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Introduction 

 

Stress 

Every stimulus that threatens (or is perceived as threatening to) the homeostasis of an 

organism is called a stressor (1, 2). The ability to appraise and retain or restore homeostasis 

via appropriate adaptive behavioral and physiological (stress) responses is crucial for survival 

(2). The appraisal of a stimulus as a stressor takes place in brain areas such as the amygdala, 

the hippocampus and the prefrontal cortex. An important component of the stress response is 

the secretion of glucocorticoids via the HPA axis and of catecholamines via the sympathetic 

nervous system which orchestrate a number of adaptations both in the brain and the periphery 

(2, 3). Inability to cope with stressors or prolonged exposure to them may lead to stress-related 

disorders such as depression, anxiety, post-traumatic stress disorder (PTSD), etc. As stress-

related psychopathology results in considerable societal, financial and public health 

consequences, there has been increasing interest in better diagnoses and improved treatments 

for these disorders.  

 

Amygdala-central amygdala 

The amygdala (Figure 1) plays a central role in the orchestration of fear conditioning, anxiety 

and stress responses. It consists of diverse nuclei with distinct connectivity, neurochemical 

and morphological profiles (3). Anatomically, the amygdala is divided in the central nucleus 

of the amygdala (CeA), which expresses corticotropin releasing hormone (CRH) (Figure 1b-

c), the basal nucleus of the amygdala and the lateral nucleus of the amygdala (3). It is believed 

that the basolateral nucleus (BLA), which contains primarily glutamatergic neurons (4), is the 

locus of associative learning of fear conditioning, while the CeA is the main output region of 

the amygdala, mainly involved in coordinating the expression of fear conditioning (5-7). The 

communication between the BLA and the CeA may be mediated by the intercalated cell 

masses. These are mainly GABAergic cells that are located between the BLA and the CeA 

and may play a gating role between the BLA and the CeA (8, 9). Recently, it has been shown 

that the CeA may also be involved in the learning phase of fear conditioning (10).  

Importantly, the BLA sends and receives inputs from other brain regions such as the 

hippocampus, prefrontal cortex (PFC), hypothalamus, the ventral tegmental area and the 

nucleus accumbens (11, 12). Thus, the amygdala can be involved in a wide spectrum of 

processes and behaviors such as fear, anxiety and addiction (11, 12).  

 

HPA axis 

The main neuroendocrine regulator of stress responses is the HPA axis (Figure 2). Various 

stimuli and input from brain regions such as indirect input from the CeA (13) can induce the 

production of CRH in the paraventricular nucleus of the hypothalamus (PVN) and its secretion 

in the portal vessel system to activate the corticotrophs in the anterior pituitary. There, CRH 
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stimulates the production of adrenocorticotropic hormone (ACTH) and its release into the 

blood flow. Eventually, ACTH will reach the adrenal cortex where it binds to melanocortin 2 

(MCR2) receptors and can stimulate the production of the glucocorticoids cortisol (human) or 

corticosterone (rodent). Glucocorticoids are then secreted into the blood flow and may exert a 

broad spectrum of effects, both peripherally and centrally that are mediated by two different 

receptors, the Glucocorticoid receptor (NR3C1 or GR) and the Mineralocorticoid receptor 

(NR3C2 or MR). In the central nervous system the receptors mediate the effects of the 

hormones on learning, memory and stress related behavior, as well as their inhibition of the 

expression of CRH in the PVN and ACTH in the anterior pituitary, as part of a negative 

feedback loop that prevents persistent elevation of glucocorticoid levels. 

Glucocorticoids may also result in suppression of the HPA axis via their effects in the PFC 

and the hippocampus. Activation of GR in the PFC can result to release of endocannabinoids 

(CB). CB can then decrease GABA release onto prefrontal pyramidal cells which in turn 

increases glutamatergic input to the hypothalamus and inhibits the HPA axis (14-16). GR 

knockdown in the PFC may result in increased HPA axis responses to acute stress (17). 

Similarly, glucocorticoids in the ventral hippocampus also result in inhibition of the HPA axis 

stress responses (15).   

Apart from activation by stressful situations, glucocorticoids are also secreted in a circadian 

fashion organized by inputs from the suprachiasmatic nucleus (SCN) to the PVN (18, 19). The  

Figure 1. A. Fluorescent image of a mouse brain section stained with hoechst (blue) (10X magnification). 

The white box indicates the location of the central amygdala. B. The white box from picture A in 

magnification. CRH positive cells are immunofluorescently labeled red, while their nuclei are stained 

with Hoechst (blue) (63X magnification).  C. In situ hybridization for CRH mRNA (red) and GR mRNA 

(green) in the CeA. 
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 circadian rhythm of the glucocorticoids consists of hourly pulses of the hormone that have 

their largest amplitude at the start of the active period. (19). The stress-induced secretion of 

glucocorticoids is superimposed on these rhythms and its magnitude depends on the phase of 

the pulse (20-22). 

 

CRH 

CRH is a 41-amino acid peptide which was discovered in hypothalamic extracts in 1981 by 

W.W. Vale and was shown to stimulate the production of ACTH by cultured pituitary cells 

(23). CRH shows a wide expression pattern in stress-relevant areas in the brain including the 

PVN, the CeA, the bed nucleus of the stria terminalis, the prefrontal cortex and the 

hippocampus (24, 25). It plays a pivotal role in the regulation of glucocorticoid levels via its 

secretion from the PVN, in response to stress, while it orchestrates behavioral stress responses 

in the central amygdala (26). In line with these functions, its expression is tightly regulated by 

glucocorticoids. Interestingly, this regulation is region-specific: in the CeA the CRH 

expression is upregulated after treatment with glucocorticoids, whereas in the PVN it is 

downregulated, as part of the HPA axis’ negative feedback loop (24, 27-29). CRH 

overexpression may result in increased anxiety behavior (30, 31), while, the crh promoter is 

epigenetically regulated in response to several stimuli including treatment with 

glucocorticoids, maternal deprivation and stress (27, 32-34).  

Figure 2. The Hypothalamus-Pituitary-Adrenal axis: In response to a variety of stimuli, such as indirect 

input from the central amygdala (CeA), corticotropin releasing hormone (CRH) is secreted from the 

paraventricular nucleus of the hypothalamus (PVN) into the pituitary stimulates the expression and 

secretion of adrenocorticotropin hormone which reaches the adrenal cortex and stimulates the production 

of corticosterone. Corticosterone, in turn, represses the expression of CRH and ACTH in the PVN and 

pituitary, respectively. Glucocorticoids in the mPFC and the ventral hippocampus also result in inhibition 

of the HPA axis. 
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GR and MR 

GR and MR are nuclear receptors. All nuclear receptors consist of functional domains that can 

be directly coupled to their function as transcription factors. The relationship between the 

structure and the function of the GR (and MR) has been extensively studied (35, 36). In short, 

the GR protein contains domains that arise from eight exons (2-9, exon 1 of the mRNA is not 

translated): exon 2 codes for the N-terminal half of the protein which contains the major 

transcriptional activation domain τ1, exons 3 and 4 code for the central part of the protein 

which contains two zinc fingers involved in DNA binding and homodimerization. The C-

terminal region of the protein, encoded by exons 5-9, include among others, the domains 

responsible for transcriptional activation (τ2) and ligand binding (Figure 3a) (35-37).  

In the absence of ligand, MR and GR are bound to chaperone protein complexes in the 

cytoplasm. Upon ligand binding, a conformational change takes place that leads to the 

dimerization of the nuclear receptor and its translocation to the nucleus. There, with the 

assistance of coregulators, the nuclear receptor can bind to glucocorticoid response elements 

(GREs) on the DNA and activate or repress the expression of specific genes. The receptors are 

thought to mainly form homodimers, act as monomers in conjunction with other, non-receptor, 

transcription factors, or heterodimerize with other steroid receptors (38, 39). The activity of 

receptors depends also on the type and local concentration of the ligand (40, 41) and on the 

pattern of ligand exposure in time (42). However, additional regulation can take place at 

multiple levels. These may include the expression levels of the receptor (43), its 

posttranslational modifications (44), its interactions with molecular chaperones in the 

cytoplasm (45, 46), dimerization and translocation to the nucleus (47), the presence and 

function of kinases, such as SGK-1 (48), DNA binding and its interactions with proteins 

involved in transcription, either transcription factors or coregulator proteins (49). 

Transcription factors that bind to regulatory DNA in conjunction with GR (and to a much 

lesser extent MR) are being discovered at a substantial rate by genome wide localization of 

receptor binding using ChIP-sequencing, and subsequent statistical analysis of DNA motifs 

that overlap with or surround the receptor binding sites. Some of the identified transcription 

factors will bring the receptors to the DNA by way of ‘tethering’ mechanisms, like those 

involved in classic transrepression in the immune system (50). There are also those 

transcription factors that bind in the vicinity (within hundreds of base pairs) of the steroid 

receptors, and are in some way involved in modulating their function. In generic cell lines, AP

-1 has been shown to act as a ‘pioneer’ and make the DNA accessible for GR binding through 

chromatin modification (51). The exact nucleotide content of the GRE is associated with GR’s 

dependence on such priming mechanisms. 

It is also conceivable, or even likely, that factors that bind in the vicinity of MR and GR 

interact functionally in larger complexes on the DNA, analogous to what happens at composite 

GREs where GR binds directly adjacent to other transcription factors (52). In the rat 

hippocampus, it has been shown that GC-rich motifs for transcription factors MAZ1 and SP1 

occur in conjunction with GR binding to the DNA, suggesting either a pioneering function, or 

a functional interaction with these factors (53). Recently, the first ChIP sequencing data for 

 1 
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GR were published for neuronally differentiated PC12 cells. Interestingly, GR binding 

occurred in the vicinity of AP-1 sites, as expected, but the authors also described recognition 

sites for a number of completely new transcription factors in the vicinity of GR binding. These 

data suggest that the effects of GR (and MR) are modified by other signalling pathways that 

we are just beginning to discover (54).  

 

Coregulators 

GR and MR make use of so called nuclear receptor coregulators, a large and rather diverse 

group of proteins that are involved in transcriptional modulation. The coregulator proteins do 

not interact with the DNA (i.e. they are not transcription factors), but mediate and modulate 

the effects of transcription factors on actual transcription. Individual coregulators may interact 

with either one or several members of the nuclear receptor superfamily. Some of these 

coregulators are also important for neuronal plasticity per se and they may form a substrate for 

the modifying effects of MR and GR on neuronal plasticity. 

The recruitment of coregulators by nuclear receptors may take place in a cell-type- and 

promoter-specific manner (55). These interactions can regulate the stability of the 

transcriptional machinery, lead to recruitment of additional transcription factors and 

transcriptional coactivators or corepressors, and acetylate or deacetylate DNA histones either 

by intrinsic histone (de)acetylase activity or by recruitment of histone (de)acetylases. Histone 

acetyltransferases (HATs) are proteins that can catalyze the addition of an acetyl group to 

Lysine residues of histones. Histone acetylation may promote gene transcription via chromatin 

availability and binding of transcription factors (56). This model indicates that coregulators do 

not act in isolation but in protein complexes that may involve transcription factors, coregulator

-coregulator interactions and RNA molecules (57). 

Steroid receptors can recruit coregulators via their AF-1 and via their AF-2 domain. Because 

of their high LBD sequence similarity MR and GR share many of their AF-2 interacting 

coregulators (which incidentally receive more attention, based on experimental advantages in 

studying the ligand dependent AF-2, rather than the AF-1 which is ligand independent when 

studied in isolation). However, a number of MR-specific coregulators have been reported, 

such as Eleven-nineteen Lysine-rich Leukemia (ELL) and RNA helicase A (RHA) (58, 59). 

AF-2-coregulator interactions are based on the presence of so-called NR-boxes in the 

coregulator protein: amino acid motifs that have an LxxLL sequence at their core. Agonist 

binding to the receptor causes a conformation shift that allows interactions with these NR-

boxes (60). Coregulators may have several NR-boxes, which may lead to interaction with 

multiple nuclear receptors that have different affinities for each NR box. The total number of 

(AF-1 and AF-2) nuclear receptor coregulators is now over 300 (61). One may (crudely) 

estimate that 10 or 20 percent of these may be relevant for MR and/or GR dependent 

transcription, based on screenings for AF-2 interacting coregulators and the predicted higher 

selectivity of the AF-1 coregulators reported in literature. 
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Nuclear receptor-coregulator interactions depend on the amino-acid sequence of their nuclear 

receptor-interaction domain, as well as the presence and activation status (i.e. conformation) 

of other co-expressed steroid receptors and the overall availability of coregulators (62). 

Interestingly, the coregulator repertoire may allow opposite transcriptional effects of 

glucocorticoids on the same gene promoter in different cell types (63). Moreover, increasing 

coactivator availability can reverse the transcriptional repression of one steroid receptor by 

another (57, 64). Finally, in some cases concomitant ligand dependent degradation of nuclear 

receptors and coregulators by the proteasome is important for their transcriptional activity 

(65). This may restrict the availability of coregulators to other nuclear receptors, hence, 

focusing cellular function to specific pathways. Thus, coregulators form a major factor in 

glucocorticoid responsiveness that is, however, far from completely understood. 

Several coregulators are abundantly expressed in the brain, showing wide distribution (66, 

67). These include members of the best studied classes of coregulators, the p160 Steroid 

Receptor Coactivator (SRC) family member SRC-1 (68, 69), CBP/p300 (70, 71) and 

corepressors SMRT and NcoR (66). Others, such as SRC-3 (also a p160 family member), 

seem to be expressed mainly in the hippocampus (68, 72). These coregulators often 

colocalize in cells in relevant brain regions with steroid receptors, presumably able to 

modulate steroid sensitivity, underlining their importance for normal steroid receptor 

functionality (73-75).  

Given the importance of coregulators in setting steroid sensitivity, a number of laboratories 

have studied regulation of coregulator expression in the brain. Factors that alter expression of 

particular coregulators in the brain include sex (76, 77) and age (78, 79), while the regulation 

of SRC-1, NcoR and SMRT by thyroid hormone and estrogen has been reported (66). 

Treatment with testosterone, restraint stress, the time of the day and photoperiod may also 

influence the expression of coregulators (75, 80, 81), as well as elevation of glucocorticoids 

Figure 3. Relation between GR mRNA and protein. The 8 coding exons of the GR gene and the protein 

domains they code for. Exon 2 codes for the N-terminal domain of the protein which contains the major 

transcriptional activation domain τ1. Exons 3 and 4 code for two zinc-finger domains that are involved in 

DNA-binding and homodimerization. Finally exons 5–9 code for the C-terminal end of the protein which 

contains the domains for transcriptional activation and ligand binding. 
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(82).  However, the majority of these studies investigated the expression of p160 family 

members, and these studies certainly do not keep pace with the speed at which new 

coregulators have been discovered. All in all, there seems to be little compelling evidence to 

suggest that regulation of coregulator expression in the adult brain is a major regulatory event. 

It rather has been argued that post-translational modifications of coregulators could have a 

major impact on their function (83). 

 

SRC-1 

SRC-1 was one of the first coregulators to be discovered (64). It can interact with ligand-

bound steroid receptors, including GR, MR (82), estrogen (ER) and progesterone (PR) 

receptors. It can recruit other coregulators such as CBP/p-300 (84) and possesses HAT activity 

(85). It shows wide expression and distribution in the brain and is transcribed from by the 

NCoA-1 gene which codes for two different splice variants (SRC-1a and SRC-1e). The SRC-

1e mRNA contains an additional exon with an earlier stop codon than SRC-1a (86). Therefore, 

SRC-1e protein is shorter despite the longer SRC-1e mRNA. At the protein level, SRC-1a 

contains four Nuclear Receptor interaction domains (LLXLL motifs or NR boxes) while SRC-

1e contains three. Interestingly, the C-terminal SRC-1a-specific NR box is the one that has the 

highest affinity for GR compared with the central ones (87). The splice variants show 

differential distribution in the brain (69), and in cell lines they have differential effects on 

transcription via MR, GR and ER (88, 89). Regarding adaptation to stress, SRC-1a and 1e 

have opposite activities in relation to the potentiation of GR repression of the crh promoter by 

glucocorticoids (63).  

In vivo, SRC-1 is necessary for GR-dependent gene regulation in the core of the brain stress 

system. Knockout mice show strong GR resistance for the downregulation of both CRH 

mRNA in the hypothalamus, and POMC mRNA in the anterior pituitary (28, 90). Despite this 

rather dramatic transcriptional phenotype, the activity of the HPA-axis is almost normal in 

these mice, even if they tend to have slightly higher stress-induced corticosterone secretion. 

Interestingly, SRC-1 is also involved in CRH expression in the central nucleus of the 

amygdala. Not only do SRC-1 knockout mice lack the upregulation of CRH mRNA in 

response to glucocorticoids, they also show lower basal CRH expression in the central 

amygdala than wild type littermates, suggestive of GR-independent effects of this coregulator 

(28). Conversely, the majority of GR target genes are normally expressed and regulated in 

SRC-1 knockouts. It is still unknown to which extent SRC-1 can influence learning and 

memory and stress reactions as a coregulator of GR. Overexpression of SRC-2 in the lack of 

SRC-1 may be responsible for the lack of behavioral differences between SRC-1 KO and wild 

type animals (91, 92). A more general role of SRC-1 in neuronal function is suggested by a 

delayed development of purkinje cells in the cerebellum of SRC-1 knockout mice, but the 

nuclear receptor that is linked to this phenotype is unknown (72). 

SRC-1 has an important role in sexual behavior and differentiation, as indicated by its 

expression in brain areas relevant for sexual function, coexpression and interactions with ER 

and PR in the brain (73, 93, 94) and the effects of their blockade in such functions. For 
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example, depletion of SRC-1 with oligodeoxynucleotide treatment leads to disruption of 

estrogen- and progesterone-induced sexual behavior in female rats (91). Similarly, inhibition 

of SRC-1 expression by repeated administration of locked nucleic antisense oligonucleotides 

targeting SRC-1 in the hypothalamus-preoptic area of male Japanese quail leads to reduction 

of testosterone-dependent sexual behavior (95). Moreover, antisense oligonucleotide targeting 

of SRC-1 in the hypothalamus could increase lordosis behavior in androgenized female and 

male rats (96). These results underscore involvement of SRC-1 in the signaling of multiple 

nuclear receptor types in the brain. 

 

SGRMs 

Particular neuromodulatory effects that are mediated by NRs such as MR and GR depend on 

specific interactions with downstream proteins. This offers a new level of pharmacological 

modulation of NR function beyond the classical agonists or antagonists as it is possible to 

selectively activate or block particular NR-coregulator interactions, while leaving processes 

that depend on other coregulators unaffected. This principle of selective hormone receptor 

modulators (SHRMs), may lead to the development of ligands that can exert the desired 

experimental or clinical effects, with a minimum of undesired side effects. 

The most prominent type of selective modulation for glucocorticoid signalling has been GR 

ligands that have anti-inflammatory efficacy, but limited effects on metabolism or 

osteoporosis (97, 98). However, also in relation to the brain, it may be beneficial to distinguish 

between different effects of glucocorticoids. For example, blocking detrimental effects of 

chronically elevated glucocorticoid exposure with full antagonists will lead to disinhibition of 

the HPA axis and in this way will counteract efficient antagonism. It is also unlikely that 

blocking all effects of GR on emotional and cognitive processes will be the optimal way to 

counteract negative effects of stress. Lastly, induction in the brain of a pro-inflammatory state 

by pharmacological blockade of GR in astrocytes and/or microglia may not be desirable (99). 

Selective GR (or in fact: MR) modulators may therefore also be beneficial in stress-related 

psychopathology. They most certainly will be useful to dissect the molecular mechanisms of 

glucocorticoid action in experimental settings. 

Originally, it has been tried to base selective GR modulation on the dissociation of effects that 

depend on DNA binding by the receptor, and classical transrepressive effects directly on pro-

inflammatory transcription factors NF-kB and AP-1 (100). The GR ligand ‘Compound A’ is 

an example of this mechanism, as it induces inhibition of NF-κB-dependent pro-inflammatory 

transcription, but is unable to induce DNA binding of GR (101, 102). However, part of the anti

-inflammatory effects mediated by GR do depend on binding by GR to classical GREs (103). 

Coghlan et al. (104) showed a GR ligand that retained anti-inflammatory effects while 

preventing the GR effects on glucose metabolism and impact on bones, and demonstrated that 

the specificity of the compound resulted from the specific GR-coregulator interactions. An 

arylpyrazole-type of GR ligand was reported to have selective agonism with respect to 

induction of decreased hippocampal neurogenesis without affecting skeletal muscle protein 

synthesis, bone or skin collagen synthesis or splenic lymphocyte counts (105). This particular 
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“ligand 5” was shown to have transcriptional effects on only a small number of target genes in 

cell lines (106). Although its mechanism of action is unknown, ‘ligand 5’ proves the point that 

GR effects relevant for modulation of brain may be quite selectively targeted with selective 

modulator types of drugs.  

Selective receptor modulators for MR have not been studied much, as full MR antagonism has 

been a major clinical goal in cardiovascular disease. However, MR agonism in the brain may 

be of benefit in relation to particular psychiatric disorders, such as depression (107), where its 

expression has been shown to be decreased in several brain areas (108). The development of 

selective MR modulators is currently taking place and it will be exciting to see what the 

potential of such ligands will be (109). 

 

Antisense oligonucleotides 

Antisense oligonucleotides (AONs) (Figure 4) are small pieces of modified RNA or DNA that 

can hybridize to RNA. In this manner they can generate different effects depending on the 

AON chemistry and target site (see Figure 5). Initially, AONs were used to induce gene 

knockdown (110). This can be achieved through RNase H, an ubiquitous enzyme that cleaves 

RNA:RNA or RNA:DNA hybrids (Figure 5a). The AONs used for this application are 

generally modified with a phosphorothioate backbone, which increases AON stability and 

enhances uptake of the AON over cell membranes. Gene knockdown can also be achieved 

using AONs targeting the translation start site (translation block, Figure 5b). Here, AONs can 

be modified further to render them RNase H resistant by addition of a methyl or methoxy-

ethyl group to the 2’O sugar ribose, which is the target cleavage site of the RNase H enzyme. 

Alternatively, nucleotides have been modified even further, e.g. using phosphorodiamidate 

morpholino oligomers (PMOs), peptide nucleic acids or locked nucleic acids. PMOs have 

been used for developmental studies in zebrafish embryos (111, 112). Multiple RNase H 

dependent AONs are in clinical trials including one against high-grade glioma in phase IIb 

(commercial name: trabedersen) (113), and one has even been registered as a drug for 

cytomegalovirus induced retinitis (commercial name: vitravene) (114).  

However, with the availability of shRNA and siRNA, which generally gives a more robust 

gene knockdown (or complete knockout when cre-recombinase systems are used), the use of 

AONs is often not the method of first choice to achieve knockdown (in spite of advantages 

related to cellular uptake - see below). Meanwhile, other AON applications that use different 

mechanisms of action are gaining more interest. The best-known application is the 

manipulation of splicing. Using AONs that target splice sites or exonic/intronic inclusion 

signals located within exons or introns, exons can be hidden from the splicing machinery, 

resulting in the skipping of the target exon (Figure 5c). This can have multiple applications, 

e.g. switching from one isoform to another, skipping an aberrantly introduced exon to restore 

the normal transcript, or introducing an out-of-frame deletion to knock down expression of a 

gene. The latter approach may also be considered as a complementary method to AON-

induced knockout through RNAse H dependent cleavage of RNA:DNA hybrids (115). Exon 

skipping resulting in the expression of truncated, non-functional proteins may be of particular 
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interest in relation with genes or gene pathways which are considered “undrugable”. Since 

specific ligands or antagonists cannot always target molecules of interest, AON-mediated 

RNA targeting can be a good alternative to achieve partial and/or reversible knockdown of 

such proteins.    

Finally, another application of exon skipping is to reframe transcripts allowing the production 

of an internally deleted, partially functional protein rather than a prematurely truncated non-

functional protein (Figure 5c). This has been extensively studied as a therapeutic approach for 

Duchenne Muscular Dystrophy (DMD). Protein restoration has been shown in patient-derived 

cell cultures and in animal models this led to a rescued phenotype (116-118). After 

encouraging results in phase I and I/II clinical trials (119-123), this approach is currently 

tested in phase III clinical trials. As will be detailed below, this strategy to generate deletion 

variants of proteins bears much promise for experimental neuroscience too. In other cases, 

intron splicing silencers may be targeted, resulting in exon inclusion and therefore increase of 

the expression of a gene or isoform. Here, the most prominent application is rescue of spinal 

muscular atrophy by AON mediated stimulation of the expression of a functional homologue 

(see below) (124-127). 

 

Figure 4. A. Fluorescent image of a mouse brain section stained with hoechst (blue) (10X magnification). 

The white box indicates the location of the central amygdala. B. The white box from picture A in 

magnification. AONs  (green) are colocalized with hoechst in the cellular nuclei (20X magnification).  C. 

Colocalization of AONs (green) and CRH expression (red) in the CeA (20X magnification). 
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Figure 5. Schematic representation of different modes of action of antisense oligonucleotides. A. RNase 

H- dependent pathway. Binding of antisense oligodeoxyribonucleotides (AONs) with a phosphorothioate 

backbone results in a RNA:DNA hybrid, which activates Rnase H. RNaseH will cleave them RNA and 

prevents the translation in to a protein.  B. RNase-independent translational block. 2’ OH modified Rnase 

H-resistant oligomers targeting the translation start site prevent translation and elongation. AONs bind-

ing to the AUG initiation site or downstream prevents binding of the ribosomal units or results in steric 

blockage. C. Alternative splicing. 2’ OH modified RNaseH-resistant or alternatively modified AONs 

complementary to the target pre-mRNA can result in: (1) inclusion of an exon by binding to the exonic 

splicing silencers (ESEs)or intronic splicing silencers (ISSs), (2) exclusion of an exon by binding to the 3 

or 5 slice sites or exon-internal sequences, resulting in an in-frame transcript and translation of a shorter 

partly functional protein. Full lines indicate possible splicing events while dashed lines indicate non-

possible events. 



19 

 

Specificity 

A very important aspect of all splicing-modulation or gene-silencing operations is specificity 

to the selected target. siRNAs exert their actions in the cytoplasm via interactions with the 

RNA-induced silencing complex (RISC) in the cytoplasm (128). Off-target effects appear 

when siRNA strands interact with partially complementary regions of mRNAs other than the 

fully complementary target mRNAs (129-131). AONs development has faced the same issues 

in the past (132) and the solutions included modifications of  the backbone to reduce base-pair 

affinity, thus reducing off-target effects (133, 134). Luckily, these modifications can be 

applied to siRNAs as well (132). A problem that might arise is cell death due to oversaturation 

of cellular RNA pathways by siRNAs (135) that are necessary for normal   cellular function. 

However, this problem does not exist with AONs since they exert their activity in the nucleus 

without the need for anything equivalent to the RISC complex (136). 

 

Cellular Delivery 

In all instances of RNA or DNA interference in the brain, delivery is an issue. In vivo 

manipulation of gene expression with shRNA very often depends on the use of viral vectors 

(137-139), as do CRE-recombinase mediated gene excision (26) or gene overexpression 

models (140, 141). However, AONs after reaching the brain, are readily taken up by neurons, 

and are therefore independent of viral transduction of neurons (Figure 4b-c).  

Delivery of viral vectors has been associated with various levels of toxicity in the brain, 

mainly depending on viral type used. For example, AAV vectors have been shown to induce 

neurotoxicity when delivered to the CNS (138, 142-144), although serotypes may differ in 

that aspect (145). Other viral types, such as retrovirus, show milder toxicity, but they are not 

suitable for investigation of long term effects and have limits in the cellular types they can 

infect (146). Lentivirus causes less inflammatory and immune responses, but it still shares the 

disadvantage that pre-existing immunity to the parental wild-type virus may cause an 

accentuated immune response. In contrast, for 2-O’-modified-phosphorothioate AONs only 

very mild toxicity has been reported, which did not interfere with their desirable effects (124, 

147) after delivery in the brain via the ventricles, or in cultured neuronal cells (148). Although 

it has been shown that phosphorothioate AONs and siRNAs can have an immunostimulatory 

effect via toll-like receptors (TLRs) (149, 150), appropriate 2-O’ modifications, such as 2-O’-

methylation can suppress these effects (149, 151, 152). The toxic effects that have been 

reported in some studies after AON delivery in the brain may be due to the vehicle used (153). 

Results from our group showed no immune response to 2-O’-methyl-phosphorothioate AONs 

over saline treatment after a single local injection in the Central nucleus of the Amygdala 

(CeA) of the mouse brain (Chapter 2 of this thesis) (86).  

Compared to viral delivery methods, AONs have a very rapid uptake and initiation of the 

effect (154, 155) (within minutes to hours), which allows for administration between different 

stages of the same experiment (155, 156). Secondly, AONs administration allows better 

dosage control that can give the optimal effect while reducing potential toxic effects due to 
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e.g. complete or too high levels of knockdown (116, 124, 136). In contrast, virally-mediated 

methods tend to produce an all-or-nothing effect, particularly when cre-recombinase systems 

are used (26, 157). Another characteristic of AON targeting is the possibility to discontinue 

treatment (136).  Although AONs have a longer half-life than, for instance, siRNAs (136), 

eventually they are degraded allowing gene expression to return to basal levels. Viral vectors, 

however, have a virtually permanent action, although long term effects may depend on viral 

type (146). Obviously, in instances where long-term manipulation is the goal, a single 

treatment with a long term effect may be desirable (124). Finally other advantages include 

rapid production and lack of GMO safety related issues, since no genetically engineered 

viruses are involved and there is no risk of recombination or reversion to wild type virus (146, 

158). 

On the other hand, even when methods of virus-independent, direct delivery of siRNA are 

considered, for example based on conjugations (159) several other issues appear. These 

methods are characterized by various inherent challenges, such as high degradation rate of the 

siRNA, low cellular uptake and efficiency (160), and induction of interferon responses (135, 

161, 162). In comparison, AONs have a lower turnover rate (136), more prolonged action 

(130) and, as they are single stranded rather than double stranded, better cellular uptake 

(Chapter 2). 

In conclusion, AON treatments appear as an attractive approach not only in cases where they 

restore protein function (such as DMD) but in many other cases where modulation of gene 

expression is required. Moreover, they offer advantages over other approaches such as siRNA 

interference that may be very advantageous in certain contexts.  

 

Brain Delivery of AONs 

A major challenge of both AON and shRNA applications in neuroscience and in particular for 

possible clinical use in neurodegenerative disorders is the actual delivery to the brain. The 

blood brain barrier (BBB) is a physiological obstruction for molecules to enter the brain and 

molecules can only enter the brain interstitial fluid by transport through the brain capillary 

endothelial cells (163). Intravenous or intraperitoneal administration of phosphorothioate 

oligonucleotides in rodents showed a very low uptake in brain (164, 165). Increased brain 

uptake of AON after peripheral delivery can be achieved by increasing the permeability of the 

BBB (166) or through encapsulating the AON in liposomes conjugated to monoclonal 

antibodies (167, 168). Another way to solve this problem is by local injections in the desired 

brain region if spatial specificity is important or by injection in the cerebrospinal fluid if broad 

distribution in the brain is deemed more important.  

Direct injection in specific brain regions is a method that has been widely used both in rodent 

studies and in human patients (169). Experimentally, they offer insight in local effects of 

widespread factors (170), and can have the advantage of contralateral controls in the same 

animal. Moreover, it provides the options of single injections or repeated/continuous delivery 

via cannulation. Importantly, it also offers the possibility of reducing the injected dose, thus, 
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decreasing potential toxic or immunogenic effects. In human patients intracranial delivery is 

used in the context of glioblastoma treatment with AONs (113). 

The alternative of intraventricular (or intrathecal) delivery into the cerebrospinal fluid has also 

proven successful. Continuous infusion into the ventricle of rodent and nonhuman primate 

brains showed significant concentrations of AON throughout the brain, brain stem and spinal 

cord. Significant reduction of targeted mRNA indicated that the AON is readily taken up by 

cells (136). The advantage of ventricular infusion through a surgically implanted pump is that 

there is constant delivery where the dosage can be accurately regulated (171). Furthermore, the 

disadvantage of the AONs’ restricted ability to cross the BBB also is a clear advantage, since 

after ventricular infusion the AONs will remain in the brain (124) thereby reducing side 

effects on peripheral organs like liver and kidney that readily take up AONs. 

In conclusion, while AONs for use in the CNS cannot be administered systemically, they have 

excellent entry into cells once they passed the BBB. For several backbone chemistries, it has 

been shown that local injection and distribution via the CSF seem to be devoid of any major 

toxicity. 

 

Knockdown 

The most widely used application of AON-mediated RNA targeting in the CNS has been the 

downregulation of gene expression through intranuclear RNase H-mediated cleavage of 

DNA:RNA hybrids (110, 153) (Figure 4a). Thus, the AON in this case is targeted against an 

mRNA sequence of interest (153). This approach offers an alternative, with certain 

advantages, to knockdown induced by viral vectors and siRNAs which are mediated by the 

RISC complex. We present a few recent examples from which the advantages of ‘classical’ 

knockdown use of AONs is apparent. 

Ma et al., (2011) used AONs to knock down BDNF expression in various brain areas and 

studied its involvement in conditioned taste aversion memory formation (154). They showed 

that BDNF synthesis in the CeA is necessary for the consolidation of long term memory 

formation of conditioned taste aversion. Likewise, AONs have been also used to knock down 

the expression of CRH in the CeA, temporally (155, 156). In a series of experiments targeting 

CRH mRNA it was shown that CRH plays an important role in contextual fear conditioning 

consolidation in the CeA (155). Furthermore, it was shown that CRH involvement in this 

context may be important up to 24 hours after training for successful consolidation of 

contextual fear (156). These studies illustrate the advantage of infusing AONs at different time 

points (154).  

AON-mediated knockdown has been combined with other gene-silencing techniques to serve 

specific experimental purposes, or even to elucidate the mechanisms behind, for instance RNA 

interference. Hemmings-Mieszczak et al. (2003) used mixtures of siRNAs and AONs to 

achieve a higher degree of reduction of the expression of the pain receptor P2X3, in vitro, and a 

more pronounced functional outcome. The effect was stronger when the siRNA and the AON 

targeted mRNA sequences distant from each other, because of steric hindrance masking their 
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complementary sequences (172). 

AONs were recently used in an elegant way to inhibit the expression of proteins associated 

with the RISC complex. AON-mediated downregulation of Argonaute proteins Ago1 and 

Ago2, combined with modified cleavage deficient siRNAs, showed that off-target effects of 

siRNAs are independent from Ago2 cleavage, but they require interaction with Ago proteins 

and the RISC complex (130). A similar approach was used to investigate the involvement of 

the RISC complex in pre-rRNA processing. Targeting of Dicer, Drosha or Ago2 lead to 

impairments in pre-rRNA processing, suggesting a role of these proteins in the biogenesis of 

rRNA (173). The great advantage of AON-mediated knockdown here is that its action depends 

on an entirely different mechanism from siRNA allowing interference with one without 

affecting the other.  

Thus, RNase H-mediated cleavage of DNA:RNA hybrids still is broadly used in basal and 

clinical research. In addition, exon skipping and inclusion offer a number of possibilities that 

are unique for AONs. 

 

Aim of the thesis 

Modulation of sensitivity to glucocorticoids may be of therapeutic interest for 

psychopathology. However, due to the pleiotropic effects of glucocorticoids, a global 

approach such as treatment with GR agonists or antagonists may have serious adverse effects. 

Here we attempted to regulate the sensitivity of discrete GR-dependent pathways to 

glucocorticoids, in relation to stress, using two different approaches:  the first approach we 

used was the local modulation of splicing of SRC-1, a coregulator of the GR, in the CeA and 

the shift of the expression ratio towards the splice variant that represses the CRH promotor; 

the second approach used here, was the targeting of the GR with ligands that may act as 

selective modulators and have differential effects on specific GR-dependent pathways. 

 

Outline of the thesis 

In chapter 2 we investigated the cellular uptake, efficacy and adverse effects of treatment with 

AONs targeting the SRC-1e specific exon in the brain. In chapter 3 we studied the functional 

effects of a shift in the expression ratio of the two isoforms in favour of SRC-1a in the CeA. In 

chapter 4 we tested a novel GR ligand (C108297) with mixed agonist and antagonist 

properties on the regulation of crh expression and the HPA axis, regulation of gene expression 

in the hippocampus and fear memory consolidation. In chapter 5 we used a similar approach to 

test another novel GR ligand (C118335) with mainly agonist properties. In chapter 6 a 

synthesis of the concepts presented here is attempted. 
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