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Chapter 1Introdu
tionSear
hing for an optimal state is one of the most important phenomena in naturalsystems. For instan
e, atoms try to form optimal bonds thereby obtaining energyminimal states, real ants are 
apable of adapting to the 
hanging environment and�nding shortest path from the nest to the food sour
e, and the aggregate motionof a �o
k of birds in
reases the su

ess rate of their vigilan
e. These amazingsolutions from nature have always been a sour
e of inspiration for s
ientists andengineers to ta
kle various 
hallenging appli
ations in our world. Natural 
om-puting is a �eld of resear
h that works with 
omputational te
hniques inspiredby nature and develops algorithms for solving 
omplex real-world problems [68℄.In general, natural 
omputing 
onsists of mainly three bran
hes, in whi
h ea
hhas its own representative te
hniques (Table 1.1): Among these aforementionedNatural Computing Bran
hes Representative Te
hniquesComputing inspired by natural systems evolutionary 
omputation, neural networks,swarm intelligen
e, et
.Simulation and emulation of nature lindenmayer systems and arti�
ial life.Computing with natural materials DNA 
omputing and quantum 
omputing.Table 1.1: Di�erent natural 
omputing bran
hes and its typi
al te
hniques.te
hniques, we fo
us our attention on evolutionary 
omputation, whi
h nowa-days is one of the most a
tive resear
h �elds of 
omputer s
ien
e with a hugeamount of su

essful appli
ations to real-world problems and for some te
hniquesa highly developed theoreti
al foundation. Rather than emulating features of asingle biologi
al organism, evolutionary 
omputation draws its inspiration fromthe dynami
s of an entire population of organisms. It uses the 
on
epts of muta-tion, re
ombination, and sele
tion to mimi
 the pro
ess of �organi
 evolution�, inwhi
h survival of the �ttest and phenotypi
 variation [28℄ prin
iples play an im-portant role and lead to better adaptation of a population of individuals to a given



2 Overview of Thesisevolutionary environment, that is, individuals with the higher �tness1 have better
han
es of survival and multiplying. The whole 
olle
tion of algorithms, whi
h arederived from this �organi
 evolution� pro
ess, are normally termed evolutionaryalgorithms (EAs) in literature.The original idea of our work is to extend the 
anoni
al Evolution Strategies(ES) - whi
h is one of three 
omputation paradigms2 of EAs - from traditional real-valued parameter optimization domain to mixed-integer parameter optimizationdomain. This is ne
essary be
ause there exist numerous pra
ti
al optimizationproblems from industry in whi
h the set of de
ision variables simultaneously in-volves 
ontinuous, integer and dis
rete variables. Furthermore, obje
tive fun
tionsof this type of problems 
ould be based on large-s
ale simulation models or thestru
ture of the obje
tive fun
tions may be too 
omplex to be modeled. From thisperspe
tive, optimization problems of this kind are 
lassi�ed into the bla
k-box op-timization 
ategory. For them, 
lassi
 optimization te
hniques, whi
h 
ome fromMathemati
al Programming (MP) resear
h �eld, 
an not be easily applied, sin
ethey are based on the assumption that the sear
h spa
e 
an always be e�
ientlyexplored using a divide-and-
onquer s
heme. While our new proposed algorithm,the so-
alled Mixed-Integer Evolution Strategies (MIES), by 
ontrast, is 
apableof yielding good solutions to these 
hallenging bla
k-box optimization problems byusing spe
ialized variation operators tailored for mixed-integer parameter 
lasses.In this work not only did we introdu
e MIES and study it intensively from atheoreti
al point of view, but also we develop the framework for applying MIESto the real-world optimization problem in the medi
al �eld. More spe
i�
ally, weapply MIES to the optimization of 
ontrol parameters of a semi-automati
 imageanalysis system for Intravas
ular Ultrasound (IVUS) images, real-time high res-olution tomographi
 images whi
h show the inside of 
oronary or other arteries.IVUS images are di�
ult to interpret whi
h 
auses manual segmentation to behighly sensitive to intra- and inter-observer variability [66℄. Thus, the develop-ment of feature dete
tion systems for IVUS images has re
eived mu
h attentionin medi
al and 
omputer s
ien
e resear
h. However, the performan
e of most sys-tems depend on a large number of 
ontrol parameters that are hard to optimizemanually and may di�er for di�erent interpretation 
ontexts. Moreover, these pa-rameters are subje
t to 
hange when something 
hanges in the image a
quisitionpro
ess. Compared to other approa
hes, with MIES the system developer 
ansear
h for optimized parameter settings automati
ally and likely will obtain pa-rameter settings that lead to signi�
ant higher a

ura
y of the feature dete
tors.1.1 Overview of ThesisThe 
ontents of this dissertation 
onsist of three major parts: (1) the introdu
tionand theoreti
al study of the newly proposed optimization algorithm; (2) Its ap-1It is determined by the given environment .2Another two 
omputation paradigms are Evolutionary Programming (EP) and Geneti
 Al-gorithms (GAs).



Chapter 1 3pli
ation to the real-world appli
ation, that is, parameter optimization of medi
alimage analysis; (3) advan
ed topi
s, su
h as Ni
hing te
hniques. More spe
i�-
ally, in the theoreti
al part the state-of-the-art MIES algorithms are introdu
ed,and then they are tested on several 
arefully designed arti�
ial lands
apes, for in-stan
e, generalized Nk lands
apes. The real-world appli
ation part mainly fo
useson parameter optimization problems from medi
al resear
h �eld. Our proposedMIES algorithms are applied to optimize a multi-agent system, whi
h was de-veloped for medi
al image feature dete
tion. And some important experimentalobservations will be presented. In the third part, some advan
ed te
hniques, whi
h
an be used in 
ombination with MIES, are investigated to further improve theperforman
e of our algorithms, for example, Metamodel-Assisted Optimization,Ni
hing Te
hniques and Bayesian Learning.The more detailed stru
ture of this thesis 
an be summarized as follows:Chapter 2 �rst provides a brief overview of the essential terminology of globaloptimization, and the mixed-integer parameter optimization problem is intro-du
ed spe
i�
ally. Several 
lassi
 algorithms from the traditional Mathemati
alProgramming (MP) resear
h �eld, su
h as Bran
h-and-Bound (BB) and OuterApproximation (OA) methods, are reviewed after. As opposed to this white-boxoptimization methodology, the framework for mixed-integer parameter optimiza-tion in the bla
k-box s
enario is dis
ussed in very detail. Two representative real-world appli
ations - opti
al �lter design and 
hemi
al plant optimization - are alsopresented as motivating examples.In Chapter 3 we �rst introdu
e the general framework of EAs. Next, we explainthe fundamentals of the 
anoni
al ES expli
itly, whi
h serves as the algorithmi
kernels of our proposed methodology - MIES for mixed-integer parameter opti-mization. Then the design philosophy of MIES and several important propertiesare dis
ussed in detail.In Chapter 4, we propose two innovative syntheti
 test problems - BarrierFun
tions and Mixed-Integer NK lands
apes (MINKL). Barrier fun
tions are 
re-ated by a multi-modal problem generator that produ
es integer optimization prob-lems with a s
alable degree of ruggedness but no intera
tion between variables.MINKL are an extension of standard NK Lands
apes (NKL), whi
h are sto
hasti-
ally generated pseudo-boolean fun
tions with N bits (genes) and K intera
tionsbetween genes. These two arti�
ial test problems are 
arefully designed and exper-imental results show that they are parti
ular useful to understand the dynami
sof evolutionary sear
h within the mixed-integer spa
e.MIES for parameter optimization of IVUS image analysis are presented in
hapter 5. An advan
ed multi-agent system for IVUS image features dete
tion,espe
ially for lumen feature dete
tion, is introdu
ed and the framework for opti-mizing this system using MIES is proposed as well as some promising experimentalresults.In Chapter 6 we investigate the use of �tness based partitioning to �nd groupsof Computed Tomographi
 Angiography (CTA) images that require a similarparameter setting for the segmentation algorithm while at the same time evolving



4 Overview of Publi
ationsoptimal parameter settings for these groups.Chapter 7 dis
usses how to use metamodels, in parti
ular radial basis fun
tionnetworks (RBFN), to assist MIES when applied to optimization tasks with time
onsuming evaluation fun
tions, like IVUS image analysis.Chapter 8 presents a dynami
 ni
hing te
hnique for MIES, based upon onan existing ES ni
hing approa
h, whi
h was developed re
ently and su

essfullyapplied to 
ontinuous lands
apes. The new method is based on the heterogeneousdistan
e measure that addresses sear
h spa
e similarity in a way 
onsistent withthe mutation operators of the MIES.Chapter 9 introdu
es a new estimation of distribution algorithm that extendsthe Bayesian optimization algorithm (with �xed network stru
ture) from binaryoptimization problems to mixed-integer optimization problems. Experimental re-sults show that a-priori knowledge on dependen
ies between de
ision variables
an be exploited by this proposed algorithm in order to improve 
onvergen
espeed and reliability. In this algorithm, MIES serves as a sub-algorithm in the selforganized 
lustering pro
ess.1.2 Overview of Publi
ationsHere we give an overview of the way in whi
h parts of this thesis have beenpublished.Chapter 3: Mixed Integer Evolution StrategiesThe 
ontent of this 
hapter is partly based on resear
h, whi
h was a

epted forpubli
ation as a 
hapter 
ontribution in a book on Evolutionary Image Anal-ysis and Signal Pro
essing of Springer �Studies in Computational Intelligen
e�series [79℄.Chapter 4: Syntheti
 Mixed-Integer Lands
apesA major portion of this 
hapter is published in the Pro
eedings of the NinthInternational Conferen
e on Parallel Problem Solving from Nature (PPSN IX,2006) [78℄ and an extended abstra
t in the Pro
eedings of the 18th Belgium-Netherlands Conferen
e on Arti�
ial Intelligen
e (BNAIC'06) [32℄.Chapter 5: Parameter Optimization for Medi
al Image AnalysisMajor parts of this 
hapter are published in the Pro
eedings of the 1st Interna-tional Workshop on Computer Vision for Intravas
ular and Intra
ardia
 Imag-ing (MICCAI 2006) [18℄, Pro
eedings of Geneti
 and Evolutionary ComputationConferen
e (GECCO'06) [77℄, Pro
eedings of Sixth EuropeanWorkshop on Evolu-tionary Computation in Image Analysis and Signal Pro
essing (EvoIASP'06) [75℄,Pro
eedings of Adaptive Computing in Design and Manufa
ture (ACDM'06) [76℄



Chapter 1 5and an extended abstra
t in the Pro
eedings of the 18th Belgium-NetherlandsConferen
e on Arti�
ial Intelligen
e (BNAIC'06) [39℄.Chapter 6: Dynami
 Fitness Based PartitioningThis 
hapter is published in the Pro
eedings of the Seventh European Work-shop on Evolutionary Computation in Image Analysis and Signal Pro
essing(EvoIASP'07) [72℄, an extended abstra
t in the Pro
eedings of the 19th Belgium-Netherlands Conferen
e on Arti�
ial Intelligen
e (BNAIC'07) [73℄ and Pro
eed-ings of Eighth European Workshop on Evolutionary Computation in Image Anal-ysis and Signal Pro
essing (EvoIASP'08) [33℄.Chapter 7: Meta-Model Assisted Mixed Integer Evolution StrategiesThe resear
h results in this 
hapter are published in the Pro
eedings of the IEEECongress on Evolutionary Computation (IEEE CEC 2008) [80℄.Chapter 8: Mixed-Integer Evolution Strategies with Dynami
 Ni
hingThis 
hapter is based on publi
ation in the Pro
eedings of 10th InternationalConferen
e Parallel Problem Solving from Nature (PPSN X, 2008) [74℄.Chapter 9: Mixed-Integer Evolution Strategies with Bayesian LearningParts of this 
hapter are published as a full paper 
ontribution in the Pro-
eedings of the 20th Belgium-Netherlands Conferen
e on Arti�
ial Intelligen
e(BNAIC'08) [40℄.
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The expe
tations of life depend upondiligen
e; the me
hani
 that would perfe
this work must �rst sharpen his tools.Confu
ius
Chapter 2Mixed-Integer ParameterOptimizationTo start our journey, good preparation is always required. This 
hapter lays thegroundwork for our study in this dissertation. Like we de
lared in 
hapter 1,the original goal of our work is to develop e�
ient and robust methods to dealwith mixed-integer parameter optimization problems parti
ularly in bla
k-box op-timization s
enario. Therefore, it is important for us to �rst introdu
e the el-ementary terminology of the global optimization, espe
ially the mixed-integerparameter optimization. As a traditional approa
h of formulating optimizationproblems, Mathemati
al Programming (MP) as well as its major sub�elds, su
has Linear Programming (LP) and Mixed-Integer Programming (MIP), will alsobe 
overed expli
itly. Next, two well-established te
hniques - Bran
h-and-Bound(BB) and Outer Approximation (OA) - will be reviewed thoroughly, be
ause theyare widely used for solving Mixed-Integer Nonlinear Programming (MINLP) prob-lems in pra
ti
e. As opposed to these white-box based optimization problems, wewill address bla
k-box optimization in mixed-integer parameter sear
h spa
e. Atlast, two sele
ted optimization appli
ations from industrial �eld will be presented.2.1 Global OptimizationThe global optimization problem 
an be generalized in terms of �nding the 
om-bination of parameters whi
h optimize a given quantity depending on these pa-rameters, possibly subje
t to some restri
tions on the allowed parameter ranges.The quantity to be optimized is 
alled the obje
tive fun
tion1; the parameterswhi
h may be 
hanged in the quest for the optimum are 
alled 
ontrol or de
isionvariables ; the restri
tions on allowed parameters values are known as 
onstraints.1Also 
alled performan
e measure, loss fun
tion, or �tness fun
tion in some 
ontext.9



10 Mathemati
al ProgrammingIt is 
ustomary to write the global optimization problem as follows:minimize f(x) ∈ R (2.1)subje
t to gi(x) ∈ R ≤ 0 i ∈ Ig
hj(x) ∈ R = 0 j ∈ Ih

x ∈ Θ, Θ 6= ∅where f(x) : x ∈ Rn is the obje
tive fun
tion and its value is 
alled the obje
tivevalue of this fun
tion. gi(x) and hj(x) are the set of 
onstraint fun
tions. Con-straint equations of the form g(x) ≤ 0 denote inequality 
onstraints, and thoseof the form h(x) = 0 denote equality 
onstraints. Ig represents the inequalitiesindex set, and Ih indi
ates the index set of equalities. Θ represents non-empty setof allowable values for x and is de�ned as:
Θ = {x ∈ R

n | gi(x) ≤ 0 ∧ hj(x) = 0} (2.2)Consequently, the optimal solution set 
an be des
ribed as follows [114℄:
Θ∗ ≡ arg min

x∈Θ
f(x) = {x∗ ∈ Θ : f(x∗) ≤ f(x) for all x ∈ Θ} (2.3)where �arg min

x∈Θ
� 
an be read as: Θ∗ is the set of values x = x∗ that minimize(maximize in the 
ase of �≥�) f(x) subje
t to x∗ satisfying the 
onstraints repre-sented in fun
tions gi(x) and hj(x). In general, when the Θ of the problem is not
onvex 2, there may be several lo
al minima and maxima, where a lo
al minimum

x̂ is de�ned as a point for whi
h there exists some δ > 0 so that for all x su
hthat ‖x− x̂‖ ≤ δ the expression f(x̂) ≤ f(x) holds.2.2 Mathemati
al ProgrammingTraditionally, to apply optimization 
on
epts and tools optimization problems arefrequently modeled by using Mathemati
al Programming (MP). MP is 
on
ernedmainly with optimization problems whose obje
tive(s) and 
onstraints 
an be
learly des
ribed by using algebrai
 mathemati
al expressions. MP is the bran
hof applied mathemati
s and numeri
al analysis that fo
uses on rea
hing �best�solutions (or de
isions) by means of mathemati
al optimization models. It is asubbran
h of operations resear
h3 (OR) and there exists a ri
h body of knowl-edge surrounding these optimization te
hniques. Many di�erent sub�elds 
an bede�ned based on what kind of mathemati
al model is to be used to des
ribe theoptimization problem at hand [123℄. In the following parts, we will review ma-jor sub�elds of MP, espe
ially Mixed-Integer Nonlinear Programming (MINLP)problems and 
orresponding te
hniques.2Even if Θ is 
onvex there may be multiple lo
al optima, as a result of non-
onvexity of f(x).3Also known as management s
ien
e (MS).



Chapter 2 112.2.1 Linear vs. NonlinearA linear programming (LP) problem is an optimization problem whi
h satis�esthe following requirements: (1) Obje
tive fun
tion f is a linear fun
tion; (2)Both inequality 
onstraint fun
tions gi(i ∈ Ig) and equality 
onstraint fun
tions
hj(j ∈ Ih) are linear fun
tions. In LP problems, the linear 
onstraints result ina 
onvex feasible solution spa
e. Some algorithms are developed based on this
hara
teristi
, for example the Simplex algorithm [27℄, whi
h is very e�
ient inpra
ti
e: its worst-
ase 
omplexity is exponential in the number of problem vari-ables.As opposed to LP problems, there are also a large number of optimizationproblems in whi
h their obje
tive and 
onstraints fun
tions are nonlinear in de-
ision variables x. Problems in this 
ategory are 
alled Nonlinear Programming(NLP) problems. Be
ause of the nonlinearity of 
onstraint fun
tions or the obje
-tive fun
tion, the 
onvexity of the solution spa
e 
an not be guaranteed anymore.As a 
onsequen
e of non
onvexity, NLP problems may have many di�erent lo
aloptima 
ompared to LP problems, and 
hoosing the best one is an extremely hardtask. Several nonlinear programming algorithms have been developed to obtainthe 
onvex solution spa
e by linearising the 
onstraints �rstly, and, as a se
ondstep, employ some LP methods to �nd an optimal feasible solution.2.2.2 Integer vs. Mixed-IntegerDivisibility is a 
ommon assumption in many optimization methods. It requiresthat ea
h de
ision variable xi is allowed to assume fra
tional values. A LP problemin whi
h some or all of the variables must be non-negative integers is 
alled anInteger Programming (ILP) problem. IP problems 
an be further 
lassi�ed intopure Integer Programming and Mixed-Integer Programming (MILP). An IntegerProgramming (IP) problem in whi
h all de
ision variables need to be integers is
alled a pure integer programming problem. An integer programming problem inwhi
h only some of the variables are required to be integers is 
alled Mixed-IntegerProgramming (MILP) problem.2.2.3 Mixed-Integer Nonlinear ProgrammingIn real world, many optimization appli
ations are not only 
omplex and 
halleng-ing be
ause their de
ision variables are 
ombinations of real and integer variables,but also their obje
tive fun
tion and 
onstraint fun
tions are nonlinear. For exam-ple, problems in the optimization of pro
ess �owsheets, portfolio sele
tion, bat
hpro
essing in 
hemi
al engineering, and optimal design of gas or water transmis-sion networks [48, 63℄. The Mixed-Integer Nonlinear Programming (MINLP) is anatural approa
h of formulating these kind of problems where it is ne
essary tosimultaneously optimize the system stru
ture (dis
rete) and parameters (
ontin-uous) [23, 42℄.



12 Mathemati
al ProgrammingMINLP problems are very hard to solve in pra
ti
e, be
ause they 
ombine allthe di�
ulties of their sub
lasses: the 
ombinatorial nature of Mixed-Integer Lin-ear Programming (MILP) and the di�
ulty of solving Nonlinear Programming(NLP). In general, these two sub
lasses problems 
an be 
lassi�ed into the 
lass of
NP -hard problems. Although they are very hard to solve, the 
omponent stru
-ture of MILP and NLP within MINLP provides a 
olle
tion of natural algorithmi
approa
hes, exploiting the stru
ture of ea
h of the sub
omponents. Analogous toEquation 2.1, we now state the general MINLP problem as follows:minimize f(x,y) ∈ R (2.4)subje
t to gi(x,y) ∈ R ≤ 0 i ∈ Ig

hj(x,y) ∈ R = 0 j ∈ Ih
lbx ≤ x ≤ ubx

lby ≤ y ≤ uby

x ∈ R
n n ≥ 0

y ∈ Z
m m ≥ 0where f : Rn × Zm → R is 
alled the obje
tive fun
tion. The members of thesolution spa
e are bounded from above and below by ub and lb respe
tively. x isa real valued ve
tor in Rn and y is an integer (normally binary) valued ve
tor in

Zm. Please note that the obje
tive fun
tion f and 
onstraint fun
tions gi, hi arenonlinear in this situation.There are several te
hniques employed to solve MINLP problems. They di�erin 
omplexity and running time as well as solution prin
iple and s
ope of appli-
ation. Bran
h-and-Bound (BB) and Outer Approximation (OA) are two widelyused methods.Bran
h-and-BoundBran
h-and-Bound (BB) is an intelligently stru
tured sear
h for all the feasiblesolutions [71℄. It is non-heuristi
, in the sense that it maintain a provable upperand lower bound on the (globally) optimal obje
tive value [20℄ and after ter-mination will obtain the optimal solution. The spa
e of all feasible solutions isrepeatedly partitioned into smaller and smaller subsets, and a lower bound4 is
al
ulated within ea
h subset. Subsets with a bound that ex
eeds the 
ost of aknown feasible solution are ex
luded from all further steps. The partitioning pro-
edure 
ontinues until a feasible solution is found su
h that its 
ost is no greaterthan the lower bound for any other subset.Using pseudo
ode to explain Bran
h-and-Bound (BB) method, one 
an use thefollowing de�nitions [14, 49, 81℄: a list L of unsolved subproblems5 Si, whi
h wereobtained by relaxing some or all of the integer requirements; ub, an upper bound4in the 
ase of minimization.5Or node, denote the problem asso
iated with a 
ertain portion of the feasible region ofMINLP



Chapter 2 13on the value of obje
tive fun
tion f ; lbSi
, a lower bound on the value that f 
anhave in subproblem Si; a
tive set, the list of subproblems that must still be solved;

(x∗,y∗), a re
ord of the best integer solution (or in
umbent solution) whi
h hasbeen found by the algorithm so far. The basi
 bran
h-and-bound method 
an begeneralized as algorithm 1.Algorithm 1 The Bran
h-and-Bound Algorithm1: Initialize:
L, (x∗,y∗), and ub.2: Sele
t:Choose an unsolved subproblem Si from L. Stop if L = ∅. If there is anin
umbent solution, then that is an optimal solution. Otherwise, the MINLPis infeasible.3: Solve:Solve the nonlinear programming relaxation of Si. A solution (x̂, ŷ)Si

and lbSiare obtained on the optimal value of this subproblem.4: Prune:If the relaxed subproblem Si was infeasible, then Si will not provide a bettersolution to MINLP than the known in
umbent solution. The same as lbSi
≥

ub. Delete su
h Si from L and return to the Sele
t step.5: Integer Solution:If ŷ is integer, then a new in
umbent integer solution has been obtained.
(x∗,y∗) = (x̂, ŷ) and ub is set to the optimal value of Si6: Bran
h:If there exist at least one yk is fra
tional value in the solution on the Si,then 
onsider splitting the Si. Create a new subproblem Si1 by adding the
onstraint yk ≤ ⌊ŷk⌋. Create another subproblem Si2 by adding the 
onstraint
yk ≥ ⌈ŷk⌉.Remove Si and add problems Si1 and Si2 to L. Return to Sele
tstep.There are various 
hoi
es to be made during the 
ourse of algorithm 1, su
h asthe 
hoi
e of the subproblem to evaluate, and the way to divide the feasible region.An advantage of this algorithm is the 
lear de
oupling of the 
ontinuous anddis
rete optimizers. Any usable 
ontinuous optimizer maybe used for solving therelaxed problem while the Bran
h-and-Bound (BB) method sear
hes through thedis
rete spa
e for the optimal solution. However, a major disadvantage is the speedissue. In the worst 
ase the algorithm requires e�ort that grows exponentially withproblem size. For instan
e, in the binary 
ase, ea
h Si 
reates at most two newsubproblems Si1 and Si2 , whose set 
an be represented as a binary tree. As aresult, there are total 2m subproblems to be solved, where m is the number ofdis
rete variables whi
h is de�ned in 2.4.
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k-Box OptimizationOuter ApproximationThe outer approximation s
heme is another 
ommon te
hnique for solving a 
lassof MINLP problems. The outer approximation method approximates the non-linear spa
e utilizing linear 
onstraints. Supporting linear hyperplanes are 
al
u-lated at ea
h iteration of the algorithm. Sin
e we have e�
ient methods of solvinglinear programming problems, we may utilize these to solve for the MINLP prob-lem. These linearizations overestimates the feasible region while at the same timethe optimal solution is underestimated. Be
ause many 
onstraints are introdu
ed,the problem may be
ome intra
table. For more detailed explanation of OuterApproximation methods, we re
ommend the following referen
es [31, 41℄.2.3 Bla
k-Box OptimizationAs we 
an see, the methodology behind these aforementioned MP te
hniques forsolving optimization problems have often followed a pattern: Given a very spe-
i�
 
lass of problems with some known properties, design an algorithm to solvethem. However, the appli
ability of these optimization algorithm is very restri
ted,be
ause they work stri
tly based on assumptions about the properties of the ob-je
tive fun
tions. For example, the Bran
h-and-Bound (BB) method is espe
iallydesigned for ta
kling mixed-integer nonlinear optimization problems. Unfortu-nately, these divide-and-
onquer based te
hniques may fail when optimizationproblems possess the following properties:(1) Only little knowledge about the obje
tive fun
tion is available, su
h as op-timization tasks whi
h are mainly based on large-s
ale simulation modelsand the details of whi
h often are ina

essible.(2) The obje
tive fun
tion is very 
omplex, for instan
e multimodal, high di-mensional and non-di�erentiable. As a 
onsequen
e, the asso
iated 
ompu-tational burden for this kind of optimization problems easily 
an be
omeex
essive for some 
lassi
 MP methods.From this perspe
tive, these problems would fall into the 
lass of bla
k-box opti-mization problems, in whi
h only little assumption about the obje
tive fun
tion
an be made or the obje
tive fun
tion is too 
omplex to be modeled. In thismodel of optimization, the obje
tive fun
tion is often available for the optimizeras a bla
k-box without assuming any lo
al or global information [60℄. Next, wewill give a formal de�nition of bla
k-box optimization based on [60℄.Let us denote the �nite input and output spa
es by X and Y, respe
tively. Thegeneral bla
k-box optimization problem 
an be formally de�ned as the followingequation system: For a given input de
ision parameters ve
tor x in the feasibledomain X , after evaluation through the bla
k-box fun
tion (e.g. simulator) a value
y = Φ(x) ∈ Y is returned.

Φ : X → Y, x 7→ Φ(x) =: y (2.5)



Chapter 2 15In the 
ase of minimization, a bla
k-box optimization problem is to �nd optimal
x∗ ∈ X su
h that Φ(x∗) ≤ Φ(x) for all x ∈ X . The performan
e of the optimizationalgorithm used in this s
enario, su
h as EAs, depends on the information 
olle
tedby sampling di�erent areas of the sear
h spa
e. More 
on
retely, we explain thisbla
k-box optimization model by using Figure 2.1 below - a sample optimizationproblem with a simulator involved. In general, the 
ombination of simulator andoptimizer typi
ally involves te
hni
al problems su
h as extra
ting the relevantsimulator output data and aggregating the output data into a meaningful obje
tivefun
tion. As one 
an see, the obje
tive fun
tion is de�ned in regard to the output(Y ) of the simulator. The optimizer then uses these values to sear
h for optimalsolution(s) x∗.

Simulator 

Optimizer 

Objective 

Function 

?      !"#$ % 

&#$"#$ 

 ' 

(()) * +,! Figure 2.1: Outline of the general prin
iple of 
oupling simulation and optimiza-tion.2.3.1 Mixed-Integer Bla
k-Box OptimizationIf an input de
ision variables ve
tor x is 
omprised of di�erent types of variables- 
ontinuous, ordinal dis
rete (integer) and nominal dis
rete variables6, the 
or-responding optimization problem is 
alled mixed-integer bla
k-box optimizationproblems. As we addressed in 
hapter 1, this kind of optimization problems willbe the main fo
us of our resear
h and will be studied in detail.2.3.2 Related WorksFrequently, bla
k-box optimization algorithms are 
lassi�ed based on whether theyare deterministi
 or non-deterministi
. More spe
i�
ally, a deterministi
 methodis to enumerate 
andidate solutions of the optimization task. Grid sear
h and pat-tern sear
h are two representatives among these deterministi
 methods. However,6This is di�erent from mixed-integer variables de�nition in MINLP problems, more detailedexplanation are available in 
hapter 3
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ted Appli
ationsfor most of real-world optimization problems, it be
omes pra
ti
ally impossiblebe
ause of the exponential growth with the number of dimensions. This is oftenreferred to as the �
urse of dimensionality� [10℄. Contrary to these deterministi
algorithms, sto
hasti
 algorithms (often heuristi
) try to solve the problem by in-trodu
ing some random 
hoi
es in the sear
h and this makes them more suitablefor pra
ti
al appli
ations. In pra
ti
e, there are a large number of sto
hasti
 al-gorithms available, su
h as simulated annealing, bayesian learning and 
lusteringmethods [60℄. And our proposed MIES also belongs to this 
ategory.2.4 Sele
ted Appli
ationsTo illustrate the point of mixed-integer bla
k-box optimization, let us have alook on two representative real-world optimization tasks - the optimization ofmultilayer opti
al 
oatings [7, 4℄ and the optimization of a 
hemi
al engineeringplant [38℄. For these two sele
ted real-world appli
ations, either its obje
tive fun
-tion is very 
omplex or its expensive evaluation goes through a simulation soft-ware, the detail of whi
h are ina

essible. In both 
ases, 
lassi
al Mixed-IntegerNonlinear Programming (MINLP) te
hniques 
an not be easily applied. That iswhy it is highly desirable to develop new strategies to ta
kle problems of su
ha kind. We would like to mention some important 
hara
teristi
s, whi
h weresummarized in [4℄, of these pra
ti
al appli
ations as follows:
• Pra
ti
al 
onsiderations require to �nd a robust optimum, i.e., an optimumthat is insensitive with respe
t to small variations of the parameter values.
• The obje
tive fun
tion is multimodal, high-dimensional, and non-di�erentiable,with a feasible region of the sear
h spa
e that is 
hara
terized by nonlinear
onstraints.
• In some 
ases, the obje
tive fun
tion evaluation requires a run of a simula-tion model representing the real system to be optimized.
• Be
ause of di�erent parameter types, a standard representation su
h asbinary strings or real-valued ve
tors is di�
ult to apply to these problems.2.4.1 Optimization of Multilayer Opti
al CoatingsProblem De�nitionThe obje
tive of the multilayer opti
al 
oatings (MOCs) design is to �nd a se-quen
e of layers of 
ertain materials and 
ertain thi
knesses (Figure 2.2), su
h thatall unwanted frequen
ies are 
ut o�, while the wanted frequen
ies pass withoutany re�e
tion.The matrix method, whi
h is based on the Maxwell equations, is used to modelMOCs as follows: the re�e
tan
e R for a given wavelength λ that depends on a
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Figure 2.2: Multilayer opti
al 
oating. Figure 
ourtesy of Bä
k [4℄ve
tor ~d of the geometri
 thi
knesses of the layers and the refra
tive indi
es ~η ofthe materials of the 
orresponding layers:
R(~d, ~η, ~λ) =

4ηaηs

|ηaB(~d, ~η, ~λ) + C(~d, ~η, ~λ)|2
(2.6)where ηa and ηs des
ribe the refra
tive index of the adja
ent medium and thesubstrate. B and C are non-linear terms of ~d, ~η and ~λ. The obje
tive fun
tion f
an be obtained by 
al
ulating the mean squared di�eren
e between the targetwavelength pro�le and the pro�le of the give design sampled at m equidistantwavelengths λi in the range of interest.Obje
tive Fun
tionThe quality of a design 
an now be obtained by 
al
ulating the mean squareddi�eren
e between the target wavelength pro�le and the pro�le of the given designsampled at m equidistant wavelengths λi in the range of interest. The obje
tivefun
tion is de�ned as follows:

f(~d, ~η) =

√
√
√
√

1

m

m∑

i=1

R(~d, ~η, ~λ)2 → min (2.7)The �tness lands
ape of the obje
tive fun
tion de�ned by equation 2.7, a three-dimensional plot of RMS-values for a two-layer �lter with η1 = 2.2, η2 = 4.2,and d1, d2 varying in the range 0 − 20µm is shown in �gure 2.3. The lands
ape
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ted Appli
ationsis 
hara
terized by parallel �waves� separated by valleys of in
reasing depth andde
reasing width. As a 
onsequen
e, optimization algorithms may be trappedwithin a lo
al optimal valley.

Figure 2.3: Topology of the RMS merit fun
tion in 
ase of a �xed two-layer �lterstru
ture with η1 = 2.2 and η2 = 4.2. Figure 
ourtesy of Bä
k, et al. [7℄Optimization for MOCs design is a very di�
ult task be
ause: (1) It involvesreal-valued thi
kness and integer-valued refra
tive indi
es variables; (2) Dimen-sionalities of de
ision variables are very high; (3) Equations whi
h are used to
ompute obje
tive values are very 
omplex; (4) The number of dimensions is vari-able in the most general formulation of this problem.2.4.2 Optimization of Chemi
al Engineering PlantsProblem De�nitionThe optimization of 
hemi
al engineering plants is another 
hallenging appli
a-tion. The goal is to sear
h for an optimal parameter 
on�guration for a spe
i�

hemi
al engineering plant. A possible �owsheet for the Hydrodealkylation (HDA)pro
ess is displayed in Figure 2.4. The aim of the HDA pro
ess is the produ
tionof benzene from toluene. The annual pro�t is to be maximized.
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Temperature [183.2,373.2] K

Temperature [895.2, 978.2] K

Pressure [1.0, 25.0] bar
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Figure 2.4: Flowsheet of the HDA pro
ess network with di�erent 
hemi
al devi
es(unit operations) 
onne
ted by material streams. The intervals and dis
rete setsindi
ate the domain of de
ision parameters to be optimized. Figure 
ourtesy ofEmmeri
h, et al. [38℄Obje
tive Fun
tionBy de�nition, there are three types of de
ision parameters involved into the opti-mization pro
edure and they are indi
ated in Figure 2.4. The evaluation is 
arriedout through one rigorous simulation model and this is presented in Figure 2.5 (
f.Figure 2.1). This optimization problem is also di�
ult be
ause: (1) there exist dif-ferent types of de
ision parameters; (2) �tness evaluation is based on a 
ommer
ialsimulation software and we have no a

ess to details of its implementation. The
lassi
al te
hniques, su
h as BB and OA, are not appli
able in this 
ase.2.5 SummaryIn this 
hapter, di�erent types of optimization problems are presented and thespe
ial attention is paid to mixed integer nonlinear programming problems, whi
ho

ur a lot in real-world appli
ations and are extremely hard to handle in pra
ti
e.To ta
kle these very hard problems, some promising methods whi
h 
ome eitherfrom 
lassi
al mathemati
al programming or heuristi
 domains are dis
ussed indetail.As we emphasized at the very beginning of this thesis, 
ompared to �white-box� optimization problems, we are more interested in problems from �bla
k-
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Cost calculations
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Calculation of thermodynamical states
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OPTIMIZER
(EA)
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inputfile of the simulator

Examination of simulation errors,

Constraint ControlFigure 2.5: The intera
tion between the �owsheet simulator ASPEN PLUSTM andthe optimizer. Figures 
ourtesy of Emmeri
h, et al. [38℄box� s
enarios. Un
lear obje
tive fun
tion stru
ture and high dimensionality makethese bla
k-box optimization problems more 
hallenging and it is di�
ult to ap-ply methods from the traditional mathemati
al programming resear
h �eld, likeBran
h-and-Bound (BB) algorithm. By 
ontrast, some heuristi
 methods providepossibilities to establish a 
onne
tion between 
andidate solutions and the 
orre-sponding problem domain and lead us to a global/lo
al optimum in an intelligentway.Among many well studied heuristi
 methods, te
hniques from EvolutionaryComputation domain, espe
ially Evolution Strategies (ES), will be further inves-tigated in this work.



Chapter 3Mixed-Integer EvolutionStrategiesIn 
hapter 2 we introdu
ed mixed-integer parameter optimization, espe
ially in abla
k-box optimization s
enario. Now, we will propose one promising algorithm,the so-
alled Mixed-Integer Evolution Strategies (MIES), whi
h are 
apable todeal with the aforementioned bla
k-box mixed-integer parameter optimizationproblems. This 
hapter is organized as follows: �rstly, Evolutionary Algorithms(EAs) will be reviewed. Some important 
hara
teristi
s of ea
h EAs model willbe presented next. Then, Evolution Strategies (ES) will be dis
ussed brie�y, es-pe
ially some important 
omponents of 
anoni
al (µ+
, λ)- ES, su
h as individualsstru
ture, mutation, re
ombination and sele
tion. Finally, a more general frame-work for mixed-integer parameter optimization by using the MIES will be pro-posed in the rest of the 
hapter.3.1 Evolutionary AlgorithmsES is one important bran
h of EAs, and other two bran
hes are Geneti
 Al-gorithms (GAs) and Geneti
 Programming (GP). As we addressed, EAs derivefrom Darwin's theory of the survival of the �ttest and mimi
 the pro
ess of or-gani
 evolution by using operators �population�, �mutation�, �re
ombination� and�sele
tion� [52℄. The better an individual performs under 
ertain 
onditions thegreater its 
han
e to live for a longer and generate o�spring, whi
h in turn in-herit the parental geneti
 information. Over the 
ourse of evolution, this leadsto a penetration of the population with the geneti
 information of individuals ofabove-average �tness [5℄.A high level abstra
tion of all essential 
omponents of standard implementa-tions of evolutionary algorithms is given in Algorithm 2, for more detailed informa-tion about di�erent evolutionary 
omputation models (Geneti
 Algorithms, Evo-



22 Evolution Strategieslution Strategies and Geneti
 Programming) we re
ommend books [34, 58℄. BasedAlgorithm 2 General s
hema of an evolutionary algorithm1: t := 02: Initialize population with random 
andidate solutions3: Evaluate ea
h 
andidate solution4: while terminate 
ondition is not satis�ed do5: Sele
t parents6: Re
ombine pairs of parents7: Mutate the resulting o�spring8: Evaluate new 
andidate solution9: Sele
t individuals for the next generation10: t := t+ 111: end whileon this algorithm des
ription, some important features of EAs 
an be summed upas follows: EAs are population based, they mostly use re
ombination or mutationto generate new 
andidate solutions, and they are sto
hasti
.3.2 Evolution StrategiesEvolution Strategies (ES) were founded in the early 1960s by Re
henberg andS
hwefel at the Te
hni
al University of Berlin (TUB). In the beginning, ES weredevised for the automati
 design and analysis of 
onse
utive experiments withstepwise variable adjustments driving a suitably �exible obje
t into its optimalstate in spite of environmental noise [12℄. The �rst dissertation in the �eld ofES was 
ompleted by Re
henberg [95, 96℄ in 1971. In his thesis, Re
henberg an-alyzed the (1+1)-ES with Gaussian mutations on two very di�erent real-valuedfun
tions - hypersphere and re
tangular 
orridor fun
tion, and was able to showits 
onvergen
e velo
ity, the a
hieved order of 
onvergen
e and the optimal mu-tation strength. Born proposed population based (µ + 1)-ES [15℄ and proved the
onvergen
e with probability 1. By applying prin
iples from organi
 evolution inmore rigorous way, S
hwefel extended the (1+1)-ES towards a (µ + λ)-ES and
(µ, λ)-ES and proposed an ES 
apable of self-adapting some of its strategy pa-rameters [106, 107℄. In the following se
tions, we will explain the 
omponentsof 
lassi
al (µ+

, λ)-ES in detail (
f. Algorithm 3), sin
e it is seen as laying thefoundations for our proposed Mixed-Integer Evolution Strategies (MIES).3.2.1 Individuals Stru
tureCanoni
al Evolution Strategies (ES) are typi
ally used for 
ontinuous parame-ter optimization (Rn → R). For a given optimization problem f(~x) → min, anindividual of the evolution strategy 
onsists of two 
omponents:



Chapter 3 231. A 
andidate solution (a set of de
ision variables or 
ontrol parameters),whi
h is represented as ~x ∈ Rn;2. Endogenous strategy parameters, whi
h 
an be further divided into two sets,mutation step sizes ~σ and rotation angles ~α (~α are not always used). ~σ es-sentially en
ode the n-dimensional normal distribution and are to be used to
ontrol 
ertain statisti
al properties of the mutation operator. The ~α valuesrepresent intera
tions between the step sizes used for di�erent variables. En-dogenous strategy parameters are very spe
ial in ES and 
an evolve duringthe whole evolution pro
ess.Putting it all together, an individual in ES 
an be given in a more general formthrough a triple: ~a = (~x, ~σ, ~α).3.2.2 MutationMutations are the primary sour
e of geneti
 variation in ES and are 
arried outby adding ∆xi to ea
h xi, where the ∆xi values are randomly drawn using thegiven normal distribution N(0, σ) with zero mean and strandard deviation σ. Inpra
ti
e, the mutation step sizes ~σ are not set by the user, rather they are 
o-evolving with the solutions ~x. To a
hieve this it is essential to modify the σ value�rst, and then mutate the xi values with the new σ. The 
orresponding updatingpro
edure 
an be de�ned as:
x′i = xi +N(0, σ′) (3.1)where σ′ is the mutated value of σ. Next, we will des
ribe three spe
ial 
ases ofmutation whi
h are often used to mutate the value of σ in ES [34℄.Un
orrelated Mutation with One Step SizeIn this 
ase, the same distribution is used to mutate ea
h xi, as a result ea
hindividual in
ludes only one strategy parameter σ. The mutation me
hanism isspe
i�ed by the following formulas:

σ′ = σ · eτ ·N(0,1) (3.2)
x′i = xi + σ′ ·Ni(0, 1)where σ is mutated ea
h time step by multiplying it by a term eτ ·N(0,1). N(0, 1)denotes a draw from the standard normal distribution, while Ni(0, 1) denotes aseparate draw from the standard normal distribution for ea
h variable xi. Theparameter τ 
an be interpreted as learning rate and readers 
an refer to [3℄ for amore detailed explanation.
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orrelated Mutation with n Step SizesCompared to one step size un
orrelated mutation, n step sizes mutation treatsdimensions di�erently and 
an learn axes-parallel mutation ellipsoids. This is be-
ause that the �tness lands
ape 
an have a di�erent slope in one dire
tion thanin another dire
tion. Now, the mutation me
hanism 
an be des
ribed as follows:
σ′
i = σi · eτ ·N(0,1)+τ ′·Ni(0,1) (3.3)
x′i = xi + σ′

i ·Ni(0, 1)where τ and τ ′ are 
alled global and lo
al learning rate respe
tively. The 
om-mon base mutation eτ ·N(0,1) allows an overall 
hange of the mutability, while the
eτ

′·Ni(0,1) provides the �exibility to use di�erent mutation strategies in di�erentdire
tions.Correlated MutationThis version of mutation allows the ellipses to have any orientation by rotatingthem with a 
ovarian
e matrix C. The ve
tors ~σ and ~α represent the 
omplete
ovarian
e matrix of the n-dimensional normal distribution, where the 
ovarian
esare given by rotation angles αi des
ribing the 
oordinate rotations ne
essary totransform an un
orrelated mutation ve
tor into a 
orrelated one. The 
ompletemutation me
hanism is performed a

ording to:
σ′
i = σi · eτ ·N(0,1)+τ ′·Ni(0,1) (3.4)

α′
j = αj + β ·Nj(0, 1)

~x′ = ~x+N(~0,C(~σ′, ~α′))where N(~0,C(~σ′, ~α′)) denotes the 
orrelated mutation ve
tor and β ≈ 0.0873.The details of this kind of mutation 
an be found in the literature e.g. in [100℄.To make these di�erent types of mutation more 
lear to readers, we illus-trate how the degrees of freedoms grow as the number of strategy parameters isin
reased in Figure 3.1. As one 
an see, ea
h of the three �gures shows a two-dimensional (n = 2) hypotheti
al obje
tive fun
tion topology, in
luding isolinesof equal obje
tive fun
tion value and the lo
ation of a global optimum ~x∗. Thegray-shaded 
ir
les and ellipsoids 
orrespond to individuals and their 
orrespond-ing probability distribution to produ
e an o�spring. For nσ = 1 (the left �gure),all distributions are spheri
ally symmetri
 and only the radius of the 
ir
les isindividually di�erent. For nσ = 2 (the middle �gure), step sizes along one dimen-sion might be di�erent from the one along other dimension, su
h that preferen
esear
h dire
tions 
an be adjusted. For nσ = 2, nα = 1, the ellipsoids 
an rotateand therefore allow an adjustment of arbitrary preferen
e dire
tions regardless ofthe 
oordinate system.
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Figure 3.1: S
hemati
 visualization of the three di�erent types of self-adaptivemutation in Evolution Strategies. Left: nσ = 2, middle: nσ = 2, right: nσ =
2, nα = 1. Figures 
ourtesy of Thomas Bä
k [6℄3.2.3 Re
ombinationThe basi
 re
ombination s
heme in Evolution Strategies (ES) involves two parentsthat 
reate one o�spring. A

ording to the manner of re
ombining parent alleles,re
ombination 
an be 
lassi�ed into dis
rete and intermediate re
ombination. This
an be formalized as follows:

zi =







(xi + yi)/2 intermediate re
ombination
{

xi if U(0, 1) > 0.5

yi otherwise dis
rete re
ombination (3.5)where U(0, 1) denotes a draw from one given uniform distribution. In 
ases wherethe whole population of µ individuals is used to generate one o�spring, we aretaking about global re
ombination. In pra
ti
e, dis
rete re
ombination is re
om-mended for the obje
t/de
ision variable part and the intermediate re
ombinationis suggested for the strategy parameters part. This s
heme preserves diversitywithin the solution spa
e while assuring a more 
autious adaptation of strategiesparameters.3.2.4 Sele
tionThe 
lassi
al Evolution Strategies (ES) o�er two di�erent variants for sele
ting
andidate solutions for the next iteration of the main loop of the algorithm:
omma(indi
ated by ,) and plus (indi
ated by +) sele
tion.Comma sele
tionIn this situation, after µ parents 
reate λ > µ1 o�spring by means of re
ombina-tion and mutation, the best µ o�spring are deterministi
ally sele
ted to repla
e1The ratio of µ to λ is 
alled sele
tive pressure in ES, and µ/λ = 1/7 is strongly re
ommended.



26 Mixed-Integer Evolution Strategiesthe parents. Using this kind of sele
tion the best member of the population atgeneration t + 1 might perform worse than the best individual at the previousgeneration t, Thus the strategy 
ould es
ape from the lo
al optimum and rea
ha better optimum. Comma sele
tion is advantageous in the 
ase of multimodaltopologies.Plus sele
tionIn 
ontrast, the (µ+λ) strategy sele
ts the µ survivors from the union of µ parentsand λ o�spring, su
h that a monotoni
 
ourse of evolution is guaranteed. Thiss
heme is typi
ally used in a steady-state setting or under 
ir
umstan
es where�tness deteriorations from one generation to the next are stri
tly una

eptable.3.2.5 Results of Theoreti
al StudyThe theoreti
al study on ES algorithms fo
uses mainly on the 
onvergen
e velo
ityand 
onvergen
e reliability. The former 
on
entrates on the speed of the algorithmwhen a lo
al optimum is approa
hed, while the latter targets on proving that thealgorithm is 
apable of �nding the global optimum of the given obje
tive fun
tion.For 
onvergen
e reliability, so far, the 
onvex 
ase 
an be handled under strongsimpli�
ations of the obje
tive fun
tions that 
an be analyzed. The 
onvergen
ereliability analysis yields a result for t → ∞ independent of the obje
tive fun
-tion [11℄. As one 
an see from the following se
tions, we will also apply the similarstudies on proposed Mixed-Integer Evolution Strategies (MIES).Based on the brief review of 
anoni
al Evolution Strategies (ES), espe
ially
(µ+

, λ)-ES, we 
an make a short summary now. Compared to other EA models, e.g.Geneti
 Algorithms (GAs), Evolution Strategies (ES) are operating 
ompletely ona phenotypi
 level and this give them a good opportunity to utilize mu
h moreknowledge about the appli
ation. Moreover, the self-adaptation of strategy param-eters provides a larger �exibility for ES over the 
omplete evolution pro
ess [2, 52℄.Last but not least, ES 
ombines 
onvergen
e velo
ity and 
onvergen
e reliabilityin a more robust way. With respe
t to all these important properties, EvolutionStrategies (ES) should prove to be global optimization algorithms and 
ompetitivewith other global optimization methods.3.3 Mixed-Integer Evolution StrategiesMixed-Integer Evolution Strategies (MIES) is a spe
ial variant of an EvolutionStrategies (ES) for the simultaneous optimization of 
ontinuous, integer, and nom-inal dis
rete parameters. It 
ombines mutation operators of Evolution Strategiesin the 
ontinuous domain [107℄, for integer programming [101℄, and for binarysear
h spa
es [3℄. These operators have in 
ommon that they have 
ertain desir-able properties, su
h as symmetry, s
alability, and maximal entropy, the detailsof whi
h will be dis
ussed later. The MIES was originally developed for opti
al
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hemi
al engineering plant optimization [38, 47℄.Re
ently, as dis
ussed in this 
ontribution, it has been used in the 
ontext ofmedi
al image analysis [75, 77℄. In the latter work also its 
onvergen
e behavioron various arti�
ial lands
apes was studied empiri
ally, in
luding a 
olle
tion ofsingle-peak lands
apes in [38℄ and lands
apes with multiple peaks in [77, 78℄.3.3.1 Problem De�nitionMany appli
ation problems from industry involve the simultaneous use of 
on-tinuous, integer, and nominal dis
rete obje
tive variables. The problem of mixedinteger parameter optimization 
an be formalized as follows: let r1, . . . , rnr
de-note a set of real-valued de
ision variables, z1, . . . , znz

denote a set of integerde
ision variables, and d1, . . . , dnd
denote a set of nominal dis
rete de
ision vari-ables, ea
h of whi
h is taken from a �nite domain. The �nite domains for thenominal dis
rete variables will be denoted with D(1), . . . , D(nd). We do noten
ode nominal dis
rete variables as integers, in order to exploit the fa
t thatthere is no meaningful a-priori ordering given for the domain of them. Further-more, let f : Rnr × Znz × D(1) × · · · × D(nd) → R denote an obje
tive fun
tionto be minimized, gi : Rnr × Znz × D(1) × · · · × D(nd) → R, i = 1, . . . , ng and

hj : Rnr × Znz ×D(1) × · · · ×D(nd) → R, j = 1, . . . , nh denote 
onstraint fun
-tions. Then the mixed integer parameter optimization problem 
an be de�nedas:
f(r ◦ z ◦ d) → min (3.6)
gi(r ◦ z ◦ d) ≤ 0, i = 1, . . . ,m

hj(r ◦ z ◦ d) = 0, j = 1, . . . , n

ri ∈ [r
(min)
i , r

(max)
i ], i = 1, . . . , nr

zi ∈ [z
(min)
i , z

(max)
i ], i = 1, . . . , nz

di ∈ D(i), i = 1, . . . , ndHere, the 
onstants r(min)
i and r(max)i de�ne lower and upper bounds for the realvariables and the 
onstants z(min)

i and z
(max)
i de�ne lower and upper boundsfor the integer variables. The symbol ◦ denotes tuple 
on
atenation. In 
ontrastwith mixed integer nonlinear programming (
f. se
tion 2.2), here three types ofvariables o

ur:Continuous Variables, denoted with ri, are taken from an interval Ri ⊂ Rand their values are represented as �oating point numbers. In the imagepro
essing �eld, for instan
e threshold parameters or a radius parameter fora geometri
al shape are often represented as 
ontinuous variables.Integer Variables, denoted with zi, are taken from a range of integer variables

Zi ⊂ Z. Important 
hara
teristi
s of integer variables are that their valueshave a smallest neighborhood (as opposed to 
ontinuous variables) and that



28 Mixed-Integer Evolution Strategiesa linear ordering is de�ned on the values (as opposed to nominal dis
retevariables). The number of gray values in an image is a typi
al example ofan integer variable in the image pro
essing domain.Nominal Dis
rete Variables, denoted with di, are variables the value of whi
hare taken from a �nite domain, denoted with Di. Neither a metri
 nor anordering is de�ned on this domain. An example is a variable whi
h takes itsvalue from a set of geometri
al shapes (ellipse, square, triangle). Also binaryvariables (su
h as swit
hes) belong to this 
lass of variables.As we are interested in the bla
k-box s
enario we assume that the stru
ture of f ,
gi, i = 1, . . . , ng and hj , j = 1, . . . , nh is unknown or we only 
an make some verygeneral statements about it, su
h as 
ontinuity assumptions based on a similaritymeasure de�ned on the sear
h spa
e [53℄. As a result of this it be
omes harderto apply standard te
hniques from mathemati
al programming - so 
alled mixed-integer nonlinear programming methods [42℄ to solve them deterministi
ally, su
has outer approximation (OA) [31℄, bran
h-and-bound (BB) [14℄, and generalizedBenders de
omposition [43℄.In 
ases where mathemati
al programming te
hniques fail, metaheuristi
s formixed integer optimization 
an be an interesting method to heuristi
ally sear
hfor solutions that improve the obje
tive fun
tion value. In order to solve mixedinteger optimization problems with metaheuristi
s two general approa
hes 
an be
onsidered:
• Hierar
hi
al Approa
h : Separate the dis
rete problem from the 
ontinu-ous problem by optimizing the dis
rete variables in an higher level optimiza-tion problem and treating the optimization of the 
ontinuous parameters asa subproblem [119, 82, 96℄
• Simultaneous Approa
h : Optimize dis
rete and 
ontinuous parameterssimultaneously . In this approa
h we 
onsider that similarity of parameterve
tors due to a appropriate metri
 as being positively 
orrelated to thesimilarity in fun
tion values [47, 105℄.The se
ond method is worth requiring more attention and there are two reasonswhy we favor this approa
h over the hierar
hi
al approa
h: Firstly, the hierar
hi-
al approa
h requires a sub-optimization of 
ontinuous parameters for ea
h set ofdis
rete parameters 
hosen in the outer level. This 
an be very time 
onsuming.Se
ondly, in the hierar
hi
al approa
h it is di�
ult to 
onsider 
orrelations be-tween dis
rete and 
ontinuous variables, as they are stri
tly separated from ea
hother. In the following, we will dis
uss the design philosophy of MIES in detailand present several important properties.3.3.2 Algorithm des
riptionThe problem of designing an evolution strategy for a new type of sear
h spa
ebreaks down into three subtasks:
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y
le,(2) de�nition of the individual representation,(3) de�nition of variation operators for the representation of 
hoi
e.These subtasks will be dis
ussed next.The 
hosen algorithm will be an instantiation of a (µ+
, λ)-ES for mixed-integerspa
es. It generalizes the more 
ommon (µ+

, λ)-ES for 
ontinuous spa
es, the dy-nami
 behavior of whi
h was subje
t to thorough theoreti
al and empiri
al studies.For instan
e, S
hwefel [107℄ 
ompared it to traditional dire
t optimization algo-rithms and Bä
k [3℄ to other evolutionary algorithms. Theoreti
al studies of the
onvergen
e behavior of the ES were 
arried out for instan
e by Beyer [11℄, Oy-man [88℄ and Rudolph [102℄. A 
omparison to other evolutionary algorithms su
has Geneti
 Algorithms 
an be found in Bä
k [3, 52℄. The results indi
ate that theES is a robust optimization tool that 
an deal with a large number of pra
ti
allyrelevant fun
tion 
lasses, in
luding dis
ontinuous and multimodal fun
tions. Inaddition, the ES performan
e s
ales well with the sear
h spa
e dimension.Generational Cy
leThe main pro
edure of the ES is des
ribed in Algorithm 3. After a uniform ran-dom initialization and evaluation of the �rst population P (0) of µ individuals(parameter ve
tors taken from an individual spa
e I) and setting the generation
ounter t to zero the main loop of the algorithm starts. In a �rst step of the iter-ation the algorithm generates the set Q(t) of λ new o�spring individuals, ea
h ofthem obtained by the following pro
edure:Two individuals are randomly sele
ted from P (t) and an o�spring is gener-ated by re
ombining these parents and then mutating (random perturbation) theindividual resulting from the re
ombination. In the next step of the iteration,the λ o�spring individuals are evaluated using the obje
tive fun
tion to rank theindividuals (the lower the obje
tive fun
tion value the better the rank). In 
aseof a (µ + λ) sele
tion, the µ best individuals out of the union of the λ o�springindividuals and the µ parental individuals are sele
ted. In 
ase of a (µ, λ) sele
tionthe µ best individuals out of the λ o�spring individuals are sele
ted. The sele
tedindividuals form the new parent population P (t + 1). After this, the generation
ounter is in
remented. The generational loop is repeated until the termination
riterion2 is ful�lled.RepresentationAn individual in an Evolution Strategy 
ontains the information about one solu-tion 
andidate. The 
ontents of parent individuals is inherited by o�spring indi-viduals and is subje
t to variation. The standard representation of a solution in2In most 
ases a maximal number of generations is taken as termination 
riterion.



30 Mixed-Integer Evolution StrategiesAlgorithm 3 (µ+
, λ)-Evolution Strategy1: t← 02: initialize Population P (t) ∈ Iµ3: evaluate the µ initial individuals with obje
tive fun
tion f4: while Termination 
riteria not ful�lled do5: for all i ∈ {1, . . . , λ} do6: 
hoose uniform randomly parents ci1 and ci2 from P (t) (repetition ispossible)7: xi ← mutate(re
ombine(ci1 , ci2))8: Q(t)← Q(t) ∪ {xi}9: end for10: P (t+1)← µ individuals with best obje
tive fun
tion value from P (t)∪Q(t)(plus), or Q(t) (
omma)11: t← t+ 112: end whilean ES individual is a 
ontinuous ve
tor. In addition parameters of the probabil-ity distribution used in the mutation (su
h as standard-deviations or step-sizes)are stored in the individual. The latter parameters are referred to as strategyparameters.To solve mixed-integer problems with an Evolution Strategy we extend thereal-ve
tor representation of individuals by introdu
ing integer and nominal dis-
rete variables as well as strategy parameters related to them. The domain of anindividual then reads:

I = R1 × · · · ×Rnr
× Z1 × · · · × Znz

×D1 × · · · ×Dnd
×AsHere, As denotes the domain of strategy parameters and is de�ned as:

As = R
nσ+nς

+ × [0, 1]np , nσ ≤ nr, nς ≤ nz, np ≤ ndAn individual of a population P(t) in generation t is denoted as:
~a = (r1, . . . , rnr

, z1, . . . , znz
, d1, . . . , dnd

, σ1, . . . , σnσ
, ς1, . . . , ςnς

, p1, . . . , pnp
)The so-
alled obje
t variables r1, . . . , rnr

, z1, . . . , znz
, d1, . . . , dnd

determine theobje
tive fun
tion value and thus the �tness of the individual (
f. Equation 3.6).Here, r1, . . . , rnr
denote real valued, z1, . . . , znz

integer valued, and d1, . . . , dndnominal dis
rete variables. The so-
alled strategy-variables σ1, . . . , σnσ
are stan-dard deviations used in the mutation of the real valued variables, ς1, . . . , ςnς
denotemean step sizes in the mutation of the integer parameters. Finally, p1, . . . , pnp

de-note mutation probabilities (or rates) for the nominal dis
rete obje
t parameters.All these parameters are subje
t to inheritan
e, re
ombination, and mutationwithin Algorithm 3. Obje
t variables are initialized uniformly within their do-main.
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ombinationThe re
ombination operator 
an be subdivided into two steps, sele
tion of theparents and re
ombination of the sele
ted parents. Here we will fo
us on lo
alre
ombination whi
h works with two re
ombination partners. In this work we willapply lo
al re
ombination whi
h works with two re
ombination partners. Thetwo re
ombination partners c1 ∈ I and c2 ∈ I are 
hosen randomly a

ordingto a uniformly distribution from the parental generation for ea
h of the o�springindividuals. The information 
ontained in these individuals is 
ombined in orderto generate an o�spring individual. In Evolution Strategies two re
ombinationtypes are 
ommonly used: dominant and intermediate re
ombination [107℄. In adominant (or) dis
rete re
ombination the operator 
hooses randomly one of the
orresponding parental parameters for ea
h o�spring ve
tor position. Intermediatere
ombination 
omputes the arithmeti
 mean of both parents and thus, in general,
an only be applied for 
ontinuous obje
t variables and strategy variables. InMixed-Integer ES, dominant re
ombination is used for the solution parameterswhile intermediate re
ombination is used for the strategy parameters.MutationFor the parameter mutation, standard mutations with maximal entropy for real,integer and dis
rete parameter types are 
ombined, as des
ribed in [3, 101, 105,107℄. The 
hoi
e of mutation operators was guided by the following requirementsfor a mutation in general sear
h spa
es (e.g. [30, 101, 11℄):
• A

essibility: Every point of the individual sear
h spa
e should be a

es-sible from any other point by means of a �nite number of appli
ations ofthe mutation operator.
• Feasibility: The mutation should produ
e feasible individuals. This guide-line 
an be 
ru
ial in sear
h spa
es with a high number of infeasible solutions.
• Symmetry: No additional bias should be introdu
ed by the mutation op-erator.
• Similarity: Evolution strategies are based on the assumption that a solu-tion 
an be gradually improved. This means it must be possible to generatesimilar solutions by means of mutation.
• S
alability: There should be an e�
ient pro
edure, by whi
h the strengthof the impa
t of the mutation operator on the �tness values 
an be 
on-trolled.
• Maximal Entropy: If there is no additional knowledge about the obje
-tive fun
tion available the mutation distribution should have maximal en-tropy [101℄. By this measure a more general appli
ability 
an be expe
ted.
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ting these guidelines, the following operators have been sele
ted in [38℄:The mutation of 
ontinuous variables is des
ribed in Algorithm 4. The new indi-vidual is obtained by adding a normal distributed random perturbation, to theold values of the ve
tor. The 
orresponding standard deviations are also subje
tto the evolution pro
ess and are thus multiplied in ea
h step by a logarithmi
distributed random number. S
hwefel [107℄ termed the resulting pro
ess as self-adaptive, be
ause the adaptation of the mutation parameters is governed by anevolutionary pro
ess itself. The general idea behind self-adaptation is that, if aset of di�erent individuals is generated, ea
h with a di�erent probability distribu-tion, the individual with the best obje
t variables is also likely to be the one withthe best probability distribution that lead to the generation of these obje
t vari-ables. Thus the parameters of this probability distribution are also inherited bythe o�spring individual. We will now spend some remarks on the properties of theAlgorithm 4 Mutation of real valued parameters1: input: r1, . . . , rnr
, σ1, . . . , σnr2: output: r′1, . . . , r′nr
, σ′

1, . . . , σ
′
nσ3: 
ontrol parameters: nσ ∈ {1, nr}4: Nc ← N(0, 1) {Generate and store a normally distributed random number}5: τ ← 1√

2nr
; τ ′ ← 1√

2
√
nr

{Initialize global and lo
al learning rate}6: if nσ = 17: {Single step-size mode} then8: σ′
1 = σ1 exp(τNc)9: for all i ∈ {1, . . . , nr} do10: r′i ← ri + σ′

1N(0, 1))11: end for12: else13: {Multiple step-size mode}14: for all i ∈ {1, . . . , nr} do15: σ′
i ← σi exp(τNc + τ ′N(0, 1))16: r′i ← ri + σ′

iN(0, 1))17: end for18: end if19: {Interval boundary treatment}20: for all i ∈ {1, . . . , nr} do21: r′i ← T[rmin
i

,rmax
i

](r
′
i)22: end fornormal distributions, as they are responsible for the 
hoi
e of this type of distribu-tion for mutating 
ontinuous variables. Among all 
ontinuous distributions with�nite varian
e on R, the normal distribution possesses the maximum entropy [67℄.The multidimensional normal distribution is symmetri
al to its mean value andunimodal. The step-sizes represent standard deviations of the multi-dimensionalnormal distribution for ea
h real-valued variable. By variation of these standard



Chapter 3 33deviations the impa
t of the mutation on the variable ve
tor in terms of similarity
an be s
aled.As opposed to 
ontinuous variables, integer variables are less 
ommonly usedin evolution strategies. The mutation pro
edure for integer variables is borrowedfrom [101℄, where the repla
ement of the normal distributed random variables bythe di�eren
e between two geometri
al distributed variables has been suggested.Among distributions de�ned on integer spa
es the multidimensional geometri
distribution is one of the distributions of maximum entropy and �nite varian
e, asthe original geometri
 distribution is single-tailed, Rudolph [101℄ suggested to useinstead the di�eren
e Z1−Z2 of two geometri
ally distributed random variables.The resulting distribution is depi
ted for the 1-D 
ase in Figure 3.2 and 2-D 
asein Figure 3.3. It is l1-symmetri
al3 
entered around its mean value, unimodal andit has an in�nite support, thereby symmetry and a

essibility of the mutation isobtained. A

essibility is given in a stri
t sense: ea
h possible 
on�guration 
anbe rea
hed with a �nite probability in a single step. The strength of the mutationfor the integer parameters is 
ontrolled by a set of step-size parameters whi
hrepresent the mean value of the absolute variation of the integer obje
t variables.The details of this mutation operator are found in Algorithm 5. Note that ageometri
ally distributed random value with mean step size parameter ς 
an begenerated by transforming a uniformly distributed random value u, using:
z =

⌊
ln(1 − u)
ln(1− ψ)

⌋

, ψ = 1− ς
(

1 +
√

1 + ς2
)−1 (3.7)The width of the distribution 
an be 
ontrolled by the parameter ς, the meanvalue of the exponential distribution (
f. 3.2, for a derivation, see [101℄). Ex
eptingthe di�erent distribution types used, it is very similar to the real valued mutationoperator in Algorithm 4. Self-adaptation is used to 
ontrol the width parameter(s).The mutation of the width parameter is done as in [101℄ using a global learningrate τ and lo
al learning rate τ ′. Sin
e a mean step-size below 1 is not usefulfor integer problems the mutated mean step-size is set ba
k to 1, whenever itsmutation results in a value less then 1.Sin
e we have to keep integer and 
ontinuous parameters within their feasibleinterval, the mutation operators need to be extended. Therefore a transformationfun
tion T[a,b] is applied to the mutation operators, that brings parameters be-yond boundaries ba
k into the feasible domain. For the 
ontinuous and integerparameters this is a
hieved by (an illustration of how the transformation fun
tionworks 
an be found in Figure 3.4.):

T[a,b] = a+ (b − a) 2

π
sin−1(| sin

(
π(x− a)
2(b− a)

)

|) (3.8)The transformation fun
tion 
an be viewed as a re�e
tion at the interval bound-aries. Given a step-size of the mutation, we may 
onsider this to be the length3The l1-norm of a ve
tor z ∈ Zn is de�ned as ∑n
i=1

|zi|.
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Figure 3.2: 2-D representation of the dis-tribution obtained as the di�eren
e oftwo geometri
al distributions for di�er-ent values of ς. Figure 3.3: 3-D representation of thedistribution obtained as the di�eren
eof two geometri
al distributions. Figure
ourtesy of Günter Rudolph.a parti
le has to travel within the interval. Starting in the dire
tion of the orig-inal unbounded mutation, whenever it meets with an interval boundary the di-re
tion is inverted until the total length of the unbounded mutation has been
overed. The method 
an be e�
iently implemented as seen in algorithm 6.Unlike other mappings, the limiting distribution of the random walk Xt+1 =
T[a,b](Xt + σN(0, 1)), t = 1, 2, . . . is the uniform distribution. This means thatthere are no preferred regions of the sear
h spa
e in the long term in 
ase ofneutral sele
tion and thus bias is avoided. In order to prevent a loss of 
ausality,the step-size should be kept smaller than the interval width. We re
ommend amaximal stepsize of 0.2(b− a).
y = (x− a)/(b− a)if ⌊y⌋ mod 2 = 0 then
y′ = |y − ⌊y⌋|else
y′ = 1− |y − ⌊y⌋|end if

x′ = a+ (b− a)y′return x′Algorithm 6: Computation T[a,b](x), forinterval boundaries a and b.  0

 2

 4
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 8

 10

 0  2  4  6  8  10

T
(x

)

xFigure 3.4: An illustration to show work-ing me
hanism of the transformationfun
tion (a=4, b=6).



Chapter 3 35Algorithm 5 Mutation of integer parameters1: input: z1, . . . , znz
, ς1, . . . , ςnς2: output: z′1, . . . , z
′
nz
, ς ′1, . . . , ς

′
nς3: 
ontrol parameters: nς ∈ {1, nz}4: Nc ← N(0, 1)5: τ ← 1√

2nz
; τ ′ ← 1√

2
√
nz6: if nς = 1 then7: {Single step-size mode}8: ς ′1 ← max(1, ς1 exp(τNc))9: for all i ∈ {1, . . . , nz} do10: u1 ← U(0, 1);u2 ← U(0, 1);ψ ← 1− (ς ′1/nz)

(

1 +
√

1 + (
ς′1
nz

)2
)−111: G1 ←

⌊
ln(1−u1)
ln(1−ψ)

⌋

;G2 ←
⌊

ln(1−u2)
ln(1−ψ)

⌋12: z′i ← zi +G1 −G213: end for14: else15: {Multiple step-size mode}16: for all i ∈ {1, . . . , nz} do17: ς ′i ← max(1, ςi exp(τNc + τ ′N(0, 1)))18: u1 ← U(0, 1);u2 ← U(0, 1);ψ ← 1− (ς ′i/nz)

(

1 +
√

1 + (
ς′
i

nz
)2

)−119: G1 ←
⌊

ln(1−u1)
ln(1−ψ)

⌋

;G2 ←
⌊

ln(1−u2)
ln(1−ψ)

⌋20: z′i ← zi +G1 −G221: end for22: end if23: {Interval boundary treatment}24: for all i ∈ {1, . . . , nz} do25: z′i ← T[zmin
i

,zmax
i

](z
′
i)26: end forFinally, a mutation of the dis
rete parameters is 
arried out with a mutationprobability as des
ribed in Algorithm 7. The probability is a strategy param-eter for ea
h dis
rete variable. Ea
h new value is 
hosen randomly (uniformlydistributed) out of the �nite domain of values. The appli
ation of a uniform dis-tribution is due to the prin
iple of maximal entropy, sin
e the assumption wasmade that there is no reasonable order de�ned between the dis
rete values.To reason about requirements like symmetry and s
alability we need to de�nea distan
e measure on the dis
rete sub-spa
e. The assumption that there is noorder, whi
h 
an be de�ned on the �nite domains of dis
rete values, leads to theappli
ation of the overlap distan
e4 measure: ∆((d1, . . . , dnd

), (d′1, . . . , d
′
nd

)) =4For the binary 
ase this 
orresponds to the Hamming distan
e.
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∑nd

i=1H(di = d′i) with H(true) = 1;H(false) = 0 as a similarity measure forguiding the design of the mutation operator.A self-adaptation of the mutation probability for the dis
rete parameters isa
hieved by a logisti
 mutation of these parameters, generating new probabilitiesin the feasible domain. The logisti
 transformation fun
tion is re
ommended anddis
ussed by S
hütz [105℄. The basi
 idea of this transformation is to keep thevariables within the range [0, 1]. Given an original mutation probability p ∈ [0, 1],it 
an be mutated using the following pro
edure:
p′ =

1

1 + 1−p
p ∗ exp(−τ ′N(0, 1))

(3.9)Here N(0, 1) denotes a fun
tion that returns a normally distributed random num-ber. We re
ommend to employ a se
ond transformation fun
tion (Tpmin,pmax
)that keeps the value of p in the interval [1/(3nd), 0.5]. The upper bound of 0.5for the mutation probability is motivated by the observation that the mutationloses its 
ausality on
e the probability ex
eeds the value of about 0.5. The lowerbound is used to prevent the mutation probability from being too 
lose to 0, inwhi
h 
ase the MIES be
omes insensitive to 
hanges of that parameters. In 
aseof p = 1/(3nd) a dis
rete mutation 
an be expe
ted in every third appli
ation ofthe mutation operator.Depending on the dis
rete subspa
e, it 
an be advantageous to use a single mu-tation probability instead of many individual mutation probabilities p1, . . . , pnd
.In 
ase of a single mutation probability, for ea
h position of the dis
rete subve
torit is de
ided independently, but with the same probability, whether to mutate thisposition or not. By adapting the mutation rate, the average number of mutationson the dis
rete values is adjusted to the mean step-size if the Hamming distan
eis 
onsidered as metri
.3.3.3 Step-size Adaptation StudyPrevious work already showed that self adaptive ES are able to 
onverge to optimaof simple fun
tions in arbitrary pre
ision by using step size adaptation. However,it is an open question whether the self adaptation indeed is 
apable of helping thestep size 
lose to a optimal value that optimizes the progress rate. A theoreti
alanalysis of the step-size adaptation is very di�
ult, even for simple models su
h asthe sphere models. In this 
hapter we used a semi-empiri
al approa
h by approxi-mating the lo
al progress rate at a given distan
e to the optimum statisti
ally fordi�erent step-sizes, in order to �nd the optimal step-size s∗ that maximizes thelo
al progress of the MIES. This 
omputation is repeated for di�erent stages of theevolution and ea
h time the empiri
ally found optimal step-size ŝ∗ is 
omparedto the 
urrent step-size of the MIES.Though we use the approa
h in this arti
le only for the analysis on the 
on-tinuous, integer, and dis
rete sphere model, it is appli
able also for analysis on



Chapter 3 37Algorithm 7 Mutation of nominal dis
rete parameters1: input: d1, . . . , dnd
, p1, . . . , pnp2: output: d′1, . . . , d′nd
, p′1, . . . , p

′
np3: 
ontrol parameters: np ∈ {1, nd}4: Nc ← N(0, 1)5: τ ← 1√

2nd
; τ ′ ← 1√

2
√
nd6: if np = 1 then then7: {Single step-size mode}8: p′ ← 1

1+ 1−p

p
∗exp(−τ∗Nc)9: p′ = T[0.01,0.5](p

′)10: for all i ∈ {1, . . . , np} do11: if U(0, 1) < p′ then12: 
hoose a new element uniform distributed out of Di \ {di}13: end if14: end for15: else16: {Multiple step-size mode}17: for all i ∈ {1, . . . , np} do18: p′i ← 1

1+
1−pi

pi
∗exp(−τ∗Nc−τ ′∗N(0,1))19: p′i = T[1/(3nd),0.5](p

′
i)20: if U(0, 1) < p′i then21: 
hoose a new element uniform distributed out of Di \ {di}22: end if23: end for24: end ifany other test problem for whi
h the optimum is known and the evaluation of theobje
tive fun
tion is fast.In 
orresponden
e with [11, 12℄, the lo
al progress rate φ(s,x) for a step-size sis the expe
tation of the distan
e 
overed towards the optimum in one mutationstep [13℄ starting from position x. Consider a mutation operator muts parame-terized by the step-size, an obje
tive fun
tion f : I → R with single optimumx∗ ∈ X , and a position x in the metri
 sear
h spa
e (X, d). Then

φ(s,x) = E
(max{0, R(x)−R(muts(x))}

R(x)

)
, R(x) = d(x,x∗) (3.10)In order to 
ompute φ(s,x) we 
ompute the sample mean forM = 50000 samples:

φ̂(s,x) =
1

M

M∑

i=1

max{0, R(x)−R(mutis(x))}
R(x)

. (3.11)Depending on the parameter type, a di�erent distan
e measurement is used to
ompute d(x,x∗) (
f. Equation 3.12). For instan
e, the Eu
lidean distan
e is ap-
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ontinuous parameters, Manhattan distan
e is applied to integer param-eters, and for dis
rete parameters we 
hoose the Overlap distan
e fun
tion.
d(x,x∗) =







√∑n
i (xi − x∗i )2 if xi ∈ R (Eu
lidean Distan
e)

∑n
i |xi − x∗i | if xi ∈ Z (Manhattan Distan
e)

∑n
i I(xi, x

∗
i ) =

{

0 if (xi = x∗i )

1 if (xi 6= x∗i )
if xi ∈ D (Overlap Distan
e)(3.12)The optimal step-size s∗ is approximated by means of a graphi
al plot. The valueof φ̂(s,x) is 
omputed for an equidistant set of L = 40 points s1, s2, . . . , sL in theinterval [0, smax(x)]. The upper interval boundary smax is 
hosen as smax(x) =

2|x − x∗| and as smax = 1 whenever smax(x) represents a mutation rate. It isplausible that an optimal step-size exists, as �rst of all the value of φ is alwayspositive and for s = 0 it should take the value of 0. Whenever the step-size sgets too large the progress rate also approa
hes zero, sin
e the probability tostep beyond the region of improvement gets very high. The upper bound of 1 in
ases where s represents a probability seems to be a natural 
hoi
e. However, in
ase of a high sear
h spa
e dimensionality the optimal value of s might be very
lose to zero and a redu
tion of the upper bound 
an be 
onsidered. The resear
hquestion is whether the MIES 
an �nd and keep the step-size that maximizes thelo
al progress rate.The experimental setup is as follows: We 
ompute the optimal step-size atdi�erent stages of the evolution. Let x(t) denote the parent individual in the t-thgeneration. We then 
ompute φ̂(si,x(1)) for si ∈ [0, smax(x(t))], i = 1, . . . , L, andgraphi
ally 
ompare the peak of the graph of φ̂(si,x(t)) with the step-size s(t) usedby the MIESES at di�erent stages of the evolution. The sear
h spa
e dimensionis 15 and the variable range is [−1000, 1000] for the integer and dis
rete variables,and {0, . . . , 9} for the dis
rete variables. As a test problem the minimization of thesum of squares of the variables is used. Continuous, integer and dis
rete spa
eswere studied separately.Results for di�erent parameter types are shown in Figure 3.5 (
ontinuous), 3.6(integer) and 3.7 (dis
rete). For all three 
ases the optimum of the step-size isfound and tra
ked. This proves that, at least for relatively simple � but never-theless high-dimensional � problems, the self-adaptation of the step-sizes works.Note, that the s
ale of the plots in Figures 
hanges during the run by orders ofmagnitude. In order to a
hieve the results we used a learning rate of 0.5. It isalso possible to use the re
ommended values for τ (
f. 3.3.2). For this setting wea
hieved worse results, although the right order of magnitude for the step-sizewas still obtained. In summary, this study shows that all distributions used formutation 
an be 
ontrolled in their width by means of s
aling parameters, allow-ing self-adaptation to be implemented. In the following part, we will present someresult of theoreti
al study of MIES on 
onvergen
e reliability.
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Step sizeFigure 3.5: Comparison between the peak of the graph of φ̂(si, x
(t)) with thestepsize s(t) (verti
al line) of 
ontinuous variables used by the MIES at that stageof the evolution. The step-size s(t) is found by the self-adaptation within the

(4, 28)-MIES (i.e. without knowledge of φ̂).3.3.4 Global Convergen
e PropertiesIf 
ertain regularity requirements are met, it is possible to prove strong probabilis-ti
 
onvergen
e of the MIES for t→∞ towards the global optimum. The theoremgeneralizes a theorem on the ES for 
ontinuous spa
es by Born [15℄. Both the plusand the 
omma strategy are 
onsidered, and for the 
onvergen
e analysis the bestsolution found so far, i.e. xtbest, will be 
onsidered.De�nition 1A fun
tion f : C → R is 
alled regular, if:(A) f is 
ontinuous,(B) C ⊆ Rn is a 
losed set,(C) ∀x′ ∈ C : ∀ǫ > 0 : the set {x ∈ C|x 6= x′ ∧ f(x) ≤ f(x′) + ǫ} is non-empty.De�nition 2Let A′ ⊆ A and let g : A→ B a fun
tion. By g|A′ we denote the restri
tion of thefun
tion g de�ned by g|A′(a′) := g(a′) where a′ ∈ A′.Given these te
hni
al preliminaries we 
an state the following theorem:
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Step sizeFigure 3.6: Comparison between the peak of the graph of φ̂(si, x
(t)) with thestepsize s(t) (verti
al line) of integer variables used by the MIES at that stageof the evolution. The step-size s(t) is found by the self-adaptation within the

(4, 28)-MIES (i.e. without knowledge of φ̂).Theorem 3Let f : R
n × A → R denote a mixed-integer fun
tion, and f |Rn×{a} is a regularfun
tion for at least one a∗ ∈ A whi
h is optimal. Then for a (µ+ λ) MIES withlower limit σmin > 0 for the stepsizes and mutation rates, the series f(xtbest)t=1,2,...
onverges with probability one to the global minimum of f , i.e.Pr{ lim

t→∞
∆t = 0} = 1,with ∆t = f(xtbest)− f∗ ≥ 0 (3.13)Here t represents the number of iterations, and f∗ denotes the global optimum.Proof (Proof)From the 
onstru
tion of the algorithm it follows:

∀t ≥ 0 : ∆t+1 ≤ ∆t (3.14)and from the de�nition of a global optimum we get
∀t ≥ 0 : ∆t ≥ 0 (3.15)With proposition 3.14 and 3.15 it follows that ∆t(t = 1, 2, . . .) has a limit value
lim
t→∞

∆t = ∆∞ (3.16)
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(t)) with thestepsize s(t) (verti
al line) of dis
rete variables used by the MIES at that stageof the evolution. The step-size s(t) is found by the self-adaptation within the

(4, 28)-MIES (i.e. without knowledge of φ̂). The results were also 
omputed forprobabilities that leave the feasible interval [1/(3nd), 0.5] and for whi
h the inter-val transformation T[a,b] was applied.Below we show that ∆∞ > 0 leads to a 
ontradi
tion with proposition 3.15 andthus ∆∞ = 0 is true. Let f∞
best denote the fun
tion value f tbest for t → ∞, theexisten
e of whi
h we have shown above. Then let

ǫ = (f∞
best − f∗)/2 (3.17)Given the assumption ∆∞ > 0 and hen
e ǫ > 0, it follows that

X∗
ǫ = {(r, a∗) ∈ R

n × A | | f |Rn×{a∗}(r)− f∗| ≤ ǫ} (3.18)is a nonempty set, where a∗ denotes an optimal setting for a ∈ A. Then X∗
ǫ isnon-empty be
ause of the assumption of regularity of f |Rn×{a} for any optimal

a ∈ A.Thus there exists a 
losed n-dimensional ball K = {r ∈ Rn| |r0 − r| ≤ ρ} with
ρ > 0 and 
enter r0 ∈ Rn that Ka∗ = {(r, a∗)|r ∈ K} ⊆ X∗

ǫ .Now, let us 
ompute the probability of the event that the mutation of the dis
reteand 
ontinuous variables yield a point in Ka∗ , given some arbitrary parent (r′, a′),where a′ denotes the dis
rete part of a solution. This 
an be 
omputed as the jointprobability for the following two independent events:



42 Summary(E1) the mutation of real ve
tor generates r ∈ K(E2) the mutation of dis
rete part of the solution generates a∗This joint probability is lower bounded by:
pǫ = min

a′∈A

pa′→a∗ min
r0∈Rn

(
1√

2πσ2
min

)n

·
∫

r∈K
exp

(
1

2σ2
min

(r− r0)
T · (r− r0)

)

dr > 0(3.19)for a step-size σmin > 0. Here pa′→a∗ is the probability to obtain a∗ by onemutation of dis
rete parameters, whi
h is larger than 0. Now we 
an derive alower bound for the probability that Ka∗ is hit at least on
e after q generationsas (where (q − 1)λ ≤ t < qλ):Pr( q
∨

i=1

(xibest ∈ Ka∗)) = 1− (1− (pǫ)
λ)q (3.20)where λ denotes the number of o�spring per generation. Hen
e,

lim
q→∞

Pr( q
∨

i=1

(xibext ∈ X∗
ǫ )) = 1 (3.21)With expression 3.15 and expression 3.17 we get an 
ontradi
tion to our assump-tion that ∆∞ > 0. In other words, any ve
tor with a distan
e ∆t > 0 will beimproved as t→∞ with probability one.3.4 SummaryTargeting at solving 
hallenging mixed-integer parameter optimization problemsin the real world, we proposed a promising algorithm - the so-
alled Mixed-IntegerEvolution Strategies (MIES) - in this 
hapter. MIES are derived from the 
anoni
alEvolution Strategies (ES), whi
h are often applied to optimization problems in
ontinuous sear
h spa
e. MIES, by 
ontrast, use spe
i�
 variation operators todeal with di�erent parameter types (
ontinuous, integer and dis
rete) of de
isionvariables. In parti
ular, MIES are 
apable of ta
kling bla
k-box mixed-integeroptimization problems in pra
ti
e.Inspired by the previous works [7, 38℄ on mixed-integer parameter optimizationand their appli
ations to some representative real-world appli
ations, we explainedthe design philosophy of the framework of MIES expli
itly. Furthermore, in this
hapter we made some theoreti
al studies on MIES regarding, for instan
e, theglobal 
onvergen
y property and self-adaptation of stepsize. In the rest of thisthesis, we will do more experimental studies on MIES to learn more about su
han algorithm. For instan
e, MIES will be applied to feature dete
tion in medi
alimages, and several advan
ed te
hniques will be studied for further improving thealgorithm performan
e.



Chapter 4Syntheti
 Mixed-IntegerLands
apesIn the previous 
hapter 3, we introdu
ed Mixed-Integer Evolution Strategies(MIES) and related theoreti
al study results. In this 
hapter we will presentsome arti�
ial test problems (�tness lands
apes), whi
h are spe
ially designedfor mixed-integer parameters sear
h spa
es. Through these proposed test prob-lems, we 
an gain deep insights about MIES algorithm. Some sele
ted empiri
alresults will be presented whi
h demonstrate the algorithm performan
e, su
h asits 
onvergen
e behavior. These syntheti
 mixed-integer lands
apes also providereaders with the opportunity to 
ompare results of this kind of evolutionary al-gorithm with that of other optimization algorithms, for instan
e with traditionalEvolution Strategies (ES).The whole 
hapter is organized as follows: First, in se
tion 4.1, �tness land-s
apes, whi
h have been proved to be one of the most important 
on
epts inevolutionary theory, will be reviewed brie�y espe
ially in the 
omputer s
ien
eresear
h domain. In se
tion 4.2, we introdu
e the Barrier fun
tion and show someexperimental results about it. Next, Mixed-Integer NK Lands
apes (MINKL) areexplained in detail in se
tion 4.3, as well as some important theorems on the ex-isten
e and position of lo
al/global optima and some implementation details ofthe model.4.1 Fitness Lands
apesFitness lands
apes are very often en
ountered in the 
ommunity of people, whoare working on evolutionary 
omputation. It is a powerful tool that resear
hers 
anuse to develop 
omprehensive insights about the working me
hanism of a 
omplexsear
hing pro
ess, for instan
e, a sear
hing pro
ess when evolution strategies areapplied to some real-world appli
ation. Be
ause of their importan
e, we would



44 Fitness Lands
apeslike to give a brief review of �tness lands
apes and several important de�nitionsin this part.4.1.1 MotivationFitness lands
apes were originally introdu
ed by Sewall Wright in his 1932 pa-per [124℄, in whi
h �tness lands
apes were used as a way to visualize sophisti
ateddynami
s of population geneti
s. A

ording to Wright's des
ription, ea
h individ-ual gene 
ombination 
orresponded to a point on a �tness lands
ape and therewas one axis whi
h represented every possible gene 
ombination. Under 
ertainmathemati
al 
onditions, a potential fun
tion F 
an be employed to des
ribe thedeterministi
 dynami
s of su
h kind of evolutionary pro
ess. The 
orrespondingde�nition of a potential fun
tion F is de�ned as follows:
F : S → R, s 7→ F(s) (4.1)where F is a potential fun
tion from the state spa
e S with its neighbourhoodstru
ture into the real numbers R [115℄. Ea
h possible state s ∈ S 
an be asso-
iated to one number, su
h that the value of this number re�e
ts the degree towhi
h a 
ertain state is preferable to another state.Sin
e Wright introdu
ed �tness lands
ape in his work, this metaphor has beenwidely adopted by s
ientists from di�erent resear
h areas, su
h as biology, 
hem-istry, physi
s and 
omputer s
ien
e. The interpretation of �tness 
an be di�erentwhen referring to di�erent appli
ation areas. In biology, in
reasing �tness meansthat a population moves uphill on a �tness lands
ape. On the 
ontrary, lowerpoints represent low energy states and thus are more desirable in physi
s. In 
om-puter s
ien
e, as Jones has 
learly stated in his PhD thesis [57℄, a �tness lands
apeis an artifa
t of the neighbourhood stru
ture, whi
h is indu
ed by the operators(e.g. mutation operators in evolutionary algorithms) the algorithm employs. Inpra
ti
e, the di�eren
e between maximization and minimization is trivial andthey are equivalent apart from an inversion of sign of F .4.1.2 Lo
al OptimaGiven a �tness lands
ape and its potential fun
tion F , in the 
ase of minimization,lo
al optima are de�ned as follows:De�nition 1A point s in the state spa
e S is a lo
al optima of the F if there exists a neigh-bourhood N of s su
h that ∀s′ ∈ N ,F(s)−F(s′) ≤ 0.The number of lo
al optima is one important 
hara
teristi
 of a �tness lands
ape,and it gives an impression of how rugged a lands
ape is. In general, a lands
apewith fewer lo
al optima result in a larger 
orrelation and thus is easier to beta
kled by optimization algorithms. By 
ontrast, more lo
al optima means thatthe 
orresponding lands
ape is more rugged and therefore more 
hallenging for



Chapter 4 45algorithms to deal with. Figure 4.1 shows an example �tness lands
ape in 2D.A

ording to the de�nition of lo
al optima, the �tness values of points A,B,Cand D are better (smaller) than all their neighbours and are lo
al optima in the
ase of minimization.
D

C

B

AFigure 4.1: Illustration of lo
al optima in a 2D �tness lands
ape.4.1.3 Unimodality vs. MultimodalityA lands
ape is said to be unimodal if it only has one global optimum, that is,has one peak (maximum) or valley (minimum) in a given interval. Otherwise, it is
alled multimodal lands
ape if it has several lo
al optima, su
h as the lands
apein Figure 4.1. From mathemati
al perspe
tive, unimodal fun
tions 
an be de�nedas follows [93℄:De�nition 2A fun
tion F is unimodal if (1) x1 < x2 < x∗ implies that F(x1) < F(x2), and(2) x2 > x1 > x∗ implies that F(x2) > F(x1), where x∗ is the minimum point.Generally speaking, a multimodal lands
ape is more di�
ult 
ompared with aunimodal lands
ape. However, in some extreme 
ases, a unimodal lands
ape 
analso present di�
ulties for sear
hing algorithms.4.2 Barrier Fun
tionBarrier fun
tion1 is a multi-modal problem generator that produ
es integer opti-mization problems with a s
alable degree of ruggedness (determined by parameter
C) by generating an integer array A using Algorithm 8.For C = 0 the ordering of the variable y ∈ [0, 19] values 
orresponds to theordering of values of A(y). If the value of C is slightly in
reased, still part of the1In Dut
h, it is 
alled �Drempels� fun
tion



46 Barrier Fun
tionAlgorithm 8 Barrier Fun
tion.1: A[i] = i, i = 0, . . . , 192: for k ∈ {1, . . . , C} do3: j ← uniform random number out of {0, . . . , 18}4: swap values of A[j] and A[j + 1]5: end fororder will be preserved under the mapping A, and thus similarity information 
anbe exploited. Then a barrier fun
tion is 
omputed:
fbarrier(r, z,d) =

nr∑

i=1

A[⌊ri⌋]2 +

nz∑

i=1

A[zi]
2 +

nd∑

i=1

Bi[di]
2 → min

nr = nz = nd = 5, r ∈ [0, 19]nr ⊂ Rnr ,

z ∈ [0, 19]nz ⊂ Znz ,d ∈ {0, . . . , 19}nd ⊂ Dnd .Here, Bi(i = 1, . . . , nd) denotes a set of i permutations of the sequen
e 0, . . . , 19,ea
h of whi
h is a random permutation �xed before the run. This 
onstru
tionprevents that the value of the nominal value di is quantitatively (anti-)
orrelatedwith the value of the obje
tive fun
tion f . Su
h a 
orrelation would 
ontradi
twith the assumption that di are nominal values. Whenever a 
orrelation betweenneighboring values 
an be assumed it is wiser to assign them to the ordinal typeand treat them a

ordingly.The parameter C 
ontrols the ruggedness of the resulting fun
tion with regardto the integer spa
e. Higher values of C result in more rugged lands
apes withmany barriers. To get an intuition about the in�uen
e of C on the geometry of thefun
tion we in
luded plots for a two-variable instantiation of the barrier fun
tionin Figure 4.2 for C = 20, 100, 500, and 1000. Intuitively, barrier fun
tions with ahigher 
ontrol parameter C may have many lo
al optima and a sear
h pro
edure
an easily get trapped by them. As we 
an see from these plots, when the 
ontrolparameter C in
reases the lands
ape be
omes more rugged. For instan
e, thelands
ape of C = 1000 shows mu
h more barriers 
ompared to C = 20. We alsonoti
ed that above 
ertain C value (threshold), the lands
ape di�
ulty will not
hange too mu
h as C in
reases.4.2.1 Experimental ResultsSuggested by our former studies [38, 75, 77℄, the following MIES and ES settingsare 
hosen for the experiments on the barrier problems: (µ = 4, λ = 28) for thepopulation and o�spring sizes, and (nσ = nς = np = 1) for the step-size mode2.Sin
e Evolution Strategies are sto
hasti
 algorithms, in the empiri
al experiments2In 
ontrast, (nσ = nr, nς = nz, np = nd) represents n step-size mode.
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Figure 4.2: Surfa
e plots of the barrier test fun
tions for two integer variables Z1and Z2, the 
ontrol parameter C = 20, 100, 500 and 1000. All other variableswere kept 
onstant at a value of zero, Z1 and Z2 values were varied in the rangefrom 0 to 19.we 
reate 10 instantiations3 for ea
h 
ontrol parameter C, and for ea
h of themwe let the algorithm perform 20 repeated runs (there are in total 20 × 10 = 200runs for ea
h value of C).Figure 4.3 shows average best �tness values found by one step-size (4, 28)MIESand one step-size (4, 28) ES4 on barrier fun
tions with di�erent 
ontrol parameters
C. As we 
an see that it is more di�
ult for both MIES and ES to �nd the globaloptimum on barrier fun
tions with a higher C value. This observation supportsour �nding from Figure 4.2: the lands
ape with a larger C value is more ruggedand it is more 
hallenging to ta
kle.Based on our algorithm design in 
hapter 3, MIES is supposed to be moree�
ient for exploring the mixed integer lands
apes 
ompared to a standard ES. To
he
k this assumption, we plot average best �tness values found by both MIES andES with C = 20, 100, 300, 500, and 1000 in Figure 4.4. The 
orresponding box plotfor best �tness values found by both MIES and ES in the last generation(= 100)is shown in Figure 4.5. When C = 20 or 100 ES performs a little bit betterthan MIES. This 
an be explained that 
onstru
ted lands
apes with C = 20 or
100 are still simple, and this gives the 
han
e to standard ES algorithms to fullyexplore the sear
hing spa
e. However in the 
ase of higher C values, MIES show3By using di�erent random seeds.4Here, all parameters are evolved as 
ontinuous variables.
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Figure 4.4: Comparison between average best �tness values found by (4, 28) MIESand (4, 28) ES for C = 20, 100, 300, 500, and 1000.the advantage over standard ES. For C = 300 or 500 the overall performan
eMIES are already 
ompetitive to standard ES. For C = 1000 average best �tnessvalues obtained by MIES are mu
h lower than standard ES.4.3 Mixed-Integer NK Lands
apesNK lands
apes (NKL, also referred to as NK �tness lands
apes), introdu
ed byStuart Kau�man [61℄, were devised to explore the way that epistasis 
ontrols the�ruggedness" of an adaptive lands
ape.Frequently, NKL are used as test problem generators for Geneti
 Algorithms.NKL have two advantages. First, the ruggedness and the degree of intera
tionbetween variables of NKL 
an be easily 
ontrolled by two tunable parameters: thenumber of genes N and the number of epistati
 links of ea
h gene to other genes
K. Se
ond, for given values of N and K, a large number of NK lands
apes 
an be
reated at random. A disadvantage is that the optimum of a NKL instan
e 
angenerally not be 
omputed, ex
ept through 
omplete enumeration.As NKL have not yet been generalized for 
ontinuous, nominal dis
rete, andmixed-integer de
ision spa
es, they 
annot be employed as test fun
tions for alarge number of pra
ti
ally important problem domains.To over
ome this short
oming, we introdu
e an extension of the NKL model,
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ontrol parameter C = 20, 100, 300, 500, and 1000 by usingstandard ES and MIES.mixed-integer NKL (MINKL), that 
apture these problem domains. They extendtraditional NKL from the binary 
ase to a more general situation, by taking di�er-ent parameter types (
ontinuous, integer, and nominal dis
rete) and intera
tionsbetween them into a

ount (
f. Figure 4.6).
Figure 4.6: Example Genes and their intera
tions4.3.1 NK Lands
apesKau�man's NK Lands
apes model de�nes a family of pseudo-boolean �tness fun
-tions F : {0, 1}N → R+ that are generated by a sto
hasti
 algorithm.It has two basi
 
omponents: A stru
ture for gene intera
tion (using an epis-



Chapter 4 51tasis matrix E), and a way this stru
ture is used to generate a �tness fun
tion forall the possible genotypes [1℄.The gene intera
tion stru
ture is 
reated as follows: The genotype's �tnessis the average of N �tness 
omponents Fi, i = 1, . . . , N . Ea
h gene's �tness
omponent Fi is determined by its own allele xi, and also by K alleles at K
(0 ≤ K ≤ N − 1) epistati
 genes distin
t from i. The �tness fun
tion reads:

F (x) =
1

N

N∑

i=1

Fi(xi;xi1 , . . . , xik), x ∈ {0, 1}N (4.2)where {i1, . . . , ik} ⊂ {1, . . . , N} − {i}. There are two ways for 
hoosing K othergenes: `adja
ent neighborhoods ', where the K genes nearest to position i on theve
tor are 
hosen; and `random neighborhoods ', where these positions are 
ho-sen randomly on the ve
tor. In this paper we fo
us on the latter 
ase, `randomneighborhoods '. However, a translation to the �rst 
ase is straightforward.The 
omputation of Fi : {0, 1}K → [0, 1), i = 1, . . . , N is based on a �tnessmatrix F . For any i and for ea
h of the 2K+1 bit 
ombinations a random numberis drawn independently from a uniform distribution over [0, 1). A

ordingly, forthe generation of one (binary) NK lands
ape the setup algorithm has to generate
2K+1N independent random numbers. The setup algorithm also 
reates an epis-tasis matrix E whi
h for ea
h gene i 
ontains referen
es to its K epistati
 genes.Table 4.1 illustrates the �tness matrix and epistasis matrix of a NKL. A moredetailed des
ription of its implementation 
an be found in [34℄.

E1[1] E1[2] · · · · · · · · · E1[K]

E2[1] E2[2] · · · · · · · · · E1[K]

· · · · · · · · ·Ei[j]· · · · · ·

EN [1]EN [2]· · · · · · · · ·EN [K]

F1[0] F1[1] · · · · · · · · · F1[2
K+1

− 1]

F2[0] F2[1] · · · · · · · · · F2[2
K+1

− 1]

· · · · · · · · · Fi[j]· · · · · ·

FN [0]FN [1]· · · · · · · · ·FN [2K+1
− 1]Table 4.1: Epistasis matrix E (left) and �tness matrix F (right)After having generated the epistasis and �tness matri
es, for any input ve
tor

x ∈ {0, 1}N we 
an 
ompute the �tness in O(KN) 
omputational 
omplexity via:
F (x) =

1

N

N∑

i=1

Fi[2
0xi + 21xEi[1] + · · ·+ 2KxEi[K]] (4.3)Note, that the generation of F has an exponential 
omputational 
omplexity andspa
e 
omplexity in K, while being linear in N . The 
omputational 
omplexityfor 
omputing fun
tion values is linear in K and N for this implementation.Properties of NK Lands
apesKau�man's model makes two prin
ipal assumptions: �rst, that the �tness of agenotype is the sum of the 
ontributions from ea
h gene, and se
ond, that the
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apese�e
ts of polygeny and pleiotropy make these intera
tions e�e
tively random.Besides Kaufmann, some other resear
hers, e. g. Weinberger et al. [121, 113℄, didan extensive study on NKL. Some well-known properties are:1. K = 0 (no epistasis): The problem is separable and there exists a uniqueglobal optimum. Assuming a Hamming neighborhood-stru
ture, the prob-lem gets unimodal.2. 1 ≤ K < N − 1: For K = 1, a global optimum 
an still be found in poly-nomial time [121℄. For K ≥ 2, global optimization is NP-
omplete for therandom assignment of neighbors and 
onstantK. However, the problem 
analways be solved in a 
omputational 
omplexity of 2N fun
tion evaluationsand hen
e 
an pra
ti
ally be solved for problems of moderate dimension(N around 30). For adja
ent neighbors, the problem 
an be solved in time
O(2KN) (
f. Weinberger [121℄).3. K = N − 1: This 
orresponds to the maximum number of intera
tionsbetween genes. Pra
ti
ally speaking, to ea
h bitstring of F : {0, 1}N → [0, 1)we assign a sum of N values, ea
h of whi
h is drawn independently from auniform distribution in [0, 1). If we 
hoose the Hamming neighborhood on
{0, 1}N the following results apply:
• The probability that a random bit string is a lo
al optimum is 1

N+1

• The expe
ted number of lo
al optima is 2N

N+14.3.2 Generalized NK Lands
apesAs mentioned in the previous se
tion, Kau�man's NKL model is a sto
hasti
method for generating �tness fun
tions on binary strings. In order to use it as atest model for mixed-integer evolution strategies, we extend it to a more general
ase su
h that the �tness value 
an be 
omputed for di�erent parameter types.Here we 
onsider 
ontinuous variables in R, integer variables in [zmin, zmax] ⊂
Z, and nominal dis
rete values from a �nite set of L values. In 
ontrast to theordinal domain (
ontinuous and integer variables), for the nominal domain nonatural order is given. Mixed-integer optimization problems arise frequently inpra
ti
e, e.g. when optimizing opti
al �lter designs [7℄ and the parameters ofalgorithms [75℄.The idea about how to extend NKL to the mixed-integer situation will bedes
ribed in three steps. First we propose a model for 
ontinuous variables, thenfor those with integer variables and nominal dis
rete variables. Finally, we willdis
uss the 
ase of NKL that 
onsists of all these di�erent variable types at thesame time and allow for intera
tion among variables of di�erent types. This de�nesthe full mixed-integer NKL model.
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apesIn order to de�ne 
ontinuous lands
apes, we 
hoose an extension of binary NKLto an N -dimensional hyper
ube [0, 1]N . Therefore, all 
ontinuous variables arenormalized between [0, 1]. In the following we des
ribe the 
onstru
tion of theobje
tive fun
tion F : [0, 1]N → [0, 1):Whenever the 
ontinuous variable takes values at the 
orners of the hyper
ube,the value of the 
orresponding binary NKL is returned. For values lo
ated inthe interior of the hyper
ube or its delimiting hyperplanes, we employ a multi-linear interpolation te
hnique that a
hieves a 
ontinuous interpolation between thefun
tion values at the 
orner. Note that a higher order approa
h is also possiblebut we 
hose a multi-linear approa
h for simpli
ity and ease of programming.Moreover, the theory of multi-linear models as used in the design and analysisof experiments, introdu
es intuitive notions for the e�e
t of single variables andintera
tion between multiple variables of potentially di�erent types [19℄. For ea
hof the N �tness 
omponents Fi : [0, 1]K+1 → [0, 1), we 
reate a multi-linearfun
tion
Fi(x) =

2K+1−1∑

j=0

aijx
[1 AND j]
i

K∏

k=1

x
[2k AND j]/2k

ik
, (4.4)where AND is the bitwise and operator and xik is the k-th epistati
 gene of xi.For instan
e, in the 
ase K = 2 the formula for Fi(x) be
omes5:

ai000 +ai001xi+a
i
010xi1 +ai100xi2 +ai011xixi1 +ai101xixi2 +ai110xi1xi2 +ai111xixi1xi2 .On
e uniformly distributed random values have been atta
hed to the 
ornersof the K-dimensional hyper
ube (
f. Figure 4.7), we 
an identify the 
oe�
ients

ai0, . . . , a
i
2K+1−1 by solving a linear equation system (LES). However, even for mod-erate K the 
omputational 
omplexity for applying general LES solvers would beprohibitively high. An advantage of the multi-linear form (as 
ompared to otherinterpolation s
hemes like radial basis fun
tions or splines) is that it allows foran e�
ient 
omputation of the 
oe�
ients by exploiting the diagonal stru
ture ofthe equation system. A

ordingly, aij 
an be obtained by means of the followingformula:

ai0 = Fi[0], aij = Fi[j]−
j−1
∑

ℓ=0

[
aiℓI(ℓ = (ℓ AND j))

]
, j = 1, . . . , 2K+1 − 1 (4.5)In order to 
ompute the values, we have to start with j = 0 and in
rease thevalue of j. Hen
e, the number of additions we need for 
omputing all 
oe�
ientsis proportional to (2K+1 − 1)(2K+1)/2 = 22(K+1)−1 − 2K .On
e we have the aij values, we 
an use Equation 4.2 to 
ompute the model. Of
ourse the domain of the x values has to be repla
ed by [0, 1]N in that equation.For the 
omputation of the global optimal value of the 
ontinuous NK lands
apesthe following lemma is useful:5Note that we use binary instead of de
imal numbers for the index to make the 
onstru
tionmore 
lear.



54 Mixed-Integer NK Lands
apesPSfrag repla
ements
Xi

Xi1

Xi2

Fi(0, 0, 0)

Fi(0, 0, 1)

Fi(0, 1, 0)

Fi(0, 1, 1)

Fi(1, 0, 0)

Fi(1, 0, 1)

Fi(1, 1, 0)

Fi(1, 1, 1)

a
i
000 = Fi(0, 0, 0)

a
i
001 = Fi(0, 0, 1) − a

i
000

a
i
010 = Fi(0, 1, 0) − a

i
000

a
i
011 = Fi(0, 1, 1) − a

i
000 − a

i
001 − a

i
010

a
i
100 = Fi(1, 0, 0) − a

i
000...

a
i
111 = Fi(1, 1, 1) − a

i
000 − a

i
001 − a

i
010

−a
i
011 − a

i
100 − a

i
101 − a

i
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omputation of aijLemma 3At least one global optimum of the fun
tion F will always be lo
ated in one ofthe 
orners of the N dimensional hyper
ube, su
h that the 
omputation of theoptimal fun
tion value upper bounds the 
omputational 
omplexity for the binarymodel.ProofThe idea of the proof is that there is an algorithm that for any given input

x∗ ∈ [0, 1]N determines a 
orner of the hyper
ube, the fun
tion value of whi
his not higher than the fun
tion value at F , given that F has a multilinear form.Basi
ally, the proposed algorithm 
an be des
ribed as a path oriented algorithmthat sear
hes parallel to the 
oordinate axis: First we �x all variables ex
ept one,say x1, in F . It is now 
ru
ial to see that the remaining form F (x1, x
∗
2, . . . , x

∗
N ) isa linear fun
tion of x1. Now, be
ause the form is linear, it is obvious to see thateither (1, x∗2, . . . , x

∗
N )T or (0, x∗2, . . . x

∗
N )T has a fun
tion value that is better orequal than the fun
tion value at (x∗1, . . . , x

∗
N )T . We �x x1 to a value for whi
h thisis the 
ase, i. e. we move either to (1, x∗2, . . . , x

∗
N )T or to (0, x∗2, . . . x

∗
N )T withoutin
reasing the fun
tion value. For the new position x1∗ we again �x all variablesex
ept one. This time x2 is the free variable. Again we 
an move the value of x2either to zero or to one, su
h that the fun
tion value does not in
rease. Now, thenew ve
tor x12∗ will either be (x1∗

1 , 0, x
∗
3, . . . , x

∗
N )T or (x1∗

1 , 1, x
∗
3, . . . , x

∗
N )T . After
ontinuing this pro
ess for all remaining variables x3 to xN we �nally obtain ave
tor x12···N∗, all values of whi
h are either zero or one, and the fun
tion valueis not worse than that of x∗.Theorem 4The problem of �nding the global optimal value for a 
ontinuous NKL is NP-
omplete for K ≥ 2.



Chapter 4 55ProofFinding the optimum in the 
orner is equivalent to the NP-
omplete binary 
ase.By applying Lemma 1, we 
an redu
e the 
ontinuous 
ase to the binary 
ase. Onthe other hand, whenever we �nd the global optimal solution for the 
ontinuous
ase, in polynomial time we 
an 
onstru
t a good solution that is just as goodwhere all optima are lo
ated at the 
orners in linear time. Thus, there exists apolynomial redu
tion of the binary 
ase to the 
ontinuous 
ase.Integer NK Lands
apesBased on our design, NKL on integer variables 
an be 
onsidered to be a spe
ial
ase of 
ontinuous NKL. The integer variables 
an be normalized as follows: Let
zmin ∈ Z denote the lower bound for an integer variable, and zmax ∈ Z denoteits upper bound. Then, for any z ∈ [zmin, zmax] ⊂ Z we 
an 
ompute the valueof x = (z − zmin)/(zmax − zmin) in order to get the 
orresponding 
ontinuousparameter in [0, 1], whi
h 
an then be used in the 
ontinuous version of F to
ompute the NKL. Note that the properties dis
ussed in 4.3.2 and 4.3.2 also holdfor integer NKL.Nominal NK Lands
apesTo introdu
e nominal dis
rete variables in an appropriate manner a more radi
al
hange to the NKL model is needed. In this 
ase it is not feasible to use inter-polation, as this would imply some inherent neighborhood de�ned on a singlevariable's domain xi ∈ {di1, . . . , diL}, i = 1, . . . , N , whi
h, by de�nition, is notgiven for the nominal dis
rete 
ase. We will now propose an extension of NKLthat takes into a

ount the spe
ial 
hara
teristi
s of nominal dis
rete variables.Let the domain of ea
h nominal dis
rete variable xi, i = 1, . . . , N be de�nedas a �nite set of maximal size L ≥ 2. Then for the de�nition of a fun
tion ona tuple of K + 1 su
h values we would need a table with LK+1 entries. Again,we 
an assign all �tness values randomly by independently drawing values froma uniform distribution. The size of the sample is upper-bounded by LK+1. For
L = 2 this 
orresponds to the binary 
ase. After de�ning N �tness 
omponents Fi,we 
an then sum up the values of these 
omponents for the NKL model (Eq. 4.2).The optimum 
an be found by enumerating all input values, the 
omputational
omplexity of whi
h is now LN . The implementation of the fun
tion table andthe evaluation pro
edures are similar to that of the binary 
ase. Note that fora 
onstant value of L and K the spa
e needed for storing the fun
tion values isgiven by NLK+1, so is the 
omputational 
omplexity for generating the matrix.The time for the fun
tion evaluations is proportional to N(K + 1).Equipping the dis
rete sear
h spa
e with a Hamming neighborhood, in 
ase
K = 0 the problem remains unimodal. For K > 0, we remark that for the generalproblem with L > 2, the dete
tion of the optimum is more di�
ult than in thebinary 
ase. Hen
e, the binary 
ase 
an be redu
ed to the 
ase L > 2, but notvi
e versa. For the 
ase of full intera
tion (K=N-1) we show:
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apesLemma 5For the nominal dis
rete NKL with K = N − 1, L ≡ constant , and Hammingneighborhood de�ned on the dis
rete sear
h spa
e, the probability that an arbi-trary solution x gets a lo
al optimum is 1
N(L−1)+1 . Moreover the expe
ted numberof lo
al optima is LN

N(L−1)+1 .ProofGiven the preliminaries, N(L − 1) is the number of Hamming neighbors for anysolution x ∈ {1, . . . , L}N . Sin
e we assign a di�erent �tness value from the interval
[0, 1) independently to ea
h neighbor, the probability that the 
entral solution, i.e.
x itself be
omes the best solution, is 1/(N(L− 1)+1). Sin
e LN is the number ofsear
h points in {1, . . . , L}N we 
an 
ompute the expe
ted number of lo
al optimaas LN

N(L−1)+1 .Mixed Integer NK Lands
apesIt is straightforward to 
ombine these three types of variables into a single NKLwith epistati
 links between variables of di�erent types (
f. Figure 4.6). For mixedvariables of the integer and 
ontinuous types there is no problem, sin
e integers,after normalization, are treated like 
ontinuous variables in the formula of F . Ifthere are D nominal dis
rete variables that intera
t with a 
ontinuous variable,then the values of these dis
rete variables determine the values at the edges ofthe K −D dimensional hyper
ube that is used for the interpolation a

ording tothe remaining 
ontinuous and integer variables. Note that for di�erent nominaldis
rete values the values at the 
orners of the K−D dimensional hyper
ube will
hange in almost every 
ase.Instead of des
ribing the mixed variable 
ase in a formal manner we give anillustrating example (
f. �gure 4.8). This example shows one individual with threeparameters (one 
ontinuous, one integer and one dis
rete), and ea
h gene inter-a
ts with both other genes. For ea
h gene, a hyper
ube is 
reated. We assumethere are three levels for the dis
rete gene Xd (L = 3), so the hyper
ube is re-du
ed to three parallel planes, and the value of the dis
rete gene de
ides whi
hplane is 
hosen. More 
on
retely, assuming the individual has the following values:
Xd = 0, Xi = 0.4, Xr = 0.8, the value of the dis
rete parameter Xd determineswhi
h square is 
hosen (Xd = 0). The value for ea
h 
orner is based on the �tnessmatrix in Table 4.2 (bold displayed). As mentioned in the previous 
hapter, we
al
ulate the �tness value of this individual as follows:

Fr(a,x) = a0 + a1Xr + a2Xi + a3XiXr

a0 = Fr(0, 0) = 0.8, a1 = Fr(0, 1)− a0 = −0.1
a2 = Fr(1, 0)− a0 = −0.1, a3 = Fr(1, 1)− a0 − a1 − a2 = −0.1

Fr(0.4, 0.8) = 0.648
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Xr

Xi

Fr(1, 0)=0.7 Fr(1, 1)=0.5 

Fr(0, 1)=0.7Fr(0, 0)=0.8

Fr(0.4, 0.8)

(Xd=0, Xi=0.4, Xr=0.8)

+ F
Fi

Fr

FdXd

Xi

Xr

Figure 4.8: Example for the 
omputation of a MI-NK lands
ape.
Er[1] = Xi Er[2] = Xd

Ei[1] = Xr Ei[2] = Xd

Ed[1] = Xr Ed[2] = Xi

0.80.7 0.70.5 0.30.70.20.9 0.50.60.30.5
Fr 0.5 0.8 0.4 0.7 Fi 0.20.30.70.9 Fd 0.90.80.20.70.2 0.1 0.8 0.4 0.20.50.40.6 0.80.70.30.3Table 4.2: Example epistasis matrix (left)and �tness matrix (right).4.3.3 Experimental ResultsIn order to test our mixed-integer NKL problem generator, we 
hoose a popula-tion size µ of 4, o�spring size λ of 28 and 
omma strategy for our experiments.The maximum number of generations is set to 100. Similar to experiments forbarrier fun
tions, to evaluate the algorithm performan
e, we generated 10 prob-lem instantiations for ea
hK ∈ {1, 3, 5, 10, 14} so that it is still feasible to �nd theglobal optimum by evaluating all bit strings of length N = 15. Ea
h generatedproblem 
onsists of 5 
ontinuous (Nr = 5), 5 integer (Nz = 5) and 5 nominaldis
rete (Nd = 5) variables. The 
ontinuous variables are in the range [-10,10℄,the integer-valued variables are also in the range [-10,10℄ and we used {0, 1} forthe nominal dis
rete variables (Booleans). We ran both MIES and ES 20 timeson ea
h problem instan
e. To 
ompare the results of the di�erent experiments wede�ne the following error-measure:error = best found �tness - best possible �tnessThe results are displayed in Figure 4.9. The x-axis shows the number of genera-tions while the y-axis shows the average error (over all experiments). As 
an beseen, for both algorithms an in
rease in K results in an in
rease in error whi
hindi
ates the problem di�
ulty in
reases with K.Like we did in experiments on barrier fun
tions, we plot average errors ofdi�erent K for both MIES and ES in Figure 4.10. In addition, we 
reate a boxplot for the last generation's errors of both MIES and ES in Figure 4.11.There we 
an 
ompare overall performan
e between standard ES and MIESalgorithms. As 
an be seen, in the 
ase of K = 1, 3, 5, 10 the MIES show betterresults than the standard ES. For K = 14 the average errors for MIES and
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60 SummaryES are similar. As K = 14 means that ea
h variable is 
onne
ted to all othervariables, the sear
h spa
e be
omes extremely 
omplex and it be
omes too hardfor both algorithms. Under su
h 
ir
umstan
es, MIES and ES show almost thesame performan
e.4.4 SummaryWe presented two arti�
ial lands
apes in this 
hapter: Barrier fun
tion and Mixed-Integer NK Lands
apes (MINKL) and they are intensively used as test 
ases inthis work. By design, these arti�
ial lands
apes are very good for helping usto learn more about performan
e behavior of MIES algorithm, su
h as 
onver-gen
e property. In return, we 
an further improve the MIES and apply it to more
omplex real-world appli
ations. Moreover, we 
ompared MIES to the standard(
ontinuous) ES using simple trun
ation of 
ontinuous variables. It turns out thatthe MIES approa
h has a mu
h higher 
onvergen
e reliability.About MINKL, we make some remarks here: MINKL extends NK lands
apemodel from dis
rete problem (binary 
ase in general) domain to the mixed-integerproblem domain. It turns out that a multi-linear interpolation approa
h for the
ontinuous and integer variables provides a straightforward generalization of thismodel and 
an be easily implemented. Using Equation 4.4, fun
tion values 
an be
omputed in linear time. However, the dete
tion of the global optimum turns outto be a NP-
omplete problem for K > 2 and 
an be redu
ed to the problem ofdete
ting the global optimum for the binary 
ase. However, an alleged drawba
kof the interpolation approa
h is that its optima are always lo
ated in the 
ornersof the sear
h spa
e. There are possible some ways to address this problem. Oneway would be to transform the input variables by means of a periodi
 fun
tion andthen map them ba
k to [0, 1], e.g. by substituting xi by s(xi) = 1
2 + 1

2 cos(πxi+π)and restri
ting xi to the interval [−0.5, 1.5] for i = 1, . . . , N . It is easy to showthat the optima for this transformed fun
tion are in the same position as for theoriginal model. For the nominal dis
rete variables the binary NK lands
ape wasextended to a L-ary representation. In this 
ase, the amount of random numbersin
reases exponentially with L. Also, for N = K − 1 it has been shown that thenumber of lo
al optima in
reases exponentially with L.
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ation to Medi
al ImageAnalysis





Do the di�
ult things while they are easyand do the great things while they aresmall. The journey of a thousand milesbegins beneath one's feet. Lao-tzu
Chapter 5
Parameter Optimization forMedi
al Image Analysis
In the previous 
hapters, we introdu
ed mixed-integer parameter optimizationwith two representative real-world appli
ations in industry - optimization of mul-tilayer opti
al 
oatings and optimization of 
hemi
al engineering plants. We alsopresented some theoreti
al and experimental studies on our proposed Mixed-Integer Evolution Strategies (MIES), whi
h show that MIES is a promising methodto ta
kle mixed-integer parameter optimization espe
ially in bla
k-box s
enarios.In this 
hapter, we will show another 
hallenging optimization task whi
h 
omesfrom the medi
al �eld and explain why and how MIES 
an be applied to theoptimization of 
ontrol parameters of a semi-automati
 image analysis system forIntravas
ular Ultrasound (IVUS) images.IVUS is a te
hnique used to get real-time high resolution tomographi
 imagesfrom the inside of 
oronary vessels and other arteries. The IVUS image featuredete
tors used in the analysis system are expert-designed and the default pa-rameters are 
alibrated manually so-far. The new approa
h, based on MIES, 
anautomati
ally �nd good parameterizations for sets of images whi
h a
hieve betterresult than with manually tuned parameters. From the algorithmi
 point of viewthe di�
ulty is to design a bla
k-box optimization strategy that 
an deal withnonlinear fun
tions and di�erent types of parameters, in
luding integer, nominaldis
rete and 
ontinuous variables. Compared with 
anoni
al Evolution Strate-gies (ES), whi
h are often applied to optimization problems in 
ontinuous sear
hspa
es, the MIES turns out to be well suited for this task. The results presentedin this 
hapter will summarize and extend re
ent studies on ben
hmark fun
tionsand on the IVUS image analysis optimization problem.63



64 Introdu
tion5.1 Introdu
tionFeature dete
tion in medi
al images is a key task in the medi
al �eld. Often
omplex and variable stru
tures, su
h as 
al
i�ed plaque in arteries, are to bedete
ted and modelled in images or sequen
es of images. The development offeature dete
tion systems has re
eived mu
h attention in medi
al and 
omputers
ien
e resear
h. However, the performan
e of most systems depend on a largenumber of 
ontrol parameters, and the setting of these 
ontrol parameters isusually done by means of an edu
ated guess or manual tuning using trial anderror.In this work we argue that manual tuning is often not su�
ient to exploit thefull potential of image dete
tion systems, i.e. it leads to suboptimal parametersettings. We propose a versatile and robust pro
edure for automated parametertuning based on evolutionary algorithms (EAs) su
h as MIES. Compared to themanual trial and error approa
h, with MIES the systems developer 
an sear
hfor optimized parameter settings automati
ally and will likely obtain parametersettings that lead to signi�
antly higher a

ura
y of the feature dete
tors.Among other image a
quisition te
hniques, IVUS re
eived major attention foranalyzing the stru
ture of 
oronary blood vessels. Due to noise, pullba
k move-ments of the 
atheter, and the variability of stru
tures even for human experts it
an be di�
ult to interpret IVUS image sequen
es. Therefore, the development oftailored 
omputer assisted image analysis has re
eived major attention in re
entyears [16, 89, 103℄.However, today's methods, dire
ted at the automated re
ognition of 
ertainstru
tures in images, are appli
able only over a limited range of standard sit-uations. To over
ome this problem an image interpretation system, based onthe paradigm of multi-agents [16, 17℄, using the 
ognitive ar
hite
ture Soar [87℄,was su

essfully developed over the past years. Agents in this system dynami-
ally adapt their segmentation algorithms. This adaptation is based on knowl-edge about global 
onstraints, 
ontextual knowledge, lo
al image information andpersonal beliefs like 
on�den
e in their own image pro
essing results.Although in pra
ti
e the multi-agent system has been shown to o�er lumen andvessel dete
tion with pre
ision 
omparable to human experts [16℄, it is designed forsymboli
 reasoning, not numeri
al optimization. Besides, it is almost impossiblefor a human expert to 
ompletely spe
ify how an agent should adjust its featuredete
tion parameters in ea
h and every possible interpretation 
ontext. As a resultan agent has only 
ontrol knowledge for a limited number of 
ontexts and a limitedset of feature dete
tor parameters. This knowledge has to be updated wheneversomething 
hanges in the image a
quisition pipeline. Therefore, it would be mu
hbetter if su
h knowledge 
ould be a
quired by learning the optimal parametersfor di�erent interpretation 
ontexts automati
ally.This 
hapter addresses the problem of learning these optimal parameter set-tings from a set of example segmentations. It is an optimization problem that isdi�
ult to solve in pra
ti
e with standard numeri
al methods (like gradient-based



Chapter 5 65strategies), as it in
orporates di�erent types of parameters, and 
onfronts the al-gorithms with a 
omplex geometry (rugged surfa
es, dis
ontinuities). Moreover,the high dimensionality of this problem makes it almost impossible to �nd optimalsettings through manual experimentation.En
ouraged by previous work [8, 38, 24℄ on optimization of image segmentationalgorithms in the medi
al domain and other appli
ation �elds we 
onsider MIESas a solution method. Unlike these previous approa
hes, MIES are more suitablefor dealing with 
ontinuous parameters and 
an handle di�
ult mixed-integerparameter optimization problems as en
ountered in the image pro
essing domain.5.2 Intravas
ular Ultrasound Image AnalysisCardiovas
ular disease is the leading 
ause of death in the USA and 
oronaryartery disease has the highest per
entage (53%) of death among the heart dis-eases a

ording to the Ameri
an Heart Asso
iation Heart Disease and StrokeStatisti
s [98℄. Atheros
lerosis is a disease 
hara
terized by a deposit of plaque inan arterial wall over time. The disruption of an atheros
leroti
 plaque is 
onsideredto be the most frequent 
ause of heart atta
k and sudden 
ardia
 death. Studyingvulnerable plaques 
onstitutes a major resear
h area in the �eld of 
lini
al andmedi
al imaging.IVUS is a te
hnique used to get real-time high resolution tomographi
 imagesfrom the inside of the 
oronary vessels wall and other arteries. It is able to showthe presen
e or absen
e of 
ompensatory artery enlargement. IVUS allows pre
isetomographi
 measurement of the lumen area and plaque size, distribution and, tosome extent, 
omposition of the plaque. An example of an IVUS image is shownin Figure 5.1.To obtain insight into the status of an arterial segment, a so-
alled 
atheterpullba
k is 
arried out: an ultrasound probe (Figure 5.2) is positioned distally(downstream) of the segment of interest and then me
hani
ally pulled ba
k (to-day typi
ally at a speed of 0.5mm/s) during 
ontinuous image a
quisition to theproximal (upstream) part of the segment of interest. Experien
ed users may then
on
eptualize the 
omplex 3D stru
ture of the morphology and pathology of thearterial segment from this sta
k of images by reviewing su
h a sequen
e repeat-edly. Typi
ally, one su
h pullba
k sequen
e 
onsists of 500-1000 images, whi
hrepresents about 50 mm of vessel length.As we 
an see from Figure 5.1, IVUS images 
ontain image artifa
ts, drop-out regions and di�erent kinds of tissue. Furthermore, manual segmentation ofIVUS images is very time 
onsuming and highly sensitive to intra- and inter-observer variability [16℄, while the data sets are very large. This makes IVUSimage analysis a non-trivial medi
al appli
ation domain where a sophisti
atedimage interpretation approa
h is warranted.
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Figure 5.1: An Intravas
ular Ultrasound (IVUS) image with dete
ted features.The bla
k 
ir
le in the middle is where the ultrasound imaging devi
e (
atheter)was lo
ated. The dark area surrounding the 
atheter is 
alled the lumen, whi
h isthe part of the artery where the blood �ows. Above the 
atheter a 
al
i�ed plaqueis dete
ted whi
h blo
ks the ultrasound signal 
ausing a dark shadow. Between theinside border of the vessel and the lumen there are some soft plaques, whi
h donot blo
k the ultrasound signal. The dark area left of the 
atheter is a sidebran
h(another vessel).

Figure 5.2: A 
atheter (∅ ± 1mm) with a miniaturized ultrasound transdu
er atthe tip.



Chapter 5 675.2.1 Multi-Agent Segmentation of IVUS ImagesIn [16, 17℄ a state-of-the-art multi-agent system is used to dete
t lumen, vessel,shadows, sidebran
hes and 
al
i�ed plaques. The system, as shown in Figure 5.3,is based on the 
ognitive ar
hite
ture Soar (S	tates, o	perators a	nd r	esults). Soar isan ar
hite
ture for 
onstru
ting general intelligent systems whi
h has been testedsu

essfully on many standard AI problems over the past 20 years and has beenused in many real-world appli
ations [87, 99℄. It is a very good ar
hite
ture foran image interpretation system as it satis�es the following robustness systemrequirements [16℄:
• Its subgoaling ar
hite
tural me
hanism allows it to take appropriate a
tionsin unknown situations,
• Its non-monotoni
 reasoning allows it to re
over from faulty knowledge,
• An agent always takes into a

ount all available knowledge.

Image
Proc.

Results

Input
Images

Image
Processing
Platform

shadow
agent

lumen
agent

Interaction

ActionPerception

vessel
agent

calcified
plaque
agent

sidebranch
agent

Agent Platform
(Soar)

Interaction

Interaction

Figure 5.3: Global view of the multi-agent system ar
hite
ture as applied to In-travas
ular Ultrasound (IVUS).With regard to IVUS features dete
tion, image pro
essing agents in Figure 5.3intera
t with other agents through 
ommuni
ation, a
t on the world by 
ontrol-ling and adapting image pro
essing operations and per
eive that same world bya

essing image pro
essing results. Agents thereby dynami
ally adapt the param-eters of low-level image segmentation algorithms based on knowledge of global
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onstraints, 
ontextual knowledge, lo
al image information and personal beliefs.The lumen-agent, for example, en
odes and 
ontrols an image pro
essing pipelinewhi
h in
ludes binary morphologi
al operations, an ellipse-�tter and a dynami
programming module, and it determines all relevant parameters. Generally, agent
ontrol allows the underlying segmentation algorithms to be simpler and to beapplied to a wider range of problems with higher reliability.5.3 Appli
ation to IVUS Lumen Dete
tionAfter testing di�erent strategies of MIES on several arti�
ial problems in 
hapter 4whi
h are more or less equivalent to the present problem, but 
an be evaluatedmu
h faster than image pro
essing pipeline, we used MIES to �nd optimal param-eter settings for the segmentation of the lumen in IVUS images instead of manualtrial and error. Figure 5.4 shows how the MIES optimizer is integrated into thelumen dete
tion system. The 
omplete image pro
essing pipeline is shown in Fig-ure 5.5. We fo
used on the lumen dete
tor, be
ause it 
an produ
e good results inisolation about additional information about sidebran
hes, shadows, plaques andvessels.
Mixed-Integer 

Evolution Strategies 

Image 

Proc. 

Results 

Input 

Images 

 

Image  

Features  

Detector 

Parameter  

Solution 

Figure 5.4: Optimizing parameter settings for lumen feature dete
tor with MIESoptimizer.5.3.1 Fitness Fun
tionsThe �tness evaluation determines whi
h o�spring will serve as new parents in thenext generation step. So the de�nition of the �tness fun
tion is 
ru
ially importantfor a su

essful appli
ation of MIES and should represent the su

ess of the imagesegmentation very well. We �rst experimented with a similarity measure S(c1, c2)between the 
ontour c2 found by the lumen feature dete
tor and the desiredlumen 
ontour c1 drawn by a human expert. The similarity measure is de�ned
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Figure 5.5: Simpli�ed Intravas
ular Ultrasound (IVUS) lumen dete
tion repre-sented as a 
as
ade of basi
 image segmentation algorithms linked together bythe lumen agent.as per
entage of points of 
ontour c1 that are less than a τ distan
e away from
ontour c2:
S(c1, c2) =

∑nrofpoints
i=1 θ(i)nrofpoints ,with θ(i) =

{
1 iff d(c1(i), c2) < τ
0, otherwise (5.1)where d(c1(i), c2) is the Eu
lidian distan
e between a point i on 
ontour c1 and
ontour c2, nrofpoints is the number of points on 
ontour c1, and τ is a presetthreshold value. This threshold τ determines that two 
ontours are to be 
on-sidered similar when the distan
e between all points on 
ontour c1 are withina distan
e τ of c2. The reason to allow for a small di�eren
e between the two
ontours is that even an expert will not draw the exa
t same 
ontour twi
e in asingle IVUS image. The �tness fun
tion itself is the 
al
ulated average similarityover all images in a training set.Although this measure seemed to give good results while looking at the �tnessvalues, visual inspe
tion showed unexpe
ted behavior as shown in Figure 5.6. Thereason for this behavior is that there was no penalty on the amount of distan
e of
ontour points from the target 
ontour. As a result 
ontours with relatively few ofthese error points 
ould still have a high similarity S(c1, c2) value although visualinspe
tion showed otherwise. To take su
h e�e
ts into a

ount we 
hanged fromusing a similarity measure S(c1, c2) to a dissimilarity measure D(c1, c2) whi
h is
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ation to IVUS Lumen Dete
tionde�ned as follows1:
D(c1, c2) =

nrofpoints
∑

i=1

θ(i), with θ(i) =

{
d(c1(i), c2) iff d(c1(i), c2) > τ
0 , otherwise (5.2)

Figure 5.6: Expert-drawn lumen 
ontours (green) 
ompared with a MIES param-eter solution (yellow) using the similarity measure S(c1, c2) (Eq.5.1). The imagesshow that large errors may o

ur even though the �tness of the solution is verygood.This measure penalizes ea
h 
ontour point whi
h is more than a distan
e τaway from c2 and is proportional to the distan
e. It leads to mu
h better results,whi
h stresses the importan
e of 
hoosing an appropriate �tness fun
tion in thisproblem domain.5.3.2 Optimizer Set-upThe settings used for the MIES algorithm were (µ = 4, λ = 28) with 
ommastrategy. The evaluation of a �tness fun
tion is a very time-
onsuming task. Togive an example: the evaluation of one setting of the MIES algorithm on 40 IVUSimages for 100 iterations with 4 parents and 28 o�spring took about 16 hourson a Pentium 4 (3.4GHz) 
omputer. Evaluating these same settings on a fast toevaluate arti�
ial problem with the same number of evaluations took 1 hour. Ta-ble 5.1 
ontains the parameters for the IVUS lumen image pro
essing pipeline (
f.Figure 5.5) together with their type, range, dependen
ies and the default settingsdetermined by an expert. As 
an be seen the parameters are a mix of 
ontinuous,ordinal dis
rete (integer) and nominal dis
rete(in
luding boolean) variables.5.3.3 ResultsFor the experiments we used �ve disjoint sets of 40 images. The images werea
quired with a 20 Mhz Endosoni
s Five64 
atheter using motorized pullba
k(1 mm/s). Image size is 384 × 384 pixels (8 bit grays
ale) with a pixel-size of1For MIES, the similarity measure means maximization while the dissimilarity measuremeans minimization.
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0.02602 mm2. For the �tness fun
tion we took the average dissimilarity over all40 images with τ set to 2.24 pixels and nrofpoints = 128 (see Eq. 5.2). For ea
hof the 5 datasets we used the (4, 28) MIES algorithm and limited the number ofiterations to 25 whi
h resulted in 704 �tness evaluations for ea
h dataset. Thetraining results are displayed in Table 5.2, where MIES solution 1 was trained ondataset 1 by the MIES algorithm, MIES solution 2 was trained on dataset 2, et
. . . .Table 5.2 shows that for most 
ases the MIES-generated parameter solutionsresult in lower average 
ontour di�eren
es when applied to both test- and trainingdata than the default parameters. Only parameter solution 3 applied to dataset5 has a higher average 
ontour di�eren
e (444.2 vs 446.4). To determine if thebest results obtained by the MIES algorithm are also signi�
antly better than thedefault parameter results, a paired two-tailed t-test was performed on the (40)di�eren
e measurements for ea
h image dataset and ea
h solution using a 95%
on�den
e interval (p = 0.05). The t-test shows that all di�eren
es are signi�
antex
ept for the di�eren
e between MIES solution 3 applied to dataset 5 and thedefault parameters and the di�eren
e between MIES solution 5 applied to dataset3 and the default parameters. Therefore we 
on
lude that the MIES solutions aresigni�
antly better than the default parameter solution in 92% of the 
ases (23out of 25) and equal in the other two 
ases.When we look at the results of the ES parameter solutions 
ompared to the de-fault parameter solution we see that all the di�eren
es are statisti
ally signi�
antmeaning that the ES solutions are signi�
antly better than the default parametersolution in 23 out of 25 
ases but worse in the other 2 
ases (ES solutions 3 and4 applied to dataset 5).If we look at the performan
e of the MIES and ES algorithms when trainedon a dataset we see that on Dataset 1 the ES solution is a little better, but thedi�eren
e is not statisti
ally signi�
ant. On all other datasets the MIES solutiontrained on that dataset is signi�
antly better than the ES solution trained on thesame dataset. On Dataset 5 MIES solution 4 has a slightly lower �tness than MIESsolution 5 that was trained on the dataset but the di�eren
e is not statisti
allysigni�
ant. On Dataset 3, ES solution 4 has a lower �tness than ES solution 3 butagain the di�eren
e is not signi�
ant.In order to learn from the results about advantageous parameter settings, we
ompared the variable settings of optimized solutions to solutions with an average�tness value (obtained at the beginning of the evolution). The results are displayedin the parallel 
oordinates diagram (Figure 5.7). It is apparent that the setting ofsome parameters seems to be 
learly advantageous in a 
ertain small range whilefor others the setting is either indi�erent or it may depend on other parametersettings. One 
an observe that a s
antype of 2, a medium value for the maxgrayparameter and side
ost (around 70) and a high sigma value (
lose to 10.0) seemsto be bene�
ial. Of 
ourse these results hold only for one image set and futureresear
h needs to 
larify whether generalizations are feasible. Visual inspe
tionof the results of the appli
ation of MIES parameter solution 4 to all 200 images
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Dataset1
Dataset2
Dataset3
Dataset4
Dataset5
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Figure 5.7: The parallel 
oordinate diagrams shows a 
omparison of optimizedsolutions (red polygons) to solutions with a relative bad �tness value (light greenpolygons). The �rst 
oordinate is the �tness value and the subsequent 
oordinatesare the values of the variables (Lumen dete
tor parameters) represented in thesame order as in table 5.1.shows that this solution is a good approximator of the lumen 
ontours as 
an beseen in Figure 5.8 (bottom row). When we 
ompare the 
ontours generated withMIES solution 4 to the expert drawn 
ontours we see that they are very similarand in some 
ases the MIES 
ontours a
tually seem to follow the lumen boundarymore pre
isely. Besides being 
loser to the expert drawn 
ontours, another majordi�eren
e between the MIES found 
ontours and the 
ontours dete
ted with thedefault parameter settings is that the MIES solutions are smoother (see Figure 5.8,top and bottom row). Apart from looking at the average 
ontour di�eren
e (or�tness) of the di�erent parameter solutions we 
an also 
ompare the performan
ebetween the MIES and ES algorithms by looking at their ability to �learn� thedependen
ies between the variables as displayed in Table 5.1. In Figure 5.9 thetotal number of illegal solutions evolved by both the MIES and ES algorithms aredisplayed. As 
an be seen the MIES algorithmmanages to �learn� the dependen
iesmu
h faster than the ES algorithm. In Figures 5.10 and 5.11 we have plotted the�tness and best �tness for both the MIES and ES algorithms on Dataset 2. Invalidsolutions were given a very high �tness penalty and are omitted from the plots toimprove readability. In the 
ase of the MIES algorithm the spread of the entirepopulation de
reases as the population rea
hes the best solution, whi
h indi
atesthat the step-size adaptation works properly.
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Figure 5.8: Expert-drawn lumen 
ontours (green) 
ompared with expert-set pa-rameter solution (yellow, top row) and MIES parameter solution (bottom row,yellow).
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umulated number of illegal solutions on Dataset 2 evolvedby both the MIES and ES (dotted line) algorithms. As 
an be seen the MIESalgorithm manages to �learn� the dependen
ies quite fast while the ES algorithmkeeps evolving invalid solutions even after 1400 �tness evaluations.
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Chapter 5 775.4 SummaryIn this 
hapter we des
ribed how we applied MIES to a problem in medi
al imageanalysis, in parti
ular the optimization of 
ontrol parameters of a lumen dete
torin IVUS imaging. In parti
ular, MIES use spe
i�
 variation operators for di�er-ent types (
ontinuous, integer, and nominal dis
rete) of de
ision parameters whi
h
ontrol the features dete
tor of IVUS images. All three types of mutation oper-ators support automati
 adaptation of the mutation strength and avoid biasedsampling. Besides this, they ful�ll guidelines su
h as a

essibility, uniformity, andmaximal entropy, whi
h makes them very amenable as sear
h operators in settingswith little or no a-priori knowledge about the sear
h lands
ape.Like the experimental results whi
h we showed in 
hapter 4, a similar result isobtained for the medi
al image analysis. Here the MIES always produ
ed better orequal results than the default parameter settings 
hosen by an expert. Moreover,on all �ve data sets the results of the MIES were signi�
antly better (three times)or equal (one time) than those obtained with the standard ES, trained on thesame data set.In summary, the results show that the MIES is a valuable te
hnique for improv-ing the parameter settings of the lumen dete
tor. The results en
ourage furtherstudies on extended image sets and on other feature dete
tors. The results of thisstudy suggest also its use in other problems where parameters of image-analysismodules need to be tuned based on training data, and more generally - in large-s
ale mixed-integer optimization problems that 
annot be solved with standardmathemati
al programming te
hniques.





Chapter 6Dynami
 Fitness BasedPartitioning
In the previous 
hapters 3, 4 and 5, Mixed-Integer Evolution Strategies (MIES)have been introdu
ed and studied intensively from both theoreti
al and exper-imental viewpoints. Being a promising te
hnique, MIES have been su

essfullyused to ta
kle 
hallenging parameter optimization of a multi-agent image inter-pretation system for Intravas
ular Ultrasound (IVUS) images lumen dete
tion.However, with regard to the image analysis problem, be
ause of the 
omplexityof interpretation 
ontexts, it is impossible to �nd one �super optimal � solution forea
h feature dete
tor to work in all possible 
ontexts and for all possible patients.Therefore, it would be wise to �nd spe
i�
 optimal parameter settings for di�er-ent groups of images instead of one global solution for all images, that is, let aset of MIES algorithms �nd a set of optimal solutions for sets of optimal imageswhereby the solutions and sets of images are evolved automati
ally.In this 
hapter, we will investigate this issue and propose one te
hnique, whatwe 
alled Fitness Based Partitioning. By using Fitness Based Partitioning, wewould like to �nd groups of images that require a similar parameter setting forthe segmentation algorithm while, at the same time, evolving optimal parame-ter settings for these groups. More spe
i�
ally, we will apply this methodologyto both a 
hallenging arti�
ial test problem and feature dete
tion of ComputerTomographi
 Angiography (CTA) images analysis. Experimental results not onlydemonstrate the feasibility of Fitness Based Partitioning, but also show that MIES
an also be used for di�erent types of medi
al images other than IVUS images,for instan
e, feature dete
tion of Computer Tomographi
 Angiography (CTA) im-ages analysis. It is rather trivial to see that the appli
ability of the optimizationalgorithm does not depend on the images but on the image analysis tools whi
hare applied to the images - to the spe
i�
 parameter en
oding.



80 Introdu
tion6.1 Introdu
tionMedi
al images often represent 
omplex and variable stru
tures that 
an not beeasily modeled. Moreover, they 
an su�er from a range of imperfe
tions due tothe image a
quisition modalities. Today's methods, dire
ted at the automatedre
ognition of 
ertain stru
tures in images, are appli
able only over a limitedrange of standard situations and in some 
ases only rea
h suboptimal results.In 
hapter 5 we have 
ompared Mixed-Integer Evolution Strategies (MIES) andstandard Evolution Strategies (ES) for �nding optimal parameter settings forthe segmentation of Intravas
ular Ultrasound images. The results show that theparameter solutions evolved by the MIES and ES algorithms are better than theoriginal parameter settings. However, the results also indi
ate that di�erent setsof images require di�erent parameter settings for an optimal image segmentation.The ideal solution would be to 
luster images a

ording to their image seg-mentation 
ontext and optimize parameters for ea
h individual 
ontext separately.Unfortunately the number of image segmentation 
ontexts is not known a priorinor do their 
hara
teristi
s. There is usually also no natural distan
e measure [54℄to 
luster images into groups that need similar parameter settings for an optimalsegmentation result. Only their degree of belonging to a group, 
hara
terized bya parti
ular set of parameters, 
an be measured by means of a training error forthat image, after the parameters have been optimized for that group.A possible approa
h for this kind of multi-level optimization problem 
ouldbe 
ooperative 
oevolution (e.g., see [120, 97℄) in whi
h one evolves both a set ofparameter solutions and sets of images at the same time. However, this approa
hrequires a large number of �tness evaluations whi
h is very 
omputationally (andthus time) intensive, sin
e one has to do a lot of image pro
essing, and thereforenot attra
tive for our problem.To solve the aforementioned problems we propose a multi-level optimizationte
hnique - the so-
alled Fitness Based Partitioning. Given a set of parametersolutions, we 
an partition the images a

ording to whi
h solution gives the bestsegmentation result. The �tness measure is then used as a �distan
e metri
� todetermine whi
h partition (and 
orresponding MIES solution) is the best mat
hfor an IVUS image. By alternating partitioning and parameter optimization forea
h partition, images are dynami
ally repartitioned and parameter solutions areoptimized.This 
hapter is stru
tured as follows: Fitness based partitioning will be in-trodu
ed in Se
tion 6.2. This approa
h will then be tested on an arti�
ial testproblem in Se
tion 6.3 where the goal is to �nd multi-dimensional 
lusters byevolving 
ombinations of uniform and normal distributions based on given datapoints in a multi-dimensional spa
e. Next, in Se
tion 6.4, Computed Tomographi
Angiography (CTA) lumen dete
tion will be introdu
ed. Fitness Based Partition-ing will then be applied to CTA lumen segmentation. The goal is to dynami
allypartition the CTA image training set during the MIES parameter optimizationpro
ess into groups of images whi
h require similar parameter settings for optimal



Chapter 6 81lumen segmentation. Ea
h group of images would 
orrespond to a similar imagesegmentation 
ontext (for the image segmentation algorithm) and have an opti-mal parameter solution. Some important experimental results will be presentedas well in this se
tion. The short 
on
lusions and outlook for the future work willbe given eventually.6.2 Dynami
 Fitness Based PartitioningIn general the multi-level optimization task is to �nd a proper �t of partitioning
omprising NP partitions; for ea
h of the partitions Pk (k ∈ [1, NP ]) we sear
hfor parameter settings whi
h will result in an optimal solution for all probleminstan
es in Pk. More 
on
retely, in the 
ase of lumen segmentation, we try topartition all angiographi
 images, and for ea
h image partition we look for aparameter solution whi
h results in the best possible lumen segmentation forthose images. In order to solve this multi-level optimization problem we designeda 2-level algorithm with an inner and an outer loop.In the outer loop the goal is to redistribute problem instan
es in order toa
hieve an improved global quality and to balan
e the size of the partitions. Aim-ing for this, a deterministi
 approa
h will be employed to determine how probleminstan
es should be (re-)partitioned and when to split or merge partitions.In the inner loop the aim is to optimize parameter solutions for the probleminstan
es in ea
h of theNP partitions. This task will be performed by evolutionaryalgorithms, in our 
ase Mixed-Integer Evolution Strategies, sin
e they 
an handledi�erent parameter types simultaneously.Let I = {I1, . . . , IN} denote a set of images (or training instan
es), a ∈ A =
{1, . . . ,K}N an assignment of the images to one of K partitions, and S denote aset of 
ontrol parameters for the segmentation algorithm. Then the optimizationproblem of �nding an optimal partitioning is stated as follows:

a∗ = arg mina∈A

K∑

k=1

MMEa(k) (6.1)Here MMEa(k) stands for 'minimized mean error' and denotes the averageerror on instan
es of a partition k over all training instan
es in that partition,provided the segmentation software uses an optimized set of 
ontrol parametersfor solutions on that partition, in symbols:MMEa(k) = min
s∈S

1

N

N∑

j=1

Indi
ator(aj = k)errors(Ij) (6.2)Here Indi
ator : {true, false} → {0, 1} denotes the indi
ator fun
tion withIndi
ator(false) = 0 and Indi
ator(true) = 1. We are also interested in the
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 Fitness Based Partitioningoptimal parameter sets (or solution ve
tors) of the partitions k = 1, . . . ,K, i.e.
s∗(a, k) = arg mins∈S

1

N

N∑

j=1

Indi
ator(aj = k)errors(Ij), (6.3)in parti
ular in those for the optimized partitioning a∗.More 
on
retely, in the 
ase of lumen segmentation we want to automati
ally�nd groups of medi
al images while at the same time evolving a set of optimalparameters for dete
ting the lumen in the images in ea
h of these groups.In order to solve this multi-level optimization problem we use Fitness BasedPartitioning. The top level goal is to optimize the (re-)assignment of probleminstan
es, in our 
ase medi
al images, to partitions so that the optimal solutionfor ea
h partition is also the optimal solution for ea
h parti
ular problem instan
ein that partition.The se
ond level optimization task is to �nd an optimal solution for all probleminstan
es within a partition. For this we use Mixed-Integer Evolution Strategies(MIES), introdu
ed in [38℄. Mixed-Integer Evolution Strategies are a spe
ial typeof evolution strategy that 
an handle mixed-integer parameters (
ontinuous, ordi-nal dis
rete, and nominal dis
rete) by 
ombining mutation operators of EvolutionStrategies in the 
ontinuous domain [107℄, for integer programming [101℄, and forbinary sear
h spa
es [3℄.6.2.1 AlgorithmThe detailed pro
edure for this 2-level optimization method is des
ribed in Algo-rithm 9. During the initialization phase all the problem instan
es (e.g., images)are distributed over the K partitions. Next a MIES algorithm MIESk is assignedto ea
h partition Pk.The main loop of the Fitness Based Partitioning algorithm 
onsists of foursteps. The �rst step is to run ea
h MIESk algorithm on the problem instan
esin its 
orresponding partition Pk for G iterations. This step performs the se
ondlevel optimization task.The se
ond step is to sele
t the best evolved parameter solution sk evolved byea
h MIESk algorithm and to test it on all problem instan
es.Step 3 is then to reassign all problem instan
es so that ea
h problem instan
e
I is assigned to the partition whose 
orresponding MIES algorithm o�ers the bestparameter solution. This step performs the top level optimization task.After all the problem instan
es have been reassigned to their �new� partitionsthe fourth step is to 
he
k for �empty� partitions (partitions with no probleminstan
es). Empty partitions are not useful, sin
e their 
orresponding MIES algo-rithms 
annot optimize anything. The solution we have 
hosen is to move half theproblem instan
es of the largest partition to the empty partition. Additionally, werepla
e the population of the MIES algorithm asso
iated with the empty partitionwith a 
opy of the population of the MIES algorithm asso
iated with the largest
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tively removes a non-useful empty partition and splits a largepartition into two. Another 
hoi
e whi
h might be more e�e
tive sometimes 
ouldbe to split the partition in whi
h results of MIESs have the largest varian
e.Algorithm 9 Fitness Based Partitioning1: /* Initialization */2: Divide the set of problem instan
es I randomly over the partitions.3: Initialize the populations of the K MIES algorithms.4: for T main loop iterations do5: /* step 1 */6: for ea
h partition Pk do7: run MIESk on Pk for G iterations.8: end for9: /* step 2 */10: for ea
h MIESk do11: sele
t best individual/solution sk12: apply best individual/solution sk to all problem instan
es in I13: end for14: /* step 3 */15: for ea
h problem instan
e I ∈ I do16: redistribute I to the partition Pk for whi
h sk o�ered the best solution.17: end for18: /* step 4 */19: while the smallest partition PS is empty do20: 
opy the population of MIESL of the largest partition PL to MIESS21: divide the problem instan
es of PL over PL and PS .22: end while23: end for6.3 Arti�
ial Test Problems and ResultsIn this se
tion we test the feasibility of ��tness based partitioning" on arti�
ialproblems as a �rst step toward its appli
ation to the real CTA lumen featuredete
tor system. This is done be
ause testing out various algorithm settings andlearning about their behavior using medi
al images is 
omputationally too de-manding to be pra
ti
al. However, our test problems are designed in su
h a waythat su

ess may be expe
ted on real problems, for instan
e, the data used in thetest problems are representative for real 
ases.The basi
 idea of our test setup, as visualized in Figure 6.1, is the task of�nding a set of multidimensional distributions based on given data points. Twoparts of the test problem need to be distinguished: (1) initialization/setup phase,(2) evaluation of a solution. Next, we give a brief des
ription of both phases,followed by the detailed des
ription of experiments and results.
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Figure 6.1: Fitness based partitioning for randomly generated data samples6.3.1 Initialization/SetupIn the initialization/setup phase, the problem generator 
reates sample points in
D-dimensional spa
e using a random number generator whi
h 
an generate valuesusing either a uniform or normal distribution. Using the problem generator we
reated NP �
lusters" of sample points.In more detail, the initialization pro
edure samples a set of NI points I =
{x(1), . . . ,x(NI)} ∈ (RD)NI . The points are realizations of NP di�erent D -dimensional random variables X1, . . . , XNP

. For ea
h random variable NI/NPpoints are generated independently. For any k ∈ [1, NP ], the distribution of therandom variable Xk is determined by the parameters µ(k)
d , σ(k)

d . The distributionof ea
h random variable is an independent joint distribution 
omposed of uniformand normal distributions. The values at the odd ve
tor positions are sampled from1-D normal distributions with mean value µ(k)
d and standard deviation σ(k)

d . Thevalues at the even ve
tor positions are sampled from 1-D uniform distributionswith interval width 4σ
(k)
d and mean value µ(k)

d .6.3.2 EvaluationThe test problem is to estimate the parameters and distribution types of the NPmultivariate distributions based on the initialized data points. We work with thefollowing representation of solutions, en
oded in the individuals of the EA. Forea
h dimension d ∈ [1, D] an individual has three parameters: an estimated meanvalue µ̂d ∈ R, an estimated standard deviation or, in 
ase of uniform distribution,interval width σ̂d ∈ R and an estimated distribution type τ̂d (0: uniform, 1: nor-mal). In 
ase of a uniform distribution the minimum and maximum possible valueare now de�ned as µ̂(k)
d −2σ̂

(k)
d and µ̂(k)

d +2σ̂
(k)
d respe
tively. Thus ea
h individual
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(k)
1 , σ̂

(k)
1 , τ̂

(k)
1 , . . . , µ̂

(k)
d , σ̂

(k)
d , τ̂

(k)
d , . . . , µ̂

(k)
D , σ̂

(k)
D , τ̂

(k)
D ). where k denotesthe partition the individual represents.For the �tness fun
tion we use a maximum log-likelihood approa
h, wherebyfor ea
h individual the �tness is 
al
ulated as:�tness =

|Pk|∑

i=1

D∑

d=1

log[PDF
µ̂

(k)
d
,σ̂

(k)
d
,τ̂

(k)
d

(x(ki)
d )], (6.4)where x(ki)

d denotes the d-th dimensional value of the i-th sample point frompartition Pk.The probability density fun
tion PDF
µ̂

(k)
d
,σ̂

(k)
d
,τ̂

(k)
d

: R→ [0, 1] is des
ribed as:
PDF

τ̂
(k)
d

=







I(x(ki)
d ∈ [µ̂

(k)
d − 2σ̂

(k)
d , µ̂

(k)
d + 2σ̂

(k)
d ])

x
(ki)

d
−µ̂(k)

d

4σ̂
(k)
d

τ̂
(k)
d = 0(uniform)

1
2π exp(−x

(ki)

d
−µ̂(k)

d

2

2(σ̂
(k)
d

)
2 ) τ̂

(k)
d = 1(normal)with d = 1, . . . , D, i = 1, . . . , |Pk|, k = 1, . . . , NP , and I : {true, false} → {0, 1}being the indi
ator fun
tion: I(true) = 1, I(false) = 0.6.3.3 Experimental ResultsIn this experiment, the MIES algorithms were programmed using the EvolvingObje
ts library (EOlib) [62℄. EOlib is an Open Sour
e C++ library for all formsof evolutionary 
omputation and is available from http://eodev.sour
eforge.net. The test-data generator was 
reated using the random number generatorfrom EOlib. For ea
h 
ombination of dimensionality and number of 
lusters we
reated 10 problem instantiations and on ea
h problem instantiation we ran the�tness-based partitioning system 20 times using di�erent random seeds for theMIES algorithms. Ea
h generated 
luster 
onsists of 100 sample points.For the MIES algorithms we used a plus-strategy with a population size of 40and an o�spring size of 280. After ea
h redistribution 
y
le MIES algorithms wererun for T iterations, with T dependent on the dimension D of the sample points.

T was set to 50 for D = 2, to 75 for D = 4, and to 100 for D = 6.The results in Table 6.1 show that, in most 
ases, the �tness-based partitioningsystem manages to evolve a 
ombination of uniform and normal distributions todes
ribe ea
h 
luster. However, for D = 4 and NP = 20, the system fails in two
ases. In the �rst 
ase a partition of 101 and a partition of 99 sample points result(vs. 100 ea
h). In the se
ond 
ase, one partition is split into 2 smaller partitions
ontaining 50 sample points ea
h, while 2 other partitions are merged into onelarger partition with 200 sample points. For the 6 dimensional problem with 10
lusters the only failure was a single sample point that was mispartitioned as well.



86 Computed Tomographi
 Angiography and Experimental ResultsDimensions T Partitions Su

esful/Total Iterations Outer LoopD NP runs Average S.D. Minimum Maximum2 50 3 200/200 7.375 3.57 1 184 75 10 200/200 16.07 3.44 9 314 100 20 198/200 23.21 3.44 16 366 100 10 199/200 12.35 4.45 5 436 100 20 197/200 14.87 3.66 9 34Table 6.1: The results of the di�erent experiments. Iterations outer loop (su

essfulruns) means that all the N-dimensional data points that were originally 
reated ina 
luster end up in the same partition. Sin
e the MIES algorithms have to �nd theoptimal distribution parameters for ea
h dimension, the number of variables tooptimize is three times the dimension of the data points to be partitioned. For thesu

essful runs we have measured the average, minimum and maximum numberof iterations as well as standard deviation (S.D.), until a stable partitioning wasrea
hed.6.4 Computed Tomographi
 Angiography and Ex-perimental ResultsSin
e the introdu
tion and in
reasing propagation of modern multi-sli
e 
omputedtomography s
anners, 
omputed tomographi
 angiography has be
ome a populardiagnosti
 modality in the visualization and evaluation of arteries and the de-te
tion of narrowings (stenoses). Computed Tomography is an imaging te
hniquewhi
h results in a 3D image of the internals of an obje
t using a series of 2D X-rayimages.In Leiden University Medi
al Center (LUMC), a system has been developedfor the quantitative analysis of 
oronary Computed Tomographi
 Angiography(CTA) [84℄ whi
h 
onsists of 5 steps. In the �rst step the vessels are segmentedin the 3D image, followed in step 2 by the extra
tion of the vessel 
enterline. Thethird step is to 
onstru
t a 
urved multiplanar reformatted (CMPR) image usingthe dete
ted 
enterline (see Figure 6.2). The resulting 3D image sta
k 
ontains2D images perpendi
ular to the 
enterline, and allows for the visualization ofthe the entire length of the vessel in a single 3D image. The fourth step is thesegmentation of the lumen boundary (the part of the vessel where the blood�ows) using a 
ombination of longitudinal and transversal 
ontour dete
tion. It isthis step that we will optimize using Mixed-Integer Evolution Strategies (MIES)and Fitness Based Partitioning. The �fth step is the quanti�
ation of the vesselmorphologi
al parameters.6.4.1 Experiments and ResultsThe Fitness Based Partitioning approa
h as des
ribed above is tested on 9 CMPRimage sta
ks of 
oronary arteries. Ea
h CTA image sta
k 
onsists of 59 to 82images and ea
h image 
onsists of 32 × 32 pixels (16 bit signed grays
ale with a
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Figure 6.2: A sta
k of CMPR images on the left with the 
enterline going throughthe 
enter of ea
h image and the 
orresponding lumen 
ontours with a singleCMPR sli
e on the right.spa
ing of 0.5mm).To test the e�e
t of the number of partitions, we experimented with up to 6partitions. In 
ase 1 partition is used the algorithm behaves like a normal sin-gle MIES algorithm sin
e there is no need to redistribute the images to otherpartitions. For ea
h data set and number of partitions we run the Fitness BasedPartitioning algorithm 10 times using di�erent random seeds to initialize theMIES algorithms. To initialize the K partitions with images we simply divided adata set sequentially into K (almost) equally sized parts. We also experimentedwith other initialization te
hniques (e.g., random), but they gave slightly worseresults. This is probably 
aused by the fa
t that two 
onse
utive images in a sta
k
orrespond to two 
onse
utive pie
es of artery and therefore, in general, requirea similar parameter solution.For the MIES algorithms in step 1 of Algorithm 9 we use a plus-strategy (µ+λ)with µ = 4 parents and λ = 28 o�spring individuals. All variables have theirown stepsize or mutation probability parameter whi
h undergo self-adaptation asdes
ribed in [38℄. The parameters for the CTA lumen segmentation 
onsists of 13integer and 2 nominal dis
rete (Boolean) parameters.6.4.2 EvaluationIn order to evaluate the �tness of a parameter solution evolved by a MIES algo-rithm, the lumen 
ontour resulting from a parti
ular parameter setting is 
om-pared to the expert 
ontour drawn by a physi
ian. The �tness fun
tion 
omputes
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 Angiography and Experimental Resultsthe average error Fk(I) for ea
h image I in partition Pk as:
Fk(I) =

|points|
∑

p=1

d(Cp, Ep)

|points| , (6.5)where d(Cp, Ep) is the Eu
lidean distan
e between the p-th point of the �evolved�
ontour C and the expert drawn 
ontour E. Note that Fk 
orresponds to thefun
tion error in the general problem de�nition given in Eq. 6.1 to 6.3. Both
ontours have the same number of points sin
e we resample all 
ontours from the
enter of the image every 2 degrees resulting in 180 points for ea
h 
ontour.The �tness of an individual parameter solution is then 
omputed as the averageminimized error of all images I in partition Pk:�tness =
∑

I∈Pk

Fk(I)

|Pk|
(6.6)To determine the overall �tness result of our Fitness Based Partitioning algorithmwe 
ompute the average �tness of all images I ∈ I as:overall �tness =

K∑

k=1

∑

I∈Pk

Fk(I)

|I| (6.7)6.4.3 ResultsThe results in Tables 6.2 and 6.3 show that generally more partitions results inbetter average �tness values and thus better 
ontours. The only ex
eption is dataset 6 where the �tness results for 6 partitions are worse than for 5 partitions,but this di�eren
e is not statisti
ally signi�
ant (using an independent samplest-test with a 95% 
on�den
e level(p=0.05)). If we look at the di�eren
es in �tnessvalues between 1 and 2 partitions we see that only for data set 9 the di�eren
e in�tness values is not statisti
ally signi�
ant. This indi
ates that for our problem weshould use at least 2 partitions. For data set 2 all di�eren
es between 
onse
utivenumber of partitions (1 and 2, 2 and 3, . . . ) are statisti
ally signi�
ant. For datasets 4 and 5 the di�eren
e between 3 and 4 partitions is statisti
ally signi�
antwhi
h 
ould mean that for these data sets we should use at least 4 partitions. Wesee the same for data sets 7 and 8 where the di�eren
e in average �tness valuebetween partitions 4 and 5 is statisti
ally signi�
ant.When we look at the �nal image partitioning after the algorithm has endedwe see that di�erent random seeds (and thus MIES population initializations)do not always lead to exa
tly the same partitions. However, an analysis of thefound partitions shows that we 
an 
learly see groups of images whi
h repeatedlyend up in the same partitions. There are several reasons why we do not see allimages end up in similar partitions every single run. The main reason seems tobe that the partitioning pro
ess does not always stabilize for some random seeds.
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NumberofPa
rtitions

Data
1
2
3

Setavg
s.d.min
maxavg
s.d.min
maxavg
s.d.min
max

10.242
0.0040.236
0.2480.203
0.0110.183
0.2270.196
0.0100.183
0.214

20.152
0.0030.148
0.1590.135
0.0050.128
0.1460.124
0.0030.119
0.129

30.176
0.0040.169
0.1820.165
0.0060.156
0.1730.157
0.0050.150
0.168

40.186
0.0060.175
0.1930.169
0.0050.162
0.1820.162
0.0040.156
0.169

50.327
0.0160.297
0.3640.272
0.0090.259
0.2930.261
0.0090.240
0.275

60.320
0.0260.275
0.3430.257
0.0410.195
0.3210.209
0.0320.185
0.298

70.307
0.0110.276
0.3130.253
0.0140.232
0.2780.232
0.0170.204
0.254

80.169
0.0010.167
0.1700.155
0.0090.143
0.1670.150
0.0070.137
0.160

90.199
0.0110.185
0.2190.186
0.0270.153
0.2270.153
0.0130.141
0.181

Table6.2:The
average(pluss
tandarddevia
tion),minimum
andmaximum
overall�tness
valuesfor1to
3partitions.L
ower

values
orresp
ondtobetter

ontours.
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NumberofPartitions

Data
4
5
6

Setavgs.d.minmaxavgs.d.minmaxavgs.d.minmax

10.1840.0070.1770.2030.1750.0060.1660.1840.1710.0050.1590.178

20.1180.0030.1130.1240.1130.0020.1100.1160.1080.0030.1040.113

30.1510.0040.1440.1600.1490.0050.1410.1560.1440.0040.1400.152

40.1530.0040.1490.1630.1520.0050.1440.1610.1510.0050.1440.159

50.2330.0090.2150.2490.2290.0120.2130.2530.2230.0120.2090.249

60.2070.0250.1850.2760.1880.0080.1800.1990.1920.0110.1780.213

70.2280.0100.2150.2500.2100.0100.1940.2340.1970.0100.1840.218

80.1430.0050.1370.1560.1360.0030.1320.1420.1350.0030.1290.138

90.1460.0100.1340.1700.1400.0060.1350.1560.1350.0060.1300.150

Table6.3:Theaverage(plusstandarddeviation),minimumandmaximumoverall�tnessvaluesfor4to6partitions.Lower

values
orrespondtobetter
ontours.



Chapter 6 91Other possible reasons for �nding di�erent image partitionings are that there aremore image segmentation 
ontexts than partitions or maybe there are no realdistin
t groups of images with respe
t to the image segmentation parameters.Naturally, the number of image segmentation 
ontexts also depends on our imagesegmentation algorithm and how robust or sensitive it is.In Figures 6.3 and 6.4 results are shown for 2 images from data set 2 af-ter �tness based partitioning using 2 partitions. The light gray 
ontours in theleft images are found using parameter settings evolved for a partition in
ludingthe image in Figure 6.3. The light 
ontours in the right images are found usingparameter settings evolved for the other partition, whi
h in
luded the image inFigure 6.4. As 
an be see both parameter settings result in 
ontours similar tothe dark gray expert drawn 
ontours for the image for whi
h they were optimizedbut fail to �nd satisfa
tory 
ontours in the other images.

Figure 6.3: Found lumen 
ontours segmented using two di�erent parameters set-tings. The light gray 
ontour in the left image was found using parameter settingsevolved for the partition to whi
h this image was assigned. The light gray 
on-tour on the right was found using the parameter settings evolved for the otherpartition. The dark 
ontour in both images indi
ates the expert-drawn 
ontour.6.5 SummaryIn this 
hapter we investigate the use of Fitness Based Partitioning in order to�nd sets of optimal parameters for the segmentation of the lumen in ComputedTomographi
 Angiography images. The purpose of Fitness Based Partitioning isto group images into partitions whi
h require similar parameters settings whileat the same time evolving optimal parameter settings for ea
h group. Groupingimages into di�erent partitions is done, be
ause one optimal parameter settingfor ea
h and every image is not to be expe
ted.The results in Tables 6.2 and 6.3 show that Fitness Based Partitioning doesindeed produ
e sets of parameter settings whi
h lead to better lumen segmenta-tions when 
ompared to one global optimal solution for all images.
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Figure 6.4: Found lumen 
ontours segmented using two di�erent parameters set-tings. The light gray 
ontour in the right image was found using parameter settingsevolved for the partition to whi
h this image was assigned. The light gray 
ontouron the left was found using the parameter settings evolved for the other partition.The dark 
ontour in both images indi
ates the expert-drawn 
ontour.Analysis of the �nal image partitioning results, obtained by running the al-gorithm with di�erent random seeds, shows that groups of images (but not all)usually end up on the same island. However, there remains some sensitivity tothe random seed used.In the future we want to redu
e this sensitivity by using larger populationswhi
h 
over the sear
h spa
e more 
ompletely. This does, however, have a negativeimpa
t on 
omputation time. Another option is to make the image re-assignmentmethod more �exible and less "greedy". We intend to extend the Fitness BasedPartitioning algorithm with merge and split heuristi
s to automati
ally �nd anoptimal number of partitions.On
e the partitions found by the Fitness Based Partition algorithm be
omemore stable we are interested in extra
ting 
ommon features from these imagesthat 
an a
t as a kind of image �ngerprint, so we 
an automati
ally determinewhi
h parameter solution to use for a new image.
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ed Topi
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There is never an end to learning. Thedye extra
ted from the indigo is bluerthan the plant; so is the i
e 
older thanthe water. Xunzi
Chapter 7Metamodel Assisted MixedInteger Evolution StrategiesSo far we have introdu
ed Mixed-Integer Evolution Strategies (MIES) and theirappli
ations to parameter optimization for feature dete
tion of a multi-agent med-i
al image analysis system. One of the big 
hallenges is that the evaluation of the�tness fun
tion is 
omputationally expensive. This 
hapter dis
usses MIES as-sisted by metamodels, whi
h is based on radial basis fun
tion networks (RBFN).The goal is to make MIES more suitable for optimization with time 
onsumingevaluation fun
tions.A RBFN is an arti�
ial neural network that uses radial basis fun
tions asa
tivation fun
tions. They are quite often used in fun
tion approximation, timeseries predi
tion, and 
ontrol. A novelty of our presented resear
h here is thatRBFN are studied for metamodeling in heterogeneous (mixed-integer) parameterspa
es. A heterogeneous metri
 (HEOM) is adopted that is in 
onformity with thedesign philosophy of the MIES. In addition, 
ross-validation based optimizationte
hniques are suggested for adjusting hyper-parameters of the model and avoidsingularities. Empiri
al studies on predi
tion of random sets indi
ate good pre-di
tion 
apabilities of the proposed RBFN for fun
tional lands
apes of moderatedimension/smoothness. The in�uen
e of the training set size as well as of the di-mension on 
omputational 
omplexity and a

ura
y of the RBFN is investigated.In the metamodel-assisted MIES, a RBFN metamodel is built and updatedafter ea
h generation. The metamodel is used for sele
ting a small subset of o�-spring individuals from a bigger set of variations and thereby in
rease the numberof promising solutions in the o�spring population. The algorithm is designed insu
h a way that, in 
ase of failure of the metamodel (e.g. �random" predi
tions),the metamodel-assisted MIES behaves like a standard MIES. Experimental re-sults, both on arti�
ial test problems and on a real world appli
ation, namelythe optimization of feature dete
tors in ultrasound images, indi
ate that a 
leara

eleration 
an be a
hieved by using heterogeneous RBFN.95



96 Introdu
tion7.1 Introdu
tionAs we learned already, MIES are a spe
ial instantiation of evolution strategiesthat 
an deal with di�erent parameter types (
ontinuous, integer and nominaldis
rete) simultaneously. In the previous 
hapters, we already demonstrated thatbeing a promising method, MIES have been su

essfully applied in opti
al �lterdesign, the optimization of 
ontrol parameters of 
hemi
al engineering plants andthe optimization of multi-agent image interpretation systems for medi
al image(e.g., Intravas
ular Ultrasound (IVUS) and Computer Tomographi
 Angiography(CTA) image ) analysis.However, as it is the 
ase for other evolutionary algorithms, one main 
hallengein applying MIES to real-world appli
ations is that it needs a large number of�tness evaluations before an a

eptable result 
an be obtained. For instan
e, forIVUS image lumen dete
tion, one 
andidate parameter solution must be tested bythe hundreds of IVUS images. This is very time 
onsuming and the 
omputationtime for one evaluation on a single-pro
essor ma
hine ranges from several minutesup to hours depending on the amount of training data used.A promising approa
h for redu
ing 
omputation time in su
h 
ases is to as-sist the evolutionary algorithms with fast-
omputable predi
tion models. Meta-models are data-driven fun
tion approximations that are learned from the setof evaluations of a deterministi
 obje
tive fun
tion (or a subset of it). Meta-models are now widely used for fun
tion approximation in 
ontinuous sear
hspa
es [37, 35, 45, 44, 22, 56, 118℄. However, their appli
ation in dis
rete sear
hspa
es remains sporadi
 [126℄, and to our knowledge there are not yet metamodel-assisted evolutionary algorithms for mixed-integer sear
h spa
es. This 
hapterproposes a promising algorithm for the latter problem domain.In this work we fo
us on radial-basis fun
tion networks [21, 45℄ and, by us-ing a heterogeneous distan
e measure, we use these te
hniques for predi
tion inmixed-integer sear
h spa
es. Radial basis fun
tion networks are distan
e-basedpredi
tors, i.e. they 
ompute the predi
tion based on a weighted approa
h, wherethe in�uen
e of neighboring points is measured by means of a non-linear distan
e-based kernel (or a
tivation fun
tion). The fa
t that RBFN are based on relativedistan
es to neighbors rather than on absolute position in Eu
lidean spa
e makesthem suitable to appli
ation in metri
 spa
es whi
h are not ve
tor spa
es, su
has mixed-integer sear
h spa
es. A 
ru
ial point, however, is still the 
hoi
e of ametri
. In this 
hapter we 
hoose a heterogeneous metri
 that takes into a

ountthe inherent properties of the parameter types involved (
ontinuous, integer, anddis
rete).In literature many ways of how to integrate metamodels in an EvolutionaryAlgorithm (EA) have been proposed [55℄. In this 
hapter we 
hoose a straightfor-ward approa
h using metamodels as a �lter. The basi
 idea is to generate a large�pre-population" of o�spring individuals and then - based on the predi
tions ofthe metamodel - sele
t a small subset of them for pre
ise evaluation. Only thesubset of pre
isely evaluated individuals is 
onsidered for repla
ement. The 
hoi
e



Chapter 7 97of population sizes is governed by the idea that, in 
ase of random predi
tions, thebehavior of the metamodel-assisted MIES resembles that of an 
anoni
al MIES.However, we assume that in most 
ases the predi
tions with the metamodel arebetter than pure random predi
tions and therefore the metamodel 
an help to im-prove the quality of the sample generated with the randomized sear
h operators.This 
hapter is organized as follows. In se
tion 7.2 some 
lassi
al fun
tionalapproximation models, su
h as Polynomial and Kriging models, will be reviewedbrie�y. Parti
ularly, radial basis fun
tion networks will be dis
ussed thoroughly inse
tion 7.3. Next, in se
tion 7.4, the metamodel-assisted mixed-integer evolutionstrategies are des
ribed. The proposed metamodel assisted mixed integer evolutionstrategies are applied to evaluation on arti�
ial test problems in se
tion 7.5. Thenthey are applied to the parameter optimization of an IVUS feature dete
tor inse
tion 7.6. Finally, a short summary and future work are presented in the lastse
tion.7.2 Fun
tional Approximation ModelsTraditionally, there are two basi
 approa
hes whi
h 
an be applied to approx-imation in optimization: fun
tional approximation and problem approximation.Here we will dis
uss fun
tional approximation in detail. About other types ofapproximation methods, we re
ommend [56℄. In fun
tional approximation, an al-ternate and expli
it expression is 
onstru
ted for the �tness fun
tion. Taking theintravas
ular ultrasound image analysis as an example, instead of evaluating itsperforman
e using a multi-agent feature dete
tion system, an expli
it mathemat-i
al model 
an be 
onstru
ted and used to predi
t outputs a

ording to giveninputs.7.2.1 Polynomial ModelsPolynomial approximation model is widely used and its form 
an be given asfollows:
ŷ = β0 +

∑

1≤i≤n
βixi +

∑

1≤i≤j≤n
βn−1+i+jxixj (7.1)where β0 and βi are the 
oe�
ients to be estimated, and the number of terms inthe quadrati
 model is nt = (n + 1)(n+ 2)/2 in total, where n is the number ofinput variables. Least square method (LSM) and gradient method 
an be used toestimate the unknown 
oe�
ients of the polynomial model.7.2.2 Kriging ModelThe Kriging model is another popular approximation model. Kriging was origi-nated by the mining engineer Krige, who used this method to estimate ore 
on-
entrations in gold mines. In re
ent years it has been su

essfully used in meta-modelling and optimization [35, 94℄. It 
an be seen as a 
ombination of a global



98 Radial Basis Fun
tion Networksmodel plus a lo
alized �deviation":
y(x) = g(x) + Z(x) (7.2)where g(x) is a known fun
tion of x as a global model of the original fun
tion,and Z(x) is a Gaussian random fun
tion with zero mean and non-zero 
ovarian
ethat represents a lo
alized deviation from the global model. Usually, g(x) is apolynomial and is redu
ed to a 
onstant β in many 
ases.7.2.3 Neural NetworksAn Arti�
ial Neural Network (ANN) is de�ned as a data pro
essing system 
on-sisting of a large number of simple, inter
onne
ted pro
essing units. The ar
hi-te
ture of ANN has been inspired by information pro
essing stru
tures found inthe multilayered 
erebral 
ortex of brains. Neural networks have also shown tobe e�e
tive tools for fun
tion approximation. Feedforward multilayer per
eptrons(MLP) [50℄ and radial basis fun
tion networks (RBFN) are two well studied mod-els among others. In the next se
tion, we will dis
uss RBFN in detail.Feedforward multilayer per
eptronsA feedforward multilayer per
eptrons with one input layer, two hidden layers andone output neuron 
an be des
ribed by the following equation:

y =

L∑

l=1

vlf(

K∑

k=1

w
(2)
kl f(

n∑

i=1

w
(1)
ik xi)) (7.3)where n is the input number, K and L are the number of hidden nodes, and f(·)is 
alled a
tivation fun
tion, whi
h usually is the logisti
 fun
tion

f(z) =
1

1 + e−az
(7.4)7.3 Radial Basis Fun
tion NetworksRadial basis fun
tion networks (RBFN) were proposed as arti�
ial neural networksfor fun
tion interpolation in [21℄. They were proposed to assist evolutionary algo-rithms in [45℄, and were 
ombined with evolution strategies in [44℄. Formally, theyare similar to Kriging interpolation te
hniques [36℄, though Kriging methods aremotivated in a di�erent way. As distan
e based interpolation fun
tion RBFN aresuitable for fun
tions, interpolation in metri
 spa
es that not ne
essarily need tobe 
ontinuous ve
tor spa
es. Also, di�erentiability of fun
tions is not expli
itly re-quired. However, we do assume that the di�eren
e in fun
tion values is positively
orrelated with the distan
e to a given point, and 
hoose the metri
 a

ordingly.Radial basis fun
tion networks [21, 45℄ are three-layer fully 
onne
ted feedfor-ward networks (
f. Figure 7.1). They perform a nonlinear mapping (Rd → Rm)
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Figure 7.1: Possible stru
tures of Radial Basis Fun
tion Network.from the d inputs to the m hidden units followed by a linear mapping (Rm → Rl)from the hidden units to the l outputs. In this 
hapter only the 
ase of l = 1 willbe �rst 
onsidered (Figure 7.1).In our 
ase we will deviate from the standard de�nition and de�ne radial basisfun
tion networks for metri
 spa
es. Let M denote a metri
 spa
e with distan
emeasure ∆ : M×M→ R
+
0 , then M→ Rm denotes a radial basis fun
tion networkfor a general metri
 spa
e.When applied for fun
tion approximation, the neural network is trained duringa training phase, with data from known fun
tion evaluations. The weights of thelinear fun
tion from the hidden layer to the output are adapted in a way thatthe deviations between the known output values to the predi
ted output valuesare minimized. Then, in the predi
tion phase, a point x ∈ M is presented to theneural network and the neural network predi
ts the response.Giannakoglou et al. [45℄ introdu
ed a straightforward approa
h on how toemploy RBF networks for fun
tion interpolation in the sense that results forpoints in the training set shall be reprodu
ed exa
tly. Its ar
hite
ture is des
ribedas follows: Let again x(1), . . . ,x(m) denote the evaluated points of the database,and y(1) = y(x(1)), . . . , y(m) = y(x(m)). Then de�ne for ea
h evaluated point x(i)a RBF 
enter:

b(i) := x(i), i = 1, . . . ,m (7.5)Let r : R
+
0 → R

+
0 a positive de�nite fun
tion on R

+
0 , then we de�ne the a
tivationfun
tion of the hidden layer via:

h(x,b(i)) = r(∆(x,b(i))), i = 1, . . . ,m (7.6)



100 Radial Basis Fun
tion NetworksThe a
tivation fun
tion based on r is 
alled a radial basis fun
tion be
auseits value depends on the distan
e of x to the RBF 
enter. For r : R
+
0 → R

+
0Giannakoglou suggests the fun
tion

rθ(∆(x,x′)) = exp(−θ∆(x− x′)q), with q = 2 (7.7)with a value for θ that, as a default, was set to 1.The predi
tion fun
tion ŷ from the input values to the output value of theRBFN is de�ned as a linear fun
tion with a-priori unknown weights:
ŷ(h(1), . . . , h(m)) =

m∑

i=1

ψ(i)h(x,b(i)) (7.8)The values of ψ(i) need to be adapted in the training phase. The output valuesof the training points have to be reprodu
ed by the neural network, whenever wedemand for exa
t interpolation of the results. This is expressed by the system ofequations:
m∑

i=1

ψ(i)h(x(j),x(i))
!
= y(j), j = 1, . . . , n (7.9)Rewritten in matrix form this reads:






h(x(1),b(1)) · · · h(x(1),b(m))... . . . ...
h(x(m),b(1)) · · · h(x(m),b(m))






︸ ︷︷ ︸

H






ψ(1)...
ψ(n)






︸ ︷︷ ︸

ψ

!
=






y(1)...
y(m)






︸ ︷︷ ︸

y

(7.10)
Note that H is a symmetri
 m×m matrix. The symmetry of the matrix H fol-lows immediately from the equivalen
e of the RBF 
enters b(i), i = 1, . . . ,m withthe input patterns x(i), i = 1, . . . ,m and the symmetry of the distan
e measure.Assuming that there are no equal points in the database and that the RBF ispositive de�nite, the weights ψ(i), i = 1, . . . ,m are given by the solution of thissystem, i.e.

ψ = H−1y (7.11)After 
omputing the values of the ve
tor ψ (training phase) we 
an now usethem for predi
ting output values for any x ∈M by using equation 7.9.



Chapter 7 1017.3.1 Heterogeneous Metri
A 
ru
ial step in adapting the RBFN method for mixed-integer spa
es is the
hoi
e of an appropriate distan
e measure. For 
ontinuous spa
es the Eu
lideanmetri
 seems to be a straightforward 
hoi
e, while for nominal dis
rete spa
es anoverlap metri
 seems suitable, as it does not assume any 
ontinuity of the obje
tivefun
tion w.r.t. to a parti
ular ordering of the domain. For two integer parameterve
tors the distan
e 
an be measured by means of the Manhattan distan
e ina straightforward way. This is the a

umulated distan
e when 
omputing thedi�eren
e of single parameter values of the variables. In 
ombination with theMIES the 
hoi
e of the Manhattan distan
e is also in 
onformity with the mutationoperator, who generates samples with a ℓ1 symmetri
 distribution. To 
ombinedi�erent metri
s we adopt the HEOM approa
h by Wilson and Martinez [122℄,whi
h suggests to take the square root of the sum of distan
es of the partialparameter ve
tors. Let ∆r(r, r
′) =

∑nr

i=1(ri − ri′)2, ∆z(z) =
∑nz

i=1 |zi − z′i|, and
∆d(d,d

′) =
∑nd

i=1 I(di 6= d′i) with I(true) = 1, I(false) = 0. Then the 
ombinedheterogeneous metri
 ∆x for x = (r ◦ z ◦ d) reads:
∆x(x,x

′) =
√

∆r(r, r′) + ∆z(z, z′) + ∆d(d,d′). (7.12)In order to improve predi
tion a

ura
y, we adapted the parameter θ during thetraining phase. This was done by means of a global minimization of the 
ross-validated error using a grid sampling method. The e�e
t of this pro
edure is sig-ni�
ant as our preliminary experiments revealed. In order to adapt the parameterwe take 
ompute
θ∗ = arg min θ∈{10Θmin ,...,10Θmax}LCVE(θ) (7.13)with LVCE being the quadrati
 error of leave one-out-
ross-validation for anequidistant set of values T = {Θmin, ...,Θmax}, in the experiments we 
hoosethe set T = {−4, . . . , 1}. The motivation of using a logarithmi
 grid based op-timization of θ is that we need (1) a fast and (2) a reliable optimization routinefor θ. It is due to our experien
e mu
h more important to hit the right order ofmagnitude with θ than to �ne-tune its value. For mu
h too high values of θ thematrix H will be 
lose to a unit matrix, and in 
ase of too low θ values it will bea matrix �lled with ones. In the latter 
ase the matrix is almost singular (
ausingproblems with matrix inversion). We omit a �ne tuning of θ, as, due to the high
ost for matrix inversion, this would be very time 
onsuming and the added valueis questionable.The 
omputational 
omplexity of the training step is governed rather by thenumber of samples than by the dimension of the sear
h spa
e. The time 
omplex-ity of 
omputing the matrix H s
ales as O(dm2), where d is the number of inputvariables, whereas the inversion of the matrix s
ales with O(n3) if we use, forexample, Gaussian elimination. There are more e�
ient inversion routines avail-able, su
h as Strassen's algorithm, but to our knowledge the de
reased 
omplexityleads to an e�e
tive de
rease in 
omputation time only with very high problem



102 Metamodel Assisted MIESdimensions. Given this the overall 
omplexity Ttraining(m, d, T ) of the trainingphase reads:
Ttraining(m, d, T ) = |T |(m2d+m3) (7.14)In 
ontrast, the time for predi
ting the output value, given a set of weights ψ isonly linear. More pre
isely it s
ales with O(dm)As a 
on
lusion, these 
onsiderations show that we should 
onsider the trainingphase as the main 
omputational e�ort and the number of samples being the maindeterminant of the e�ort in that phase. This observation will govern the de
isionon how to build the RBFN-MIES in the following 
hapter.7.4 Metamodel Assisted MIESAlthough MIES were already su

essfully applied to some real-world appli
ation,they usually need a large number of �tness evaluations before an a

eptable result
an be obtained. To a

elerate the MIES it 
ould be interesting to estimate the �t-ness fun
tion by 
onstru
ting an approximate model. Here we propose metamodel-assisted MIES whi
h use radial basis fun
tion networks (RBFN) to predi
t �tnessvalues. The main loop of the RBFN-MIES is displayed in algorithm 10. Somefeatures distinguish RBFN-MIES from standard MIES:1. All exa
tly evaluated individuals are re
orded.2. The metamodel is updated in ea
h generation based on theK+ latest re
ordsfrom database.3. The λ+(≫ λ) o�spring are 
reated in ea
h generation and evaluated by themetamodel.4. The best λ individuals are taken for the pre
ise evaluation.The proposed s
heme widely 
orresponds to the metamodel-assisted evolutionstrategy (MAES) as proposed by Emmeri
h et al. [37℄. However, there is an im-portant di�eren
e: While in the MAES a metamodel is trained for ea
h individual,the RBFN-MIES trains one single metamodel for a whole generation of individu-als. This allows to use a larger size of the training population, whi
h, due to ourinitial studies is of 
ru
ial importan
e to a
hieve a good predi
tion quality.7.5 Study on Arti�
ial Test Problem7.5.1 Predi
tion A

ura
y StudyWe �rst study the predi
tion a

ura
y of the radial basis fun
tion networks onthe mixed integer domain depending on the dimension of the sear
h spa
e andsample size. As we des
ribed in se
tion 7.3, the heterogeneous metri
 is used to



Chapter 7 103Algorithm 10 Main loop of RBFN-Assisted MIES1: t← 02: Initialize population Pt of K+, in
luding µ, individuals randomly generatedwithin the individual spa
e I3: Evaluate the Pt and insert results to database D4: while Termination 
riteria not ful�lled do5: Train RBFN based on K+ latest evaluations6: Generate the λ+ o�spring7: Predi
t �tness of λ+ o�spring8: Sele
t the best λ individuals out of λ+ o�spring9: Evaluate λ sele
ted individuals by using original �tness fun
tion, and insertresults to database D10: Sele
t the µ best individuals for Pt+1 from λ o�spring11: t← t+ 112: end while
ompute distan
e for di�erent parameter types. The mixed-integer sphere fun
tion(Eq. 7.15) will be used as our test problem.
fsphere(r, z,d) =

nr∑

i=1

r2i +

nz∑

i=1

z2
i +

nd∑

i=1

d2
i → min (7.15)Note that the dis
rete values are treated as nominal dis
rete values by the evolu-tion strategy. Therefore it is not possible to exploit the ordering on the integersas it does for the integer variables.The experiment was set up as follows: Firstly, we generate a 
ertain number oftraining samples. Ea
h sample 
onsists of three parameter types. The boundaryfor ea
h parameter type is de�ned as ri ∈ [0, 10], zi ∈ [0, 10], di ∈ {0, . . . , 9}.These training samples, as well as their pre
ise �tness values, will be used totrain a RBFN. Se
ondly, we use this trained RBFN to make predi
tion on otherrandomly generated 1000 test samples. Di�eren
es between predi
ted and pre
ise�tness value on test samples will indi
ate how good the approximation abilityof RBFN is. Figure 7.2 displays results of the RBFN for a mixed-integer sphereproblem in di�erent dimensions and for di�erent numbers of training samples.The results indi
ate that the number of training points is 
ru
ial for a
hieving ametamodel of good quality (from top to down). The dimension (from left to right)of the sear
h spa
e has slightly less impa
t. However, the results indi
ate that thea

ura
y of the predi
tion de
reases 
learly when in
reasing the dimension. Withmoderate dimensions, however, the approximations are mu
h better than randomguesses. These results prove that RBFN 
an be appli
able not only in 
ontinuousbut also in mixed-integer spa
es, if the distan
e measure is 
hosen appropriately.
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Figure 7.2: S
atter plots for exa
t �tness value (X-Coordinate) and predi
ted �t-ness value (Y-Coordinate) of 1000 test samples by using di�erent training sampleson generalized sphere fun
tion.7.5.2 Applying RBFN-MIES to Test ProblemsBefore we apply RBFN-MIES to a medi
al image analysis problem, we study itsbehavior on two arti�
ial test problems. For both 
ases we use (µ = 4, λ = 28)strategy. We �rst test RBFN-MIES on the generalized unimodal sphere fun
tion,with nr = nz = nd = 5 and the same boundary 
ondition as des
ribed above.The test result on the sphere fun
tion is shown in Figure 7.3. It shows that MIESassisted by RBFN 
an a

elerate the 
onvergen
e speed 
ompared to the strandardMIES.Another test problem is the more 
omplex and multimodal barrier problem(
f. Chapter 4). Barrier fun
tions produ
e mixed-integer optimization problemswith a s
alable degree of ruggedness (determined by 
ontrol parameter C) bygenerating an integer array A using Algorithm 8 in 
hapter 4.Fig. 7.4 shows experimental results on the 15-D drempels fun
tion with 
ontrolparameter C=20. For the test in Fig. 7.4, we set K+ of RBFN-MIES to 64. Itturns out that, when optimization problems be
ome more di�
ult, that is morerugged, the training number of the training samples must be in
reased to ensure agood quality of RBFN predi
tions. Moreover, on this rugged lands
ape the MIESwithout RBFN-assistan
e dete
ts the global optimum more reliably in the long



Chapter 7 105

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

Number of Generations

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

 

 

Mixed−Integer ES
RBFN Mixed−Integer ES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

400

450

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

Number of Generations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

400

450

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

Number of GenerationsFigure 7.3: Average 
onvergen
e histories of 20 runs of the 15-D sphere optimiza-tion problem with the MIES and RBFN-MIES (K+ = 64). The upper �gure showsthe average results for both strategies. In the lower �gure additional informationon outliers and 
on�den
e margins are displayed using box error plots for the runswith the MIES (left) and RBFN-assisted MIES (right).
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Chapter 7 107run. This indi
ates an in
reased tenden
y of 
onvergen
e towards sub-optimalsolutions in 
ase of multimodal optimization. A possible explanation 
an be thatusing a predi
tion makes it more di�
ult to leave the attra
tor of a lo
al optimum.Countera
ting this problem will be a topi
 of future resear
h. However, on average,the results obtained with the RBFN-assisted MIES are better and good resultsare obtained faster.7.6 Apply RBFN-MIES to IVUS Image LumenDete
tionMIES were already used to �nd optimal parameter settings for the segmentationof the lumen in IVUS images. In this work, we optimize a new image pro
essingpipeline with 23 optimization variables (as 
ompared to 16 parameters in theprevious 
hapter).Evaluating an image pro
essing pipeline on given parameter settings is verytime 
onsuming. The evaluations of one setting of the MIES algorithm on 100IVUS images took about 1 minute, i.e. for 10 generations with 4 parents and28 o�spring took about 5 hours on a Pentium 4 (3.4GHz) 
omputer. Thereforea metamodel-assisted approa
h seems promising as we 
an make use of existingevaluation results, whi
h 
ould help MIES to a

elerate 
onvergen
e speed anddoes not 
onsiderably in
rease the total 
omputational time, in parti
ular in 
aseswhen training data for the metamodel is already available.Like we did for the arti�
ial test problems, we use (µ = 4, λ = 28) MIESstrategy. We set K+ = 32, that is, the latest 32 pre
isely evaluated individualsare used to update the RBFN in ea
h generation. We run both standard MIESand RBFN-MIES on 100 IVUS images. The �rst preliminary experimental resultis shown in Fig. 7.5. As we 
an see from the result, RBFN-MIES slightly a

el-erate the 
onvergen
e speed 
ompared to the standard MIES without metamodelassistan
e. Of 
ourse, we 
an in
rease the K+ to make RBFN predi
tion morepre
isely. However, as we mentioned during the dis
ussion of the runs of test 
ases,by doing this we will also need some extra 
omputation time to train RBFN inea
h generation.7.7 SummaryIn this 
hapter we propose radial basis fun
tion networks assisted mixed integerevolution strategies. To study the behavior of RBFN-MIES, we �rst applied itto di�erent arti�
ial test problems, and then to parameter optimization of theIVUS image lumen feature dete
tor. The experimental results indi
ate that by
onstru
ting/updating su
h an approximate model in ea
h generation, a

elera-tion on 
onvergen
e speed 
an be a
hieved, provided training data for the RBFNis available (e.g. from previous runs). Moreover, we showed by s
atter plots that
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tions of the RBFN on the mixed-integer data are highly 
orrelated tothe true fun
tion values. When the optimization task di�
ulty in
reases, it willbe more di�
ult for the metamodel to make good predi
tions and the size of thetraining set needs to be in
reased. A

ording to our design, in 
ase of failure ofthe metamodel the RBFN-MIES regresses to a standard MIES.As mentioned in the previous part, this is the �rst study on using RBFN-assisted MIES. The results are promising, but still there remain 
hallenges. Firstly,in this 
hapter we need initial training data for the RBFN in order to a
hieve asigni�
ant a

eleration. This data 
an be taken (�re
y
led�) from previous runsor otherwise needs to be 
omputed 
ausing an in
reased 
omputational e�ort.A possible way to generate training data e�
iently would be to generate them�on the �y�, that is to apply the RBFN in the �rst generations until enoughtraining data are available. The performan
e of this '
old start' strategy needs tobe assessed in future work.Another question that arises is how we 
an de
ide whether one pre
isely eval-uated individual should be re
orded or not. By dis
arding points that are verysimilar to existing points the diversity of the training samples 
an be in
reased,whi
h 
an lead to enhan
ed quality and numeri
al stability. In this 
ontext, it isalso interesting to study problems like over�tting and prevention of de
eptive pre-di
tion. A promising approa
h to avoid su
h e�e
ts 
ould be an online monitoringof the model quality. To 
ountera
t over�tting also regularization te
hniques 
anbe 
onsidered in future work as well as unsupervised methods like self-organizingmaps.In addition to parameter studies the performan
e of the RBFN-MIES needsto be tested on a larger number of problems, in
luding further, more 
hallenging,problems from medi
al image analysis. From a theoreti
al point of view it willbe interesting to a

ess how 
ontinuity assumptions, su
h as Lips
hitz 
ontinuity,
an be generalized for mixed-integer domains and how the quality of the mixed-integer RBFN is related to su
h properties. A goal of su
h 
onsiderations wouldbe a theory that allows to mark the boundary between fun
tions that 
an beapproximated and those where approximation fails.





Chapter 8Mixed-Integer EvolutionStrategies with Dynami
Ni
hingMixed-Integer Evolution Strategies (MIES) are a natural extension of standardEvolution Strategies (ES) for addressing optimization of various types of variables� 
ontinuous, ordinal integer, and nominal dis
rete � at the same time. Like mostEvolutionary Algorithms (EAs), they experien
e problems in obtaining the globaloptimum in highly multimodal sear
h lands
apes. Ni
hing methods, the extensionof EAs to multimodal domains, are designed to treat this issue. In this studywe present a dynami
 ni
hing te
hnique for Mixed-Integer Evolution Strategies,based upon an existing ES ni
hing approa
h, whi
h was developed re
ently andsu

essfully applied to 
ontinuous lands
apes. The new approa
h is based on theheterogeneous distan
e measure that addresses sear
h spa
e similarity in a way
onsistent with the mutation operators of the MIES. We apply the proposedDynami
 Ni
hing MIES framework to a test-bed of arti�
ial lands
apes and showthe improvement on the global 
onvergen
e in 
omparison to the standard MIESalgorithm.8.1 Introdu
tionEvolutionary Algorithms (EAs) have the tenden
y to 
onverge to a single solu-tion [3, 83℄, even if the sear
h lands
ape has multiple globally optimal solutions.This is due to e�e
ts su
h as geneti
 drift [104℄ , fast takeover [3℄, and disruptivere
ombination [92℄. Population diversity loss in EAs does not only make it di�-
ult to obtain multiple global optima, but may also prevent the algorithm fromlo
ating the global optimum.Ni
hing te
hniques have been proposed to 
ountera
t population diversity loss



112 Ni
hing with Evolution Strategiesin EAs. They support parallel 
onvergen
e into multiple attra
tion basins in amultimodal lands
ape within a single run. Ni
hing te
hniques have been mainlydeveloped within the framework of Geneti
 Algorithms (GAs) in the past de
ades(see, e.g. [112℄ and [83℄), and have re
ently also re
eived in
reasing attention fromthe Evolution Strategies (ES) 
ommunity [92, 111, 116, 117℄.The appli
ation of ni
hing in ES proved to be very su

essful in improving 
on-vergen
e reliability and solution diversity in multimodal 
ontinuous optimization.However, it remains an open question, whether ni
hing 
an also be in
orporatedinto mixed-integer sear
h spa
es, whi
h are of great pra
ti
al relevan
e [7℄. In this
hapter we investigate whether ni
hing is also bene�
ial in this problem domainby 
ombining the ni
hing approa
h by Shir et al. [111℄ with the Mixed-IntegerEvolution Strategy (MIES) [38, 77℄.A 
ru
ial step will be the de�nition of an appropriate metri
 that is 
ompatiblewith the neighborhood stru
tures used by the sear
h operators of the Mixed-Integer Evolution Strategies. Thereby we aim for a 
oherent algorithm designwhi
h will make a theoreti
al analysis of the algorithm more a

essible. It isa known drawba
k that the MIES has di�
ulties to 
onverge to global optimaof highly multimodal lands
apes [78℄. Based on sele
ted test problems, su
h asMixed-Integer NK Lands
apes [78℄ and Barrier Fun
tions [77℄, we study whetherthe introdu
tion of ni
hing improves the MIES performan
e on su
h lands
apes.8.2 Ni
hing with Evolution StrategiesNi
hing methods are te
hniques that originally promote the formation and main-tenan
e of interim subsolutions in the geneti
 algorithms (GA) on the way to sin-gle, �nal solution [83℄. Not only are they ne
essary if one is interested in �ndingmultiple solutions to a problem of multimodal fun
tion optimization and multi-obje
tive fun
tion optimization 
lassi�
ation, but also they are useful for �ndingbetter single solutions to very hard problems. In this se
tion, we will give a briefoverview of ES ni
hing te
hniques with respe
t to Mahfoud's ni
hing methods.8.2.1 MotivationAs we addressed in the former se
tion, the 
anoni
al ES su�ered from severale�e
ts - sele
t pressure, operator disruption and random geneti
 drift, whi
h in-terrupt the formation and maintenan
e of multiple solutions [110℄. As a result ofthese e�e
ts, the evolution pro
ess are pushed towards a rapid 
onvergen
e intoa single solution, even when multiple solutions are required by a given problem.Sele
tive PressureTraditional deterministi
 sele
tion strategies of the standard ES intuitively implieshigh sele
tive pressure. A quantitative analysis of sele
tive pressure was given byGoldberg and Deb by introdu
ing the takeover time [46℄ 
on
ept, whi
h is de�ned



Chapter 8 113as the minimal number of generations until repeated appli
ation of the sele
tionoperator yields a uniform population �lled with 
opies of the best individual. Bä
kanalyzed the ES sele
tion me
hanisms and showed that both (µ, λ) and (µ + λ)sele
tion strategies have very short takeover times (or high sele
tive pressure).Operator DisruptionIn the standard ES, the mutation operator 
an be regarded as an operator withnegligible disruption e�e
t, while the re
ombination operator, by 
ontrast, hasa disruptive nature and modi�es a 
oordinate of the de
ision parameters to beoptimized.Geneti
 DriftGeneti
 drift is a sto
hasti
 pro
ess in whi
h the diversity is lost in �nite popula-tions [64℄. Due to the �nite number of o�spring, a distribution of geneti
 propertiesis transferred to the next generation in a very limited manner and 
onsequentlythe distribution will approa
h an equilibrium distribution. Sin
e small populationsizes are used in the standard ES, the geneti
 drift o

urs and 
auses the loss ofdiversity within the population. Espe
ially in multimodal fun
tions, su
h an e�e
t
auses a 
onvergen
e to an equilibrium distribution around a single attra
tor [104℄.8.2.2 Dynami
 ES Ni
hingIn the following part, we will des
ribe the framework for applying ni
hing te
h-niques in the standard ES, whi
h was originally proposed by Shir in [110, 111℄. Inparti
ular, distan
e metri
 dxi,xj
and ni
he radius ρ will be dis
ussed.Distan
e Metri
Originally, the 
anoni
al ES was developed for ta
kling problems in real-valuedsear
hing spa
e. The metri
 for measuring the distan
e between individuals isde�ned as follows: given two individuals in the sear
h spa
e with dimension n, ~xi =

[x1,i, x2,i, . . . , xn,i] and ~xj = [x1,j , x2,j , . . . , xn,j ], the distan
e dxi,xj
is 
al
ulatedusing a eu
lidean distan
e norm given in Equation 8.1 below.

dxi,xj
=

√
√
√
√

n∑

k=1

(xk,i − xk,j)2 (8.1)The Ni
he RadiusThe original formula for 
al
ulating ni
he radius ρ in GA was derived by Deb andGoldberg in [29℄. It is straightforward to adopt the formula but using the distan
emetri
 whi
h was de�ned by equation 8.1.



114 Ni
hing with Evolution StrategiesGiven the number of peaks q in the solution spa
e, every ni
he is 
onsideredto be surrounded by a n-dimensional hypersphere with radius ρ whi
h o

upies
1
q of the entire volume V of the spa
e. The volume V 
an be 
omputed throughformula below:

V = crnwhere c is a 
onstant and given expli
itly by:
c =

π
n
2

Γ(n2 + 1)
, Γ(n) =

∫ ∞

0

xn−1 exp(−x)dxGiven the lower and upper boundary values xk,min, xk,max in the de
ision param-eter spa
e, r is de�ned as follows:
r =

1

2

√
√
√
√

n∑

k=1

(xk,max − xk,min)2If we divide the volume into q parts, we 
an get following formula:
cρn =

1

q
crnwhi
h yields

ρ =
r

n
√
q

(8.2)Dynami
 Ni
hing ES AlgorithmNext, we outline and dis
uss the Dynami
 Ni
hing ES Algorithm [109℄ in detail.The algorithm starts with the initialization of q ni
hes with µ individuals and theirevaluation. Then, the following loop is repeated until a termination 
riterion ismet: Firstly, for ea
h ni
he the algorithm generates λ o�spring based on the µparents. Depending on the instantiation of the algorithmi
 ES kernel, mutationand re
ombination operators are employed for this purpose.By restri
ting re
ombination to the dynami
ally updated ni
hes, the algorithmenfor
es a mating restri
tion s
heme whi
h allows 
ompetitive mating only withinthe ni
hes. This is done to prevent disruptive e�e
ts of the re
ombination oper-ator [92℄. The 
on
ept of �xed mating resour
es is stri
tly enfor
ed: For everyni
he the same number of o�spring is generated, also referred to as the ni
hehosting 
apa
ity. This measure is taken in order to prevent geneti
 drift e�e
ts,as des
ribed e.g. in [104℄.Upon �tness evaluation of the new individuals, o�spring and parent individ-uals are merged into one population 
omprising now q × (µ + λ) individuals.The algorithm then employs a sub-routine for dynami
ally identifying the vari-ous �tness-peaks of every generation (whi
h uniquely de�ne the ni
hes) and thenassigns ea
h individual to a ni
he. The 
lassi�
ation into ni
hes is 
arried out in



Chapter 8 115a greedy manner, by means of the so-
alled Dynami
 Peak Identi�
ation (DPI)algorithm [85℄. The latter is outlined as Algorithm 11.Besides the global sele
tion phase taking pla
e in the ni
he forming pro
ess,whi
h will be des
ribed later, a lo
al environmental sele
tion takes pla
e withinea
h ni
he, that enables step-size adaptation to the lo
al topography of the ni
hes.If the number of individuals in a peak set is less than µ, the algorithm 
reatesnew samples in the sear
h spa
e and adds them to the ni
he until it 
ontains µindividuals. A summary of the algorithm is given in Algorithm 12.Algorithm 11 Dynami
 Peak Identi�
ation (DPI)in: Population Pop, # ni
hes q, ni
he radius ρout: Peak sets DPS1: Sort Pop in de
reasing �tness order2: i := 13: NumPeaks := 04: DPS := ∅ {Set of peak elements in population}5: while NumPeaks 6= q and i ≤ popSize do6: if Pop[i] is not within sphere of radius ρ around peak in DPS then7: DPS := DPS ∪ {Pop[i]}8: NumPeaks := NumPeaks+ 19: end if10: i := i+ 111: end whileThe number of expe
ted ni
hes, q, is given as input to the algorithm. Thedistan
e 
al
ulation is implemented with the Eu
lidean metri
 (Equation 8.1) inthe de
ision parameter spa
e sin
e all parameters are 
ontinuous. The ni
he radius
ρ itself is approximated a-priori with Equation 8.2 and remains �xed during therun.8.3 Dynami
 Ni
hing for Mixed-Integer ESTo in
orporate MIES into the Dynami
 Ni
hing ES framework we must de�nea proper distan
e metri
 for the mixed-integer spa
e. For 
ontinuous spa
es theEu
lidean metri
 seems to be a straightforward 
hoi
e, while for nominal dis
retespa
es an overlap metri
 seems suitable, as it does not assume any 
ontinuity ofthe obje
tive fun
tion w.r.t. a parti
ular ordering of the domain. For two integerparameter ve
tors the distan
e 
an be measured by means of the Manhattan dis-tan
e in a straightforward way. This is the a

umulated distan
e when 
omputingthe di�eren
e of single parameter values of the variables. In 
ombination with theMIES the 
hoi
e of the Manhattan distan
e is also in 
onformity with the sym-metry assumptions used in the design of the mutation operator, whi
h generatessamples from an ℓ1 symmetri
 distribution. We 
ombine the di�erent metri
s using
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 Ni
hing for Mixed-Integer ESAlgorithm 12 Ni
hing-ES.in: Number of ni
hes q, Ni
he radius ρout: Optimized solution(s)1: Initialize q equally-sized ni
hes of size µ randomly2: Evaluate all new individuals in all ni
hes3: while Termination 
riteria not full �lled do4: for every ni
he i = 1 . . . q do5: generate λ o�spring from µ parents6: Evaluate �tness of λ o�spring individuals7: Update best found solution(s)8: end for9: Combine all µ+ λ individuals from ni
hes into one population10: Compute the Dynami
 Peak Set with DPI (Algo. 11)11: Sele
t µ best individuals per ni
he12: for every ni
he i = 1 . . . q do13: if µi = number of individuals in ni
he i < µ then14: Generate and Evaluate µ− µi new individuals15: end if16: end for17: end whilethe Heterogeneous Eu
lidean-Manhattan-Overlap Metri
 (HEMOM) approa
h byWilson and Martinez [122℄. A

ording to the parameter type (
f. the sear
h spa
ede�nition in se
tion 3.3.1), the spe
i�
 distan
e metri
 
an be used to 
ompute dis-tan
e. More spe
i�
ally, we summed these di�erent distan
e metri
s up a

ordingto Equation 8.3 below:
∆(xi, x

′
i) =







∆r(xi, x
′
i) = (xi − x′i)2 if xi, x′i ∈ R;

∆z(xi, x
′
i) = |xi − x′i| if xi, x′i ∈ Z;

∆d(xi, x
′
i) = I(xi, x

′
i) =

{

1 if xi 6= x′i
0 if xi = x′i

if xi, x′i ∈ D. (8.3)Then the 
ombined heterogeneous distan
e metri
 ∆mixed for h = (r◦z◦d) reads:
∆mixed(h,h′) =

√

∆r(r, r′) + ∆z(z, z′) + ∆d(d,d′). (8.4)By using the aforementioned heterogeneous distan
e metri
, the ni
he radius
ρmixed in the mixed-integer sear
h spa
e now 
an be approximated as follows:

ρmixed =
r

n
√
q

with r =
1

2

√
√
√
√

n∑

i=1

(max∆xi) (8.5)



Chapter 8 117Here max ∆xi denotes the maximum distan
e value of parameter xi within itspossible boundary. For xi ∈ D, the maximum distan
e is always 1 a

ording tothe de�nition of overlap metri
. In pra
ti
e, one parameter 
an overpower theother parameter be
ause of di�erent range. To avoid this, distan
es are oftennormalized relative to their a

eptable range values. For di�erent normalizationte
hniques, please refer to [122℄. q denotes the number of peaks in the solutionspa
e. We assumed that every ni
he with radius ρmixed o

upies 1
q -th of the entirevolume of the spa
e.8.4 Test Fun
tions and Experimental ResultsTo investigate the behavior of our algorithm, we applied it to two 
arefully de-signed mixed-integer multimodal fun
tions in various dimensions. Spe
i�
ally, weare interested in the global 
onvergen
e. Performan
e 
omparison between Dy-nami
 Ni
hing MIES with standard MIES is also presented.8.4.1 Barrier Fun
tionBarrier fun
tions, introdu
ed in 
hapter 4, 
reate mixed-integer optimizationproblems with a s
alable degree of ruggedness (determined by parameter C).To test the Dynami
 Ni
hing MIES and standard MIES algorithm we generatedbarrier fun
tions for C = 20, C = 200, C = 2000 and C = 5000 and ran both theDynami
 Ni
hing MIES and a standard MIES algorithms 20 times with di�erentrandom seeds. For the Dynami
 Ni
hing MIES we used 5 ni
hes with µ = 15 and

λ = 75 for ea
h ni
he. For the MIES algorithm we used a (75 + 500) strategythereby making sure that the number of parents, o�spring and �tness evaluationsper generation is the same for both algorithms.The results of the experiments are displayed in Figure 8.1. Although the Dy-nami
 Ni
hing MIES 
onverges a little slower than the standard MIES algorithmit does rea
h the same performan
e in the end. In the 
ase of C=2000 Dynami
Ni
hing MIES performs slightly better than the standard MIES on average. Thepossible explanation is that the barrier fun
tion lands
ape with C=2000 is harderthan others. The standard MIES 
onverges faster but Dynami
 Ni
hing MIES hasa better 
han
e of getting rid of lo
al traps at last.8.4.2 Mixed-Integer NK Lands
apesNK lands
apes (NKL, also referred to as NK �tness lands
apes), introdu
ed byKau�man [61℄, were devised to explore the way that epistasis 
ontrols the `rugged-ness' of an adaptive lands
ape. They are parti
ularly used as test problem gener-ators for Geneti
 Algorithms (GAs) to understand the dynami
s of evolutionarysear
h. The ruggedness and the degree of intera
tion between variables of NKL
an be easily 
ontrolled by two tunable parameters: the number of genes N andthe number of epistati
 links of ea
h gene to other genes K. Moreover, for given
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Figure 8.1: Average best �tness results over 20 experiments for barrier fun
tionswith C = 20, C = 200, C = 2000 and C = 5000 for both the Dynami
 Ni
hingMIES and standard MIES algorithms.values of N and K, a large number of NK lands
apes 
an be 
reated at random.Mixed-Integer NK-Lands
apes (MI-NKL) were introdu
ed in 
hapter 4 and arean extension of NKL from the traditional binary 
ase to a mixed variable 
asewith 
ontinuous, nominal dis
rete, and integer variables. The resulting test fun
-tion generator is a suitable test model for our dynami
 ni
hing Mixed-IntegerEvolution Strategy.In order to test our Dynami
 Ni
hing MIES algorithm we tested it on di�erentMixed-Integer NK lands
apes with 15 variables (5 
ontinuous (range [−10, 10]), 5integer variables (also range [−10, 10]) and 5 nominal dis
rete variables (Boolean({0, 1})). We generated 10 random MI-NKL for di�erent levels of K (2, 5, 10, and
14) to simulate di�erent problem di�
ulties and both the Dynami
 Ni
hing MIESand standard MIES algorithms were run 20 times on ea
h MI-NKL using di�erentrandom seeds. We used a total population size of 75 for both the standard MIESand Dynami
 Ni
hing MIES algorithm (15 individuals per ni
he) and an o�springsize of 500 (100 per ni
he). To 
ompare (and average) the results of the di�erentexperiments we used the following error-measure:error = best found �tness - best possible �tnessThe results of the experiments are displayed in Figure 8.2. For K = 2 and
K = 5 we see, similar to the results of the barrier fun
tions, that the standard
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Figure 8.2: The error average of both Dynami
 Ni
hing MIES and standard MIESon di�erent mixed-integer NK lands
ape problems with N = 15.MIES algorithm 
onverges faster. However, on the MI-NKL the Dynami
 Ni
hingMIES algorithm manages to a
hieve a better result on average. If we look at theresults for more rugged (and harder) MI-NKL with K = 10 and K = 14 we seethat the Dynami
 Ni
hing MIES outperforms the standard MIES algorithm bothin 
onvergen
e speed and �nal solution quality.We also 
ompared the number of experiments the Dynami
 Ni
hing MIESand MIES algorithms �nd the global optimum, and the results are presented inTable 8.1. For K = 2 the Dynami
 Ni
hing MIES algorithm �nds the optimum
174 times out of 200 (10 di�erent MI-NKL times 20 runs) while MIES �nds it
143 times. As K in
reases both algorithms �nd the optimum less often, whi
h isexpe
ted sin
e the di�
ulty in
reases. For K = 5, 10 and 14 the Dynami
 Ni
hingMIES �nds the optimum 92, 19 and 8 times respe
tively. MIES only manages to�nds the optimum 67, 6 and 3 times for K = 5, 10 and 14. Thus, the Dynami
Ni
hing MIES algorithm does not only result in a lower average error but alsomanages to �nd the global optimum more often.8.5 SummaryStudies on arti�
ial lands
apes reveal that the proposed heterogeneous ni
hing
an be a useful ingredient in highly rugged lands
apes. On MI-NK Lands
apes it



120 SummaryK Dynami
 Ni
hing MIES MIES2 174 1435 92 6710 19 614 8 3Table 8.1: The number of times the Dynami
 Ni
hing MIES and MIES algorithmsfound the global optimum out of a total of 200 experiments (10 di�erent MI-NKLtimes 20 runs).
learly improves the 
han
es to obtain the global optimum. In more simple land-s
apes it only slightly slows down the 
onvergen
e speed 
ompared with standardMIES. In 
on
lusion, it 
an be said that in 
ase of simple problems the usage ofthe new strategy will not be harmful and in the 
ase of highly rugged problemsit 
an lead to solutions of better quality than standard MIES.In the future the Dynami
 Ni
hing MIES should be tested on additional prob-lems, in
luding real-world appli
ations. Moreover, a deepened understanding ofni
he formation pro
ess in mixed-integer lands
apes and the in�uen
e of strategyparameters may help to further improve its performan
e.



Chapter 9Mixed-Integer EvolutionStrategies with BayesianNetworksAs we learned from the previous se
tions of this thesis, mixed-integer optimizationproblems arise in various appli
ation �elds, su
h as 
hemi
al engineering and themedi
al image pro
essing. Sto
hasti
 optimization algorithms, su
h as evolutionstrategies and estimation of distribution algorithms, 
an be used as solution meth-ods for solving these problems approximately. Espe
ially for real-world problemsthey often prove to be powerful methods due to their �exibility and robustness.However, a short
oming of existing mixed-integer evolutionary algorithms,su
h as Mixed-Integer Evolution Strategies (MIES), is that their variation pro-
edures mutate ea
h de
ision variable independently. Therefore, dependen
ies be-tween variables, even if they are known a-priori, 
annot be taken into a

ount.This 
hapter aims at designing and testing a mixed integer evolutionary algorithmthat 
an utilize knowledge about su
h dependen
ies. The development of the newapproa
h is motivated by problems in medi
al image analysis where the param-eters of a medi
al image pro
essing pipeline are to be optimized (
f. 
hapter 5).Though the optimization of these systems is essentially a bla
k-box optimizationproblem, dependen
e information 
an be extra
ted heuristi
ally from the knownstru
ture of the pro
essing pipeline (Figure 5.5 in 
hapter 5).Inspired by existing works, we propose a Mixed-Integer Bayesian OptimizationAlgorithm (MIBOA), that is a variant of Estimation of Distribution Algorithms(EDAs) and extends the Bayesian Optimization Algorithm (BOA1), from binaryoptimization problems to mixed-integer optimization problems using spe
ial typesof Bayesian Networks dealing with random variables of mixed-type. EDAs do nei-ther have a 
rossover nor a mutation operator. Instead, a new population is gen-1With �xed network stru
ture.



122 Learning with Bayesian Networkserated by sampling the probability distribution, whi
h is estimated and updatedbased on the distribution of re
ently obtained �su

essful � individuals. Di�erentinstantiations of EDAs di�er by the distribution types and update rules theyuse. For instan
e, the 
lassi
al Population-Based In
remental Learning (PBIL)algorithm samples from an independent joint distribution of Bernoulli type [9℄,while the Univariate Marginal Distribution Algorithm (UMDA) [69, 108℄ featuresindependent joint distributions of Gaussian type.We show that a-priori knowledge on dependen
ies between de
ision variables
an be exploited by this algorithm in order to improve 
onvergen
e speed and relia-bility. In dis
ussing the properties of heterogeneous Bayesian Networks, represent-ing multivariate distributions of mixed-variable type, we point out whi
h kind ofdependen
e information 
an be utilized. Moreover, a spe
ial type of mixed-integerNK-lands
ape (
f. 
hapter 4) that is well suited for testing the new approa
h, theso-
alled A
y
li
 Dire
ted Graphi
 Models (ADG) based NK-lands
ape, will beintrodu
ed.The 
hapter is stru
tured as follows: Se
tion 9.1 introdu
es the basi
 knowl-edge of graph theory and Bayesian Networks. In Se
tion 9.3 we dis
uss brie�yestimation of distribution algorithms with independent sampling distributions in
ontrast to 
anoni
al evolution strategies (ES). Se
tion 9.4 introdu
es Bayesianoptimization and generalizes it to the mixed-integer 
ase. After introdu
ing testproblems based on NK-lands
apes in Se
tion 9.5, we present results of mixed-integer BOA on these lands
apes. Finally, the main results of the 
hapter aresummarized and dire
tions of future resear
h are dis
ussed.9.1 Learning with Bayesian NetworksIn this se
tion, we will provide a short introdu
tion to Bayesian Networks, espe-
ially parameter learning with Bayesian Networks.9.1.1 Graphi
al Models�Graphi
al models are a marriage between probability theory and graph theory.They provide a natural tool for dealing with two problems that o

ur throughoutapplied mathemati
s and engineering � un
ertainty and 
omplexity � and in par-ti
ular they are playing an in
reasingly important role in the design and analysisof ma
hine learning algorithms� [59℄.In general, there are two main kinds of graphi
al models (see Figure 9.1 below):Undire
ted graphi
al models and Dire
ted graphi
al models. In this work, we fo
usour attention on a
y
li
 dire
ted graphi
al models, whi
h are very popular withinthe Arti�
ial Intelligen
e (AI) and statisti
s 
ommunities .
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Undirected Graph Directed GraphFigure 9.1: A sample undire
ted graphi
al model (left) and a sample dire
tedgraphi
al model (right).9.1.2 Bayesian NetworksIn a nutshell, a Bayesian Network is an a
y
li
 dire
ted graphi
al model thaten
odes probabilisti
 relationships among variables of interest, in whi
h nodesrepresent random variables and the ar
s denote 
onditional independen
y assump-tions. That is, for a given ADG, an ar
 from node A to B 
an be interpreted as A�
auses� B. Related to our 
ase, nodes represent 
ontrol parameters in the givenimage pro
essing pipeline. Combined with statisti
al te
hniques, Bayesian Net-works (BNs) have several advantages for data analysis in 
ontrast to other datarepresentations, su
h as de
ision trees and rule bases [51℄:(1) BNs 
an handle in
omplete data sets, be
ause the model en
odes dependen-
ies among all variables.(2) BNs allow us to learn about 
ausal relationships, and hen
e is very usefulfor us to gain understanding about a problem domain.(3) In 
onjun
tion with Bayesian statisti
al te
hniques, BNs fa
ilitate the 
om-bination of domain knowledge and data.(4) BNs are a promising approa
h to avoid the over�tting of data.Be
ause of these aforementioned advantages, Bayesian Networks are applied tomany real-world appli
ations from di�erent resear
h domains. For instan
e, bioin-formati
s, do
ument 
lassi�
ation and de
ision support systems. In this work,Bayesian Networks will be used to model knowledge in medi
al domain. Spe
i�-
ally, we will use Bayesian Networks to en
ode probabilisti
 relationships amongde
ision variables of a medi
al image feature dete
tor (
f. �image pro
essing pipelinefor lumen feature dete
tion� in 
hapter 5). For more detailed information aboutgraph theory and Bayesian Networks, readers are suggested to 
he
k literaturesu
h as [51℄ and [59℄.



124 Problem De�nition of Mixed-Integer Optimization9.1.3 Bayesian Parameter LearningThrough BNs, we 
an learn the stru
ture (topology) of the model, or the parame-ters, or learn both of them. The table 9.1 gives a 
lear view about how to 
lassifylearning methods in di�erent situations. Referred to the optimization of the imageObservabilityStru
ture Full PartialKnown Closed form Expe
tation Maximization (EM)Unknown Lo
al sear
h Stru
ture expe
tation maximizationTable 9.1: Contigen
y table for 
lassifying learning methodspro
essing pipeline (Figure 5.5 in 
hapter 5), it is 
lear that the stru
ture of thepipeline is known to us in advan
e and all nodes are observable. The learning inthis 
ase is to �nd the maximum likelihood estimates (MLEs) of the parametersof ea
h 
onditional probability distribution (CPD), whi
h 
ontains M 
ases andare assumed to be independent. The normalized log-likelihood of the training set
D = {D1, . . . , DM} is a sum of terms, one for ea
h node:

L =
1

M
log

M∏

m=1

Pr(Dm|G) =
1

M

n∑

i=1

M∑

m=1

logP (Xi|Pa(Xi), Dm)where Pa(Xi) are the parents of Xi. The log-likelihood s
oring fun
tion de
om-poses a

ording to the stru
ture of the ADG; hen
e we 
an maximize the 
ontri-bution to the log-likelihood of ea
h node independently.9.2 Problem De�nition of Mixed-Integer Optimiza-tionNow, let's review the de�nition of mixed-integer optimization. In this 
ontributionwe de�ne the mixed-integer optimization as follows:minimize f(r, z,d), r ∈ R
l, z ∈ Z

m,d ∈ D1 × . . . Dn (9.1)Here, r denotes a ve
tor of real numbers, z is de�ned from a �nite set of integervalues (or ordinal dis
rete values), whereas d de�nes a n-tuple of nominal dis
retevariables with �nite domains Di, i = 1, . . . , n. The fun
tion f is 
onsidered to bea bla
k-box fun
tion, or, more pre
isely, a fun
tion the mathemati
al stru
ture ofwhi
h is mainly unknown to the user. The only a-priori knowledge that we 
anexploit about f are assumptions about parameter dependen
ies (intera
tion ofvariables). A 
ommon feature of fun
tions in whi
h intera
tions o

ur is that they
annot be de
omposed into a sum of fun
tions depending only on single variables



Chapter 9 125(separable fun
tion). For example, if r1 intera
ts with z1 and all other parametersare independent from ea
h other, we 
an write the fun
tion as:
f(r, z,d) ≡ f1,l+1(r1, z1) + f2(r2) + · · ·+ fl(rl) + fl+2(z2) + . . .

+fl+m(zm) + fl+m+1(d1) + · · ·+ fl+m+n(dn)where f1,l+1(r1, z1) 
annot be written as a sum of fun
tions of r1 and z1. Non-separability makes it potentially di�
ult to optimize these fun
tions by optimiza-tion routines that exploit su
h an assumption, su
h as 
oordinate sear
h but alsoevolutionary algorithms that mutate variables independently from ea
h other. InSe
tion 9.5, with the ADG-based NK-lands
apes, an example for a fun
tion 
lassin whi
h various variable intera
tions 
an be introdu
ed will be dis
ussed.9.3 Algorithms with independent sampling distri-butionsNext, let us introdu
e the evolution strategy (ES) and the estimation of distri-bution algorithm (EDA) as two basi
 evolutionary algorithms for parameter op-timization2: The 
anoni
al (µ + λ) evolution strategy has the following iterations
heme:Step 1 : Create initial population P ← {(a1, ς1), . . . , (aµ.ςµ)}, where ςi denotes ave
tor of dispersion parameters of the mutation distribution, e.g. standarddeviations or mutation probabilities.Step 2 : Create o�spring population Q of size λ by 
hoosing randomly elementsfrom P and mutating �rst the distribution parameters ςi to ς ′i and then theobje
t variables ai using distribution parameters ς ′i.Step 3 : Set P to the µ best points (with respe
t to f) 
oupled with their mutateddistribution parameters ς ′ out of P ∪Q.Step 4 : If termination 
riterion is rea
hed, return best found solution, otherwisego to Step 2.In 
ontrast to this, estimation of distribution algorithms apply the following mainloop:Step 1 : Initialize distribution parameters of distribution Dθ.Step 2 : Create o�spring populationQ of size λ by sampling from the distribution
Dθ.Step 3 : Set P to the µ best points in Q with respe
t to f .2The ES is introdu
ed, as it is a state-of-the-art te
hnique in mixed integer optimization wewill 
ompare to later.



126 Algorithms with independent sampling distributionsStep 4 : Update parameters θ of the distribution Dθ as a weighted average ofthe estimation of θ based on P and the 
urrent parameter set θ.Step 5 : If termination 
riterion is rea
hed, then return best found solution,otherwise go to Step 2.While in ES the basi
 variation operator is mutation, the variation operator inEDA is sampling from a multivariate distribution the parameters of whi
h aredynami
ally updated based on positive examples.Next, let us des
ribe the mutation and sampling pro
edure for the mixed-integer 
ase (without parameter dependen
ies).The mutation of mixed-integer evolution strategies 
an be des
ribed as a pro-
edure:Continuous mutation: Set ri = ri + Normal(0, sr), i = 1, . . . , l.Integer mutation: Set zi = zi+Geometri
(0, sz)−Geometri
(0, sz), i = 1, . . . , l.Nominal dis
rete mutation: If Uniform(0, 1) < pd set di to a random valuefrom Di − {di}.Here Normal(0, sr) 
omputes a normally distributed random number with stan-dard deviation parameter sr, Geometri
(0, sz) generates geometri
ally distributedrandom variables with mean sz [77℄, while Uniform(0, 1) generates a uniformly dis-tributed random number between 0 and 1. Before the mutation of the distributionparameter sr we employ the log-normal distribution as proposed by S
hwefel [107℄et al. sr ← sr exp(τrNormal(0, 1)) with τr = 1/
√
l being the learning rate. A

ord-ingly, sz ← sz exp(τzNormal(0, 1)), with τz = 1/
√
m is used to adapt the step-sizefor integer mutations. The probability parameter pd is mutated based on a logisti
mutation (see e.g., [105℄ et al.) that ensures that the value of pd stays in ]0, 1[. Allthree mutations of strategy parameters have the property that in
rements of thevalue are as likely as de
rements. The ES dis
ussed here is termed mixed-integerevolution strategy and was dis
ussed in several publi
ations [38, 77℄.For the sampling in the mixed-integer estimation of distribution algorithmsimilar distribution types are used. We employ the joint distribution Dθ 
omposedof

• a ve
tor of l independent multivariate normal distributions, with mean val-ues µ1, . . . , µl and standard deviations σ1, . . . , σl.
• a ve
tor of m random variables of type ξi+Z1(sz)−Z2(sz), whereas Z1(sz)and Z2(sz) denote indenti
ally independent geometri
ally distributed ran-dom variables with mean value sz.
• a ve
tor of n Bernoulli distributed binary random variables with probabilityparameters p1, . . . , pn.



Chapter 9 127The des
ribed estimation of distribution algorithm is new for the mixed-integersear
h spa
e. However, for binary nominal dis
rete parameters the algorithm is the
lassi
al population based in
remental learning (PBIL) algorithm [9℄ and, redu
edto its 
ontinuous part, it equals the so-
alled Univariate Marginal DistributionAlgorithm (UMDA) [108, 69℄. In the sequel, we will refer to the EDA algorithmfor mixed-integer sear
h spa
e as MIPBIL.The aforementioned two algorithms are used as referen
e algorithms to �ndout whether the introdu
tion of dependen
y information improves the algorithmsbehavior or not. Next, we will look at an extension of MIPBIL that allows tointegrate dependen
y information.9.4 Mixed-Integer Bayesian Optimization AlgorithmIn order to design a new mixed-integer estimation of distribution algorithm that
an take into a

ount dependen
ies between variables of the obje
tive fun
tions wewill repla
e the independent joint distribution Dθ used in the MIPBIL approa
hby an heterogeneous Bayesian Network with �xed stru
ture. This approa
h is alsoused in the Bayesian optimization algorithm (BOA) by Pelikan et al. [91℄. TheirBOA method is applied for binary sear
h spa
es and also learns the stru
tureof the network, while our approa
h is de�ned for mixed-integer sear
h spa
esand requires a-priori knowlege on the dependen
y stru
ture of variables in theobje
tive fun
tion. To emphasize the similarity to the BOA algorithm, we willterm the new approa
h Mixed-Integer BOA (MIBOA).Bayesian Networks yield very powerful probabilisti
 graphi
al representations.The key to their popularity is their ease of representation of independen
y rela-tions, and their support for reasoning with un
ertainty.A Bayesian Network is a graphi
al representation of a probabilisti
 problem,formally de�ned as a pair B = (G,P ), where P is the joint probability distributionon the set of random variables and G is an ADG representing the dependen
y andindependen
y relations among this set of random variables, where ea
h graphi
allyrepresented marginal and 
onditional independen
y also has to be valid in the jointprobability distribution [90℄. Clearly, the de�nition of Bayesian Networks impliesas well that a dependen
e in the graph does not have to de�ne a dependen
e inthe joint probability distribution P .Let {X1, . . . , Xd} be a set of random variables. Then, based on the inde-penden
y relations in the graph G, the joint probability distribution P 
an befa
torised as follows:
P (X1, . . . , Xd) =

d∏

v=1

P (Xv | π(Xv)), (9.2)where π(Xv) denotes the graphi
ally represented set of parents of random variable
Xv. This implies that a joint probability distribution 
an be de�ned in terms oflo
al distributions resulting in signi�
ant 
omputational savings.



128 ADG-based NK-lands
apesFor reasoning in Bayesian Networks there are several exa
t methods proposedthat make use of lo
al 
omputations [26℄. Here, lo
al 
omputations are based onthe 
onstru
tion of join trees.Hybrid Bayesian Networks 
onsist of both dis
rete and 
ontinuous randomvariables [25℄. In these networks, lo
al 
omputations are possible, however, the
orre
tness of the inferen
e method depends on whether parents of a variable aredis
rete, 
ontinuous, a mixture of dis
rete and 
ontinuous, and on the 
hoi
e ofthe lo
al probability distribution.The �rst method, introdu
ed by Lauritzen [70℄ using exa
t inferen
e, is basedon 
onditional Gaussian distributions. The restri
tion of this inferen
e is thatdis
rete random variables are not allowed to have 
ontinuous parents when hybridBayesian Networks are 
on
erned. To over
ome this problem, Koller proposed amethod whi
h de�nes the distribution of these dis
rete nodes by a mixture ofexponentials. However, for the inferen
e, Monte Carlo methods are used [65℄.As another solution to this problem, we may dis
retise 
ontinuous variables, butdis
retisation introdu
es errors be
ause we use approximation methods. However,in the experiment performed in this 
ontribution we did not yet study the 
aseof dis
rete nodes having 
ontinuous parents. For the Bayesian Networks relatedexperiments the BNT tool developed by Murphy was used [86℄. The same basi
algorithm as for PBIL was used, ex
ept that the distribution type and the updatepro
edure was 
hanged. A detailed des
ription of the update algorithm wouldex
eed the s
ope of this work, and we refer to [86℄.9.5 ADG-based NK-lands
apesADG-based NK-lands
apes (ADG-NKL), that we will introdu
e next, are attra
-tive as models for optimization as their intera
tion stru
ture 
orresponds to thedependen
e stru
ture of Bayesian Networks. Let x1, . . . , xd denote a set of de
i-sion variables (the type of whi
h 
an be 
ontinuous or dis
rete) and assume theintera
tion stru
ture of the fun
tion is des
ribed by some ADGs. Ea
h ADGs isbasi
ally de�ned by a fun
tion π(·) that assigns the set of parent nodes to ea
hnode, where the nodes represent parameters to be optimized. Then the ADG-based NK-lands
ape 
an be written as a fun
tion of 
omponent fun
tions fi:
f(x1, . . . , xd) =

d∑

i=1

fi(xi, π(xi)) (9.3)Note that this expression has the same stru
ture as the expression logP (X1, . . . , Xd)(see Equation (9.2)). Note also that the x1, . . . , xd denote variables of the obje
-tive fun
tion in 
ontrast to X1, . . . , Xd whi
h denote random variables.The 
onstru
tion of the ADG-based NK-lands
apes 
orresponds to that of
lassi
al mixed-integer NK-lands
apes [78℄ with one ex
eption. As for 
lassi
alNK-lands
apes for ea
h de
ision variable (or gene) xi we 
hoose K epistati
 genes
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PSfrag repla
ements
f(x) = f1(d1) + f2(d2, d1) + f3(d3, d1) + f4(r1, d1, d3) + f5(z1, d3)

d1

d2 d3

r1 z1Figure 9.2: Example for an ADG-based NK-lands
ape. The fun
tion values atthe edge of the sear
h spa
e [0, 1]d are set randomly between 0 and 1. Valuesinbetween are interpolated [78℄.that intera
t with xi, in ADG-based NK-lands
apes we 
hose exa
tly the par-ent nodes as epistati
 genes. Note that the number of them 
an vary with theindex of the de
ision variable in question. That is why the K in the expression'NK-lands
ape' is not referring to the number of epistati
 genes anymore - wekept it, however in the term, as it makes it easier to mat
h the 
orrespondingwell known NK-lands
apes with the ADG-based NK-lands
apes. As with 
las-si
al NK-lands
apes, the de�nition of the 
omponent fun
tions in ADG-basedNK-lands
apes is based on randomly generated fun
tion tables [78℄, as visualizedin Figure 9.2. In the mixed-integer 
ase multilinear fun
tions are used to interpo-late between the randomly 
hosen fun
tion values at the edges of a hyper
ube asdes
ribed in [78℄.9.6 Experimental ResultsIn order to 
he
k whether a-priori knowledge on the intera
tion stru
ture inte-grated in the stru
ture of the Bayesian Network helps to speed up sear
h we have
ondu
ted experiments on various ADG types that are visualized in Figure 9.3.These ADGs were used to 
onstru
t NK-lands
apes that indi
ate that the repre-sented independen
y and dependen
y relations respe
tively in an ADG are alsoin
luded in the NK-lands
ape 
onstru
ted from this ADG. The same ADG is usedas a stru
ture for the Bayesian Network as a-priori knowledge. For the probabilitytables, however, no a-priori knowledge is used. They are initialized based on the�rst population of sele
ted individuals.
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Figure 9.3: Various types of ADGs used to de�ne ADG-based NK-lands
apes and
orresponding Bayesian Networks. From left to right, ADGs are termed '
hain','stru
t2', 'stru
t3', 'bitree', 'tritree', and 'invtree'. Node types are de�ned as fol-lows: dis
rete nodes(1-5), 
ontinuous nodes(6-10), integer nodes(11-15).We applied three types of algorithms on ADG-based NK-lands
apes. 15 vari-ables are 
onsidered, 5 for ea
h type (l=m=n=5). As the population size turnedout to be a 
ru
ial parameter, two di�erent population sizes, 28 and 100, are tried.A number of 20 runs were statisti
ally evaluated for ea
h strategy.Figures 9.4 to 9.6 show 
onvergen
e dynami
s for di�erent sample lands
apesde�ned by their ADG, ea
h of whi
h has a di�erent stru
ture. Averaged obje
tivefun
tion values (di�eren
e to the global optimum) and standard deviations areplotted versus the number of evaluations performed.On the lands
ape '
hain' (Figure 9.4), the MIBOA performs best, when thepopulation size is set to 100. For a population size of 28 the MIBOA performsalmost equally to the MIES. In both 
ases the MIPBIL algorithm was 
learlyoutperformed.On the lands
ape 'bitree' (Figure 9.5), a binary tree, the MIBOA performsbest, when the population size is set to 100. For a population size of 28 theMIBOA is faster but in the long run MIPBIL results in (almost) the same goodvalue. MIES seems to have a problem with this lands
ape, whi
h may be due to
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Figure 9.4: Convergen
e dynami
s of MIES, MIPBIL, and MIBOA on a '
hain'-type ADG-NKL.
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134 Summarystep-size redu
tion whi
h 
an be harmful in multimodal lands
apes. The largestandard deviation supports this 
onje
ture.On the lands
ape 'invtree' (Figure 9.6), again the MIBOA has a big advantagein the beginning. Here this a

eleration is more visible than for the previouslands
ape types. Again the MIES algorithm seems to have problems to 
onvergeto the global optimum, while the MIPBIL is more reliable, but su�ers from a low
onvergen
e speed.Comparing a population size of 100 with a population size of 28, it was ob-served that the MIBOA algorithm performs better with the larger population size.The standard deviation of results in that 
ase is remarkably lower, indi
ating agood reliability of the good results. In Table 9.2 we summarize more results, in-
luding the ADG types 'tritree', 'stru
t2', and 'stru
t3'. The ranking after 2000,5000, 10000, and 20000 iterations is reported. This table provides further eviden
efor the hypothesis that the introdu
tion of the dependen
e information in the MI-BOA is bene�
ial. In addition, it 
an be observed that a small population sizehelps to speed up 
onvergen
e of the algorithm in the short term, while a largepopulation size improves its long term behaviour. For further details and resultsof this study we refer to [125℄.9.7 SummaryIn this 
hapter we studied how knowledge on a
y
li
 dependen
y stru
tures 
anbe integrated into sto
hasti
 optimization for mixed-variable sear
h spa
es. TheMixed-integer Bayesian Optimizaton Algorithm (MIBOA), an estimation of dis-tribution algorithm working with heterogeneous Bayesian Networks with a-prioriset stru
ture, was designed and studied. As a test environment mixed-integer NK-lands
apes have been modi�ed to ADG-based mixed-integer NK-lands
apes. Thedependen
e stru
ture of their variables is de�ned as an ADG and, as a proof of
on
ept, it had to be studied whether the MIBOA 
an exploit a-priori knowledgeon this dependen
y stru
ture or not. The test shows that the MIBOA algorithm
an indeed take advantage of this a-priori information on dependen
ies. In all
ases of ADGs dis
ussed ('
hain', 'stru
t2', 'stru
t3', 'bitree', 'tritree', and 'in-vtree') we observed a performan
e gain as 
ompared to mixed-integer evolutionstrategies and estimation of distribution algorithms, both working with an inde-pendent joint distribution, namely MIES and MIPBIL. The population size ofMIBOA turned out to be an important parameter to 
ontrol the trade-o� be-tween fast 
onvergen
e speed in the beginning and reliable 
onvergen
e to theglobal optimum towards the end of the sear
h. Future work will have to fo
uson studies on further syntheti
 and real-world problems, in
luding 
ases wheredis
rete parameters depend on 
ontinuous parameters, whi
h turned out to bedi�
ult to handle. In parti
ular we are interested in applying the new algorithmin the 
ontext of optimization of image pro
essing pipelines, the a
y
li
 stru
tureof whi
h makes the MIBOA a parti
ularly promising te
hnique.
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Con
lusionTargeting spe
i�
ally at 
hallenging mixed-integer bla
k-box optimization prob-lems, in this dissertation, we proposed so-
alled Mixed-Integer Evolution Strate-gies (MIES) and did a thoroughly resear
h on it from both theoreti
al and pra
ti-
al point of view. As a spe
ial variant of 
anoni
al Evolution Strategies (ESs), notonly do MIES share some 
ommon 
hara
teristi
s with ESs � they both belong tothe 
lass of randomized sear
h heuristi
s and use prin
iples of organi
 evolution,su
h as sele
tion, re
ombination, and mutation � MIES also expand ESs fromtraditional 
ontinuous optimization domain to more 
ompli
ated mixed-integerparameter optimization �eld, in whi
h simultaneous optimization of 
ontinuous,integer, and nominal dis
rete parameters is often required. In addition to sys-temati
 experiments on our 
arefully designed syntheti
 fun
tions (e.g., barrierfun
tions and mixed-integer NK-lands
apes), MIES have been su

essfully appliedto various real world problems, for instan
e, optimization of 
ontrol parametersof a semi-automati
 image analysis system for medi
al images.In this thesis, our presented work is divided into three parts: (1) Mixed-Integerevolution strategies; (2) Appli
ation to medi
al image analysis; (3) Advan
ed top-i
s. In the rest of this 
hapter, we summarize our 
on
lusions 
hapter by 
hapterand furthermore dis
uss some issues for future work.Part I: Mixed-Integer Evolution StrategiesChapter 2We presented di�erent types of mixed-integer nonlinear programming problemsand talked brie�y about some 
lassi
al methods whi
h 
ome from traditionalmathemati
al programming resear
h �eld. In 
omparison with these what we
alled �white-box � optimization problems, �bla
k-box � optimization problems nor-mally with un
learly obje
tive fun
tion stru
ture and high dimensionality aremore di�
ult to deal with. Some heuristi
 methods, su
h as Geneti
 Algorithms(GAs) and Simulated annealing (SA), 
ome into play under su
h 
ir
umstan
es.



138 SummaryChapter 3In this 
hapter, the design philosophy of the MIES, whi
h are derived from stan-dard ESs, were explained expli
itly. Furthermore, we made some theoreti
al stud-ies on MIES, su
h as self-adaptation of stepsize and the global 
onvergen
y prop-erty.Chapter 4Two arti�
ial lands
apes � Barrier fun
tions and Mixed-Integer NK Lands
apes(MINLP) � were introdu
ed in this 
hapter. Experimental results showed thatthese fun
tions 
an be used as ideal test 
ases for helping us to learn more aboutMIES. Besides, they give readers a good 
han
e to make 
omparison betweenMIES and standard ESs.Future Work for Part IIn part I, mixed-integer optimization, espe
ially bla
k-box mixed-integer param-eter optimization, was dis
ussed at �rst. Next, mixed-integer evolution strategieswere introdu
ed and studied through several 
arefully designed arti�
ial test fun
-tions. By analyzing (e.g., statisti
al study) some important experimental results,we gained deep insights about MIES algorithm, su
h as 
onvergen
e behavior.As we always emphasized, by design, MIES are 
apable to ta
kle the �bla
k-box � mixed-integer parameter optimization problems. However, as an alternative,MIES 
an also be used to solve some 
lassi
al mixed integer nonlinear program-ming problems. In the future, we would like to do some further investigation onhow to apply MIES to these 
lassi
al optimization problems from mathemati-
al programming �eld, for instan
e, study on how to 
onstru
t proper penaltyfun
tions based on 
omplex 
onstraints.Part II: Appli
ation to Medi
al Image AnalysisChapter 5In this 
hapter, we presented the 
omplete framework of how to apply MIES to anoptimization problem in medi
al image analysis. The experimental results showedthat the MIES always produ
ed better or equal results than the default parametersettings 
hosen by an expert. This observation underpinned our 
laim that MIESis a valuable te
hnique for improve the parameter settings of the lumen dete
tor.Chapter 6We investigated the use of �tness based partitioning in order to �nd sets of op-timal parameters for the segmentation of the lumen in Computer Tomographi
Angiography (CTA) images. The results showed that �tness based partitioning



Chapter 9 139does indeed produ
e sets of parameter settings whi
h lead to better lumen seg-mentations when 
ompared to one �super� solution for all images.Future Work for Part IIIn this part, our proposed MIES were applied to a spe
i�
 appli
ation whi
h
omes from medi
al resear
h �eld: the optimization of 
ontrol parameters of asemi-automati
 image analysis system for medi
al images, su
h as Intravas
u-lar Ultrasound (IVUS) and Computer Tomographi
 Angiography (CTA) images.Spe
i�
ally, dynami
 �tness based partitioning was proposed to help system to�nd spe
i�
 optimal parameter settings for di�erent groups of images instead ofoptimal solution for all images.For the future work, it would be worth trying MIES on larger image sets aswell as on other feature dete
tors ex
ept for lumen, su
h as 
al
i�ed plaque, vesselborder, shadow and sidebran
h. About dynami
 �tness based partitioning, weintend to extend this algorithm with merge and split heuristi
s to automati
ally�nd an optimal number of partitions.Part III: Advan
ed Topi
sChapter 7This 
hapter talked about the metamodel-assisted MIES, whi
h is based on radialbasis fun
tion networks (RBFN). The reason for this is that the evaluation of oneparameter settings for feature dete
tion of a multi-agent medi
al image analysissystem is 
omputationally expensive. By introdu
ing a metamodel, su
h as RBFN,a

eleration on 
onvergen
e speed of MIES 
an be a
hieved.Chapter 8In this 
hapter, we presented a dynami
 ni
hing te
hnique for MIES. In 
ompari-son with an existing ES ni
hing approa
h, our approa
h is based on the heteroge-neous distan
e measure that addresses sear
h spa
e similarity in a way 
onsistentwith the design philosophy of the MIES. The experimental results showed thatMIES with dynami
 ni
hing perform well in obtaining the global optimum inhighly multimodal sear
h lands
apes, su
h as mixed-integer NK lands
apes.Chapter 9We proposed a Mixed-Integer Bayesian Optimization Algorithm (MIBOA) in this
hapter to over
ome a known short
oming of existing mixed-integer evolutionaryalgorithms � their variation pro
edures mutate ea
h de
ision variable indepen-dently, and as a result of it, a-priori dependen
ies knowledge between variables



140 Summary
annot be taken into a

ount. The test results showed that the MIBOA algorithm
an indeed take advantage of su
h kind of a-priori information on dependen
ies.Future Work for Part IIIIn the �nal part, we studied several advan
ed te
hniques � radial basis fun
tionnetworks (RBFN), dynami
 ni
hing and Bayesian networks � whi
h 
an be usedtogether with MIES to further improve the performan
e of algorithm. In the fu-ture, we would like to 
ontinue with our studies on these topi
s from the followingperspe
tives: (1) RBFN-MIES needs to be tested on more 
hallenging problems,su
h as problems from medi
al image analysis. A theoreti
al study on how 
onti-nuity assumptions 
an be generalized for mixed-integer domains would also be aninteresting topi
 for our future work; (2) MIES with dynami
 ni
hing should betested on real-world appli
ations, and we 
an gain a deepened understanding ofni
he information pro
ess; (3) For MIBOA, the future work 
ould be fo
used onmore di�
ult 
ases where dis
rete parameters depend on 
ontinuous parameters.



Appendix ASele
ted Syntheti
 Fun
tionsBesides the two arti�
ial test problems Barrier fun
tion (se
tion 4.2) and MINKL(se
tion 4.3), we will now present four other mixed-integer test problems: Gen-eralized sphere fun
tion, weighted sphere fun
tion, modi�ed step fun
tion, andgeneral quadrati
 fun
tion.A.1 Generalized Sphere Fun
tionThe generalized sphere model (Fun
tion f1) is an extension of a standard prob-lem [38℄, This problem is relatively simple, as it is de
omposable and unimodal.We 
an use it to gain some insights of how an algorithm behaves on rather simpleproblems and thus to estimate the best 
ase behavior of the algorithm.
f1(r, z,d) =

nr∑

i=1

r2i +

nz∑

i=1

z2
i +

nd∑

i=1

d2
i (A.1)A.2 Weighted Sphere Fun
tionThe weighted sphere model (Fun
tion f2) represents a fun
tion with an ellipti
algeometry. Experiments on this fun
tion 
an dete
t if a speed up 
an be a
hievedby the learning of individual strategy parameters for ea
h parameter. Furthermoreit is an example for a fun
tion with a simple quadrati
 and 
onvex geometry.

f2(r, z,d) =

nr∑

i=1

ir2i +

nz∑

i=1

iz2
i +

nd∑

i=1

id2
i (A.2)



142 Modi�ed Step Fun
tionA.3 Modi�ed Step Fun
tionThe step fun
tion (Fun
tion f3) has been 
hosen to show that MIES is 
apableto ta
kle large plateaus in the �tness lands
ape. The plateau is used for linkedareas of neighboured solutions in the sear
h spa
e, that lead to the same �tnessvalue. Su
h plateaus happen in pra
ti
al appli
ations for example when sear
hingfor feasible points, using penalty fun
tions that are proportional to the numberof violated 
onstraints or simulation errors.
f3(r, z,d) =

nr∑

i=1

⌊ri⌋2 +

nz∑

i=1

(zi div 10)2 +

nd∑

i=1

(di mod 2)2 (A.3)A.4 General Quadrati
 Fun
tionThe general quadrati
 fun
tion (Fun
tion f4) represents a strong intera
tion be-tween all parameters. The 
ontour lines of this fun
tion have approximately theshape of ellipsoids.
f4(r, z,d) =

n∑

i=1

(

i∑

j=1

rj + zj + dj)
2 (A.4)
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SamenvattingIn natuurlijke systemen is het nastreven van een optimale toestand een heel be-langrijk vers
hijnsel. Atomen, bijvoorbeeld, proberen optimale bindingen aan tegaan waardoor ze in een toestand van laagste energie geraken, levende mierenzijn in staat zi
h aan de veranderende omgeving aan te passen en de kortste wegte vinden van nest naar voedselbron, en de gezamenlijke beweging van een vo-gelzwerm doet de kans toenemen dat hun waakzaamheid tot su

es leidt. Dezeverbazingwekkende oplossingen van de hand van de natuur zijn voor wetens
hap-pers en te
hni
i altijd al een bron van inspiratie geweest bij het aangaan vanallerlei toepassingsuitdagingen in onze leefwereld. Natural 
omputing is een on-derzoeksgebied waarin gebruik wordt gemaakt van op de natuur geïnspireerdeberekeningste
hnieken en waarin algoritmen worden ontwikkeld voor het oplossenvan problemen uit de reële wereld. Wij ri
hten onze aanda
ht op evolutionary 
om-putation, op dit moment een van de gebieden in de informati
a waarin de meesteonderzoeksaktiviteit gaande is, met een enorm aantal su

esvolle toepassingenop problemen uit de reële wereld en met, voor sommige te
hnieken, heel ver on-twikkelde theoretis
he onderbouwingen. In plaats van kenmerkende eigens
happenvan afzonderlijke biologis
he organismen pre
ies na te maken, ontleent evolutio-nary 
omputing zijn inspiratie aan de dynamiek van hele populaties van organis-men. Daarbij wordt gebruik gemaakt van begrippen als mutatie, re
ombinatie ensele
tie, om het organis
he evolutiepro
es na te bootsen, waarin survival of the�ttest, van de meest ges
hikte, en fenotypis
he variatieprin
ipes een belangrijkerol spelen en leiden tot een een betere aanpassing van een populatie van indi-viduen aan een gegeven evolutioniare omgeving. Dit betekent dat individuen meteen grotere ges
hiktheid, �tness, dan ook betere kansen hebben op overleven enop nakomelingen. Het is in de litteratuur gebruikelijk om de hele verzameling vanalgoritmen die van dit organis
he evolutiepro
es zijn afgeleid, aan te duiden metevolutionaire algoritmen (EAs).Het oorspronkelijke idee a
hter ons werk is, de 
anonieke EvolutieStrategieën(ESsen) uit het traditionele domein van optimalisering met reële parameters, uitte breiden naar het optimaliseringsdomein met mixed-integer parameters. Dit isnodig, omdat in het bedrijfsleven zi
h talrijke op de praktijk geri
hte optimali-seringsproblemen voordoen waarbij de verzameling van beslissingsvariabelen 
on-tinue, integerwaardige en anderszins dis
rete variabelen omvat. Bovendien zouden



156 Samenvattingdoelfun
ties voor dit type probleem gebaseerd kunnen worden op groots
haligesimulatiemodellen, of ook zou de stru
tuur van de doelfun
ties te ingewikkeldkunnen zijn om in zo'n model op te nemen. Vanwege deze mogelijke 
ompli-
aties wordt dit type optimaliseringsproblemen ge
atalogiseerd als de 
ategorievan bla
k-box -optimaliseringen. Hierop kunnen de klassieke optimaliseringste
h-nieken, afkomstig uit het onderzoeksgebied van de Mathematis
he Programmering(MP), niet zo maar worden toegepast, omdat deze gebaseerd zijn op de eigens
hap,dat met een verdeel-en-heers-aanpak de zoekruimte altijd e�
iënt doorlopen kanworden. Daarentegen is het nieuwe algoritme dat wij voorstellen, de zogenoemdeMixed-Integer Evolution Strategies (MIES), heel wel in staat tot goede oplossin-gen te komen voor deze uitdagende bla
k-box -optimaliseringsproblemen, namelijkdoor gebruikmaking van daartoe ontwikkelde variatie-operatoren toegespitst opklassen van mixed-integer parameters.Binnen onze onderzoeksaktiviteiten hebben we niet alleen MIES geïtrodu
eerden vanuit theoretis
h standpunt diepgaand bestudeerd, maar we hebben ook eenraamwerk ontwikkeld voor het toepassen van MIES op de optimaliseringsproble-matiek uit de reële wereld van het medis
h onderzoek. Meer in het bijzonderpassen we MIES daar toe op de optimalisering van besturingsparameters van eensemi-automatis
h beeldanalysesysteem voor IntraVas
ulaire UltraSoundbeelden(IVUS). Dit zijn real-time, hoge-resolutie-tomogra�ebeelden die de binnenkantvan een kransslagader laten zien of van andere slagaders. IVUS-beelden zijn lastigte interpreteren, wat er weer toe leidt dat handmatige segmentering in hoge mategevoelig is voor geringe veranderingen door toedoen van een enkele waarnemerof door toedoen van het samenspel der waarnemers. Aldus heeft de ontwikkelingvan een systeem voor het opsporen van karakteristieken in IVUS-beelden veelaanda
ht gekregen in het medis
h onderzoek en in het informati
a-onderzoek.De performan
e van de meeste systemen hangt e
hter af van een groot aantalbesturingsparameters, die met de hand lastig te optimaliseren zijn, en die medeafhankelijk kunnen zijn van vers
hil in interpretatie
ontext. Deze parameters zijnbovendien onderhevig aan verandering, als er in het registratiepro
ess van debeelden iets wijzigt. Vergeleken met andere aanpakken kan er met MIES door desysteemontwikkelaar geautomatiseerd worden gezo
ht naar optimale parameter-instellingen, waarbij de kans groot is op het vinden van een parameterinstellingdie resulteert in een signi�
ant hogere nauwkeurigheid bij het opsporen van dekarakteristieken.De inhoud van dit proefs
hrif bestaat uit drie delen: (1) de inleiding, en hettheoretis
h onderzoek aan het nieuwvoorgestelde optimaliseringsalgoritme; (2)het gebruik ervan bij toepassingen uit de reële wereld, en wel bij parameteropti-malisering in medis
he beeldanalyse; (3) geavan
eerde onderwerpen zoals Ni
he-te
hnieken. Meer in het bijzonder worden in het theoriedeel de state-of-the-artMIES-algoritmen geïntrodu
eerd en vervolgens worden ze getest op vers
hillende,zorgvuldig ontworpen arti�
ial lands
apes, bijvoorbeeld op gegeneraliseerde NKlands
apes. Het deel van de toepassingen uit de reële wereld gaat voornamelijkin op parameteroptimaliseringsproblemen uit het medis
h onderzoeksgebied. De



Samenvatting 157door ons voorgestelde MIES-algoritmen worden toegepast, om een multi-agent-systeem te optimaliseren dat ontwikkeld was voor het opsporen van karakter-istieken in medis
he beelden. Tevens worden enkele belangrijke waarnemingen uitde experimenten vermeld. Ten einde de performan
e van onze algoritmen nog meerte verbeteren, worden in het derde deel enkele geavan
eerde te
hnieken onderzo
htdie in 
ombinatie met MIES kunnen worden gebruikt, bijvoorbeeld de te
hniekenMetamodel-Assisted Optimalisatie, Ni
he-Te
hnieken and Bayesian Learning.In meer detail kan het proefs
hrift als volgt worden samengevat.Hoofdstuk 2 geeft eerst een kort overzi
ht van de essentiële terminologie voorglobale optimalisering en in het bijzonder introdu
eert het het mixed-integerparameteroptimalisatieprobleem. Vers
hillende klassieke algoritmen uit de tradi-tionele Mathematis
he Programmering (MP) worden er besproken, zoals Bran
h-en-Bound-methoden (BB) and Outer-Approximation-methoden (OA). Tegeno-vergesteld aan deze white-box optimaliseringsaanpak wordt het raamwerk voormixed-integer parameteroptimalisering binnen het bla
k-box s
enario besproken,en wel heel gedetailleerd. Ook worden twee representatieve toepassingen uit dereële wereld � ontwerpen van optis
he �lters en optimalisering van 
hemis
hefabrieken � gegeven, als voorbeelden ter motivatie.In Hoofdstuk 3 introdu
eren we eerst het algemene raamwerk van EAs. Daarnageven we een expli
iete uitleg van de grondslagen van de 
anonieke ESsen, welkeop hun beurt de kernen vormen van de algoritmen van de door ons voorgesteldeaanpak MIES, geri
ht op mixed-integer-parameteroptimalisering. Vervolgens wor-den in detail de �loso�e a
hter het ontwerp van MIES en vers
hillende belangrijkeeigens
happen ervan besproken.In Hoofdstuk 4 stellen we twee innovatieve, ge
onstrueerde testproblemenvoor, Barrier Fun
ties en Mixed-Integer NK lands
apes (MINKLs). De barrierfun
ties worden aangemaakt door een multimodale probleemgenerator die inte-geroptimaliseringsproblemen produ
eert met een s
haalbare onregelmatigheids-graad maar zonder intera
tie tussen de variabelen. MINKLs zijn uitbreidingenvan standaard NK lands
apes (NKLs), die zelf weer sto
hastis
h gegenereerdepseudo-boolean fun
ties zijn van N bits (de genen) en met K intera
ties tussende genen. Deze twee kunstmatige testproblemen worden zorgvuldig ontworpenen de experimentele resultaten laten zien dat zij bijzonder nuttig zijn voor hetbegrijpen van de dynamiek van evolutionair zoeken binnen de mixed-integer toe-standsruimte.MIES toegepast op parameteroptimalisering van IVUS-beeldanalyse, wordt inHoofdstuk 5 besproken. Er wordt een geavan
eerd multi-agent-systeem geïntro-du
eerd dat bestemd is voor het opsporen van karakteristieken van IVUS-beelden,van lumen-karakteristieken in het bijzonder, en het raamwerk voor het optimali-seren ervan met behulp van MIES wordt uitgelegd samen met enkele veelbelovendeexperimentele resultaten.In Hoofdstuk 6 onderzoeken we het gebruik van indelingen naar �tness, omgroepen van Computed-Tomographi
-Angiography-beelden (CTA) te kunnen vin-den waarvoor een vergelijkbare parameterinstelling vereist is ten behoeve van



158 Samenvattinghet segmenteringsalgoritme, terwijl deze parameterinstellingen voor de groepentegelijkertijd blijven evolueren.Hoofdstuk 7 bespreekt hoe metamodellen moeten worden gebruikt, radial-basis-fun
tion-netwerken (RBFN) met name, om MIES te ondersteunen bij hetuitvoeren van optimaliseringstaken met tijdrovend gebruik van evaluatiefun
ties,zoals analyse van IVUS-beelden.Hoofdstuk 8 bespreekt een dynamis
he ni
he-te
hniek voor MIES die is geba-seerd op een bestaande ES ni
he-aanpak en die kort geleden ontwikkeld is ensu

esvol is toegepast op 
ontinuous lands
apes. De nieuwe te
hniek is gebaseerdop de heterogene afstandsmaat die rekening houdt met overeenkomsten tussentoestandsruimten, en die in zekere zin 
onsistent is met de mutatie-operatorenvan MIES.Hoofdstuk 9 introdu
eert een nieuw algoritme voor het s
hatten van verdelin-gen, dat een uitbreiding is van de toepasbaarheid van het Baysiaanse optimali-seringsalgoritme (met een vaste netwerkstru
tuur) en wel van binaire naar mixed-integer-optimaliseringsproblemen. Experimentele resultaten laten zien, dat doorhet hier voorgestelde algoritme a-priori-kennis van afhankelijkheden tussen be-slissingsvariabelen ingezet kan worden ter verbetering van 
onvergentiesnelheiden betrouwbaarheid. Het is binnen dit algoritme dat MIES als subalgoritme zijnwerk doet in het zelf-organiserende 
lustering-pro
es.
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