent
contains a set of variables, rml-A, rml-B, rml-C and rml-D. The second vari-
able occurs twice, and will therefore only match with a duplicate. Finally,
rml-list matches with a list of elements, and rml-tree with one element; they
can be considered the analogues of * and ? in regular expressions as used in
for example grep.

The antecedent matches with the product given above, and binds the
variables such that rml-A and rml-E are empty, rml-B is the seefer and rml-
C is the woofer. The consequent of the rule explains the output of the rule. It
reproduces the content otf the variables rml-A, rml-B, rml-C and rml-D, but
it does not reproduce the second instance of rml-B. In this way, the duplicate
is removed.

product

weefer color="green"

zyx

wafer color="blue"

cis

There are a few more constructs, dealing for example with variables for
attributes such as color. The set of RML constructs is concise and shown in

8.3. THE TOOLS: XML, AML AND RML 169

Table 2.1. Things that can be stored in RML variables are element names,
attribute names, attribute values, whole elements (including the children),
and lists of elements.

The example illustrates that a pattern can be matched that is distributed
over various parts of the input XML. Such pattern matching is hard to define
with other existing approaches to XML transformation because they do not
use of the problem domain XML for defining transformation rules: trans-
formations are defined either in special purpose language like the Extensible
Stylesheet Language Transformation (XSLT), or they are defined at a lower
level by means of programming languages like DOM and SAX. RML cap-
tures transformations defined by a single rule, but interaction among rules is
dealt with by other tools. Moreover, XML transformations normally involve
creating links between elements by means of cross-referencing attributes, or
reordering elements, or adding or removing elements, but does typically not
include things like integer arithmetric and floating point calculations. In case
of such transformations RML tools will have to be combined with other tools
that can do the desired calculation.

Combinations of RML with other components like programming language
interpreters has been applied successfully in the EU project OMEGA (IST-
2001-33522, URL: http://www-omega.imag.fr) that deals with the formal
verification of UML models for software. That tool for the simulation of
UML models does the XML transformations with RML, and uses an external
interpreter for example for floating point calculations on attributes in the
XML encoding.

In the remainder of this paper, we show how RML can be used for the
analysis of the enterprise architecture in the running example. RML was de-
signed to make the definition of executable XML transformations also possi-
ble for other stakeholders than programmers. This is of particular relevance
when transformations capture for instance business rules. In this way it is
possible to extend the original model in the problem domain XML vocabu-
lary with semantics for that language. Similarly, it is also possible to define
rules for constraining the models with RML.

As illustrated above, with RML a formal definition can be given of the
dynamics of the basic actions of an architecture in terms XML transforma-
tions.

The most widely used mathematical foundation for describing semantics
is the Structural Operational Semantics by Plotkin [Plo81], and this is what
we use for the specification of the behavior of an architecture in XML in

170 CHAPTER 8. ANALYSIS WITH XML

Sect. 8.5.
Below we show an example of RML by presenting the rule that defines

the state transformation of the action of our running example, where emp
and order-reg are individual names for an employee and the Order registry,
respectively. The details of this notation are discussed later in this paper.

emp, order-reg := Register_order_placement(

emp, order-reg)

Content-preserving RML constructs have been omitted for clarity.

div class=rule name="Register order placement"

div class=antecedent

variables

rml-Employee order=rml-OrderName

product=rml-ProductName

order-registry

rml-list name=oldOrders

div class=consequence

variables

rml-Employee order=rml-OrderName

product=rml-ProductName

order-registry

rml-use name=oldOrders

order name=rml-OrderName

This example illustrates several RML constructs which do not appear
in the removal of duplicates example. In particular, it uses variables for
element names and atribute values. The effect of applying this rule is that
order-registry is extended with an order.

In the antecedent of the rule the matching algorithm first looks for
an element with name variables which contains that part of the AML
representation of the semantic model that stores the values of the names
emp (of sort Employee) and order-reg (of sort Register order). For instance,
a value of emp is an XML element like

e1 order=Product product=p1

where Product is a sort in the architecture and p1 is an individual product.
If the variables element is found the matching algorithm looks for chil-

dren of that element: one child with an order and product attribute (an

8.4. STATIC ANALYSIS 171

employee), and one child with the name or (the order registry). The al-
gorithm binds the employee name emp to RML variable Employee and it
binds the values of the order and product attributes to OrderName and
ProductName respectively. The list of old orders, a list of XML elements
that are the children of the orders child of the r1 order registry, is bound
to RML variable oldOrders. In the consequence of the rule the variables
are reused in the output and an order element with the correct name is ap-
pended to the oldOrders list. Note that by means of this RML rule we have
an interpretation of the sort Order registry of unbounded capacity.

Section 8.2 described a model of an architecture in a typical bussiness-
like fashion: with diagrams and English text for additional explanations. In
Sections 8.4 and 8.5 we will show how we can use XML for this description,
resulting in a formalization of the model. There are static and dynamic
aspects to the model: the static aspects give the structure of the model, the
dynamic aspects describe how the model can change.

8.4 Static analysis

We designed our own XML vocabulary, because we could not find an adequate
standard one. We base this design on a formal basis discussed in Sect. 8.4.1.
Diagrams like the one in Fig. 8.2 can be viewed in an abstract way as
consisting of nodes and arrows, where some of the arrows are bidirectional.
In the architectural community the nodes are called concepts and the arrows
are called relations. Depending on the topic of the diagram, in some cases
there is an existing standardized XML vocabulary that can be used to provide
an XML encoding of the diagram, for instance there is XMI to encode UML
diagrams. What is typically lost in such an encoding are some of the visual
elements: the positions of the boxes in the picture and the lengths of the lines
for the arrows. An XML encoding only captures the names of the nodes and
the arrows and what nodes are connected via which arrows. There can also be
information in the XML encoding about attributes of the nodes and arrows,
information that is not visible in the diagram but in the accompanying text in
English. An example of such extra information is that a department consists
of a maximum of 100 employees.

172 CHAPTER 8. ANALYSIS WITH XML

8.4.1 A formal basis for static analysis

Following IEEE 1471-2000 [Soc00], every system has an architecture. In our
perspective which abstracts from pragmatics, like design principles, an archi-
tecture is the structure and dynamics of a system consisting of its components
and their relationships.

The architecture of a system is purely conceptual and different from par-
ticular symbolic descriptions of that architecture. An architectural descrip-
tion consists of several symbolic models (also called model in [Soc00]) and
other pragmatic information. Examples of the latter are the architectural ra-
tionale. In the next sections we focus on the logical nature of these symbolic
models which involves their syntax and semantics.

The core of a symbolic model of an architecture consists of its signature
which specifies its name space. The names of a signature are used to denote
symbolically the structural elements of the architecture, their relationships,
and their dynamics. The nature of each structural element is specified by
a sort, and each architectural relationship by a relation between sorts. Ad-
ditionally, a signature includes an ordering on its sorts and its relations for
the specification of a classification in terms of a generalization relation on
the structural elements and the architectural relations. For example, the
sort object in Figure 8.1 can be defined as a generalization of both the sorts
Order Registry and Product Registry given in Figure 8.2, to indicate that
every element in Order Registry or Product Registry is also an element of
sort object. Also, an association between role and product is a generalization
of the relation owns between Employee and Product.

The ordering on sorts and relations is in general used to capture certain
aspects of the ontology of an architecture. Other ontological aspects can
be captured by the aggregation and containment relations. For technical
convenience however we restrict to the generalization relation only.

Definition 4 A signature consists of

• a partially ordered set of primitive sorts, also called the sort hierarchy;

• a partially ordered set of relations, where each relation is of the form
R(S1, . . . , Sn), with R the name of the n-ary relation and Si the prim-
itive sort of its ith argument.

We allow overloading of relation names, i.e., the same name can
be used for different relations. For instance, given the primitive sorts

8.4. STATIC ANALYSIS 173

Person, Boss, and Employee, the relations Responsible(Boss, Employee)
and Responsible(Person, Person) are in general two different relations with
the same name.

Further information about the architecture is expressed symbolically in
terms of suitable extensions of one of its signatures. Usually a signature is
extended with operations for constructing complex types from the primitive
sorts. Examples are the standard type operations like product type T1 × T2

of the types T1 and T2, and the function type T1 → T2 of all functions which
require an argument of type T1 and provide a result of type T2. Note that a
relation R(S1, . . . , Sn) is a sub-type of S1 × · · · × Sn.

Given functional types, the name space of a signature can be extended
with functions F (T1) : T2, where F specifies the name of a function of
type T1 → T2. Functions can be used to specify the attributes of a
sort. For example, given the primitive sorts Employee and N, the function
Age(Employee) : N is intended for specifying the age of each person. Note
that multi-valued functions F (T1, . . . , Tn) : T ′

1, . . . , T
′

m can be specified by the
functional type T → T ′, where T denotes the product type T1 ×· · ·×Tn and
T ′ denotes the product type T1×· · ·×Tn. In general, functions are also used
to specify symbolically the dynamics of an architecture.

The next example shows the signature of the business process architecture
described in Figure 8.2.

Example 1 The sorts of the example described in Figure 8.2 and 8.1 are
simply enumerated by

process

role

object

product

Employee

Product

Order_Registry

Product_Registry

Note that we did not include processes as a sort. The subsort relation is
specified in AML by the following enumeration

is-a

domain name=Employee

codomain name=Role

174 CHAPTER 8. ANALYSIS WITH XML

is-a

domain name=Order_Registry

codomain name=Object

is-a

domain name=Product_Registry

codomain name=Object

is-a

domain name=owns

codomain name=assignment

Note that we have encoded meta-model information of an architecture as
part of the signature of the architecture itself. The relation between the meta-
model sorts and relations and architectural sorts and relations is expressed
by the respective partial orders between sorts and relations of the signature.

In AML the owns-relation itself is specified by

owns

domain name=Employee

codomain name=Product

Finally, the processes are specified in AML as functions. The types of
the arguments and result values are determined as follows: A role which is
assigned to a process specifies the type of both an argument and a result value
of the corresponding function. Similarly, an outgoing access relation from
a process to an object specifies the type of both an argument and a result
value of the corresponding function. On the other hand, an incoming access
relation from an object to a process only specifies the type of the corresponding
argument (this captures the property of ‘read-only’).

Register_order_placement

domain name=Employee

domain name=Order_Registry

codomain name=Employee

codomain name=Order_Registry

Place_order_for_product

domain name=Employee

codomain name=Employee

Accept_product

domain name=Employee

domain name=Order_Registry

codomain name=Employee

Register_product_acceptance

domain name=Employee

8.4. STATIC ANALYSIS 175

domain name=Product_Registry

codomain name=Employee

codomain name=Product_Registry

Note that the triggering relation is not included in our concept of a sig-
nature. In our view such a relation specifies a temporal ordering between the
processes which is part of the business process language discussed below in
section 8.5.

Interpretation of types We first define a formal interpretation of the
types underlying a symbolic model.

Definition 5 An interpretation I of the types of a signature assigns to each
primitive sort S a set I(S) of individuals of sort S which respects the subsort
ordering: if S1 is a subsort of S2 then I(S1) is a subset of I(S2).

Any primitive sort is interpreted by a subset of a universe which is given
by the union of the interpretation of all primitive sorts. The hierarchy be-
tween primitive sorts is expressed by the subset relation.

An interpretation I of the primitive sorts of a signature of an architec-
ture can be inductively extended to an interpretation of more complex types.
For example, an interpretation of the product type T1 × T2 is given by the
Cartesian product I(T1)× I(T2) of the sets I(T1) and I(T2). The interpreta-
tion of the function type T1 → T2 as the set I(T1) → I(T2) of all functions
from I(T)1) to I(T2), however, does not take into account the contra-variant
nature of the function space. For example, since the sort N of natural num-
bers is a sub-sort of the real numbers R, a function from R to R dividing a
real number by 2 is also a function from N to R, but, clearly, the set of all
functions from I(R) to I(R) is not a subset of the set of functions from I(N)
to I(R).

Therefore, given the universe U defined as the union of all the interpreta-
tions of the primitive sorts, we define the interpretation of the function type
T1 → T2 by

I(T1 → T2) = {f ∈ U → U | f(I(T1)) ⊆ I(T2)}.

The function type T1 → T2 thus denotes the set of all functions from the
universe to itself such that the image of I(T1) is contained in I(T2). Note

176 CHAPTER 8. ANALYSIS WITH XML

that if T ′

1 is a subtype of T1 and T2 is a subtype of T ′

2 then I(T1 → T2) is
indeed a subset of I(T ′

1 → T ′

2).
In general, there can be a large number of different interpretations for a

signature. This reflects the intuition that there are many possible architec-
tures that fit a specific architectural description. In fact, a signature of an
architecture basically only specifies the basic concepts by means of which the
architecture is described.

Semantic models In our logical perspective, a semantic model is a formal
abstraction of the architecture of a system. The logical perspective presented
until now, only concerned the symbolic representation of an architecture
by means of its signature. Next we show how to obtain a formal model of a
system as a semantic interpretation of the symbolic model of its architectural
description.

The semantic model of a system involves its concrete components and
their concrete relationships which may change in time because of the dynamic
behavior of a system. To refer to the concrete situation of a system we have
to extend its signature with names for referring to the individuals of the types
and relations. For a symbolic model, we denote by n : T a name n which
ranges over individuals of type T .

Given a symbolic model of an architecture extended with individual
names and an interpretation I of its types, we define a semantic model Σ as
a function which provides the following interpretation of the name space of
the symbolic model covering its relations, functions, and individuals.

Relations For each relation R(S1, . . . , Sn) we have a relation

Σ(R) ⊆ I(S1 × · · · × Sn)

respecting the ordering between relations, meaning that if R1 is a sub-
relation of R2 then Σ(R1) is a subset of Σ(R2).

Functions For each symbolic function F (T1) : T2 we have a function

Σ(F) ∈ I(T1 → T2).

Variables For each individual name n : S we have an element

Σ(n) ∈ I(S).

8.4. STATIC ANALYSIS 177

8.4.2 XML for static analysis

In this section we describe the methodology we follow to design an XML
vocabulary for diagrams like in Fig. 8.2 and 8.1. In general we will model
every node in the diagram with an XML element. Figure 8.1 is a legenda,
a collection of unconnected concepts and relation names with their visual
representation. Only the concepts are given XML elements, not the relation
names. For the concepts (rectangles and rounded rectangles) in Fig. 8.1 and
8.1 we design XML elements with that name. The lines in Fig. 8.2, and other
relations that are mentioned in the accompanying text, will be modeled with
XML elements with the name of the relation, and these elements will have
domain and codomain children that contain cross-references to the elements
that participate in the relation. This way it is possible to define n to m
relations by taking n domain elements and m codomain elements. A designer
could choose to take other names for domain and codomain, like from and
to, but the methodology remains the same.

Section 8.4.1 shows examples for the various XML elements in the model.
The complete XML model for static analysis for the example consists of a
businessprocess element with as children elements the examples in Sect.
8.4.1.

All the concepts and relations from Fig. 8.2 and 8.1 and the explanatory
text have been put into XML. The disadvantage of storing meta-information
in an XML encoding, like in this case with is-a relations, is that the encoding
risks to become too big and chaotic. The chaos can be improved upon with
extra elements, for instance by putting the meta concepts (process, role,
object and product) in a containing element called meta, but this still does
not solve the size problem. If analysis is not using the meta information,
then it can be omitted, or stored in an external file for future reference. In
the above model this method would remove all the is-a relations and the
four meta elements.

Our XML encoding does not make much use of the possibilities to use
hierarchy between elements in XML itself. An example of using more XML
hierarchy would be:

businessprocess

role

Employee

object

Order_Registry

178 CHAPTER 8. ANALYSIS WITH XML

Product_Registry

product

Product

process

Register_order_placement

domain name=Employee

domain name=Order_Registry

codomain name=Employee

codomain name=Order_Registry

Place_order_for_product

domain name=Employee

codomain name=Employee

Accept_product

domain name=Employee

domain name=Order_Registry

codomain name=Employee

Register_product_acceptance

domain name=Employee

domain name=Product_Registry

codomain name=Employee

codomain name=Product_Registry

owns

domain name=Employee

codomain name=Product

which is a more efficient encoding for the example, but our experience shows
that it is generally a good idea to be cautious when using XML hierarchy.
With this last encoding it will be more difficult for example to put the meta
information in a separate file. And there are several kinds of relations in
a model, like generalization, composition and association, that can be ex-
pressed with hierarchy in XML, but once we have chosen to use hierarchy in
XML for generalization it will not readily be possible to use XML hierarchy
also for composition relations when we want to add those later. In the case of
modeling generalization there is also the problem of modeling what is known
as “multiple-inheritance” in computer science: it is not generally possible to
model a generalization of two concepts with XML hierarchy alone because an
XML element only has one parent element. If generalization is very impor-
tant and interesting for the analysis you have in mind then modeling it with
XML hierarchy could possibly work out very well, but in our methodology
we start out using as little XML hierarchy as possible.

8.4. STATIC ANALYSIS 179

XML individuals for semantic models So far we have only put sorts
and relations into XML, but not individuals of sorts, necessary for semantic
models. Putting the individuals into XML can be useful for several types
of analysis, especially for analysing dynamics. In our methodology we can
model individuals of a sort as XML children of the sort element, with all
attributes that are needed as can be inferred from the text description of an
architecture. The name of the children element is free to choose, but there
could be a naming convention such that it is clear what sort an individual
belongs to. For example, adding two individuals of sort Employee can be
modeled with:

businessprocess

...

Employee

e1 order=Product product=p1

e2 order=Product product=p2

...

where the e1 and e2 elements are Employee individuals and their order and
product attributes have been added because the textual description of the
architecture said that an employee has an order in mind and that an employee
is handling a product. There is only one Product sort in our example, so the
order attribute looks redundant, but we may want to add more products
later.

Another approach is to put all the XML elements for sort individuals
inside a variables element, and in that case it would be a good idea to give
the individuals an attribute that designates their sort, like in

businessprocess

...

Employee

...

variables

e1 sort=Employee order=Product product=p1

e2 sort=Employee order=Product product=p2

...

where we see the use of an extra sort attribute. Of course another name than
variables is possible. And of course their are many different approaches
altogether, but with the two described here we have good experiences.

180 CHAPTER 8. ANALYSIS WITH XML

Examples of static analysis An example of static analysis is to analyse
whether all name attributes of domain and codomain elements in the func-
tions are defined as XML element names, and to do type checking if that is
considered useful. Another example is to check if all the is-a relations are
anti-symmetric. Yet another example is impact analysis.

To perform the static analysis there are many tools in the industry that
can be used that are capable of parsing XML. These tools can be used to turn
the XML in a graphical representation, or they can do things like counting
the number of employees or adding their salary attributes. The RML tools
can also be used. The RML tools are designed for transformations of XML
to XML so they are more targeted at dynamic analysis, but it is very well
possible to define transformations of XML that rearrange the input: for
example displaying a list of employee elements. Due to a lack of space we
can not already show examples of such RML transformations here, we refer
to Sect. 8.5.2 for RML examples.

8.5 Dynamic analysis

8.5.1 A formal basis for dynamic analysis

We can model the dynamic behavior of a model of an architecture with a
state-machine [GBR99]. The transitions in the state-machine correspond
with RML rules or recipes.

State machine semantics The sort individuals are coordinated by means
of state machines. These state machines consist of transitions of the form

l
[g]/a
−→ l′

where l is the entry location and l′ is the exit location of the transition.
Furthermore, g denotes its boolean guard and a its action.

The boolean guard of a transition is a boolean expression that consists
of the usual integer values and string values but also of RML-variables from
the rule or recipe that is captured by the transition. For evaluating the
guard these RML-variables will be assigned a value by the RML matching
algorithm with the XML encoding of the model as input.

8.5. DYNAMIC ANALYSIS 181

An action involves a call to the RML tools executing an RML rule or
recipe on the model. For the action in the transition we generally use the
name of the file the rule or recipe is stored in.

In the following we use class for sort and we use object for individual,
because these names are more usual when describing state-machines, e.g. in
UML.

In order to formally define the operational semantics of state machines in
architectures we assume for each class c of a given architecture a set Oc of
references to objects in class c. In XML such references can be modeled by
means of id attributes with unique values, and cross-reference attributes. In
case class c extends c′ (according to the architecture) we have that Oc is a
subset of Oc′. (For classes which are not related by the inheritance hierarchy
these sets are assumed to be disjoint.)

Definition 6 An object diagram of a given architecture with classes
c1, . . . , cn can be specified mathematically by functions σc, for c ∈ {c1, . . . , cn},
which specify for each object in class c existing in the object diagram the val-
ues of its attributes, i.e., σc(o.A) denotes the value of attribute A of the object
o, i.e., it denotes an object reference in Oc′, where c′ is the (static) type of
the attribute A (defined in the class c in the architecture).

Often we omit the information about the class and write simply σ(o.A).
Control information of each object o in an object-diagram is given by σ(o.L),
assuming for each class an attribute L which is used to refer to the current
location of the state machine of o.

Given an architecture consisting of a finite set of classes c1, . . . , cn and a
state machine, we define its behavior in terms of a transition relation on the
object diagram.

This transition relation is defined parametric in the semantics of the ap-
plication operations.

More specifically, we assume for each action a involving an RML rule or
recipe a labeled transition relation σ

a
−→ σ′ which specifies σ′ as a possible

result of the execution of the call a on σ.
Such a labeled transition describes the observable effect on the architec-

ture of the execution of the corresponding call by the RML tools. As a special
case we assume for each guard g a labeled transition relation σ

g
−→ b

where b denotes a boolean value which indicates the result of the evalua-
tion.

182 CHAPTER 8. ANALYSIS WITH XML

Definition 7 Formally, given an architecture and the semantic interpreta-
tions of the RML rules and recipes, we have a transition σ → σ ′ from the
object-diagram σ to the object-diagram σ ′ if the following holds: there exists
an object o and a transition

l
[g]/a
−→ l′

in its state machine such that

Location σ(o.L) = l and σ′(o.L) = l′;

Guard σ
g

−→ true;

Action in case of a call a involving an RML rule or recipe we have

σ
a

−→ σ′.

The first clause above describes the flow of control. The second clause
states that the guard evaluates to true (without side-effects). A call to an
RML rule or recipe is described in terms of a corresponding labeled transition
which models the execution of the call by the underlying RML tools. Note
that the execution of a transition of a state-machine is atomic. However,
more fine-grained modes of execution can be introduced in a straightforward
manner.

8.5.2 XML+RML for dynamic analysis

In our methodology we start with writing out scenarios. Scenarios consist of
sequences of semantic models, called scenes, connected by functions, called
transitions. We use the words scene and transition or transformation when
discussing XML encodings. An example is an employee who registers an
order in the order registry: the source-scene of the transition contains an
employee with an order and an order registry, the target-scene contains the
employee and the order registry with the order added. When we have col-
lected enough examples of transitions, we define the RML rules that define
the XML transformations from scene to scene. We could also try to define
the RML rules without collecting scenes first, but using scenes has proven to
be useful in practice and the scenes also provide a testbed to try the rules on,
and later versions of rules. From source- and target-scene to an RML rule

8.5. DYNAMIC ANALYSIS 183

often does not involve much more than replacing literal strings with RML
variables. The resulting set of RML rules can be used as actions in state-
machines to define the behavior of an architecture. If a particular transition
is too complex for 1 rule then a sequence of possibly iterating rules can be
collected in an RML recipe, and the recipe can then be used as the action in
the transition of a state-machine.

We now demonstrate our methodology applied to the ”Register order
placement” process in the running example.

The XML contain a businessprocess element as shown before contain-
ing the sorts and relations from the symbolic model and a variables ele-
ment where we keep the sort individuals. To save space we only show the
variables section from now on.

A first scene consists of an employee and an order registry:

variables

e1 sort=Employee order=Product

order-registry

Product

Product

The XML element with the name e1 corresponds to an emp:Employee
variable in Sect. 8.5.1 and the XML element with the name order-registry,
with its children, corresponds to a or:Order Registry variable. These vari-
ables are parameters of a function Register order placement like in Sect.
8.5.1.

From this scene, the register order placement process leads to another
scene:

variables

e1 sort=Employee order=None

order-registry

Product

Product

Product

where the order attribute Employee is now None and the order for a
Product has been added to the registry.

To produce a simplistic RML rule based on only these two scenes, we
define

184 CHAPTER 8. ANALYSIS WITH XML

div class=rule name="Register order placement"

div class=antecedent

variables

e1 sort=Employee order=Product

order-registry

Product

Product

div class=consequence

variables

e1 sort=Employee order=None

order-registry

Product

Product

Product

as the first version of the RML rule we want to develop for the process.
To create this rule we simple copied the first scene in the antecedent of the
rule, and we copied the second scene in the consequence.

This RML rule works, but only for employee elements with the name e1,
and only for products of type Product as value of the order attribute of the
employee. There could be other products e.g. Product2 in the symbolic
model and such products as value of the order attribute will not work. And
the rule would only work when there are exactly 2 Products already in the
registry where we want the rule to work with any number in the registry
already. We can see these other possibilities by looking at other possible
source scenarios we collected around this process.

variables

e1 sort=Employee order=Product

e2 sort=Employee order=Product2

order-registry

Product

Product

variables

e2 sort=Employee order=Product2

order-registry

Product

To make the rule work also on these other scenarios, we change the rel-
evant literal strings in the rule into RML variables, according to table 2.1,
leading to the second version of the rule:

8.5. DYNAMIC ANALYSIS 185

div class=rule name="Register order placement"

div class=antecedent

variables

rml-Employee sort=Employee

order=rml-P

order-registry

rml-list name=OldOrders

div class=consequence

variables

rml-Employee sort=Employee

order=rml-P

order-registry

rml-use name=OldOrders

Product

This rule is much better, but still not finished. This rule only works
if there is exactly 1 employee sort individual defined and exactly 1 order-
registry. But there could be other things defined in the variables section
around the employee elements (we assume that an order-registry is always
last in the variables section). If there are, the rule will not work since the
first element does not match the pattern for an employee element as defined,
or the second element is not an order-registry element. To copy such other
elements in the variables section we change the rule,

div class=rule name="Register order placement"

div class=antecedent

variables

rml-list name=Pre

rml-Employee sort=Employee

order=rml-P

rml-list name=Post

order-registry

rml-list name=OldOrders

div class=consequence

variables

rml-use name=Pre

rml-Employee sort=Employee

order=rml-P

rml-use name=Post

order-registry

rml-use name=OldOrders

Product

186 CHAPTER 8. ANALYSIS WITH XML

putting everything before the employee we want to match in RML variable
Pre and putting everything after it, except the last element that must be
order-registry, in Post.

A final addition to the rule is needed because an employee pattern in the
rule now has a sort and a order attribute, but could very well have other
attributes we want to keep in the output. This is done by adding an attribute
rml-others=Others to the rml-Employee elements in the antecedent and in
the consequence.

Now that we have defined this rule, we can define the first transition of
the state-machine for this business process. To do this in XML we add a
statemachine element to the businessprocess element, and with this first
transition it looks like:

statemachine

transition id=t1

source state=start

target state=state_1

action

implementation

"""Register order placement"""

When we have modeled the whole running example, there will be 4
transitions in the state machine, for the 4 processes in Fig. 8.1. A tran-
sition does not have to consist of an action alone, there can also be a guard
with an guard-expression containing the usual things like string values and
integers, but also RML variable names from the RML rule in the action. The
guard-expression can be for example a Java expression that can be evaluated
by a Java interpreter, or it can be an OCL expression, or anything else suit-
able. The purpose of such a guard-expression is to constrain the applicability
of the RML rule. For example to add the constraint that only orders of sort
Product2 or Product3 may be added, a guard is added to the t1 transition,
resulting in:

state machine

transition id=t1

source state=start

target state=state_1

guard

implementation

"""P == ’Product2’ or P == ’Product3’"""

8.6. SUMMARY AND OUTLOOK 187

action

implementation

"""Register order placement"""

We can not give more examples here due to a lack of space. An online
executable demonstration of an extended version of such a state-machine
can be seen at http://homepages.cwi.nl/ jacob/km/cgikm.html, where it is
a state-machine for UML models. The only difference with a state-machine
we need for business processes is that the action.implementation elements in
the UML models contain statements in a programming language, where we
only use the name of RML rules in this paper, and the UML state machines
are more complex since they also handle events with triggers. For business
process modeling we do not need events and triggers since there is only one
active process.

8.6 Summary and outlook

The techniques proposed in this paper enforce architects to think about the
relation between their architectures and the real world. Static analysis tech-
niques allow them to think about structural issues, like cardinality and “is-a”
relationships. With dynamic analysis techniques, they can make small sim-
ulations the processes or other behavioural descriptions they propose. All
these techniques improve the understanding of their own creations.

In this paper we have introduced a XML tool for static and dynamic
analysis of enterprise architectures. We have shown how it transforms XML
data and how it can be used to simulate business processes. A summary of
the methodology we follow:

1. Create a symbolic model, see Sect. 8.4.2.

2. Collect scenes (semantic models) around transitions (functions).

3. Create RML rules using copy and paste from scenes.

4. Replace strings by RML variables in the RML rules where needed.

5. Create state-machines with the RML rules as actions in the state-
machine transitions.

188 CHAPTER 8. ANALYSIS WITH XML

There is a rich literature of business processes. However, as far as we
know, our logical perspective is a first attempt to a formal integration of such
processes in enterprise architectures. We believe that our logical framework
(plus tool support) also provides a promising basis for the further design and
development of business process languages and corresponding tools.

Acknowledgements This paper results from the ArchiMate project
(http://archimate.telin.nl), a research initiative that aims to provide
concepts and techniques to support architects in the visualization, and anal-
ysis of integrated architectures. The ArchiMate consortium consists of ABN
AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and Customs Admin-
istration, Ordina, Telematica Institute, CWI, University of Nijmegen, and
LIACS.

Chapter 9

A Logical Viewpoint on
Architectures

Authors: F.S. de Boer, M.M. Bonsangue, J.F. Jacob, A. Stam, L. van der
Torre

9.1 Introduction

In this paper we consider the gap between abstract enterprise architecture
descriptions and much more detailed business process models. The prob-
lem of analyzing and simulating enterprise architectures is that they are
described in much more vague terms than business process models. For ex-
ample, the IEEE standard 1471-2000 is based on the notion of the viewpoint
of a stakeholder with a set of concerns, and it defines view, architectural
description, architecture and system accordingly. However, despite the fact
that this approach has led to a useful reconsideration of the concepts used
in architecture, the drawback is that it does not lead to concepts which are
precisely defined in a mathematical sense, and consequently it is neither very
clear how to bridge the gap between architectural descriptions and business
process models, nor how to incorporate the architectural concepts in tools.

In this paper we study the following two research questions.

1. How to incorporate business process models in enterprise architectures
to analyze and simulate their behavior?

189

190 CHAPTER 9. A LOGICAL VIEWPOINT

description

View

System Architecture

symbolic model

signature

semantic model

1

*

abstraction

selects 1..*

*

described by 1has 1..*

is addressed to 1..*

conforms to

organized by 1..*

identifies 1..*

has an

has 1

establishes methods for 1..*

consists of 1..*

participates in 1..*

participates in

interprets 1..*

architectural
Stakeholder

viewpoint

Figure 9.1: Extension of IEEE with LVA

2. How to provide architectural tool support for enterprise architectures
with business process models?

To incorporate business process models in enterprise architectures, we
believe that we have to extend the IEEE architectural concepts. Consider
the main IEEE 1471 standard definitions.

architecture: The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.

system: A collection of components organized to accomplish a specific func-
tion or set of functions.

system stakeholder: An individual, team, or organization (or classes
thereof) with interests in, or concerns relative to, a system.

view: A representation of a whole system from the perspective of a related
set of concerns.

viewpoint: A specification of the conventions for constructing and using a
view. A pattern or template from which to develop individual views by

9.1. INTRODUCTION 191

establishing the purposes and audience for a view and the techniques
for its creation and analysis.

These definitions do not reflect the distinction between enterprise architec-
tures and business process models. Our extension of the IEEE conceptual
model is visualized in Figure 9.1, in which a symbolic model corresponds
to the IEEE concept of model, and which contains the two new concepts
semantic model and signature (we leave out IEEE 1471-2000 concepts not
related to our new concepts).

Semantic model. The missing concept in the IEEE 1471-2000 to bridge
the gap between enterprise architectures and business process models
is the notion of a semantic model, which interprets symbolic models.

Signature of an architecture. Moreover, each symbolic model has a sig-
nature, which contains besides the usual concepts and relations (in-
cluding special relations like is-a) also functions. The functions play a
crucial role in our proces models, as some of them are interpreted by
actions in the semantic model.

Finally, in contrast to IEEE 1471-2000 we distinguish between the conceptu-
alization of an architecture and its vizualization (though this is not visualized
in Figure 9.1).

Concerning tool support, our logical viewpoint provides the formal foun-
dations for the use of XML as a representation language for the signature
of an architecture, and more generally as a representation langauge for sym-
bolic as well as semantic models. In this paper we use AML instead of XML,
which is equivalent with XML, but designed to be better readable for hu-
mans. Roughly, in AML the end tags and angle brackets are replaced by
indentation principles.

Moreover, we promote the use of the Rule Markup Language or RML as a
language to describe model transformations and thus actions. As explained
in detail in this paper, actions are interpreted as functions, and can thus
be described by their input/output behavior, which can be described by
transoformation rules. RML consists of a small set of XML constructs that
can be added to an existing XML vocabulary in order to define RML rules
for that XML vocabulary. These rules can then be executed by RML tools
to transform the input XML according to the rule definition.

The layout of this paper is as follows. In Section 9.2 we introduce a
running example to explain our definitions. In Section 9.2.1 we explain the

192 CHAPTER 9. A LOGICAL VIEWPOINT

signature, the distinction between symbolic and semantic model, and the
actions. In Section 9.5 we discuss tool support, XML, AML and RML.

9.2 Archimate: a running example

Archimate is an enterprise architecture modelling language [JvBA+03, ea04].
It provides through a metamodel concepts for architectural design at a very
general level, covering for example the business, the application, and the
technology architecture of a system. The Archmate language resemble the
business language Testbed [EJL+99] but it has also a UML-flavour, intro-
ducing concepts like interfaces, services, roles and collaborations.

In the remainder of this paper, we will consider as running example, the
enterprise architecture of a small company, called ArchiSell, modeled using
the Archimate language. In ArchiSell, employees sell products to customers.
The products are delivered to ArchiSell by various suppliers. Employees of
ArchiSell are responsible for ordering products and for selling them. Once
products are delivered to ArchiSell, each product is assigned an owner, re-
sponsible for selling the product.

To describe this enterpise we will need the ArchiMate meta-concepts and
their relationships as presented in Figure 9.2. In particular, we will use
structural concepts (product, role and object) and structural relationships
(association), but also a behavioural concepts (process) and behavioural re-
lationships (triggering). Behavioural and structural concepts are connected
by means of the assignment and access relationships.

A product is a phisical entity that can be associated with roles. A role
is the representation of a collection of responsability that may be fulfilled
some entity capable of performing behaviour. The assignment relation links
processes with the roles that perform them. The triggering relation between
process describes the temporal relations between them. When executed,
process may need to access data, whose representation is here called object.

We will specifically look at the business process architecture for ordering
products, depicted in Figure 9.3.

In order to fulfill the business process for ordering a product, the employee
has to perform the following activities:

• Before placing an order, an employee must register the order within
the Order Registry.

9.2. ARCHIMATE: A RUNNING EXAMPLE 193

process

role

object

triggering

assignment

access

product

association

Figure 9.2: Some concepts and relations

• After that, the employee places the order with the supplier.

• As soon as the supplier delivers the product(s), the employee first
checks if there is an order that refers to this delivery. Then, he/she
accepts the product(s).

• Next, the employee registers the acceptance of the product(s) within
the Product Registry and determines which employee will be the owner
of the product(s).

9.2.1 Systems and architectures

Following IEEE 1471-2000, every system has an architecture. In our logical
perspective which abstracts from pragmatics, like design principles, an archi-
tecture is the structure and dynamics of a system consisting of its components
and their relationships.

The architecture of a system is purely conceptual and different from par-
ticular symbolic descriptions of that architecture. An architectural descrip-
tion consists of several symbolic models (also called model in [Soc00]) and
other pragmatic information. Examples of the latter are the architectural ra-
tionale. In the next sections we focus on the logical nature of these symbolic
models which involves their syntax and semantics.

194 CHAPTER 9. A LOGICAL VIEWPOINT

Employee

Accept product
Register
product

acceptance

Place order for
product

Register order
placement

Order
Registry

Product
Registry

owns

Product

Figure 9.3: A Business Process Architecture

The signature of an architecture

The very core of a symbolic model of an architecture consists of its signature
which specifies its name space. The names of a signature are used to denote
symbolically the structural elements of the architecture, their relationships,
and their dynamics. The nature of each structural element is specified by
a sort, and each architectural relationship by a relation between sorts. Ad-
ditionally, a signature includes an ordering on its sorts and its relations for
the specification of a classification in terms of a generalization relation on
the structural elements and the architectural relations. For example, the
sort object in Figure 9.2 can be defined as a generalization of both the sorts
Order Registry and Product Registry given in Figure 9.3, to indicate that
every element in Order Registry or Product Registry is also an element of
sort object. Also, an association between role and product is a generalization
of the relation owns between Employee and Product.

The ordering on sorts and relations is in general used to capture certain
aspects of the ontology of an architecture. Other ontological aspects can
be captured by the aggregation and containment relations. For technical
convenience however we restrict to the generalization relation only.

Definition 8 A signature consists of

• a partially ordered set of primitive sorts, also called the sort hierarchy;

• a partially ordered set of relations, where each relation is of the form

9.2. ARCHIMATE: A RUNNING EXAMPLE 195

R(S1, . . . , Sn), with R the name of the n-ary relation and Si the prim-
itive sort of its ith argument.

We allow overloading of relation names, i.e., the same name can
be used for different relations. For instance, given the primitive sorts
Person, Boss, and Employee, the relations Responsible(Boss, Employee)
and Responsible(Person, Person) are in general two different relations with
the same name.

Further information about the architecture is expressed symbolically in
terms of suitable extensions of one of its signatures. Usually a signature is
extended with operations for constructing complex types from the primitive
sorts. Examples are the standard type operations like product type

T1 × T2

of the types T1 and T2, and the function type

T1 → T2

of all functions which require an argument of type T1 and provide a result of
type T2. Note that a relation R(S1, . . . , Sn) is a sub-type of S1 × · · · × Sn.

Given functional types, the name space of a signature can be extended
with functions

F (T1):T2,

where F specifies the name of a function of type T1 → T2. Functions can be
used to specify the attributes of a sort. For example, given the primitive sorts
Employee and N, the function Age(Employee):N is intended for specifying
the age of each person.

Note that multi-valued functions

F (T1, . . . , Tn):T ′

1, . . . , T
′

m

can be specified by the functional type T → T ′, where T denotes the prod-
uct type T1 × · · · × Tn and T ′ denotes the product type T1 × · · · × Tn. In
general, functions are also used to specify symbolically the dynamics of an
architecture.

The next example shows the signature of the business process architecture
described in Figure 9.3. It is written in AML, a human-understandable
notation for generating XML documents. AML and the corresponding tool-
support will be discussed in Section 9.5.

196 CHAPTER 9. A LOGICAL VIEWPOINT

Example 2 The sorts of the example described in Figure 9.3 are simply
enumerated in AML by

Role

Object

Employee

Product

product

Order_Registry

Product_Registry

Note that we did not include processes as a sort (in our logical view ex-
plained above, processes are modeled as functions). The subsort relation is
specified in AML by the following enumeration

is-a

domain name=Employee

codomain name=Role

is-a

domain name=Order_Registry

codomain name=Object

is-a

domain name=Product_Registry

codomain name=Object

is-a

domain name=owns

codomain name=association

Note that we have encoded meta-model information of an architecture as
part of the signature of the architecture itself. The relation between the meta-
model sorts and relations and architectural sorts and relations is expressed
by the respective partial orders between sorts and relations of the signature.

In AML the owns-relation itself is specified by

owns

domain name=Employee

codomain name=Product

Finally, the processes are specified in AML as functions. The types of
the arguments and result values are determined as follows: A role which is
assigned to a process specifies the type of both an argument and a result value
of the corresponding function. Similarly, an outgoing access relation from
a process to an object specifies the type of both an argument and a result
value of the corresponding function. On the other hand, an incoming access
relation from an object to a process only specifies the type of the corresponding
argument (this captures the property of ‘read-only’).

9.2. ARCHIMATE: A RUNNING EXAMPLE 197

Register_order_placement

domain name=Employee

domain name=Order_Registry

codomain name=Employee

codomain name=Order_Registry

Place_order_for_product

domain name=Employee

codomain name=Employee

Accept_product

domain name=Employee

domain name=Order_Registry

codomain name=Employee

Register_product_acceptance

domain name=Employee

domain name=Product_Registry

codomain name=Employee

codomain name=Product_Registry

Note that the triggering relation is not included in our concept of a sigan-
ture. In our view such a relation specifies a temporal ordering between the
processes which is part of the business process language discussed below in
section 9.3.

The recommendation IEEE 1471-2000 [Soc00] emphasizes that views on
an architecture should be seen from the perspective of a viewpoint of a stake-
holder, that has several concerns. In our logical characterization, a viewpoint
is essentially a partial transformation over signatures, and a view is a visu-
alization of the result of the transformation, given a visualization.

Summarizing, the signature of an architecture focuses on the symbolic
representation of the structural elements of an architecture and their rela-
tionships, abstracting from other architectural aspects like rationale, prag-
matics and visualization. It emphasizes a separation of concerns which allows
to master the complexity of the architecture. Notably, the signature of an
architecture can be easily formalized in XML for storage and communication
purpose, and can be integrated as an independent module with other tools
including, e.g., graphics for visualization. In the following sections we define
the formal semantics of a symbolic model of an architecture. Such a seman-
tics provides a formal basis for the development and application of tools for
the logical analysis of the dynamics of an architecture.

198 CHAPTER 9. A LOGICAL VIEWPOINT

Interpretation of Types

In this section we first define a formal interpretation of the types underlying
a symbolic model.

Definition 9 An interpretation I of the types of a signature assigns to each
primitive sort S a set I(S) of individuals of sort S which respects the subsort
ordering: if S1 is a subsort of S2 then I(S1) is a subset of I(S2).

Any primitive sort is interpreted by a subset of a universe which is given
by the union of the interpretation of all primitive sorts. The hierarchy be-
tween primitive sorts is expressed by the subset relation.

An interpretation I of the primitive sorts of a signature of an architecture
can be inductively extended to an interpretation of more complex types. For
example, an interpretation of the product type

T1 × T2

is given by the cartesion product

I(T1) × I(T2)

of the sets I(T1) and I(T2). The interpretation of the function type T1 → T2

as the set
I(T1) → I(T2)

of all functions from I(T)1) to I(T2), however, does not take into account the
contra-variant nature of the function space. For example, since the sort N of
natural numbers is a sub-sort of the real numbers R, a function from R to R

dividing a real number by 2 is also a function from N to R, but, clearly, the
set of all functions from I(R) to I(R) is not a subset of the set of functions
from I(N) to I(R). Therefore, given the universe U defined as the union of
all the interpretations of the primitive sorts, we define the interpretation of
the function type T1 → T2 by

I(T1 → T2) = {f ∈ U → U | f(I(T1)) ⊆ I(T2)}.

The function type T1 → T2 thus denotes the set of all functions from the
universe to itself such that the image of I(T1) is contained in I(T2). Note
that if T ′

1 is a subtype of T1 and T2 is a subtype of T ′

2 then I(T1 → T2) is
indeed a subset of I(T ′

1 → T ′

2).

9.3. SEMANTIC MODELS 199

In general, there can be a large number of different interpretations for a
signature. This reflects the intuition that there are many possible architec-
tures that fit a specific architectural description. In fact, a signature of an
architecture basically only specifies the basic concepts by means of which the
architecture is described.

9.3 Semantic models

In our logical perspective, a semantic model is a formal abstraction of the
architecture of a system. The logical perspective presented until now, only
concerned the symbolic representation of an architecture by means of its
signature. Next we show how to obtain a formal model of a system as a
semantic interpretation of the symbolic model of its architectural description.

The semantic model of a system involves its concrete components and
their concrete relationships which may change in time because of the dynamic
behavior of a system. To refer to the concrete situation of a system we have
to extend its signature with names for referring to the individuals of the
types and relations. For a symbolic model, we denote by n:T a name n

which ranges over individuals of type T .
Given a symbolic model of an architecture extended with individual

names and an interpretation I of its types, we define a semantic model Σ as
a function which provides the following interpretation of the name space of
the symbolic model covering its relations, functions, and individuals.

Relations For each relation R(S1, . . . , Sn) we have a relation

Σ(R) ⊆ I(S1 × · · · × Sn)

respecting the ordering between relations, meaning that if R1 is a sub-
relation of R2 then Σ(R1) is a subset of Σ(R2).

Functions For each symbolic function F (T1):T2 we have a function

Σ(F) ∈ I(T1 → T2).

Variables For each individual name n:S we have an element

Σ(n) ∈ I(S).

200 CHAPTER 9. A LOGICAL VIEWPOINT

Example 3 For our running example we introduce the following semantic
model. In this model we have only two products p1 and p2. This is specified
in AML by

Product

p1

p2

In order to model the processing of orders and products individuals of
the sort Employee have a product attribute and an order attribute. These
attributes indicate the order and product the employee is managing. These
attributes can also be viewed as providing an interface to the environment
consisting of the clients and suppliers. Both the order of a client and the
product of a supplier will be stored by an employee (not necessarily the same
employee). In our model individuals of the sort Employee are fully charecter-
ized by these attributes. Therefore in our model the sort Employee contains
four elements, as described in AML by

Employee

e1 order=p1 product=p1

e2 order=p1 product=p2

e3 order=p2 product=p1

e4 order=p2 product=p2

In our simple model both the Order Registry and Product Registry can
contain only information about one of the two products p1 and p2 (in section
9.5 we discuss how to model an Order Registry as a finite list of orders).
Consequently, we can identify in this simple model the interpreation of these
sorts with that of Product:

Order_Registry

p1

p2

Product_Registry

p1

p2

The interpretation of the processes of our running example in this model
are specified in AML by means of matrices of input/output pairs. For exam-
ple, in the following we illustrate two such input/output pairs belonging to
the interpretation of Register order placement: it replaces the product stored
in the Order Registry by the product stored in the order of the employee:

matrix function=Register_order_placement

input

9.3. SEMANTIC MODELS 201

e1 order=p1 product=p1

p1

output

e1 order=p1 product=p1

p1

input

e1 order=p1 product=p2

p2

output

e1 order=p1 product=p2

p2

The other processes are formally described in a similar manner. Be-
cause of space limititaion we restrict to a informal description of their inter-
preations.

The function Place order for product does not affect the information
stored in an employee (in more refined models this function may in fact de-
scribe an update which records informationm about the supplier involved).

The function Accept product simply checks whether the product managed
by an employee is stored in the Order registry. We model this check as a
partial function which contains only those input/output pairs for which the
product stored in the Order registry coincides with the product managed by
the employee. Note that the product managed by the employee results from
the delivery of a supplier and that the order managed by an employee may
have changed after it has been stored in the Order registry.

The function Register product acceptance simply stores the product man-
aged by the employee in the Product registry.

Finally, in order to refer to the elements of the different sorts we introduce
individual names emp:Employee, order-reg: Order Registry, and product-reg:
Product Registry. A semantic model assigns individuals to these names, for
example, such an assignment is specified in AML simply by

emp = e1 order=p1 product=p1

order-reg= p1

product-reg= p2

Note that this assignment describes an employee which manages an order
of product p1 and a delivery of product p1, an Order registry which registers
an order of product p1, and a Product registry which registers the acceptance
of a product p2.

202 CHAPTER 9. A LOGICAL VIEWPOINT

Dynamics of a system

The dynamics of a concrete system with an architectural description given
by its signature can be specified in different ways. Below we distinguish two
different use of functions to describe the dynamics of a system: one where
functions are seen as primitive actions that change the state of a system, and
another where functions are seen as data transformers.

In the first case, we define the action of a function F (S):T by an assign-
ment of the form

n: = F (m)

where n:T and m:S are names ranging over the types T and S, respectively.
The execution of such an action in a semantic model Σ assigns to the name
n the return value of

Σ(F)(Σ(m))

which denotes the result of applying the function Σ(F) ∈ I(S → T) to the
element Σ(m) ∈ I(S). Note that actions transform semantic models (i.e. the
state of a system) but not the interpretation of a signature (i.e. the structural
information of a system).

Example 4 Given the interpretation of the individual names e and or of the
example 3, the execution of the action

e,or:=Register order placement(e,or)

results in the new semantic model Σ′ such that Σ′(or) = p1.

Given this concept of an action as a transformation of semantic models,
we can define more complex processes by combining actions, that is, we
can define operations on actions determining the order of their execution.
For example, we can define the sequential composition n: = F (m);n′: =
G(m′) of two actions n: = F (m) and n′: = G(m′) as the composition their
transformation of semantic models. Other operations on actions include case
structure, loops, parallel composition, and synchronization.

Example 5 Given the above sorts Product and Employee, and a function
name Produce of type Employee × Product → Product, we can define a pipe-
line by

p1:=Produce(e1,p1);p2:=Produce(e2,p1),

where e1 and e2 denote individual employees and p1 and p2 denote some
products.

9.4. DESIGN SUPPORT 203

The above interpretation of functions as actions forms a formal basis for
the introduction of process algebras and corresponding analysis techniques
in business process modeling. A process algebra [Hoa85] is a structured
approach for constructing complex processes out of actions. Alternatively,
we can use functions to specify the data-flow in a system illustrating how
data is processed in terms of inputs and outputs. In this view a multi-valued
function

F (T1, . . . , Tn):T ′

1, . . . , T
′

m

is interpreted as an asynchronous process transforming data as follows. It has
an input channel for each of its arguments; when on each input channel data,
i.e., an element of the corresponding type, has arrived it outputs the result
values on corresponding output channels. Such processes can be connected
via their channels in a data-flow network [Kah74] pictorially represented by a
Data Flow Diagram [GS79]. Because of space limitiations we omit the formal
details.

9.4 Design support

In this section we discuss the support that can be offered by our logicla
perspective to describe the evolution of a system. In particular we will briefly
describe the role of logical languages and design action in the design of an
architecture.

Logical languages

Logical extension of a signature consists in considering types as predicate
symbols that can be combined into more complex formulae by means of logi-
cal operators like conjunction and disjunction. The resulting logical language
can be used to constraint the set of semantic models under consideration.
There are several logical languages that can be used as logical extensions of
a signature, and a more detailed description of them is beyond the scope of
this paper. We just mention here description logics [BCM03] as formalism
for constrining semantic models and for reasoning about architecture. They
are tailored towards a representation of architecture in terms of concepts
and relationships between them. A description logic system consists of the
following components:

204 CHAPTER 9. A LOGICAL VIEWPOINT

1. a description language to construct complex description from simple
ones;

2. a specification formalism to make statements about how concepts and
relations are related each other (TBox) or to make assertions about
individuals (ABox)

3. a reasoning procedure.

The advantage of usimg description logics is that they can be formulated in
terms of digrams, called the Entity-Relationships Diagrams (ERD) [Che76].
Basically they illustrate the logical structure of a system in terms of concepts
and their relationships.

Temporal logics [MP92] are specially tailored towards the specification of
the dynamic aspects of a systems. They consists of some atomic predicates
on the semantic models together with the prositional connectives and some
temporal opeartors like next (X), until (U), some time in the future (F), and
always in the future (G). In our view, a temporal logic is intepreted ‘ in terms
of sequences of semantics models generated by the actions of the symbolic
model. For example the formula

emp.order = p1

implies

(emp.order = p1 U order_reg = p1)

specifies that if employee emp has received an order for product p1, then
eventually the order will be register and until then the employee cannot
process any different order.

Design actions

A design action is a transformation between symbolic model. It contains some
additional non-logical information that can used to describe the evolution of
the system. Examples are actions for adding sorts or relations, for deleting
them, or for renaming them. Design actions can be realised by means of rules
(for example expressed in RML) that have as antecedent a set of parameter
and as consequence a description of the change. When the parameters are
collected the rule can fire resulting in a new symbolic model as described in
consequence of the rule.

9.5. TOOL SUPPORT 205

9.5 Tool support

In this section we discuss how our logical perspective provides a formal basis
for the integration of XML based tools for the semantic analysis of architec-
tures.

The Extensible Markup Language (XML) [XML] is a universal format
for documents containing structured information so that they can be used
over the internet for web site content and several kinds of web services. It
allows developers to easily describe and deliver rich, structured data from any
application in a standard, consistent way. Today, XML can be considered
as the lingua franca in computer industry, increasing interoperability and
extensibility of several applications. Terseness and human-understandability
of XML documents is of minimal importance, since XML documents are
mostly created by applications for importing or exporting data.

The ASCII Markup Language (AML) [Jaca] used in this paper is an
alternative for XML syntax. AML is designed to be concise and elegant
and easy to use. AML uses indentation to increase readability and to define
the XML tree hierarchy: indentation level corresponds to depth, sometimes
called level, in the tree. No indentation is required for the set of attributes
that immediately follows each attribute name.

In the next sub-section we describe a tool for transforming XML doc-
uments that can be used for analysis of architectural description, and in
particular for the definition and simulation of the system behavior.

9.5.1 The Rule Markup Language

RML stands for Rule Markup Language. It consists of a set of XML con-
structs that can be added to an existing XML vocabulary in order to define
RML rules for that XML vocabulary. These rules can then be executed by
RML tools to transform the input XML according to the rule definition. The
set of RML constructs is concise and shown in Table 2.1.

Rules defined in RML consist of an antecedent and a consequence. The
antecedent defines a pattern and variables in the pattern. Without the RML
constructs for variables this pattern would consist only of elements from the
chosen XML vocabulary. The pattern in the antecedent is matched against
the input XML. The variables specified with RML constructs are much like
the wildcard patterns like * and + and ? as used in well known tools like
grep, but the RML variables also have a name that is used to remember the

206 CHAPTER 9. A LOGICAL VIEWPOINT

matching input. Things that can be stored in RML variables are element
names, element attributes, whole elements (including the children), and lists
of elements.

If the matching of the pattern in the antecedent succeeds then the vari-
ables are bound to parts of the input XML and they can be used in the
consequence of an RML rule to produce output XML. When one of the RML
tools applies a rule to an input then by default the part of the input that
matched the antecedent is replaced by the output defined in the consequence
of the rule; the input surrounding the matched part is kept intact.

Below we show an example of RML by presenting the rule that defines
the state transformation of the action

emp,order-reg:=Register order placement(emp,order-reg)

of our running example (emp and order-reg are individual names for an em-
ployee and the Order registry, respectively). Content-preserving RML con-
structs have been omitted for clarity.

div class=rule name="Register order placement"

div class=antecedent

variables

rml-Employee order=rml-OrderName

product=rml-ProductName

or

orders

rml-list name=oldOrders

div class=consequence

variables

rml-Employee order=rml-OrderName

product=rml-ProductName

or

orders

rml-use name=oldOrders

order name=rml-OrderName

In the antecedent of the rule the matching algorithm first looks for
an element with name variables which contains that part of the AML
representation of the semantic model discussed 3 that stores the values of
the names emp (of sort Employee) and order-reg (of sort Register order) If
that is found it looks for children of that element: one child with an order and
product attribute (an employee), and one child with the name r1 (the order
registry). The algorithm binds the employee name emp to RML variable

9.5. TOOL SUPPORT 207

Employee and it binds the values of the order and product attributes to
OrderName and ProductName respectively. The list of old orders, a list of
XML elements that are the children of the orders child of the r1 order
registry, is bound to RML variable oldOrders. In the consequence of the
rule the variables are reused in the output and an order element with the
correct name is appended to the oldOrders list. Note that by means of this
RML rule we have extended the semantic model of our running example to
an interpretation of the sort Order registry of unbounded capacity.

We see here that in a straightforward way, thanks to the wildcard match-
ing technique used in RML, a pattern can be matched that is distributed over
various parts of the input XML. Such pattern matching is hard to define with
other existing approaches to XML transformation because they do not use of
the problem domain XML for defining transformation rules: transformations
are defined either in special purpose language like the Extensible Stylesheet
Language Transformation (XSLT), or they are defined at a lower level by
means of programming languages like DOM and SAX.

RML does not define, need, or use another language, it only adds a few
constructs to the XML vocabulary used, like the wildcard pattern matching.
RML was designed to make the definition of executable XML transformations
also possible for other stakeholders than programers. This is of particular
relevance when transformations capture for instance business rules. In this
way it is possible to extend the original model in the problem domain XML
vocabulary with semantics for that language. Similarly, it is also possible to
define rules for constraining the models with RML.

9.5.2 RML as a tool for architectural description

As illustrated above, with RML a formal definition can be given of the dy-
namics of the basic actions of an architecture in terms XML transformations.
This allows for a formal use of process algebras [Hoa85] in the modeling and
analysis of business processes. In fact, the use of RML allows the formal
definition of one own’s business process constructs on top of the semantic
description of the basic actions.

As a simple example, the execution of an action a by the process P=a.b
that specifies a temporal order between a and b (namely, first a and than b),
can be described in a process algebra by a transition of the form (we abstract
from the state)

208 CHAPTER 9. A LOGICAL VIEWPOINT

a.b -> b

As a transformation in RML this transition can be specified by the fol-
lowing rule:

div class=rule

div class=antecedent

process name=rml-P

prefixes

rml-A

rml-B

div class=consequence

process name=rml-P

prefixes

rml-B

The removal of the a prefix is easily specified in such an RML rule as the
removal of an element from a list of children elements.

XML tranformations normally involve creating links between elements
by means of cross-referencing attributes, or reordering elements, or adding
or removing elements, but does typically not include things like integer arith-
metric and floating point calculations. In case of such transformations the
RML tool will have to be combined with another tool that can do the de-
sired calculation. For modelling business architectures a transformation that
can not be expressed with XML+RML alone is rather uncommon, but they
may occur when the user is interested in a simulation of a model. We have
applied combinations of RML with other components like programming lan-
guage interpreters successfully in the EU project OMEGA (IST-2001-33522,
URL: http://www-omega.imag.fr) that deals with the formal verification of
UML models for software. That tool for the simulation of UML models does
the XML transformations with RML, and uses an external interpreter for
example for floating point calculations on attributes in the XML encoding.

9.6 Summary and outlook

In this paper we consider the relation between enterprise architectures and
much more detailed business process models. The missing link to bridge the
gap between the two worlds is the notion of a semantic model in the IEEE
1471-2000 standard [Soc00] . We show how semantic models can be distin-
guished from the models used within the standard, which we call symbolic

9.6. SUMMARY AND OUTLOOK 209

model. This distinction provides a formal basis for the introduction of a for-
mal definition and analysis of business processes. Moreover, we extend the
IEEE standard with the notion of the signature, which serves as the basis of
the enterprise architecture description, as well as the semantic model.

Semantic models are at the center of our logical perspective on enterprise
architectures which integrates both static and dynamic aspects. The frame-
work we have developed allows the integration of various models for business
processes, ranging from process algebras to data-flow networks.

Furthermore, we have introduced a XML tool for the transformation of
XML data and showed how it can be used to simulate business processes.

There is a rich literature of business processes. However, as far as we
know, our logical perspective is a first attempt to a formal integration of such
processes in enterprise architectures. We believe that our logical framework
(plus tool support) also provides an promising basis for the further design
and development of business process languages and corresponding tools.

Acknowledgements This paper results from the ArchiMate project
(http://archimate.telin.nl), a research initiative that aims to provide
concepts and techniques to support architects in the visualisation, and anal-
ysis of integrated architectures. The ArchiMate consortium consists of ABN
AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and Customs Admin-
istration, Ordina, Telematica Institute, CWI, University of Nijmegen, and
LIACS.

210 CHAPTER 9. A LOGICAL VIEWPOINT

Chapter 10

Using XML Transformation for
Enterprise Architecture

Authors: F.S. de Boer, M.M. Bonsangue, J.F. Jacob, A. Stam, L. van der
Torre

10.1 Introduction

In this paper, we investigate the use of XML transformation techniques in the
context of Enterprise Architectures. We have split up this research question
into two subquestions:

• How can we use XML transformation for the generation of views on an
architecture (selection and visualization)?

• How can we use XML transformation for the analysis of architectures?

First, we will introduce the reader to the term Enterprise Architecture,
the ArchiMate project, and XML. Second, we will give a short overview of
our research methodology.

10.1.1 Enterprise Architectures

A definition of Architecture quoted many times is the following IEEE defini-
tion: ”the fundamental organization of a system embodied in its components,

211

212 CHAPTER 10. TRANSFORMATIONS

their relationships to each other and to the environment and the principles
guiding its design and evolution” [Soc00]. Therefore, we can define Enterprise
Architecture [MAS+03] as the Architecture of an enterprise. It covers prin-
ciples, methods and models for the design and implementation of business
processes, information systems, technical infrastructure and organizational
structure.

Architectural information is usually contained in Architectural models.
With these models and the information they incorporate, stakeholders within
an organization are able to get more insight into the working of the organiza-
tion, the impact of certain changes to it, and ways to improve its functioning.

Usually, we can distinguish between architectural descriptions that cover
the as-is situation of an organization and descriptions that cover its intended
to-be situation. According to IEEE, views are part of an architectural de-
scription. Views conform to viewpoints which are useful for certain stake-
holders.

10.1.2 ArchiMate

Within the ArchiMate project, a language for Enterprise Architecture has
been developed [JvBA+03]. This language can be used to model all ar-
chitectural aspects of an organization. An overview of the concepts in the
ArchiMate language is given in Figure 10.1.

As can be seen, the language contains concepts for several aspects of
an organization. The individual concepts can be specialized for multiple
domains, like the business domain, application domain or technical domain.
Thus, a Service can be a business service, an application service or a technical
service, for example.

10.1.3 XML

The Extensible Markup Language (XML) [XML] is a universal format for
documents containing structured information so that they can be used over
the Internet for web site content and several kinds of web services. It al-
lows developers to easily describe and deliver rich, structured data from any
application in a standard, consistent way.

Today, XML can be considered as the lingua franca in computer industry,
increasing interoperability and extensibility of several applications. Terseness
and human-understandability of XML documents is of minimal importance,

10.1. INTRODUCTION 213

Process

Simple
service

Composite
service

Function

Composite
behaviour

Action

Collaboration/
Connector

Information

Trans -
action

2..*

Composite
actor/

component

Simple
actor/

Component

Data
collection

Data
item

Structure
aspect

Behaviour
aspect

manipulates

perf orms

Document

Information
aspect

Medium Message

contributes to

Actor/
Component

offers

uses

carries

fulfils

Data
object

Role/
Interface

Behaviour
element Service

exchanges

affects

results in

accessible
via

Event

Inter -
action

Figure 10.1: The ArchiMate metamodel

since XML documents are mostly created by applications for importing or
exporting data.

10.1.4 Research methodology

First, we have developed a running example for verification of our ideas and
techniques. During the development, we have refined the research questions
as follows:

1. Given a set of architectural information described in a single XML
document. How can we use XML transformation to select a subset of
this information for a specific architectural view?

2. Is it possible to use XML transformation for visualization? I.e. is it
possible to transform an XML document containing an architectural

214 CHAPTER 10. TRANSFORMATIONS

description into another XML document containing visual information
in terms of boxes, lines, etc.?

3. How can we use XML transformation to perform analyses on an archi-
tectural description? At first, we have chosen to specifically look at a
specific form of impact analysis: given an entity within the architec-
tural description which is considered to be modified or changed, which
other entities in the description are possibly influenced by this change?

The second step consisted of developing an XML document containing the
architectural information of the running example. As a basis for the archi-
tectural description, we have used an XML Schema containing the concepts
from the ArchiMate metamodel.

Thereafter we developed an XML Schema for visualization information
and built a model viewer which interprets this visualization information and
shows this information on the screen. The aim was to keep the model viewer
as “dumb” as possible, in order to make full use of XML transformation
techniques for the actual visualization.

In the fourth step, we selected a transformation tool, namely the Rule
Markup Language(RML), and built the transformation rules for selection,
visualization and impact analysis.

10.1.5 Document layout

In Section 10.2 the Rule Markup Language (RML) is introduced. In Sec-
tion 10.3 we will introduce the running example: ArchiSurance, a small in-
surance company which has the intention to phase out one of its core ap-
plications. In Section 10.4 we show transformation rules for selection and
visualisation of architectural views, while in Section 10.5 we illustrate trans-
formation techniques for analysis by means of performing a small impact
analysis. In Section 10.6 we conclude.

10.2 The Rule Markup Language

RML stands for Rule Markup Language. It consists of a set of XML con-
structs that can be added to an existing XML vocabulary in order to define
RML rules for that XML vocabulary. These rules can then be executed by
RML tools to transform the input XML according to the rule definition.

10.2. THE RULE MARKUP LANGUAGE 215

The set of RML constructs is concise and shown in Table 2.1 with a short
explanation of the constructs.

Rules defined in RML consist of an antecedent and a consequence. The
antecedent defines a pattern and variables in the pattern. Without the RML
constructs for variables this pattern would consist only of elements from the
chosen XML vocabulary. The pattern in the antecedent is matched against
the input XML. The variables specified with RML constructs are much like
the wild-card patterns like * and + and ? as used in well known tools like
grep, but the RML variables also have a name that is used to remember the
matching input. Things that can be stored in RML variables are element
names, element attributes, whole elements (including the children), and lists
of elements.

If the matching of the pattern in the antecedent succeeds then the vari-
ables are bound to parts of the input XML and they can be used in the
consequence of an RML rule to produce output XML. When one of the RML
tools applies a rule to an input then by default the part of the input that
matched the antecedent is replaced by the output defined in the consequence
of the rule; the input surrounding the matched part is kept intact.

RML does not define, need, or use another language, it only adds a few
constructs to the XML vocabulary used, like the wild-card pattern matching.
RML was designed to make the definition of executable XML transformations
also possible for other stakeholders than programmers. This is of particular
relevance when transformations capture for instance business rules. In this
way it is possible to extend the original model in the problem domain XML
vocabulary with semantics for that language. Similarly, it is also possible to
define rules for constraining the models with RML.

10.2.1 Comparison with other techniques

XSLT is a W3C language for transforming XML documents into other XML
documents.

The RuleML [com] community is working on a standard for rule-based
XML transformations. Their approach differs from the RML approach:
RuleML superimposes a special XML vocabulary for rules. This makes the
RuleML approach complex and thus difficult to use in certain cases.

The Relational Meta-Language [Pet94] is a language that is also called
RML, but intended for compiler generation, which is much more roundabout
and certainly not usable for rapid application development like with RML in

216 CHAPTER 10. TRANSFORMATIONS

this paper.
Another recent approach is fxt [BS02], which, like RML, defines an XML

syntax for transformation rules. Important drawbacks of fxt are that it is
rather limited in its default possibilities and relies on hooks to the SML
programming language for more elaborate transformations.

Other popular academic research topics that could potentially be useful
for rule based XML transformations are term rewriting systems and systems
based on graph grammars for graph reduction. However, using these tools for
XML transformations is a contrived and roundabout way of doing things. To
use these kind of systems, there has to be first a translation from the problem
XML to the special-purpose data structure of the system. And only then,
in the tool–specific format, the semantics is defined. But the techniques
used in these systems are interesting, especially for very complex or hard
transformations, and it looks worthwhile to see how essential concepts of
these techniques can be incorporated in RML in the future.

Compared with the related work mentioned above, a distinguishing fea-
ture of the RML approach is that RML re-uses the language of the problem
itself for matching patterns and generating output. This leads in a natu-
ral way to a much more usable and clearly defined set of rule based trans-
formation definitions, and an accompanying set of tools that is being used
successfully in practice.

10.3 Running Example

Throughout this paper, we will use a running example to illustrate our ideas.
The architectural description of this example can be found in the models in
Figures 10.2, 10.3, 10.4 and 10.5.

A small company, named ArchiSurance, sells insurance products to cus-
tomers. Figure 10.2 contains a Business View of the company. Two roles
are involved, namely the insurance company and the customer, which work
together in two collaborations, namely negotiation, i.e. the set of activities
performed in order to come to an appropriate insurance for a customer by
discussion and consultation, and contracting, i.e. the set of activities per-
formed in order to register a new customer and let it sign a contract for an
insurance policy.

Within Figure 10.3, the business process for selling an insurance product
to a customer is shown, together with the roles and/or collaborations that

10.3. RUNNING EXAMPLE 217

Customer
Insurance
Company

Negotiation Contracting

Figure 10.2: a Business View of ArchiSurance

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Figure 10.3: a Process View of ArchiSurance

are involved in executing the individual steps within the process.

Figure 10.4 shows the software products (components) that are used
within the ArchiSurance company and the services they offer. ArchiSure
is a custom-made software application for the administration of insurance
products, customers and premium collecting. PrintWise is a out-of-the-box
tool for official document layout and printing. Intermed is an old application,
originally meant for intermediaries to have the possibility to enter formal re-
quests for insurance products for their customers. The application is now
used by employees of the insurance company, since no intermediaries are in-
volved in selling insurance products anymore. Actually, the company would
like to phase out this application.

In Figure 10.5, the process for selling products is shown again, together
with the services that are used within each step.

218 CHAPTER 10. TRANSFORMATIONS

Request for
insurance

Formalize
request

Create contractInvestigate
Register

policy
Sign contract

Check
contract

Customer
Insurance
Company

Negotiation Contracting

Figure 10.4: an Application View of ArchiSurance

Request for
insurance

Formalize
request

Create contractInvestigate
Register

policy
Sign contract

Check
contract

Print contractsView requests Edit policiesEdit requests

Figure 10.5: a Service View of ArchiSurance

10.3.1 An XML description of the example

Though the four views are depicted separately, they are clearly related to each
other via the concepts they contain. In this small example, it is possible to
imagine the big picture in which all ArchiSurance information is contained.

Within the ArchiMate project, a XML Schema has been developed which
can be used for storage or exchange of architectural descriptions. Based on
this Schema, we have created an XML document that contains all information
about ArchiSurance. For illustration, a fragment of this XML document is
shown below. It contains the XML equivalent of Figure 10.2.

<role id="002" name="Customer"/>

<role id="003" name="Insurance Company"/>

<collaboration id="004" name="Negotiation"/>

<collaboration id="006" name="Contracting"/>

<composition id="035" name="composition">

<from href="004"/>

<to href="002"/>

</composition>

<composition id="036" name="composition">

<from href="004"/>

<to href="003"/>

</composition>

<composition id="041" name="composition">

<from href="006"/>

<to href="002"/>

</composition>

<composition id="042" name="composition">

10.4. SELECTION AND VISUALISATION 219

<from href="006"/>

<to href="003"/>

</composition>

10.4 Selection and Visualisation

The initial XML document contains the concepts and relations based on
the ArchiMate metamodel. It does not contain information about which
concepts are relevant for which views, nor does it describe how to visualize
the concepts. We can use RML rules for both tasks, as will be illustrated in
the following sections.

10.4.1 Selection

Within a single view, usually a selection of the entire set of concepts is
made. For example, the Business View in our example only contains roles and
collaborations. For this purpose, RML rules have to filter out all unnecessary
information from the XML document and thus create a new document that
only contains those concepts and relations that are relevant for the view.

We have created the following recipe for selection:

1. add a specific selection element to the XML document which is going
to contain the selected concepts;

2. iterate over the document and move all relevant concepts into the spe-
cific selection element;

3. iterate over the document and move all relevant relations into the spe-
cific selection element;

4. remove all relations within the selection element that have one “dan-
gling” end, i.e. that are related at one side to a concept that does not
belong to the selection;

5. remove all elements outside the selection element.

Note that the step for removing relations with one “dangling” end out of
the selection is necessary, because one relation type (e.g. association) can be
defined between several different concept types.

220 CHAPTER 10. TRANSFORMATIONS

The following RML rule illustrates the way all instances of a specific
concept are included in the selection:

<div class="rule">

<div class="antecedent">

<model>

<rml-list name="list1"/>

<collaboration rml-others="other">

<rml-list name="childs"/>

</collaboration>

<rml-list name="list2"/>

<selection>

<rml-list name="selection"/>

</selection>

<rml-list name="list3"/>

</model>

</div>

<div class="consequence">

<model>

<rml-use name="list1"/>

<rml-use name="list2"/>

<rml-use name="list3"/>

<selection>

<rml-use name="selection"/>

<collaboration rml-others="other">

<rml-use name="childs"/>

</collaboration>

</selection>

</model>

</div>

</div>

10.4.2 Visualization

As is described in the introduction, we wanted to keep the model viewer
as “dumb” as possible, in order to illustrate the way in which XML trans-
formations can be used for creating several visualizations for a single XML
document.

For this purpose, we have made a specific XML schema which can be
interpreted by the model viewer without having to know anything about the
ArchiMate language. The following XML fragment illustrates this language.

<container height="80" id="014" type="interaction" width="100" >

<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />

<label fieldname="name" halign="center" text="register policy" x="50" y="40" z="1" />

<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

10.4. SELECTION AND VISUALISATION 221

<container height="80" id="013" type="interaction" width="100" >

<box color="khaki1" height="80" type="round" width="100" x="0" y="0" z="0" />

<label fieldname="name" halign="center" text="sign contract" x="50" y="40" z="1" />

<icon height="15" type="splitcircle" width="15" x="75" y="10" z="1" />

</container>

<arrow from="013" id="020" to="014" type="triggering" >

<line type="solid" width="1" z="0" />

<headarrowtip size="10" type="filledarrow" z="1" />

</arrow>

The intermediate visualization language has two main constructs: con-
tainers and arrows.

Containers are rectangular areas in which several visual elements can be
placed. The exact location of those visual elements can be defined relative
to the size and position of the container. Each container has a unique iden-
tifier which can be used to refer to the original elements in the architectural
description.

Arrows are linear directed elements. They have a head and a tail, which
both have to be connected to containers (via their identifiers). They also
have unique identifiers themselves.

In the example above, two containers and one arrow are defined. In
Figure 10.6 the output of the interpretation of this XML fragment by the
model viewer is shown. As can be seen in the XML fragment, some visual
elements, like “split circle”, are built into the model viewer. This has mainly
been done for reasons of efficiency.

Register
policySign contract

Figure 10.6: Example of the visualization technique used

For the transformation of the original XML model to the visualization
information, we have created scripts that transform each concept into its
corresponding visualization. An example is given below.

<div class="rule">

<div class="antecedent">

<interaction id="rml-id" name="rml-name" color="rml-color"/>

</div>

222 CHAPTER 10. TRANSFORMATIONS

<div class="consequence">

<container id="rml-id" type="interaction" width="100" height="80" color="rml-color">

<box x="0" y="0" z="0" width="100" height="80" color="khaki1" type="round"/>

<label x="50" y="40" z="1" halign="center" text="rml-name" fieldname="name"/>

<icon x="75" y="10" z="1" width="15" height="15" type="splitcircle"/>

</container>

</div>

</div>

This example rule transforms an interaction concept into a visual repre-
sentation.

The technique presented here is quite powerful: from the same architec-
tural description, it is possible to define different visualization styles, like
ArchiMate, UML, etc. In the context of enterprise architectures, this is
especially useful since architects often want to have their own style of vi-
sualization (for cultural and communication reasons within organizations),
without having to conform to a standard defined outside the organization.

10.5 Analysis

Next to selection and visualisation, we have investigated ways to use XML
transformation for analysis of enterprise architectures. Our aim was to create
a technique for impact analysis, i.e. given an entity within the architectural
description which is considered to change, which other entities are possibly
influenced by this change?

We have created the following recipe for this analysis:

1. add a specific selection element to the XML document which is going
to contain the concepts that are considered to be possibly influenced;

2. add a special attribute to the element describing the entity under con-
sideration, which can be used for for example visualisation (in order to
make it have a red color, for example);

3. make the element describing the entity under consideration a child of
the selection element;

4. iterate over all relations included in the analysis and, if appropriate,
add a special attribute to them and make them a child of the selection
element;

10.6. SUMMARY 223

5. iterate over all concepts and, if appropriate, add a special attribute to
them and make them a child of the selection element;

6. repeat the previous two steps until the output is stable;

7. remove the selection element, so that we have one list of concepts and
relations, of which some concepts have a special attribute which indi-
cates that the change possibly has impact on them.

An example of the output of the analysis is given below. The compo-
nent “InterMed” is considered to change. It has two new attributes. The
selected attribute indicates that it belongs to the entities which are possi-
bly influenced by the change, while the special attribute indicates that this
entity is the unique entity considered to change. The remaining elements de-
scribe concepts and relations that are all selected, because they are directly
or indirectly related to the “InterMed” component.

<component id="082" name="InterMed" selected="yes" special="yes"/>

<composition id="104" name="composition" selected="yes" >

<from href="082" />

<to href="094" />

</composition>

<interface id="094" name="Interface" selected="yes" />

<assignment id="112" name="assignment" selected="yes" >

<from href="094" />

<to href="090" />

</assignment>

<service id="090" name="edit requests" selected="yes" />

Within Figure 10.7 and Figure 10.8, the output of the model viewer is
given for two views. The change of color is done by the visualisation scripts,
based on the attributes added during the analysis.

10.6 Summary

Our conclusions about each research question are as follows:

224 CHAPTER 10. TRANSFORMATIONS

PrintWise ArchiSure InterMed

Print contracts View requests Edit policies Edit requests

Figure 10.7: The Application View with a selected InterMed application

Customer
Insurance
Company

Negotiation Contracting

Figure 10.8: The resulting Business View after the impact analysis

10.6.1 Question 1

How can we use XML transformation to select a subset of a set of archi-
tectural information for a specific architectural view? In Section 10.4 we
have illustrated a way to filter out certain concepts and create a new XML
document containing a selection out of the original document.

10.6.2 Question 2

Is it possible to use XML transformation for visualization? In Section 10.4
we have shortly described an “intermediate” language for visualization infor-
mation and illustrated how we can transform an ArchiMate XML document
into a Visualization XML document.

10.6. SUMMARY 225

10.6.3 Question 3

How can we use XML transformation to perform a specific form of impact
analysis on an architectural description? A technique to perform this specific
analysis is described in Section 10.5.

10.6.4 Conclusions

The research reported on in this paper shows promising results. The use
of XML and transformation techniques for it has several benefits: XML is
well-known, the transformation techniques are generic and tools for it are
improving rapidly. Transformation rules are well understandable and can be
adapted quickly for specific needs or purposes.

The use of XML transformations for visualization proves to be specifically
interesting: in many cases, enterprise architecture tools have a fixed way of
visualizing information, which hinders architects in representing information
in the way they want to. By separating the “visualization step” from the
“viewer”, architects gain much often demanded flexibility.

Acknowledgments This paper results from the ArchiMate1 project, a
research initiative that aims to provide concepts and techniques to sup-
port architects in the visualization and analysis of integrated architectures.
The ArchiMate consortium consists of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematica In-
stitute, CWI, University of Nijmegen, and LIACS.

1(http://archimate.telin.nl)

226 CHAPTER 10. TRANSFORMATIONS

Bibliography

[7] Health Level 7. Organization web site at http://www.hl7.org.

[ABdB00] Farhad Arbab, Marcello M. Bonsangue, and Frank S. de Boer.
A coordination language for mobile components. In SAC ’00:
Proceedings of the 2000 ACM symposium on Applied computing,
pages 166–173, New York, NY, USA, 2000. ACM Press.

[AdBB00] Farhad Arbab, Frank S. de Boer, and Marcello M. Bonsangue. A
Logical Interface Description Language for Components. In CO-
ORDINATION ’00: Proceedings of the 4th International Con-
ference on Coordination Languages and Models, pages 249–266,
London, UK, 2000. Springer-Verlag.

[AG97] R. Allen and D. Garlan. A Formal Basis for Architectural
Connections. ACM Transactions of Software Engineering and
Methodology, 6(3):213–249, 1997.

[Agh86] Gul Agha. Actors: a model of concurrent computation in dis-
tributed systems. MIT Press, Cambridge, MA, USA, 1986.

[Arb96] Farhad Arbab. Manifold Version 2: Language Reference Manual.
Technical Report ISSN 0169-118X, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, 1996.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for
component composition. Mathematical. Structures in Comp.
Sci., 14(3):329–366, 2004.

[Arc] The Archimate project. Website at http://www.telin.nl/-
NetworkedBusiness/Archimate/ENindex.htm.

227

228 BIBLIOGRAPHY

[AwJS96] Harold Abelson and Gerald Jay Sussman with Julie Sussman.
Structure and Interpretation of Computer Programs, 2nd edition.
The MIT Press, 1996.

[BCM03] The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

[BDJ+03] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette,
and Jamal Eddine Rougui. First experiments with the
ATL model transformation language: Transforming XSLT into
XQuery, 2003.

[BGM01] M. Bozga, S. Graf, and L. Mounier. Automated Validation of
Distributed Software using the IF Environment. In Workshop on
Software Model-Checking, volume 55. TCS, 2001.

[BH89] Ferenc Belina and Dieter Hogrefe. The CCITT-Specification and
Description Language SDL. Computer Networks, 16:311–341,
1989.

[BS01] M. Broy and K. Stolen. Specification and Development of Inter-
active Systems: FOCUS on Streams. In Interfaces and Refine-
ment. Springer-Verlag, 2001.

[BS02] A. Berlea and H. Seidl. fxt A Transformation Language for XML
Documents. Journal of Computing and Information Technology,
10(1):19–35, 2002.

[CD00] J. Cheesman and J. Daniels. UML Components: a simple process
for specifying component-based software. Addison-Wesley, 2000.

[CG90] Nicholas Carriero and David Gelernter. How to write parallel
programs: a first course. MIT Press, Cambridge, MA, USA,
1990.

[Cha85] Daniel Marcos Chapiro. Globally-asynchronous locally-
synchronous systems (performance, reliability, digital). PhD the-
sis, 1985.

[Che76] Peter Pin-Shan Chen. The entity-relationship model – toward
a unified view of data. ACM Trans. Database Syst., 1(1):9–36,
1976.

BIBLIOGRAPHY 229

[Chu41] A. Church. The Calculi of Lambda Conversion. Princeton Uni-
versity Press, Princeton, N.J., 1941.

[Cla] J. Clark. XSL Transformations (XSLT) Version 1.0, W3C Rec-
ommendation 16 Nov 1999.

[Cla01] J. Clark. The Design of RELAX NG. Available at http://-
www.thaiopensource.com/relaxng/design.html, 2001.

[com] The Rule Markup Initiative community.

[dBB00] Frank S. de Boer and Marcello M. Bonsangue. A Composi-
tional Model for Confluent Dynamic Data-Flow Networks. In
MFCS ’00: Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science, pages 212–221,
London, UK, 2000. Springer-Verlag.

[dBBJ+04] Frank S. de Boer, Marcello M. Bonsangue, Joost Jacob, Andries
Stam, and Leendert W. N. van der Torre. A Logical Viewpoint
on Architectures. In EDOC, pages 73–83. IEEE Computer So-
ciety, 2004.

[dBBJ+05] Frank S. de Boer, Marcello M. Bonsangue, Joost Jacob, Andries
Stam, and Leendert W. N. van der Torre. Enterprise Architec-
ture Analysis with XML. In HICSS. IEEE Computer Society,
2005.

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into
Message Sequence Charts. Formal Methods in System Design,
19(1):45–80, 2001.

[DJPV03] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Vot-
intseva. Understanding UML: A Formal Semantics of Concur-
rency and Communication in Real-Time UML. In Frank de Boer,
Marcello Bonsangue, Susanne Graf, and Willem-Paul de Roever,
editors, Proceedings of the 1st Symposium on Formal Methods for
Components and Objects (FMCO 2002), volume 2852 of LNCS
Tutorials, pages 70–98, 2003.

230 BIBLIOGRAPHY

[DW98] Desmond D’Souza and Alan Cameron Wills. Objects, Com-
ponents and Frameworks With UML: The Catalysis Approach.
Addison-Wesley, 1998.

[ea04] H. Jonkers et al. Concepts for modeling enterprise architectures.
In International Journal of Cooperative Information Systems,
2004.

[ea05] Marc Lankhorst et al. Enterprise Architecture at Work: Mod-
elling, Communication and Analysis. Springer, December 2005.

[EFA90] S. Hupfer E. Freeman and K. Arnold. JavaSpaces TM Principles,
Patterns, and Practice. Addison-Wesley, September 1990.

[EG94] G. Engels and L.P.J. Groenewegen. Specification of Coordinated
Behavior by SOCCA. In B. Warboys, editor, Proc. of the 3rd
European Workshop on Software Process Technology (EWSPT
’94), pages 128–151, Berlin, Germany, February 1994. Springer-
Verlag.

[EJL+99] Henk Eertink, Wil Janssen, Paul Oude Luttighuis, Wouter B.
Teeuw, and Chris A. Vissers. A business process design language.
In FM ’99: Proceedings of the Wold Congress on Formal Methods
in the Development of Computing Systems-Volume I, pages 76–
95, London, UK, 1999. Springer-Verlag.

[Fox88] G. C. Fox. Domain decomposition in distributed and shared
memory environments I: uniform decomposition and perfor-
mance analysis for the NCUBE and JPL Mark IIIfp hypercubes.
In Proceedings of the 1st International Conference on Supercom-
puting, pages 1042–1073, New York, NY, USA, 1988. Springer-
Verlag New York, Inc.

[GBR99] I. Jacobson G. Booch and J. Rumbaugh. The Unified Modeling
Language Reference Manual. Addison Wesley, 1999.

[GCK02] David Garlan, Shang-Wen Cheng, and Andrew J. Kompanek.
Reconciling the needs of architectural description with object-
modeling notations. Sci. Comput. Program., 44(1):23–49, 2002.

BIBLIOGRAPHY 231

[GMW97] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture
Description Interchange Language, 1997.

[GS79] C. Gane and T. Sarson. Structured Systems Analysis: Tools and
Techniques. Prentice Hall, Englewood Cliffs, 1979.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 8(3):231–274, June
1987.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems.
pages 477–498, 1985.

[Jaca] Joost Jacob. The ASCII Markup Language (AML) white-paper.
Available at http://homepages.cwi.nl/∼jacob/aml.

[Jacb] Joost Jacob. Coordinating UML with UnCL web site. Available
at http://homepages.cwi.nl/∼jacob/uncl.

[Jacc] Joost Jacob. The OMEGA Component Model
documents and implementation. Available at
http://homepages.cwi.nl/∼jacob/component.html.

[Jacd] Joost Jacob. UML Kernel Model Semantics Demonstration.
Available at http://homepages.cwi.nl/∼jacob/km/cgikm.html.

[Jac04a] Joost Jacob. A Rule Markup Language and Its Application to
UML. In Margarita and Steffen [MS06], pages 26–41.

[Jac04b] Joost Jacob. The OMEGA Component Model. Electr. Notes
Theor. Comput. Sci., 101:25–49, 2004.

[JvBA+03] H. Jonkers, R. van Buuren, F. Arbab, F.S. de Boer,
M.M. Bonsangue, H. Bosma, H. ter Doest, L. Groenewegen,
J. Guillen-Scholten, S. Hoppenbrouwers, M. Iacob, W. Janssen,
M. Lankhorst, D. van Leeuwen, E. Proper, A. Stam, L. van der
Torre, and G. Veldhuijzen van Zanten. Towards a language for
coherent enterprise architecture description. In M. Steen and

232 BIBLIOGRAPHY

B.R. Bryant, editors, Proceedings 7th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2003),
pages 28–39. IEEE Computer Society Press, 2003.

[Kah74] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In J. L. Rosenfeld, editor, Information processing,
pages 471–475, Stockholm, Sweden, Aug 1974. North Holland,
Amsterdam.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers, June 2000.

[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James
Vera, Doug Bryan, and Walter Mann. Specification and Analysis
of System Architecture Using Rapide. IEEE Trans. Software
Eng., 21(4):336–355, 1995.

[LMM99] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a
Formal Operational Semantics of UML Statechart Diagrams. In
Proceedings of the IFIP TC6/WG6.1 Third International Con-
ference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS), page 465, Deventer, The Netherlands, The
Netherlands, 1999. Kluwer, B.V.

[MAS+03] James McGovern, Scott W. Ambler, Michael E. Stevens, James
Linn, Vikas Sharan, and Elias K. Jo. A Practical Guide to En-
terprise Architecture. Prentice Hall PTR, 2003.

[Mat03] Mathematical Markup Language (MathML) version 2.0. Online,
10 2003.

[MOF] The Meta-Object Facility. Available at http://www.omg.org/-
technology/documents/formal/mof.htm.

[MORW04] Michael Möller, Ernst-Rüdiger Olderog, Holger Rasch, and Heike
Wehrheim. Linking CSP-OZ with UML and Java: A Case Study.
In Eerke A. Boiten, John Derrick, and Graeme Smith, editors,
IFM, volume 2999 of Lecture Notes in Computer Science, pages
267–286. Springer, 2004.

BIBLIOGRAPHY 233

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, Berlin, Jan-
uary 1992.

[MRRR02] N. Medvidovic, D. Rosenblum, D. Redmiles, and J. Robbins.
Modeling Software Architecture in the UML. ACM Transactions
on Software Engineering and Methodology, 11(1):2–57, 2002.

[MS06] Tiziana Margarita and Bernhard Steffen, editors. Leveraging Ap-
plications of Formal Methods, First International Symposium,
ISoLA 2004, Paphos, Cyprus, October 30 - November 2, 2004,
Revised Selected Papers, volume 4313 of Lecture Notes in Com-
puter Science. Springer, 2006.

[OME] OMEGA IST-2001-33522 Correct Development of Real-Time
Embedded Systems. Website at http://www-omega.imag.fr/-
index.php.

[OMG] The Object Management Group (OMG). Website at http://-
www.omg.org/.

[OMG03] UML 2.0: Superstructure Specification, Final Adopted Specifi-
cation ptc/03-08-03, 2003.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Sri-
vas. PVS: Combining specification, proof checking, and model
checking. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, volume 1102 of Lecture
Notes in Computer Science, pages 411–414, New Brunswick, NJ,
July/August 1996. Springer-Verlag.

[Pau94] Lawrence C. Paulson. Isabelle: A generic theorem prover. Lec-
ture Notes in Computer Science, 828:xvii + 321, 1994.

[Pet94] M. Pettersson. RML - A New Language and Implementation for
Natural Semantics. In M. Hermenegildo and J. Penjam, editors,
Proceedings of the 6th International Symposium on Programming
Language Implementation and Logic Programming, PLILP, vol-
ume 884 of LNCS, pages 117–131. Springer-Verlag, 1994.

234 BIBLIOGRAPHY

[PL99] Ivan Paltor and Johan Lilius. Formalising UML State Machines
for Model Checking. In Robert B. France and Bernhard Rumpe,
editors, UML, volume 1723 of Lecture Notes in Computer Sci-
ence, pages 430–445. Springer, 1999.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

[pUM] The Precise UML Group. Available at
http://www.cs.york.ac.uk/pumldt.

[RUL] The Rule Markup Initiative Community. Website at
http://www.ruleml.org.

[SAdBB02] Juan Guillen Scholten, Farhad Arbab, Frank S. de Boer, and
Marcello M. Bonsangue. Mocha: A middleware based on mobile
channels. In COMPSAC ’02: Proceedings of the 26th Interna-
tional Computer Software and Applications Conference on Pro-
longing Software Life: Development and Redevelopment, pages
667–673, Washington, DC, USA, 2002. IEEE Computer Society.

[SAdBB03] Juan Guillen Scholten, Farhad Arbab, Frank S. de Boer, and
Marcello M. Bonsangue. A channel-based coordination model
for components. Electr. Notes Theor. Comput. Sci., 68(3), 2003.

[Sel98] Bran Selic. Using UML for Modeling Complex Real-Time Sys-
tems. In LCTES ’98: Proceedings of the ACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embedded Systems,
pages 250–260, London, UK, 1998. Springer-Verlag.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time
object-oriented modeling. John Wiley & Sons, Inc., New York,
NY, USA, 1994.

[SJdB+04] Andries Stam, Joost Jacob, Frank S. de Boer, Marcello M. Bon-
sangue, and Leendert W. N. van der Torre. Using XML Transfor-
mations for Enterprise Architectures. In Margarita and Steffen
[MS06], pages 42–56.

BIBLIOGRAPHY 235

[Soc00] IEEE Computer Society. IEEE std 1471-2000: IEEE rec-
ommended practice for architectural description of software-
intensive systems, Oct. 9, 2000.

[SP99] Perdita Stevens and Rob Pooley. Using UML: Software Engi-
neering with Objects and Components. Addison-Wesley, 1999.

[SRMM00] G. Schadow, D. Russler, C. Mead, and C. McDonald. Integrating
medical information and knowledge in the HL7 RIM. Proc AMIA
Symp, pages 764–8, 2000.

[SS99] Steve Schneider and S. A. Schneider. Concurrent and Real Time
Systems: The CSP Approach. John Wiley & Sons, Inc., New
York, NY, USA, 1999.

[SWB03] Perdita Stevens, Jon Whittle, and Grady Booch, editors. UML
2003 - The Unified Modeling Language, Modeling Languages and
Applications, 6th International Conference, San Francisco, CA,
USA, October 20-24, 2003, Proceedings, volume 2863 of Lecture
Notes in Computer Science. Springer, 2003.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[U20] The U2 Partners. Available at http://www.u2-partners.org.

[vdB01] Michael von der Beeck. Formalization of UML-Statecharts. In
UML ’01: Proceedings of the 4th International Conference on
The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, pages 406–421, London, UK, 2001. Springer-Verlag.

[vR95] G. van Rossum. The Python Reference Manual. Technical Re-
port ISSN 0169-118X, Centrum voor Wiskunde en Informatica
(CWI), Amsterdam, 1995.

[W3C] The World Wide Web Consortium (W3C). Website at
http://www.w3c.org.

[Wil05] Gregory V. Wilson. Extensible programming for the 21st cen-
tury. Queue, 2(9):48–57, 2005.

236 BIBLIOGRAPHY

[XMI] The XML Metadata Interchange Format (XMI). Available at
http://www.omg.org/technology/documents/formal/xmi.htm.

[XML] The Extensible Markup Language (XML). Available at
http://www.w3.org/XML/.

[XMS] The XML Schemas. Available at http://www.w3.org/XML/-
Schema.

[XSL] The Extensible Stylesheet Language Family (XSL). Available
at http://www.w3.org/Style/XSL/.

[Zac87] John A. Zachman. A Framework for Information Systems Ar-
chitecture. IBM Syst. J., 26(3):276–292, 1987.

Summary

It is desirable to model software systems in such a way that analysis of
the systems, and tool development for such analysis, is readily possible and
feasible in the context of large scientific research projects. This thesis empha-
sizes the methodology that serves as a basis for such developments. I focus
on methods for the design of data-languages and their corresponding tools.
A recurring problem in large software research projects is that even though
every partner uses their own version of such languages and tools, the semantic
consistency of these different versions still has to be proven. This so–called
consistency problem is a pivotal theme in this thesis. A second theme con-
sists of another problem, the so–called adaptation problem, where existing
modeling languages are being used to develop a new semantic basis, for in-
stance for visualization and simulation techniques. For this second problem
the contribution of this thesis consists of the development of tools for au-
tomatic transformation of data–languages; this is how the research for this
thesis could contribute to the projects Omega and Archimate that sponsored
the research.

As an example the sieve of Eratosthenes is modeled in such a way that
the model is as abstract as possible, but still being consistent with the so–
called Kernel–model semantics in the Omega project. The consistency is
derived from the corresponding tool being executable, such that it yields the
desired observable behavior. A second contribution is visualization and the
architecture of tools for visualization and simulation. These are developed
for business processes, so–called Enterprise Architectures, in the Archimate
project, where their architecture is outlined. For this purpose a so–called
domain–specific data language is introduced in order to be able to model large
software projects. This is further described in the Introduction, chapter 1.
The other chapters consist of my publications for these projects.

237

Samenvatting

In de context van grote wetenschappelijke onderzoeksprojecten in de Infor-
matica is het wenselijk software systemen zodaning te modelleren dat ana-
lyse van deze systemen goed mogelijk is. Ook analyse ondersteunende tool–
ontwikkeling dient mogelijk te zijn. In dit kader leg ik in dit proefschrift
de nadruk op de methodiek die hieraan ten grondslag ligt. Hiertoe richt ik
me in het bijzonder op methoden voor het ontwerp van data–talen en van
de bijbehorende tools. Het probleem hierbij is dat in grotere software onder-
zoeksprojecten weliswaar elke partner zijn eigen versie van deze talen en tools
gebruikt, maar dat dan de consistency van de bij deze versies behorende se-
mantieken nog bewezen moet worden. Dit probleem staat in het proefschrift
centraal als het zogenaamde consistency problem. Een tweede probleem is het
zogenaamde adaptation problem, waarbij van bestaande modelleringstalen
uitgegaan wordt met het doel een nieuwe semantische basis, bij voorbeeld
voor visualisatie- en simulatie–technieken, te ontwikkelen. Voor dit laatste
bestaat de bijdrage van dit proefschrift uit de ontwikkeling van tools voor de
automatische transformatie van data–talen en hun bijbehorende software; op
deze wijze kon het onderzoek voor dit proefschrift bijdragen aan de projecten
Omega en Archimate die het onderzoek gefinancierd hebben.

Als voorbeeld wordt de zeef van Eratosthenes gemodelleerd op een zo ab-
stract mogelijke wijze, die consistent is met de zogenaamde Kernel–model se-
mantiek van het Omega project. Deze consistentie wordt afgeleid uit de exe-
cuteerbaarheid van de bijbehorende tool die hiervoor ontwikkeld is, aangezien
deze het gewenste observeerbare gedrag oplevert. Een tweede bijdrage wordt
geleverd op de gebieden van visualisatie en de architectuur van tools voor
visualisatie en simulatie. Als voorbeeld zijn dergelijke tools ontwikkeld voor
bedrijfsprocessen, zogenaamde Enterprise Architectures, in het kader van
het Archimate project, en wordt hun architectuur geschetst. Hiertoe wordt
een zogenaamde ”domain–specific data language” voorgesteld teneinde de
vakdiscussie in bestaande grote software projecten te kunnen modelleren.
Dit wordt in de Introduction, hoofdstuk 1, uitgewerkt. De resterende hoofd-
stukken bestaan uit mijn publicaties voor deze projecten.

238

Curriculum Vitae

Joost Jacob werd geboren op 5 februari in Haarlem. Hij bracht zijn jeugd
door in het Gooi, waar hij met goed gevolg het VWO-diploma behaalde aan
het Sint Vituscollege in Bussum.

In 1981 ging Joost scheikunde studeren in Leiden. Tijdens de studie
scheikunde deed Joost een bijvak informatica dat hem aansprak. Joost
ging het geleerde op informatica gebied toepassen bij verschillende bedrijven,
vooral bij automatisering in de juridische branche. Dit bleef zo tot 2002, als
zelfstandig ondernemer in Leiden.

In 1997 begon Joost met de avondstudie informatica aan de Universiteit
Leiden, en werd doctorandus informatica in 2002. Van 2002 tot 2006 werkte
Joost op het Centrum voor Wiskunde en Informatica (CWI) in Amsterdam,
in de thema–groep SEN3 van prof. dr. Jan Rutten. Het werk bij het CWI
leidde tot verschillende publicaties in internationale conferenties en work-
shops die in dit proefschrift terug te vinden zijn. De projecten waarin Joost
werkte waren het internationale project Omega, door de Europese Com-
missie gesponsord, op het gebied van real–time embedded systems, het na-
tionale project ArchiMate over bedrijfsarchitectuur, en het bilaterale NWO
en DFG project Mobi–J over ”assertional” methoden voor mobiele asyn-
chrone kanalen in Java. Na 2006 heeft Joost bij verschillende bedrijven in de
ICT gewerkt.

Joost woont in Leiden met zijn Monique en zijn twee zonen Pepijn en
Marnix.

239

