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Chapter 1

Introduction

Searching for an optimal state is one of the most important phenomena in natural
systems. For instance, atoms try to form optimal bonds thereby obtaining energy
minimal states, real ants are capable of adapting to the changing environment and
finding shortest path from the nest to the food source, and the aggregate motion
of a flock of birds increases the success rate of their vigilance. These amazing
solutions from nature have always been a source of inspiration for scientists and
engineers to tackle various challenging applications in our world. Natural com-
puting is a field of research that works with computational techniques inspired
by nature and develops algorithms for solving complex real-world problems [68].
In general, natural computing consists of mainly three branches, in which each
has its own representative techniques (Table 1.1): Among these aforementioned

| Natural Computing Branches | Representative Techniques |

Computing inspired by natural systems | evolutionary computation, neural networks,
swarm intelligence, etc.

Simulation and emulation of nature lindenmayer systems and artificial life.
Computing with natural materials DNA computing and quantum computing.

Table 1.1: Different natural computing branches and its typical techniques.

techniques, we focus our attention on evolutionary computation, which nowa-
days is one of the most active research fields of computer science with a huge
amount of successful applications to real-world problems and for some techniques
a highly developed theoretical foundation. Rather than emulating features of a
single biological organism, evolutionary computation draws its inspiration from
the dynamics of an entire population of organisms. It uses the concepts of muta-
tion, recombination, and selection to mimic the process of “organic evolution”, in
which survival of the fittest and phenotypic variation [28] principles play an im-
portant role and lead to better adaptation of a population of individuals to a given
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evolutionary environment, that is, individuals with the higher fitness' have better
chances of survival and multiplying. The whole collection of algorithms, which are
derived from this “organic evolution” process, are normally termed evolutionary
algorithms (EAs) in literature.

The original idea of our work is to extend the canonical Evolution Strategies
(ES) - which is one of three computation paradigms? of EAs - from traditional real-
valued parameter optimization domain to mixed-integer parameter optimization
domain. This is necessary because there exist numerous practical optimization
problems from industry in which the set of decision variables simultaneously in-
volves continuous, integer and discrete variables. Furthermore, objective functions
of this type of problems could be based on large-scale simulation models or the
structure of the objective functions may be too complex to be modeled. From this
perspective, optimization problems of this kind are classified into the black-boz op-
timization category. For them, classic optimization techniques, which come from
Mathematical Programming (MP) research field, can not be easily applied, since
they are based on the assumption that the search space can always be efficiently
explored using a divide-and-conquer scheme. While our new proposed algorithm,
the so-called Mixed-Integer Evolution Strategies (MIES), by contrast, is capable
of yielding good solutions to these challenging black-box optimization problems by
using specialized variation operators tailored for mixed-integer parameter classes.

In this work not only did we introduce MIES and study it intensively from a
theoretical point of view, but also we develop the framework for applying MIES
to the real-world optimization problem in the medical field. More specifically, we
apply MIES to the optimization of control parameters of a semi-automatic image
analysis system for Intravascular Ultrasound (IVUS) images, real-time high res-
olution tomographic images which show the inside of coronary or other arteries.
IVUS images are difficult to interpret which causes manual segmentation to be
highly sensitive to intra- and inter-observer variability [66]. Thus, the develop-
ment of feature detection systems for IVUS images has received much attention
in medical and computer science research. However, the performance of most sys-
tems depend on a large number of control parameters that are hard to optimize
manually and may differ for different interpretation contexts. Moreover, these pa-
rameters are subject to change when something changes in the image acquisition
process. Compared to other approaches, with MIES the system developer can
search for optimized parameter settings automatically and likely will obtain pa-
rameter settings that lead to significant higher accuracy of the feature detectors.

1.1 Overview of Thesis

The contents of this dissertation consist of three major parts: (1) the introduction
and theoretical study of the newly proposed optimization algorithm; (2) Its ap-

Mt is determined by the given environment .
2 Another two computation paradigms are Evolutionary Programming (EP) and Genetic Al-
gorithms (GAs).
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plication to the real-world application, that is, parameter optimization of medical
image analysis; (3) advanced topics, such as Niching techniques. More specifi-
cally, in the theoretical part the state-of-the-art MIES algorithms are introduced,
and then they are tested on several carefully designed artificial landscapes, for in-
stance, generalized Nk landscapes. The real-world application part mainly focuses
on parameter optimization problems from medical research field. Our proposed
MIES algorithms are applied to optimize a multi-agent system, which was de-
veloped for medical image feature detection. And some important experimental
observations will be presented. In the third part, some advanced techniques, which
can be used in combination with MIES, are investigated to further improve the
performance of our algorithms, for example, Metamodel-Assisted Optimization,
Niching Techniques and Bayesian Learning.

The more detailed structure of this thesis can be summarized as follows:

Chapter 2 first provides a brief overview of the essential terminology of global
optimization, and the mixed-integer parameter optimization problem is intro-
duced specifically. Several classic algorithms from the traditional Mathematical
Programming (MP) research field, such as Branch-and-Bound (BB) and Outer
Approximation (OA) methods, are reviewed after. As opposed to this white-box
optimization methodology, the framework for mixed-integer parameter optimiza-
tion in the black-box scenario is discussed in very detail. Two representative real-
world applications - optical filter design and chemical plant optimization - are also
presented as motivating examples.

In Chapter 3 we first introduce the general framework of EAs. Next, we explain
the fundamentals of the canonical ES explicitly, which serves as the algorithmic
kernels of our proposed methodology - MIES for mixed-integer parameter opti-
mization. Then the design philosophy of MIES and several important properties
are discussed in detail.

In Chapter 4, we propose two innovative synthetic test problems - Barrier
Functions and Mized-Integer NK landscapes (MINKL). Barrier functions are cre-
ated by a multi-modal problem generator that produces integer optimization prob-
lems with a scalable degree of ruggedness but no interaction between variables.
MINKL are an extension of standard NK Landscapes (NKL), which are stochasti-
cally generated pseudo-boolean functions with N bits (genes) and K interactions
between genes. These two artificial test problems are carefully designed and exper-
imental results show that they are particular useful to understand the dynamics
of evolutionary search within the mixed-integer space.

MIES for parameter optimization of IVUS image analysis are presented in
chapter 5. An advanced multi-agent system for IVUS image features detection,
especially for lumen feature detection, is introduced and the framework for opti-
mizing this system using MIES is proposed as well as some promising experimental
results.

In Chapter 6 we investigate the use of fitness based partitioning to find groups
of Computed Tomographic Angiography (CTA) images that require a similar
parameter setting for the segmentation algorithm while at the same time evolving
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optimal parameter settings for these groups.

Chapter 7 discusses how to use metamodels, in particular radial basis function
networks (RBFN), to assist MIES when applied to optimization tasks with time
consuming evaluation functions, like IVUS image analysis.

Chapter 8 presents a dynamic niching technique for MIES, based upon on
an existing ES niching approach, which was developed recently and successfully
applied to continuous landscapes. The new method is based on the heterogeneous
distance measure that addresses search space similarity in a way consistent with
the mutation operators of the MIES.

Chapter 9 introduces a new estimation of distribution algorithm that extends
the Bayesian optimization algorithm (with fixed network structure) from binary
optimization problems to mixed-integer optimization problems. Experimental re-
sults show that a-priori knowledge on dependencies between decision variables
can be exploited by this proposed algorithm in order to improve convergence
speed and reliability. In this algorithm, MIES serves as a sub-algorithm in the self
organized clustering process.

1.2 Overview of Publications

Here we give an overview of the way in which parts of this thesis have been
published.

Chapter 3: Mixed Integer Evolution Strategies

The content of this chapter is partly based on research, which was accepted for
publication as a chapter contribution in a book on Evolutionary Image Anal-
ysis and Signal Processing of Springer “Studies in Computational Intelligence”
series [79].

Chapter 4: Synthetic Mixed-Integer Landscapes

A major portion of this chapter is published in the Proceedings of the Ninth
International Conference on Parallel Problem Solving from Nature (PPSN IX,
2006) [78] and an extended abstract in the Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC’06) [32].

Chapter 5: Parameter Optimization for Medical Image Analysis

Major parts of this chapter are published in the Proceedings of the 1st Interna-
tional Workshop on Computer Vision for Intravascular and Intracardiac Imag-
ing (MICCATI 2006) [18], Proceedings of Genetic and Evolutionary Computation
Conference (GECCO’06) [77], Proceedings of Sixth European Workshop on Evolu-
tionary Computation in Image Analysis and Signal Processing (EvoIASP’06) [75],
Proceedings of Adaptive Computing in Design and Manufacture (ACDM’06) [76]
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and an extended abstract in the Proceedings of the 18th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC’06) [39].

Chapter 6: Dynamic Fitness Based Partitioning

This chapter is published in the Proceedings of the Seventh European Work-
shop on Evolutionary Computation in Image Analysis and Signal Processing
(EvoIASP’07) [72], an extended abstract in the Proceedings of the 19th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC’07) [73] and Proceed-
ings of Eighth European Workshop on Evolutionary Computation in Image Anal-
ysis and Signal Processing (EvoIASP’08) [33].

Chapter 7: Meta-Model Assisted Mixed Integer Evolution Strategies
The research results in this chapter are published in the Proceedings of the IEEE
Congress on Evolutionary Computation (IEEE CEC 2008) [80].

Chapter 8: Mixed-Integer Evolution Strategies with Dynamic Niching
This chapter is based on publication in the Proceedings of 10th International
Conference Parallel Problem Solving from Nature (PPSN X, 2008) [74].
Chapter 9: Mixed-Integer Evolution Strategies with Bayesian Learning

Parts of this chapter are published as a full paper contribution in the Pro-
ceedings of the 20th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC’08) [40].






Part 1

Mixed-Integer Evolution
Strategies






The expectations of life depend upon
diligence; the mechanic that would perfect
his work must first sharpen his tools.

Confucius

Chapter 2

Mixed-Integer Parameter
Optimization

To start our journey, good preparation is always required. This chapter lays the
groundwork for our study in this dissertation. Like we declared in chapter 1,
the original goal of our work is to develop efficient and robust methods to deal
with mixed-integer parameter optimization problems particularly in black-box op-
timization scenario. Therefore, it is important for us to first introduce the el-
ementary terminology of the global optimization, especially the mixed-integer
parameter optimization. As a traditional approach of formulating optimization
problems, Mathematical Programming (MP) as well as its major subfields, such
as Linear Programming (LP) and Mixed-Integer Programming (MIP), will also
be covered explicitly. Next, two well-established techniques - Branch-and-Bound
(BB) and Outer Approximation (OA) - will be reviewed thoroughly, because they
are widely used for solving Mixed-Integer Nonlinear Programming (MINLP) prob-
lems in practice. As opposed to these white-box based optimization problems, we
will address black-box optimization in mixed-integer parameter search space. At
last, two selected optimization applications from industrial field will be presented.

2.1 Global Optimization

The global optimization problem can be generalized in terms of finding the com-
bination of parameters which optimize a given quantity depending on these pa-
rameters, possibly subject to some restrictions on the allowed parameter ranges.
The quantity to be optimized is called the objective function'; the parameters
which may be changed in the quest for the optimum are called control or decision
variables; the restrictions on allowed parameters values are known as constraints.

LAlso called performance measure, loss function, or fitness function in some context.
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It is customary to write the global optimization problem as follows:

minimize f(x) € R (2.1)
subject to gi(x) eR < 0 i€l
hi(x)eR = 0 jeI
€ 0,0#0

where f(x) : x € R™ is the objective function and its value is called the objective
value of this function. g;(x) and h;(x) are the set of constraint functions. Con-
straint equations of the form g(x) < 0 denote inequality constraints, and those
of the form h(x) = 0 denote equality constraints. I, represents the inequalities
index set, and [}, indicates the index set of equalities. © represents non-empty set
of allowable values for x and is defined as:

O ={xeR"|gi(x) <0 A hj(x)=0} (2.2)
Consequently, the optimal solution set can be described as follows [114]:

O* = arg xmelgf(x) ={x"€0: f(x*) < f(x) for all x € O} (2.3)

where “arg mig” can be read as: ©* is the set of values x = x* that minimize
x€e

(maximize in the case of “>") f(x) subject to x* satisfying the constraints repre-
sented in functions g;(x) and h;(x). In general, when the © of the problem is not
convez?, there may be several local minima and maxima, where a local minimum
X is defined as a point for which there exists some § > 0 so that for all x such
that ||x — x|| < § the expression f(x) < f(x) holds.

2.2 Mathematical Programming

Traditionally, to apply optimization concepts and tools optimization problems are
frequently modeled by using Mathematical Programming (MP). MP is concerned
mainly with optimization problems whose objective(s) and constraints can be
clearly described by using algebraic mathematical expressions. MP is the branch
of applied mathematics and numerical analysis that focuses on reaching “best”
solutions (or decisions) by means of mathematical optimization models. It is a
subbranch of operations research® (OR) and there exists a rich body of knowl-
edge surrounding these optimization techniques. Many different subfields can be
defined based on what kind of mathematical model is to be used to describe the
optimization problem at hand [123]. In the following parts, we will review ma-
jor subfields of MP, especially Mixed-Integer Nonlinear Programming (MINLP)
problems and corresponding techniques.

2Even if © is convex there may be multiple local optima, as a result of non-convexity of f(z).
3Also known as management science (MS).
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2.2.1 Linear vs. Nonlinear

A linear programming (LP) problem is an optimization problem which satisfies
the following requirements: (1) Objective function f is a linear function; (2)
Both inequality constraint functions g;(i € I,) and equality constraint functions
hj(j € Ip) are linear functions. In LP problems, the linear constraints result in
a convex feasible solution space. Some algorithms are developed based on this
characteristic, for example the Simplex algorithm [27], which is very efficient in
practice: its worst-case complexity is exponential in the number of problem vari-
ables.

As opposed to LP problems, there are also a large number of optimization
problems in which their objective and constraints functions are nonlinear in de-
cision variables x. Problems in this category are called Nonlinear Programming
(NLP) problems. Because of the nonlinearity of constraint functions or the objec-
tive function, the convexity of the solution space can not be guaranteed anymore.
As a consequence of nonconvexity, NLP problems may have many different local
optima compared to LP problems, and choosing the best one is an extremely hard
task. Several nonlinear programming algorithms have been developed to obtain
the convex solution space by linearising the constraints firstly, and, as a second
step, employ some LP methods to find an optimal feasible solution.

2.2.2 Integer vs. Mixed-Integer

Diwisibility is a common assumption in many optimization methods. It requires
that each decision variable x; is allowed to assume fractional values. A LP problem
in which some or all of the variables must be non-negative integers is called an
Integer Programming (ILP) problem. IP problems can be further classified into
pure Integer Programming and Mixed-Integer Programming (MILP). An Integer
Programming (IP) problem in which all decision variables need to be integers is
called a pure integer programming problem. An integer programming problem in
which only some of the variables are required to be integers is called Mixed-Integer
Programming (MILP) problem.

2.2.3 Mixed-Integer Nonlinear Programming

In real world, many optimization applications are not only complex and challeng-
ing because their decision variables are combinations of real and integer variables,
but also their objective function and constraint functions are nonlinear. For exam-
ple, problems in the optimization of process flowsheets, portfolio selection, batch
processing in chemical engineering, and optimal design of gas or water transmis-
sion networks [48, 63]. The Mixed-Integer Nonlinear Programming (MINLP) is a
natural approach of formulating these kind of problems where it is necessary to
simultaneously optimize the system structure (discrete) and parameters (contin-
uous) [23, 42].
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MINLP problems are very hard to solve in practice, because they combine all
the difficulties of their subclasses: the combinatorial nature of Mixed-Integer Lin-
ear Programming (MILP) and the difficulty of solving Nonlinear Programming
(NLP). In general, these two subclasses problems can be classified into the class of
N P-hard problems. Although they are very hard to solve, the component struc-
ture of MILP and NLP within MINLP provides a collection of natural algorithmic
approaches, exploiting the structure of each of the subcomponents. Analogous to
Equation 2.1, we now state the general MINLP problem as follows:

minimize f(x,y) € R (2.4)
subject to gi(x,y) eR < 0 i€,
hi(x,y)eR = 0 jelI,
Ib, < x < uby
lby < y < ub,
x € R*" n>0
y € Z" m2>0

where f : R™ x Z™ — R is called the objective function. The members of the
solution space are bounded from above and below by ub and 1b respectively. x is
a real valued vector in R™ and y is an integer (normally binary) valued vector in
7™ . Please note that the objective function f and constraint functions g;, h; are
nonlinear in this situation.

There are several techniques employed to solve MINLP problems. They differ
in complexity and running time as well as solution principle and scope of appli-
cation. Branch-and-Bound (BB) and Outer Approximation (OA) are two widely
used methods.

Branch-and-Bound

Branch-and-Bound (BB) is an intelligently structured search for all the feasible
solutions [71]. It is non-heuristic, in the sense that it maintain a provable upper
and lower bound on the (globally) optimal objective value [20] and after ter-
mination will obtain the optimal solution. The space of all feasible solutions is
repeatedly partitioned into smaller and smaller subsets, and a lower bound* is
calculated within each subset. Subsets with a bound that exceeds the cost of a
known feasible solution are excluded from all further steps. The partitioning pro-
cedure continues until a feasible solution is found such that its cost is no greater
than the lower bound for any other subset.

Using pseudocode to explain Branch-and-Bound (BB) method, one can use the
following definitions [14, 49, 81]: a list £ of unsolved subproblems® S;, which were
obtained by relaxing some or all of the integer requirements; ub, an upper bound

4in the case of minimization.
50r node, denote the problem associated with a certain portion of the feasible region of
MINLP
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on the value of objective function f; lbs,, a lower bound on the value that f can
have in subproblem S;; active set, the list of subproblems that must still be solved;
(x*,y*), a record of the best integer solution (or incumbent solution) which has
been found by the algorithm so far. The basic branch-and-bound method can be
generalized as algorithm 1.

Algorithm 1 The Branch-and-Bound Algorithm

1: Initialize:
L, (x*,y*), and ub.

2: Select:
Choose an unsolved subproblem S; from L. Stop if £ = @. If there is an
incumbent solution, then that is an optimal solution. Otherwise, the MINLP
is infeasible.

3: Solve:
Solve the nonlinear programming relaxation of S;. A solution (X,¥)s, and lbg,
are obtained on the optimal value of this subproblem.

4: Prune:
If the relaxed subproblem S; was infeasible, then S; will not provide a better
solution to MINLP than the known incumbent solution. The same as lbs, >
ub. Delete such S; from £ and return to the Select step.

5: Integer Solution:
If y is integer, then a new incumbent integer solution has been obtained.
(x*,y*) = (x,y) and ub is set to the optimal value of S;

6: Branch:
If there exist at least one yj is fractional value in the solution on the S,
then consider splitting the S;. Create a new subproblem S;, by adding the
constraint y < |y |. Create another subproblem S;, by adding the constraint
yr > [yr].Remove S; and add problems §;, and S;,to £. Return to Select
step.

There are various choices to be made during the course of algorithm 1, such as
the choice of the subproblem to evaluate, and the way to divide the feasible region.
An advantage of this algorithm is the clear decoupling of the continuous and
discrete optimizers. Any usable continuous optimizer maybe used for solving the
relaxed problem while the Branch-and-Bound (BB) method searches through the
discrete space for the optimal solution. However, a major disadvantage is the speed
issue. In the worst case the algorithm requires effort that grows exponentially with
problem size. For instance, in the binary case, each S; creates at most two new
subproblems §;, and S;,, whose set can be represented as a binary tree. As a
result, there are total 2™ subproblems to be solved, where m is the number of
discrete variables which is defined in 2.4.
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Outer Approximation

The outer approximation scheme is another common technique for solving a class
of MINLP problems. The outer approximation method approximates the non-
linear space utilizing linear constraints. Supporting linear hyperplanes are calcu-
lated at each iteration of the algorithm. Since we have efficient methods of solving
linear programming problems, we may utilize these to solve for the MINLP prob-
lem. These linearizations overestimates the feasible region while at the same time
the optimal solution is underestimated. Because many constraints are introduced,
the problem may become intractable. For more detailed explanation of Outer
Approximation methods, we recommend the following references [31, 41].

2.3 Black-Box Optimization

As we can see, the methodology behind these aforementioned MP techniques for
solving optimization problems have often followed a pattern: Given a very spe-
cific class of problems with some known properties, design an algorithm to solve
them. However, the applicability of these optimization algorithm is very restricted,
because they work strictly based on assumptions about the properties of the ob-
jective functions. For example, the Branch-and-Bound (BB) method is especially
designed for tackling mixed-integer nonlinear optimization problems. Unfortu-
nately, these divide-and-conquer based techniques may fail when optimization
problems possess the following properties:

(1) Only little knowledge about the objective function is available, such as op-
timization tasks which are mainly based on large-scale simulation models
and the details of which often are inaccessible.

(2) The objective function is very complex, for instance multimodal, high di-
mensional and non-differentiable. As a consequence, the associated compu-
tational burden for this kind of optimization problems easily can become
excessive for some classic MP methods.

From this perspective, these problems would fall into the class of black-box opti-
mization problems, in which only little assumption about the objective function
can be made or the objective function is too complex to be modeled. In this
model of optimization, the objective function is often available for the optimizer
as a black-box without assuming any local or global information [60]. Next, we
will give a formal definition of black-boz optimization based on [60].

Let us denote the finite input and output spaces by X and ), respectively. The
general black-box optimization problem can be formally defined as the following
equation system: For a given input decision parameters vector x in the feasible
domain X, after evaluation through the black-boz function (e.g. simulator) a value
y = ®(x) € Y is returned.

o: X =Y, x—P(x)=y (2.5)
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In the case of minimization, a black-box optimization problem is to find optimal
x* € X such that ®(z*) < ®(z) for all z € X. The performance of the optimization
algorithm used in this scenario, such as EAs, depends on the information collected
by sampling different areas of the search space. More concretely, we explain this
black-boz optimization model by using Figure 2.1 below - a sample optimization
problem with a simulator involved. In general, the combination of simulator and
optimizer typically involves technical problems such as extracting the relevant
simulator output data and aggregating the output data into a meaningful objective
function. As one can see, the objective function is defined in regard to the output
(Y) of the simulator. The optimizer then uses these values to search for optimal

*

solution(s) x*.

f(y) = min

Figure 2.1: Outline of the general principle of coupling simulation and optimiza-
tion.

2.3.1 Mixed-Integer Black-Box Optimization

If an input decision variables vector x is comprised of different types of variables
- continuous, ordinal discrete (integer) and nominal discrete variables®, the cor-
responding optimization problem is called mixed-integer black-box optimization
problems. As we addressed in chapter 1, this kind of optimization problems will
be the main focus of our research and will be studied in detail.

2.3.2 Related Works

Frequently, black-boz optimization algorithms are classified based on whether they
are deterministic or non-deterministic. More specifically, a deterministic method
is to enumerate candidate solutions of the optimization task. Grid search and pat-
tern search are two representatives among these deterministic methods. However,

6This is different from mixed-integer variables definition in MINLP problems, more detailed
explanation are available in chapter 3
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for most of real-world optimization problems, it becomes practically impossible
because of the exponential growth with the number of dimensions. This is often
referred to as the “curse of dimensionality” [10]. Contrary to these deterministic
algorithms, stochastic algorithms (often heuristic) try to solve the problem by in-
troducing some random choices in the search and this makes them more suitable
for practical applications. In practice, there are a large number of stochastic al-
gorithms available, such as simulated annealing, bayesian learning and clustering
methods [60]. And our proposed MIES also belongs to this category.

2.4 Selected Applications

To illustrate the point of mixed-integer black-box optimization, let us have a
look on two representative real-world optimization tasks - the optimization of
multilayer optical coatings [7, 4] and the optimization of a chemical engineering
plant [38]. For these two selected real-world applications, either its objective func-
tion is very complex or its expensive evaluation goes through a simulation soft-
ware, the detail of which are inaccessible. In both cases, classical Mixed-Integer
Nonlinear Programming (MINLP) techniques can not be easily applied. That is
why it is highly desirable to develop new strategies to tackle problems of such
a kind. We would like to mention some important characteristics, which were
summarized in [4], of these practical applications as follows:

e Practical considerations require to find a robust optimum, i.e., an optimum
that is insensitive with respect to small variations of the parameter values.

e The objective function is multimodal, high-dimensional, and non-differentiable,
with a feasible region of the search space that is characterized by nonlinear
constraints.

e In some cases, the objective function evaluation requires a run of a simula-
tion model representing the real system to be optimized.

e Because of different parameter types, a standard representation such as
binary strings or real-valued vectors is difficult to apply to these problems.

2.4.1 Optimization of Multilayer Optical Coatings
Problem Definition

The objective of the multilayer optical coatings (MOCs) design is to find a se-
quence of layers of certain materials and certain thicknesses (Figure 2.2), such that
all unwanted frequencies are cut off, while the wanted frequencies pass without
any reflection.

The matriz method, which is based on the Maxwell equations, is used to model
MOCs as follows: the reflectance R for a given wavelength A that depends on a



Chapter 2 17

Substrate

incident
wave

Layers of the filter:
- Thicknesses
- Materials

Figure 2.2: Multilayer optical coating. Figure courtesy of Béck [4]

vector d of the geometric thicknesses of the layers and the refractive indices 77 of
the materials of the corresponding layers:

b 4 alls
R(d.77,X) = . (2.6)
1. B(d, 1, A) + C(d, 17, \)|*

where 7, and 7 describe the refractive index of the adjacent medium and the
substrate. B and C' are non-linear terms of cfﬁ and X. The objective function f
can be obtained by calculating the mean squared difference between the target
wavelength profile and the profile of the give design sampled at m equidistant
wavelengths \; in the range of interest.

Objective Function

The quality of a design can now be obtained by calculating the mean squared
difference between the target wavelength profile and the profile of the given design
sampled at m equidistant wavelengths ); in the range of interest. The objective
function is defined as follows:

I~ ==
diq)=,|— (d, 77, \)2 i 2.
f(d, ) m;R( 77, A)?> — min (2.7)

The fitness landscape of the objective function defined by equation 2.7, a three-
dimensional plot of RMS-values for a two-layer filter with 11 = 2.2, 5 = 4.2,
and dy, do varying in the range 0 — 20 um is shown in figure 2.3. The landscape
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is characterized by parallel “waves” separated by valleys of increasing depth and
decreasing width. As a consequence, optimization algorithms may be trapped
within a local optimal valley.
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Figure 2.3: Topology of the RMS merit function in case of a fixed two-layer filter
structure with 7, = 2.2 and 7o = 4.2. Figure courtesy of Bick, et al. [7]

Optimization for MOCs design is a very difficult task because: (1) It involves
real-valued thickness and integer-valued refractive indices variables; (2) Dimen-
sionalities of decision variables are very high; (3) Equations which are used to
compute objective values are very complex; (4) The number of dimensions is vari-
able in the most general formulation of this problem.

2.4.2 Optimization of Chemical Engineering Plants
Problem Definition

The optimization of chemical engineering plants is another challenging applica-
tion. The goal is to search for an optimal parameter configuration for a specific
chemical engineering plant. A possible flowsheet for the Hydrodealkylation (HDA)
process is displayed in Figure 2.4. The aim of the HDA process is the production
of benzene from toluene. The annual profit is to be maximized.
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Figure 2.4: Flowsheet of the HDA process network with different chemical devices
(unit operations) connected by material streams. The intervals and discrete sets
indicate the domain of decision parameters to be optimized. Figure courtesy of
Emmerich, et al. [38]

Objective Function

By definition, there are three types of decision parameters involved into the opti-
mization procedure and they are indicated in Figure 2.4. The evaluation is carried
out through one rigorous simulation model and this is presented in Figure 2.5 (cf.
Figure 2.1). This optimization problem is also difficult because: (1) there exist dif-
ferent types of decision parameters; (2) fitness evaluation is based on a commercial
simulation software and we have no access to details of its implementation. The
classical techniques, such as BB and OA, are not applicable in this case.

2.5 Summary

In this chapter, different types of optimization problems are presented and the
special attention is paid to mixed integer nonlinear programming problems, which
occur a lot in real-world applications and are extremely hard to handle in practice.
To tackle these very hard problems, some promising methods which come either
from classical mathematical programming or heuristic domains are discussed in
detail.

As we emphasized at the very beginning of this thesis, compared to “white-
box” optimization problems, we are more interested in problems from “black-
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OPTIMIZER
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Figure 2.5: The interaction between the flowsheet simulator ASPEN PLUS™ and

the optimizer. Figures courtesy of Emmerich, et al. [3§]

box” scenarios. Unclear objective function structure and high dimensionality make
these black-box optimization problems more challenging and it is difficult to ap-
ply methods from the traditional mathematical programming research field, like
Branch-and-Bound (BB) algorithm. By contrast, some heuristic methods provide
possibilities to establish a connection between candidate solutions and the corre-
sponding problem domain and lead us to a global/local optimum in an intelligent

way.
Among many well studied heuristic methods, techniques from Evolutionary

Computation domain, especially Evolution Strategies (ES), will be further inves-
tigated in this work.
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Mixed-Integer Evolution
Strategies

In chapter 2 we introduced mixed-integer parameter optimization, especially in a
black-boz optimization scenario. Now, we will propose one promising algorithm,
the so-called Mixed-Integer Evolution Strategies (MIES), which are capable to
deal with the aforementioned black-box mixed-integer parameter optimization
problems. This chapter is organized as follows: firstly, Evolutionary Algorithms
(EAs) will be reviewed. Some important characteristics of each EAs model will
be presented next. Then, Evolution Strategies (ES) will be discussed briefly, es-
pecially some important components of canonical (u+>\)— ES, such as individuals
structure, mutation, recombination and selection. Fiﬁally, a more general frame-
work for mixed-integer parameter optimization by using the MIES will be pro-
posed in the rest of the chapter.

3.1 Evolutionary Algorithms

ES is one important branch of EAs, and other two branches are Genetic Al-
gorithms (GAs) and Genetic Programming (GP). As we addressed, EAs derive
from Darwin’s theory of the survival of the fittest and mimic the process of or-
ganic evolution by using operators “population”; “mutation”, “recombination” and
“selection” [52]. The better an individual performs under certain conditions the
greater its chance to live for a longer and generate offspring, which in turn in-
herit the parental genetic information. Over the course of evolution, this leads
to a penetration of the population with the genetic information of individuals of
above-average fitness [5].

A high level abstraction of all essential components of standard implementa-
tions of evolutionary algorithms is given in Algorithm 2, for more detailed informa-
tion about different evolutionary computation models (Genetic Algorithms, Evo-
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lution Strategies and Genetic Programming) we recommend books [34, 58|. Based

Algorithm 2 General schema of an evolutionary algorithm
1: t:=0
2: Initialize population with random candidate solutions
3: Evaluate each candidate solution
4: while terminate condition is not satisfied do

Select parents

Recombine pairs of parents

Mutate the resulting offspring

Evaluate new candidate solution

Select individuals for the next generation

10 t:=t+1

11: end while

on this algorithm description, some important features of EAs can be summed up
as follows: EAs are population based, they mostly use recombination or mutation
to generate new candidate solutions, and they are stochastic.

3.2 Evolution Strategies

Evolution Strategies (ES) were founded in the early 1960s by Rechenberg and
Schwefel at the Technical University of Berlin (TUB). In the beginning, ES were
devised for the automatic design and analysis of consecutive experiments with
stepwise variable adjustments driving a suitably flexible object into its optimal
state in spite of environmental noise [12]. The first dissertation in the field of
ES was completed by Rechenberg [95, 96] in 1971. In his thesis, Rechenberg an-
alyzed the (1+1)-ES with Gaussian mutations on two very different real-valued
functions - hypersphere and rectangular corridor function, and was able to show
its convergence velocity, the achieved order of convergence and the optimal mu-
tation strength. Born proposed population based (u + 1)-ES [15] and proved the
convergence with probability 1. By applying principles from organic evolution in
more rigorous way, Schwefel extended the (1+1)-ES towards a (u + A)-ES and
(11, A)-ES and proposed an ES capable of self-adapting some of its strategy pa-
rameters [106, 107]. In the following sections, we will explain the components
of classical (1t A)-ES in detail (cf. Algorithm 3), since it is seen as laying the
foundations for our proposed Mixed-Integer Evolution Strategies (MIES).

3.2.1 Individuals Structure

Canonical Evolution Strategies (ES) are typically used for continuous parame-
ter optimization (R™ — R). For a given optimization problem f(Z) — min, an
individual of the evolution strategy consists of two components:
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1. A candidate solution (a set of decision variables or control parameters),
which is represented as & € R";

2. Endogenous strategy parameters, which can be further divided into two sets,
mutation step sizes ¢ and rotation angles @ (@ are not always used). & es-
sentially encode the n-dimensional normal distribution and are to be used to
control certain statistical properties of the mutation operator. The & values
represent interactions between the step sizes used for different variables. En-
dogenous strategy parameters are very special in ES and can evolve during
the whole evolution process.

Putting it all together, an individual in ES can be given in a more general form
through a triple: @ = (%, 7, @).

3.2.2 Mutation

Mutations are the primary source of genetic variation in ES and are carried out
by adding Az; to each x;, where the Az; values are randomly drawn using the
given normal distribution N (0, ) with zero mean and strandard deviation o. In
practice, the mutation step sizes ¢ are not set by the user, rather they are co-
evolving with the solutions Z. To achieve this it is essential to modify the o value
first, and then mutate the x; values with the new o. The corresponding updating
procedure can be defined as:

) =2 + N(0,0") (3.1)

where ¢’ is the mutated value of o. Next, we will describe three special cases of
mutation which are often used to mutate the value of o in ES [34].

Uncorrelated Mutation with One Step Size

In this case, the same distribution is used to mutate each z;, as a result each
individual includes only one strategy parameter o. The mutation mechanism is
specified by the following formulas:

o = og.emNOD (3.2)

z, = x +0o -N;j0,1)

where o is mutated each time step by multiplying it by a term em NV(O0.1), N(0,1)
denotes a draw from the standard normal distribution, while N;(0,1) denotes a
separate draw from the standard normal distribution for each variable x;. The
parameter 7 can be interpreted as learning rate and readers can refer to [3] for a
more detailed explanation.
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Uncorrelated Mutation with n Step Sizes

Compared to one step size uncorrelated mutation, n step sizes mutation treats
dimensions differently and can learn axes-parallel mutation ellipsoids. This is be-
cause that the fitness landscape can have a different slope in one direction than
in another direction. Now, the mutation mechanism can be described as follows:

= o;- eT-N(O,l)J,*T/-Ni(O,l) (33)

= zi+0;-Ni(0,1)

8
SRS

where 7 and 7" are called global and local learning rate respectively. The com-
mon base mutation e” V(%1 allows an overall change of the mutability, while the
e™ “Ni(0.1) provides the flexibility to use different mutation strategies in different
directions.

Correlated Mutation

This version of mutation allows the ellipses to have any orientation by rotating
them with a covariance matrix C'. The vectors ¢ and & represent the complete
covariance matrix of the n-dimensional normal distribution, where the covariances
are given by rotation angles «; describing the coordinate rotations necessary to
transform an uncorrelated mutation vector into a correlated one. The complete
mutation mechanism is performed according to:

Ul{ o; - eT-N(0,1)+T’-N,;(0,1) (3.4)
o = aj+0-N;(0,1)
i = F+N(O,C@#F,ad))

where N(0,C(&’,@)) denotes the correlated mutation vector and § =~ 0.0873.
The details of this kind of mutation can be found in the literature e.g. in [100].

To make these different types of mutation more clear to readers, we illus-
trate how the degrees of freedoms grow as the number of strategy parameters is
increased in Figure 3.1. As one can see, each of the three figures shows a two-
dimensional (n = 2) hypothetical objective function topology, including isolines
of equal objective function value and the location of a global optimum Z*. The
gray-shaded circles and ellipsoids correspond to individuals and their correspond-
ing probability distribution to produce an offspring. For n, = 1 (the left figure),
all distributions are spherically symmetric and only the radius of the circles is
individually different. For n, = 2 (the middle figure), step sizes along one dimen-
sion might be different from the one along other dimension, such that preference
search directions can be adjusted. For n, = 2,n, = 1, the ellipsoids can rotate
and therefore allow an adjustment of arbitrary preference directions regardless of
the coordinate system.
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€ equal probabilty to place an offspring P equal probabilty to place an offspring €D equal probability to place an offspring

Figure 3.1: Schematic visualization of the three different types of self-adaptive
mutation in Evolution Strategies. Left: n, = 2, middle: n, = 2, right: n, =
2,n, = 1. Figures courtesy of Thomas Béck [6]

3.2.3 Recombination

The basic recombination scheme in Evolution Strategies (ES) involves two parents
that create one offspring. According to the manner of recombining parent alleles,
recombination can be classified into discrete and intermediate recombination. This
can be formalized as follows:

(x; +yi)/2 intermediate recombination
Zi = x; if U(O, ].) > 0.5
y; otherwise

3.5
discrete recombination (3.5)

where U (0, 1) denotes a draw from one given uniform distribution. In cases where
the whole population of p individuals is used to generate one offspring, we are
taking about global recombination. In practice, discrete recombination is recom-
mended for the object/decision variable part and the intermediate recombination
is suggested for the strategy parameters part. This scheme preserves diversity
within the solution space while assuring a more cautious adaptation of strategies
parameters.

3.2.4 Selection

The classical Evolution Strategies (ES) offer two different variants for selecting
candidate solutions for the next iteration of the main loop of the algorithm:
commay(indicated by ,) and plus (indicated by +) selection.

Comma selection

In this situation, after ; parents create A > ' offspring by means of recombina-
tion and mutation, the best p offspring are deterministically selected to replace

IThe ratio of i to X is called selective pressure in ES, and p1/A = 1/7 is strongly recommended.
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the parents. Using this kind of selection the best member of the population at
generation ¢t + 1 might perform worse than the best individual at the previous
generation ¢, Thus the strategy could escape from the local optimum and reach
a better optimum. Comma selection is advantageous in the case of multimodal
topologies.

Plus selection

In contrast, the (u+ ) strategy selects the p survivors from the union of x parents
and X offspring, such that a monotonic course of evolution is guaranteed. This
scheme is typically used in a steady-state setting or under circumstances where
fitness deteriorations from one generation to the next are strictly unacceptable.

3.2.5 Results of Theoretical Study

The theoretical study on ES algorithms focuses mainly on the convergence velocity
and convergence reliability. The former concentrates on the speed of the algorithm
when a local optimum is approached, while the latter targets on proving that the
algorithm is capable of finding the global optimum of the given objective function.
For convergence reliability, so far, the convex case can be handled under strong
simplifications of the objective functions that can be analyzed. The convergence
reliability analysis yields a result for ¢ — oo independent of the objective func-
tion [11]. As one can see from the following sections, we will also apply the similar
studies on proposed Mixed-Integer Evolution Strategies (MIES).

Based on the brief review of canonical Evolution Strategies (ES), especially
(e + A)-ES, we can make a short summary now. Compared to other EA models, e.g.
Genetic Algorithms (GAs), Evolution Strategies (ES) are operating completely on
a phenotypic level and this give them a good opportunity to utilize much more
knowledge about the application. Moreover, the self-adaptation of strategy param-
eters provides a larger flexibility for ES over the complete evolution process [2, 52].
Last but not least, ES combines convergence velocity and convergence reliability
in a more robust way. With respect to all these important properties, Evolution
Strategies (ES) should prove to be global optimization algorithms and competitive
with other global optimization methods.

3.3 Mixed-Integer Evolution Strategies

Mixed-Integer Evolution Strategies (MIES) is a special variant of an Evolution
Strategies (ES) for the simultaneous optimization of continuous, integer, and nom-
inal discrete parameters. It combines mutation operators of Evolution Strategies
in the continuous domain [107], for integer programming [101], and for binary
search spaces [3]. These operators have in common that they have certain desir-
able properties, such as symmetry, scalability, and maximal entropy, the details
of which will be discussed later. The MIES was originally developed for optical
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filter optimization [7, 105], and chemical engineering plant optimization [38, 47].
Recently, as discussed in this contribution, it has been used in the context of
medical image analysis [75, 77]. In the latter work also its convergence behavior
on various artificial landscapes was studied empirically, including a collection of
single-peak landscapes in [38] and landscapes with multiple peaks in [77, 78].

3.3.1 Problem Definition

Many application problems from industry involve the simultaneous use of con-
tinuous, integer, and nominal discrete objective variables. The problem of mixed
integer parameter optimization can be formalized as follows: let rq,...,r,_ de-
note a set of real-valued decision variables, z1,...,2,. denote a set of integer
decision variables, and di,...,d,, denote a set of nominal discrete decision vari-
ables, each of which is taken from a finite domain. The finite domains for the
nominal discrete variables will be denoted with DWW, ..., D) We do not
encode nominal discrete variables as integers, in order to exploit the fact that
there is no meaningful a-priori ordering given for the domain of them. Further-

more, let f : R™ x Z"= x D) x ... x D) — R denote an objective function
to be minimized, g; : R" x Z" x D) x ... x D("4) — R i = 1,...,n, and
hj : R x Z"= x DM x ... x D(na) R, j =1,...,np denote constraint func-

tions. Then the mixed integer parameter optimization problem can be defined
as:

f(rozod) — min (3.6)
gi(rozod) < 0, i=1,...,m
hj(rozod) = 0, j=1,...,n
r, € [gmm)’ gm”)], t=1,...,n,
zi € [zi(mm),zi(mm)], i=1,...,n,
di € DY  i=1,... ng
(min)

and rgmm) define lower and upper bounds for the real
variables and the constants z\™"™ and 2" define lower and upper bounds
for the integer variables. The symbol o denotes tuple concatenation. In contrast
with mixed integer nonlinear programming (cf. section 2.2), here three types of

variables occur:

Here, the constants r

i

Continuous Variables, denoted with r;, are taken from an interval R; C R
and their values are represented as floating point numbers. In the image
processing field, for instance threshold parameters or a radius parameter for
a geometrical shape are often represented as continuous variables.

Integer Variables, denoted with z;, are taken from a range of integer variables
Z; C Z. Important characteristics of integer variables are that their values
have a smallest neighborhood (as opposed to continuous variables) and that
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a linear ordering is defined on the values (as opposed to nominal discrete
variables). The number of gray values in an image is a typical example of
an integer variable in the image processing domain.

Nominal Discrete Variables, denoted with d;, are variables the value of which
are taken from a finite domain, denoted with D;. Neither a metric nor an
ordering is defined on this domain. An example is a variable which takes its
value from a set of geometrical shapes (ellipse, square, triangle). Also binary
variables (such as switches) belong to this class of variables.

As we are interested in the black-box scenario we assume that the structure of f,
gi,t=1,...,ng and hj,j =1,...,np is unknown or we only can make some very
general statements about it, such as continuity assumptions based on a similarity
measure defined on the search space [53]. As a result of this it becomes harder
to apply standard techniques from mathematical programming - so called mixed-
integer nonlinear programming methods [42] to solve them deterministically, such
as outer approximation (OA) [31], branch-and-bound (BB) [14], and generalized
Benders decomposition [43].

In cases where mathematical programming techniques fail, metaheuristics for
mixed integer optimization can be an interesting method to heuristically search
for solutions that improve the objective function value. In order to solve mixed
integer optimization problems with metaheuristics two general approaches can be
considered:

e Hierarchical Approach: Separate the discrete problem from the continu-
ous problem by optimizing the discrete variables in an higher level optimiza-
tion problem and treating the optimization of the continuous parameters as
a subproblem [119, 82, 96]

o Simultaneous Approach: Optimize discrete and continuous parameters
simultaneously . In this approach we consider that similarity of parameter
vectors due to a appropriate metric as being positively correlated to the
similarity in function values [47, 105].

The second method is worth requiring more attention and there are two reasons
why we favor this approach over the hierarchical approach: Firstly, the hierarchi-
cal approach requires a sub-optimization of continuous parameters for each set of
discrete parameters chosen in the outer level. This can be very time consuming.
Secondly, in the hierarchical approach it is difficult to consider correlations be-
tween discrete and continuous variables, as they are strictly separated from each
other. In the following, we will discuss the design philosophy of MIES in detail
and present several important properties.

3.3.2 Algorithm description

The problem of designing an evolution strategy for a new type of search space
breaks down into three subtasks:



Chapter 3 29

(1) definition of the generational cycle,
(2) definition of the individual representation,
(3) definition of variation operators for the representation of choice.

These subtasks will be discussed next.
The chosen algorithm will be an instantiation of a (1 A)-ES for mixed-integer

spaces. It generalizes the more common (u+)\)—ES for continuous spaces, the dy-
namic behavior of which was subject to thoréugh theoretical and empirical studies.
For instance, Schwefel [107] compared it to traditional direct optimization algo-
rithms and Béck [3] to other evolutionary algorithms. Theoretical studies of the
convergence behavior of the ES were carried out for instance by Beyer [11], Oy-
man [88] and Rudolph [102]. A comparison to other evolutionary algorithms such
as Genetic Algorithms can be found in Béck [3, 52]. The results indicate that the
ES is a robust optimization tool that can deal with a large number of practically
relevant function classes, including discontinuous and multimodal functions. In
addition, the ES performance scales well with the search space dimension.

Generational Cycle

The main procedure of the ES is described in Algorithm 3. After a uniform ran-
dom initialization and evaluation of the first population P(0) of p individuals
(parameter vectors taken from an individual space I) and setting the generation
counter t to zero the main loop of the algorithm starts. In a first step of the iter-
ation the algorithm generates the set Q(¢) of A new offspring individuals, each of
them obtained by the following procedure:

Two individuals are randomly selected from P(t) and an offspring is gener-
ated by recombining these parents and then mutating (random perturbation) the
individual resulting from the recombination. In the next step of the iteration,
the \ offspring individuals are evaluated using the objective function to rank the
individuals (the lower the objective function value the better the rank). In case
of a (u+ A) selection, the p best individuals out of the union of the A offspring
individuals and the p parental individuals are selected. In case of a (u, \) selection
the p best individuals out of the A offspring individuals are selected. The selected
individuals form the new parent population P(t 4 1). After this, the generation
counter is incremented. The generational loop is repeated until the termination
criterion? is fulfilled.

Representation

An individual in an Evolution Strategy contains the information about one solu-
tion candidate. The contents of parent individuals is inherited by offspring indi-
viduals and is subject to variation. The standard representation of a solution in

2In most cases a maximal number of generations is taken as termination criterion.
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Algorithm 3 (1 \)-Evolution Strategy

t—20
initialize Population P(t) € I*
evaluate the p initial individuals with objective function f
while Termination criteria not fulfilled do
for alli € {1,...,A} do
choose uniform randomly parents ¢;, and ¢;, from P(t) (repetition is
possible)
x; «+ mutate(recombine(c;,, ¢;,))
Qt) — Q1) U f}
9: end for
10:  P(t+1) « p individuals with best objective function value from P(¢)UQ(t)
(plus), or Q(t) (comma)
11: t—t+1
12: end while

an ES individual is a continuous vector. In addition parameters of the probabil-
ity distribution used in the mutation (such as standard-deviations or step-sizes)
are stored in the individual. The latter parameters are referred to as strategy
parameters.

To solve mixed-integer problems with an Evolution Strategy we extend the
real-vector representation of individuals by introducing integer and nominal dis-
crete variables as well as strategy parameters related to them. The domain of an
individual then reads:

I=Ry X XRy, XxZy X XLy, xDy X XDy, xAs

Here, As denotes the domain of strategy parameters and is defined as:
A, = Ri”+n" x [0,1]",ne < npyne <ngyn, <ng
An individual of a population P(t) in generation t is denoted as:

= ("1, Trs 215y Zns 1y ey g 01y oo Ong s SLy oy Sy PLy - - 5 Pry)

The so-called object variables 71,...,7,,,21,...,%n.,d1,...,d,, determine the
objective function value and thus the fitness of the individual (cf. Equation 3.6).
Here, r1,...,7,, denote real valued, z1,...,z,, integer valued, and di,...,d,,
nominal discrete variables. The so-called strategy-variables o1,...,0,, are stan-
dard deviations used in the mutation of the real valued variables, <1, ..., s, denote
mean step sizes in the mutation of the integer parameters. Finally, p1, ..., pp, de-
note mutation probabilities (or rates) for the nominal discrete object parameters.
All these parameters are subject to inheritance, recombination, and mutation
within Algorithm 3. Object variables are initialized uniformly within their do-
main.
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Recombination

The recombination operator can be subdivided into two steps, selection of the
parents and recombination of the selected parents. Here we will focus on local
recombination which works with two recombination partners. In this work we will
apply local recombination which works with two recombination partners. The
two recombination partners ¢; € I and ¢y € I are chosen randomly according
to a uniformly distribution from the parental generation for each of the offspring
individuals. The information contained in these individuals is combined in order
to generate an offspring individual. In Evolution Strategies two recombination
types are commonly used: dominant and intermediate recombination [107]. In a
dominant (or) discrete recombination the operator chooses randomly one of the
corresponding parental parameters for each offspring vector position. Intermediate
recombination computes the arithmetic mean of both parents and thus, in general,
can only be applied for continuous object variables and strategy variables. In
Mixed-Integer ES, dominant recombination is used for the solution parameters
while intermediate recombination is used for the strategy parameters.

Mutation

For the parameter mutation, standard mutations with maximal entropy for real,
integer and discrete parameter types are combined, as described in [3, 101, 105,
107]. The choice of mutation operators was guided by the following requirements
for a mutation in general search spaces (e.g. [30, 101, 11]):

e Accessibility: Every point of the individual search space should be acces-
sible from any other point by means of a finite number of applications of
the mutation operator.

e Feasibility: The mutation should produce feasible individuals. This guide-
line can be crucial in search spaces with a high number of infeasible solutions.

e Symmetry: No additional bias should be introduced by the mutation op-
erator.

e Similarity: Evolution strategies are based on the assumption that a solu-
tion can be gradually improved. This means it must be possible to generate
similar solutions by means of mutation.

e Scalability: There should be an efficient procedure, by which the strength
of the impact of the mutation operator on the fitness values can be con-
trolled.

e Maximal Entropy: If there is no additional knowledge about the objec-
tive function available the mutation distribution should have maximal en-
tropy [101]. By this measure a more general applicability can be expected.
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Respecting these guidelines, the following operators have been selected in [38]:
The mutation of continuous variables is described in Algorithm 4. The new indi-
vidual is obtained by adding a normal distributed random perturbation, to the
old values of the vector. The corresponding standard deviations are also subject
to the evolution process and are thus multiplied in each step by a logarithmic
distributed random number. Schwefel [107] termed the resulting process as self-
adaptive, because the adaptation of the mutation parameters is governed by an
evolutionary process itself. The general idea behind self-adaptation is that, if a
set of different individuals is generated, each with a different probability distribu-
tion, the individual with the best object variables is also likely to be the one with
the best probability distribution that lead to the generation of these object vari-
ables. Thus the parameters of this probability distribution are also inherited by
the offspring individual. We will now spend some remarks on the properties of the

Algorithm 4 Mutation of real valued parameters

1: input: r,...,7.,01,...,0n,

2: output: ry,...,7, ,04,...,0,,

3: control parameters: n, € {1,n,}

4: N. < N(0,1) {Generate and store a normally distributed random number}
5 T ﬁ; T — ﬁ {Initialize global and local learning rate}
6: if ng, =1

7: {Single step-size mode} then

8: o] =orexp(rN,)

9: forallie{l,...,n.} do

10: rl—r;+01N(0,1))

11:  end for

12: else

13:  {Multiple step-size mode}
14:  for allie {l,...,n,.} do

15: ol «— o;exp(TN. + 7' N(0,1))
16: rl—r;+0jN(0,1))

17:  end for

18: end if

19: {Interval boundary treatment}
20: for alli e {1,...,n,} do

21: 7‘2 — T[T;nin,7rzn,am] (7‘2)

22: end for

normal distributions, as they are responsible for the choice of this type of distribu-
tion for mutating continuous variables. Among all continuous distributions with
finite variance on R, the normal distribution possesses the maximum entropy [67].
The multidimensional normal distribution is symmetrical to its mean value and
unimodal. The step-sizes represent standard deviations of the multi-dimensional
normal distribution for each real-valued variable. By variation of these standard
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deviations the impact of the mutation on the variable vector in terms of similarity
can be scaled.

As opposed to continuous variables, integer variables are less commonly used
in evolution strategies. The mutation procedure for integer variables is borrowed
from [101], where the replacement of the normal distributed random variables by
the difference between two geometrical distributed variables has been suggested.
Among distributions defined on integer spaces the multidimensional geometric
distribution is one of the distributions of maximum entropy and finite variance, as
the original geometric distribution is single-tailed, Rudolph [101] suggested to use
instead the difference Z; — Z5 of two geometrically distributed random variables.
The resulting distribution is depicted for the 1-D case in Figure 3.2 and 2-D case
in Figure 3.3. It is [;-symmetrical® centered around its mean value, unimodal and
it has an infinite support, thereby symmetry and accessibility of the mutation is
obtained. Accessibility is given in a strict sense: each possible configuration can
be reached with a finite probability in a single step. The strength of the mutation
for the integer parameters is controlled by a set of step-size parameters which
represent the mean value of the absolute variation of the integer object variables.
The details of this mutation operator are found in Algorithm 5. Note that a
geometrically distributed random value with mean step size parameter ¢ can be
generated by transforming a uniformly distributed random value u, using:

The width of the distribution can be controlled by the parameter ¢, the mean
value of the exponential distribution (cf. 3.2, for a derivation, see [101]). Excepting
the different distribution types used, it is very similar to the real valued mutation
operator in Algorithm 4. Self-adaptation is used to control the width parameter(s).
The mutation of the width parameter is done as in [101] using a global learning
rate 7 and local learning rate 7/. Since a mean step-size below 1 is not useful
for integer problems the mutated mean step-size is set back to 1, whenever its
mutation results in a value less then 1.

Since we have to keep integer and continuous parameters within their feasible
interval, the mutation operators need to be extended. Therefore a transformation
function Tj, ;) is applied to the mutation operators, that brings parameters be-
yond boundaries back into the feasible domain. For the continuous and integer
parameters this is achieved by (an illustration of how the transformation function
works can be found in Figure 3.4.):

Tiap = a+ (b— a)% sin~!(| sin (%) ) (3.8)

The transformation function can be viewed as a reflection at the interval bound-
aries. Given a step-size of the mutation, we may consider this to be the length

3The l;-norm of a vector z € Z" is defined as > 1" ; |z].
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Figure 3.2: 2-D representation of the dis- Figure 3.3: 3-D representation of the
tribution obtained as the difference of distribution obtained as the difference
two geometrical distributions for differ- of two geometrical distributions. Figure
ent values of <. courtesy of Giinter Rudolph.

a particle has to travel within the interval. Starting in the direction of the orig-
inal unbounded mutation, whenever it meets with an interval boundary the di-
rection is inverted until the total length of the unbounded mutation has been
covered. The method can be efficiently implemented as seen in algorithm 6.
Unlike other mappings, the limiting distribution of the random walk X;41 =
Tia5) (Xt + 0N (0,1)),t = 1,2,... is the uniform distribution. This means that
there are no preferred regions of the search space in the long term in case of
neutral selection and thus bias is avoided. In order to prevent a loss of causality,
the step-size should be kept smaller than the interval width. We recommend a
maximal stepsize of 0.2(b — a).

y=(z—a)/(b—a) ) EOUUUO SURRRRE NS U S
if |y] mod 2 = 0 then o
v =lv~ Ly A
else e N . INS
Yy =1-ly—[y]l
end if Y RIS I T ST g
iL'/:CL-I-(b—CL)yI o i P i
return 2’ o 2 4 &0 8

Algorithm 6: Computation T}, (z), for Figure 3.4: Anillustration to show work-
interval boundaries a and b. ing mechanism of the transformation
function (a=4, b=6).
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Algorithm 5 Mutation of integer parameters

input: 21,...,2n_ .61, ,%n.
output: 27,...,2;, 51,55,
control parameters: n. € {1,n,}
. N, — N(0,1)

T L.

1
VT
if nc =1 then
{Single step-size mode}
¢ «— max(1, ¢ exp(TN.))
for allie {1,...,n,} do

gl Wy e

-1
10 W*U@WWHU@UW&L%WMKH—1+ﬁP>
11: Gl - \\hﬁ(lilH)J ;GQ - \\1n(17U2)J

In(1—7) In(1-1)
12: Z£<—Z7;+G1—G2
13:  end for
14: else

15:  {Multiple step-size mode}
16: forallie {1,...,n.} do
17: ¢/ — max(1, ¢ exp(TN. +7'N(0,1)))

-1
18: uy — U(0,1);u2 — U(0,1);¢ — 1 — (¢//nz) (1 +4/1+ (%)2)

19: Gy — \‘ln(l—ul)J ;GQ - \‘ln(l—uQ)J

In(1—1) In(1—1)
20: Z£<—Zi+G1—G2
21:  end for
22: end if

23: {Interval boundary treatment}
24: for alli e {1,...,n.} do

25: 217/ — T[z:nin,7z;_rn,aac] (Z:)

26: end for

Finally, a mutation of the discrete parameters is carried out with a mutation
probability as described in Algorithm 7. The probability is a strategy param-
eter for each discrete variable. Each new value is chosen randomly (uniformly
distributed) out of the finite domain of values. The application of a uniform dis-
tribution is due to the principle of maximal entropy, since the assumption was
made that there is no reasonable order defined between the discrete values.

To reason about requirements like symmetry and scalability we need to define
a distance measure on the discrete sub-space. The assumption that there is no
order, which can be defined on the finite domains of discrete values, leads to the
application of the overlap distance* measure: A((dy,...,dn,), (d},. .. vdy))) =

4For the binary case this corresponds to the Hamming distance.
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Yot H(d; = d;) with H(true) = 1; H(false) = 0 as a similarity measure for
guiding the design of the mutation operator.

A self-adaptation of the mutation probability for the discrete parameters is
achieved by a logistic mutation of these parameters, generating new probabilities
in the feasible domain. The logistic transformation function is recommended and
discussed by Schiitz [105]. The basic idea of this transformation is to keep the
variables within the range [0, 1]. Given an original mutation probability p € [0, 1],
it can be mutated using the following procedure:

1
r_
1+ 1;% xexp(—7'N(0,1))

p (3.9)

Here N(0, 1) denotes a function that returns a normally distributed random num-
ber. We recommend to employ a second transformation function (T, pimas)
that keeps the value of p in the interval [1/(3ng4),0.5]. The upper bound of 0.5
for the mutation probability is motivated by the observation that the mutation
loses its causality once the probability exceeds the value of about 0.5. The lower
bound is used to prevent the mutation probability from being too close to 0, in
which case the MIES becomes insensitive to changes of that parameters. In case
of p=1/(3n4) a discrete mutation can be expected in every third application of
the mutation operator.

Depending on the discrete subspace, it can be advantageous to use a single mu-
tation probability instead of many individual mutation probabilities pi, ..., pn,-
In case of a single mutation probability, for each position of the discrete subvector
it is decided independently, but with the same probability, whether to mutate this
position or not. By adapting the mutation rate, the average number of mutations
on the discrete values is adjusted to the mean step-size if the Hamming distance
is considered as metric.

3.3.3 Step-size Adaptation Study

Previous work already showed that self adaptive ES are able to converge to optima
of simple functions in arbitrary precision by using step size adaptation. However,
it is an open question whether the self adaptation indeed is capable of helping the
step size close to a optimal value that optimizes the progress rate. A theoretical
analysis of the step-size adaptation is very difficult, even for simple models such as
the sphere models. In this chapter we used a semi-empirical approach by approxi-
mating the local progress rate at a given distance to the optimum statistically for
different step-sizes, in order to find the optimal step-size s* that maximizes the
local progress of the MIES. This computation is repeated for different stages of the
evolution and each time the empirically found optimal step-size §* is compared
to the current step-size of the MIES.

Though we use the approach in this article only for the analysis on the con-
tinuous, integer, and discrete sphere model, it is applicable also for analysis on
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Algorithm 7 Mutation of nominal discrete parameters

input: di,...,dn,,p1,- -, Pn,
output: di,...,d), . pi,..., Dy,
control parameters: n, € {1,n4}
. N, — N(0,1)
1L 1
TV T T e
if n, =1 then then
{Single step-size mode}
/ 1
D= 1+lpr*eXp(—T*Nc)
9:  p' = To.01,05(")
100 forallie{l,...,n,} do

BN

® N>

;. if U(0,1) </ then

12: choose a new element uniform distributed out of D, \ {d;}
13: end if

14:  end for

15: else

16:  {Multiple step-size mode}

172 forallie{1,...,n,} do
/ 1

18: pi 1+1;7:”3*exp(7‘r*NC77"*N(0,1))

19: Pi = Ti1/(3n4),0.5 (P})

20: if U(0,1) < p; then

21: choose a new element uniform distributed out of D, \ {d;}
22: end if

23:  end for

24: end if

any other test problem for which the optimum is known and the evaluation of the
objective function is fast.

In correspondence with [11, 12], the local progress rate ¢(s, x) for a step-size s
is the expectation of the distance covered towards the optimum in one mutation
step [13] starting from position x. Consider a mutation operator muts parame-
terized by the step-size, an objective function f : I — R with single optimum
x* € X, and a position x in the metric search space (X, d). Then

max{0, R(x) — R(mut,(x))}

o(s,x) = E( R ), R(x) = d(x,x%) (3.10)
In order to compute ¢(s,x) we compute the sample mean for M = 50000 samples:
M .
- 1 max{0, R(x) — R(mut’(x))}
d(s,%) = - ; 10 : (3.11)

Depending on the parameter type, a different distance measurement is used to
compute d(x,x*) (cf. Equation 3.12). For instance, the Fuclidean distance is ap-
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plied to continuous parameters, Manhattan distance is applied to integer param-
eters, and for discrete parameters we choose the Querlap distance function.

Soi(x — xp)? if z; € R (Fuclidean Distance)
. S — if x; € Z (Manhattan Distance)
o x°) = .
Yo X(xg, @) 1 T g x; €D (Overlap Distance)
1 if (x; # )
(3.12)
The optimal step-size s* is approximated by means of a graphical plot. The value
of ¢(s,x) is computed for an equidistant set of L = 40 points s1, s, ..., sy, in the

interval [0, smax(x)]. The upper interval boundary smax is chosen as smax(x) =
2|x — x*| and as smax = 1 whenever smax(x) represents a mutation rate. It is
plausible that an optimal step-size exists, as first of all the value of ¢ is always
positive and for s = 0 it should take the value of 0. Whenever the step-size s
gets too large the progress rate also approaches zero, since the probability to
step beyond the region of improvement gets very high. The upper bound of 1 in
cases where s represents a probability seems to be a natural choice. However, in
case of a high search space dimensionality the optimal value of s might be very
close to zero and a reduction of the upper bound can be considered. The research
question is whether the MIES can find and keep the step-size that maximizes the
local progress rate.

The experimental setup is as follows: We compute the optimal step-size at
different stages of the evolution. Let x(*) denote the parent individual in the t-th
generation. We then compute ¢(s;, x(M) for s; € [0, smax(x™)],i=1,..., L, and
graphically compare the peak of the graph of q@(si, x(t)) with the step-size s®) used
by the MIESES at different stages of the evolution. The search space dimension
is 15 and the variable range is [—1000, 1000] for the integer and discrete variables,
and {0,...,9} for the discrete variables. As a test problem the minimization of the
sum of squares of the variables is used. Continuous, integer and discrete spaces
were studied separately.

Results for different parameter types are shown in Figure 3.5 (continuous), 3.6
(integer) and 3.7 (discrete). For all three cases the optimum of the step-size is
found and tracked. This proves that, at least for relatively simple — but never-
theless high-dimensional — problems, the self-adaptation of the step-sizes works.
Note, that the scale of the plots in Figures changes during the run by orders of
magnitude. In order to achieve the results we used a learning rate of 0.5. It is
also possible to use the recommended values for 7 (cf. 3.3.2). For this setting we
achieved worse results, although the right order of magnitude for the step-size
was still obtained. In summary, this study shows that all distributions used for
mutation can be controlled in their width by means of scaling parameters, allow-
ing self-adaptation to be implemented. In the following part, we will present some
result of theoretical study of MIES on convergence reliability.
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Figure 3.5: Comparison between the peak of the graph of é(si,x(t)) with the
stepsize s(*) (vertical line) of continuous variables used by the MIES at that stage
of the evolution. The step-size s is found by the self-adaptation within the
(4,28)-MIES (i.e. without knowledge of ¢).

3.3.4 Global Convergence Properties

If certain regularity requirements are met, it is possible to prove strong probabilis-
tic convergence of the MIES for t — oo towards the global optimum. The theorem
generalizes a theorem on the ES for continuous spaces by Born [15]. Both the plus
and the comma strategy are considered, and for the convergence analysis the best
solution found so far, i.e. x}_,, will be considered.

Definition 1
A function f: C — R is called regular, if:

(A) f is continuous,

(B) C CR™is a closed set,

(C) Vx' € C':Ve>0: theset {x € Clx # x' A f(x) < f(X/) + €} is non-empty.
Definition 2

Let A’ C A and let g : A — B a function. By g| 4/ we denote the restriction of the
function g defined by g|a/(a’) := g(a’) where a’ € A’.

Given these technical preliminaries we can state the following theorem:
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Figure 3.6: Comparison between the peak of the graph of é(si,x(t)) with the
stepsize s() (vertical line) of integer variables used by the MIES at that stage
of the evolution. The step-size s®) is found by the self-adaptation within the
(4,28)-MIES (i.e. without knowledge of ¢).

Theorem 3

Let f : R" x A — R denote a mixed-integer function, and f|gn(q) is a regular
function for at least one a* € A which is optimal. Then for a (u + A) MIES with
lower limit 0, > 0 for the stepsizes and mutation rates, the series f(x}.;)t=1,2,...
converges with probability one to the global minimum of f, i.e.

Pr{flim Ay =0} =1, with Ay = f(xb,e;) — f* >0 (3.13)

Here ¢ represents the number of iterations, and f* denotes the global optimum.

Proof (Proof)
From the construction of the algorithm it follows:

VE>0: Apyg <A, (3.14)
and from the definition of a global optimum we get
VE>0: Ay >0 (3.15)
With proposition 3.14 and 3.15 it follows that A;(¢t = 1,2,...) has a limit value

Jlim Ay = A (3.16)
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Figure 3.7: Comparison between the peak of the graph of é(si,x(t)) with the
stepsize s(*) (vertical line) of discrete variables used by the MIES at that stage
of the evolution. The step-size s®) is found by the self-adaptation within the
(4,28)-MIES (i.e. without knowledge of ¢). The results were also computed for
probabilities that leave the feasible interval [1/(3n4),0.5] and for which the inter-
val transformation T}, ;) was applied.

Below we show that A, > 0 leads to a contradiction with proposition 3.15 and
thus As = 0 is true. Let f2°, denote the function value ff, , for ¢ — oo, the
existence of which we have shown above. Then let

€= (frest — 7)/2 (3.17)
Given the assumption A, > 0 and hence € > 0, it follows that
X:={(r,a") eR" x A| | flrnx{a=y(r) — f7] < e} (3.18)

is a nonempty set, where a* denotes an optimal setting for a € A. Then X7 is
non-empty because of the assumption of regularity of f[gny(q) for any optimal
a € A.

Thus there exists a closed n-dimensional ball K = {r € R"||ro — r| < p} with
p > 0 and center ry € R™ that K« = {(r,a*)|r € K} C X}.

Now, let us compute the probability of the event that the mutation of the discrete
and continuous variables yield a point in K,~, given some arbitrary parent (r’,a’),
where o’ denotes the discrete part of a solution. This can be computed as the joint
probability for the following two independent events:
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(E1) the mutation of real vector generates r € K
(E2) the mutation of discrete part of the solution generates a*

This joint probability is lower bounded by:

. . 1 " 1 T
O O R ol R L
(3.19)
for a step-size opin > 0. Here py .+ is the probability to obtain a* by one
mutation of discrete parameters, which is larger than 0. Now we can derive a
lower bound for the probability that K« is hit at least once after ¢ generations
as (where (¢ — D)X <t < g)):

q
Pr(\/ (%est € Ka-)) = 1= (1= (pe))? (3.20)
i=1
where A denotes the number of offspring per generation. Hence,
q .
lim Pr(\/ (x}... € X7)) =1 (3.21)

With expression 3.15 and expression 3.17 we get an contradiction to our assump-
tion that Ao, > 0. In other words, any vector with a distance A; > 0 will be
improved as t — oo with probability one.

3.4 Summary

Targeting at solving challenging mixed-integer parameter optimization problems
in the real world, we proposed a promising algorithm - the so-called Mixed-Integer
Evolution Strategies (MIES) - in this chapter. MIES are derived from the canonical
Evolution Strategies (ES), which are often applied to optimization problems in
continuous search space. MIES, by contrast, use specific variation operators to
deal with different parameter types (continuous, integer and discrete) of decision
variables. In particular, MIES are capable of tackling black-box mixed-integer
optimization problems in practice.

Inspired by the previous works [7, 38] on mixed-integer parameter optimization
and their applications to some representative real-world applications, we explained
the design philosophy of the framework of MIES explicitly. Furthermore, in this
chapter we made some theoretical studies on MIES regarding, for instance, the
global convergency property and self-adaptation of stepsize. In the rest of this
thesis, we will do more experimental studies on MIES to learn more about such
an algorithm. For instance, MIES will be applied to feature detection in medical
images, and several advanced techniques will be studied for further improving the
algorithm performance.
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Synthetic Mixed-Integer
Landscapes

In the previous chapter 3, we introduced Mixed-Integer Evolution Strategies
(MIES) and related theoretical study results. In this chapter we will present
some artificial test problems (fitness landscapes), which are specially designed
for mixed-integer parameters search spaces. Through these proposed test prob-
lems, we can gain deep insights about MIES algorithm. Some selected empirical
results will be presented which demonstrate the algorithm performance, such as
its convergence behavior. These synthetic mixed-integer landscapes also provide
readers with the opportunity to compare results of this kind of evolutionary al-
gorithm with that of other optimization algorithms, for instance with traditional
Evolution Strategies (ES).

The whole chapter is organized as follows: First, in section 4.1, fitness land-
scapes, which have been proved to be one of the most important concepts in
evolutionary theory, will be reviewed briefly especially in the computer science
research domain. In section 4.2, we introduce the Barrier function and show some
experimental results about it. Next, Mixed-Integer NK Landscapes (MINKL) are
explained in detail in section 4.3, as well as some important theorems on the ex-
istence and position of local/global optima and some implementation details of
the model.

4.1 Fitness Landscapes

Fitness landscapes are very often encountered in the community of people, who
are working on evolutionary computation. It is a powerful tool that researchers can
use to develop comprehensive insights about the working mechanism of a complex
searching process, for instance, a searching process when evolution strategies are
applied to some real-world application. Because of their importance, we would
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like to give a brief review of fitness landscapes and several important definitions
in this part.

4.1.1 Motivation

Fitness landscapes were originally introduced by Sewall Wright in his 1932 pa-
per [124], in which fitness landscapes were used as a way to visualize sophisticated
dynamics of population genetics. According to Wright’s description, each individ-
ual gene combination corresponded to a point on a fitness landscape and there
was one axis which represented every possible gene combination. Under certain
mathematical conditions, a potential function F can be employed to describe the
deterministic dynamics of such kind of evolutionary process. The corresponding
definition of a potential function F is defined as follows:

F:S—R,s— F(s) (4.1)

where F is a potential function from the state space S with its neighbourhood
structure into the real numbers R [115]. Each possible state s € S can be asso-
ciated to one number, such that the value of this number reflects the degree to
which a certain state is preferable to another state.

Since Wright introduced fitness landscape in his work, this metaphor has been
widely adopted by scientists from different research areas, such as biology, chem-
istry, physics and computer science. The interpretation of fitness can be different
when referring to different application areas. In biology, increasing fitness means
that a population moves uphill on a fitness landscape. On the contrary, lower
points represent low energy states and thus are more desirable in physics. In com-
puter science, as Jones has clearly stated in his PhD thesis [57], a fitness landscape
is an artifact of the neighbourhood structure, which is induced by the operators
(e.g. mutation operators in evolutionary algorithms) the algorithm employs. In
practice, the difference between mazimization and minimization is trivial and
they are equivalent apart from an inversion of sign of F.

4.1.2 Local Optima

Given a fitness landscape and its potential function F,in the case of minimization,
local optima are defined as follows:

Definition 1
A point s in the state space S is a local optima of the F if there exists a neigh-
bourhood A of s such that Vs’ € N, F(s) — F(s") <O0.

The number of local optima is one important characteristic of a fitness landscape,
and it gives an impression of how rugged a landscape is. In general, a landscape
with fewer local optima result in a larger correlation and thus is easier to be
tackled by optimization algorithms. By contrast, more local optima means that
the corresponding landscape is more rugged and therefore more challenging for
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algorithms to deal with. Figure 4.1 shows an example fitness landscape in 2D.
According to the definition of local optima, the fitness values of points A, B,C
and D are better (smaller) than all their neighbours and are local optima in the
case of minimization.

Figure 4.1: Illustration of local optima in a 2D fitness landscape.

4.1.3 Unimodality vs. Multimodality

A landscape is said to be unimodal if it only has one global optimum, that is,
has one peak (maximum) or valley (minimum) in a given interval. Otherwise, it is
called multimodal landscape if it has several local optima, such as the landscape
in Figure 4.1. From mathematical perspective, unimodal functions can be defined
as follows [93]:

Definition 2
A function F is unimodal if (1) z; < 22 < 2* implies that F(z1) < F(x2), and
(2) o > x1 > «* implies that F(x2) > F(r1), where z* is the minimum point.

Generally speaking, a multimodal landscape is more difficult compared with a
unimodal landscape. However, in some extreme cases, a unimodal landscape can
also present difficulties for searching algorithms.

4.2 Barrier Function

Barrier function® is a multi-modal problem generator that produces integer opti-
mization problems with a scalable degree of ruggedness (determined by parameter
() by generating an integer array A using Algorithm 8.

For C = 0 the ordering of the variable y € [0,19] values corresponds to the
ordering of values of A(y). If the value of C is slightly increased, still part of the

n Dutch, it is called “Drempels” function
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Algorithm 8 Barrier Function.
1: Ali] =4,i=0,...,19
2: for k€ {1,...,C} do
3:  j < uniform random number out of {0,...,18}
4
5

swap values of A[j] and A[j + 1]
: end for

order will be preserved under the mapping A, and thus similarity information can
be exploited. Then a barrier function is computed:

(s ny ng
fbarrier(ra z, d) = Z A[LriJ]Q + Z A[Zi]2 + ZBl[dl]Q — min
i=1 i=1 i=1

n, =n, =nqg =>5,r € [0,19]" C R",
2€[0,19]" C Z"=,d € {0,...,19}" C D",

Here, B;(i = 1,...,n4) denotes a set of 4 permutations of the sequence 0, ..., 19,
each of which is a random permutation fixed before the run. This construction
prevents that the value of the nominal value d; is quantitatively (anti-)correlated
with the value of the objective function f. Such a correlation would contradict
with the assumption that d; are nominal values. Whenever a correlation between
neighboring values can be assumed it is wiser to assign them to the ordinal type
and treat them accordingly.

The parameter C' controls the ruggedness of the resulting function with regard
to the integer space. Higher values of C' result in more rugged landscapes with
many barriers. To get an intuition about the influence of C' on the geometry of the
function we included plots for a two-variable instantiation of the barrier function
in Figure 4.2 for C' = 20, 100, 500, and 1000. Intuitively, barrier functions with a
higher control parameter C' may have many local optima and a search procedure
can easily get trapped by them. As we can see from these plots, when the control
parameter C' increases the landscape becomes more rugged. For instance, the
landscape of C' = 1000 shows much more barriers compared to C' = 20. We also
noticed that above certain C' value (threshold), the landscape difficulty will not
change too much as C increases.

4.2.1 Experimental Results

Suggested by our former studies [38, 75, 77], the following MIES and ES settings
are chosen for the experiments on the barrier problems: (u = 4, A = 28) for the
population and offspring sizes, and (n, = n. = n, = 1) for the step-size mode?.
Since Evolution Strategies are stochastic algorithms, in the empirical experiments

2In contrast, (ne = n,,nc = n,, Ny = ng) represents n step-size mode.
) s Mg s 'lp d
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Figure 4.2: Surface plots of the barrier test functions for two integer variables Z;
and Zs, the control parameter C' = 20, 100, 500 and 1000. All other variables
were kept constant at a value of zero, Z; and Zs values were varied in the range
from 0 to 19.

we create 10 instantiations® for each control parameter C, and for each of them
we let the algorithm perform 20 repeated runs (there are in total 20 x 10 = 200
runs for each value of C').

Figure 4.3 shows average best fitness values found by one step-size (4, 28) MIES
and one step-size (4,28) ES* on barrier functions with different control parameters
C'. As we can see that it is more difficult for both MIES and ES to find the global
optimum on barrier functions with a higher C value. This observation supports
our finding from Figure 4.2: the landscape with a larger C' value is more rugged
and it is more challenging to tackle.

Based on our algorithm design in chapter 3, MIES is supposed to be more
efficient for exploring the mixed integer landscapes compared to a standard ES. To
check this assumption, we plot average best fitness values found by both MIES and
ES with C' = 20, 100, 300, 500, and 1000 in Figure 4.4. The corresponding box plot
for best fitness values found by both MIES and ES in the last generation(= 100)
is shown in Figure 4.5. When C' = 20 or 100 ES performs a little bit better
than MIES. This can be explained that constructed landscapes with C' = 20 or
100 are still simple, and this gives the chance to standard ES algorithms to fully
explore the searching space. However in the case of higher C' values, MIES show

3By using different random seeds.
4Here, all parameters are evolved as continuous variables.
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Mixed-Integer Evolution Strategies (MIES)
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Figure 4.3: The average best results for (4, 28) Mixed-Integer Evolution Strategies
(Top) and standard Evolution Strategies (Bottom) using a single step-size on
barrier functions with control parameter C' = 20, 100, 300, 500, and 1000.
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Figure 4.4: Comparison between average best fitness values found by (4, 28) MIES
and (4,28) ES for C' = 20,100, 300, 500, and 1000.

the advantage over standard ES. For C' = 300 or 500 the overall performance
MIES are already competitive to standard ES. For C' = 1000 average best fitness
values obtained by MIES are much lower than standard ES.

4.3 Mixed-Integer NK Landscapes

NK landscapes (NKL, also referred to as NK fitness landscapes), introduced by
Stuart Kauffman [61], were devised to explore the way that epistasis controls the
“ruggedness" of an adaptive landscape.

Frequently, NKL are used as test problem generators for Genetic Algorithms.
NKL have two advantages. First, the ruggedness and the degree of interaction
between variables of NKL can be easily controlled by two tunable parameters: the
number of genes N and the number of epistatic links of each gene to other genes
K. Second, for given values of N and K, a large number of NK landscapes can be
created at random. A disadvantage is that the optimum of a NKL instance can
generally not be computed, except through complete enumeration.

As NKL have not yet been generalized for continuous, nominal discrete, and
mixed-integer decision spaces, they cannot be employed as test functions for a
large number of practically important problem domains.

To overcome this shortcoming, we introduce an extension of the NKL model,
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Figure 4.5: Notched box plot for fitness value (generation = 100) of barrier func-
tions with different control parameter C' = 20, 100, 300, 500, and 1000 by using
standard ES and MIES.

mized-integer NKL (MINKL), that capture these problem domains. They extend
traditional NKL from the binary case to a more general situation, by taking differ-
ent parameter types (continuous, integer, and nominal discrete) and interactions
between them into account (cf. Figure 4.6).

x|xlxlxlx|x|x|x|x

.

Figure 4.6: Example Genes and their interactions

4.3.1 NK Landscapes

Kauffman’s NK Landscapes model defines a family of pseudo-boolean fitness func-
tions F : {0,1}V — R™ that are generated by a stochastic algorithm.
It has two basic components: A structure for gene interaction (using an epis-



Chapter 4 51

tasis matriz E), and a way this structure is used to generate a fitness function for
all the possible genotypes [1].

The gene interaction structure is created as follows: The genotype’s fitness
is the average of IV fitness components F;, ¢ = 1,...,N. Each gene’s fitness
component F; is determined by its own allele x;, and also by K alleles at K
(0 < K < N — 1) epistatic genes distinct from 4. The fitness function reads:

N

ZFi(xi;xil""vxik)7 :EG{O,].}N (42)
=1

1
F(x) = I
where {i1,...,i} C {1,..., N} — {i}. There are two ways for choosing K other
genes: ‘adjacent neighborhoods’, where the K genes nearest to position ¢ on the
vector are chosen; and ‘random neighborhoods’, where these positions are cho-
sen randomly on the vector. In this paper we focus on the latter case, ‘random
neighborhoods’. However, a translation to the first case is straightforward.

The computation of F; : {0,1}% — [0,1), i = 1,..., N is based on a fitness
matriz F. For any 4 and for each of the 251 bit combinations a random number
is drawn independently from a uniform distribution over [0,1). Accordingly, for
the generation of one (binary) NK landscape the setup algorithm has to generate
2K+1 N independent random numbers. The setup algorithm also creates an epis-
tasis matrix £ which for each gene i contains references to its K epistatic genes.
Table 4.1 illustrates the fitness matriz and epistasis matriz of a NKL. A more
detailed description of its implementation can be found in [34].

Eq[1]|EA2]) | - || B K Fl[O]F1[1]~~~~~~~..F1[2K+1_1]
EL[1|E2]f -] -+ |- |F1]|K F2[0]F2[1]~~......,F2[2K+1_1]
Enx[1EN]2]- |- | - [En]K] Fn[O|Fn 1] -] - ..,FN[2K+1_1]

Table 4.1: Epistasis matrix £ (left) and fitness matrix F' (right)

After having generated the epistasis and fitness matrices, for any input vector
x € {0,1}" we can compute the fitness in O(K N) computational complexity via:

N
1
F(x) = N Z Fi[2°z; + 2 g, + - + 252, )] (4.3)
=1

Note, that the generation of F' has an exponential computational complexity and
space complexity in K, while being linear in N. The computational complexity
for computing function values is linear in K and N for this implementation.

Properties of NK Landscapes

Kauffman’s model makes two principal assumptions: first, that the fitness of a
genotype is the sum of the contributions from each gene, and second, that the
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effects of polygeny and pleiotropy make these interactions effectively random.
Besides Kaufmann, some other researchers, e.g. Weinberger et al. [121, 113], did
an extensive study on NKL. Some well-known properties are:

1. K = 0 (no epistasis): The problem is separable and there exists a unique
global optimum. Assuming a Hamming neighborhood-structure, the prob-
lem gets unimodal.

2. 1< K <N —1: For K =1, a global optimum can still be found in poly-
nomial time [121]. For K > 2, global optimization is NP-complete for the
random assignment of neighbors and constant K. However, the problem can
always be solved in a computational complexity of 2V function evaluations
and hence can practically be solved for problems of moderate dimension
(N around 30). For adjacent neighbors, the problem can be solved in time
O(2K N) (cf. Weinberger [121]).

3. K = N — 1: This corresponds to the maximum number of interactions
between genes. Practically speaking, to each bitstring of ' : {0,1} — [0, 1)
we assign a sum of N values, each of which is drawn independently from a
uniform distribution in [0,1). If we choose the Hamming neighborhood on
{0,1}¥ the following results apply:

e The probability that a random bit string is a local optimum is ﬁ

o The expected number of local optima is ]\?—L

4.3.2 Generalized NK Landscapes

As mentioned in the previous section, Kauffman’s NKL model is a stochastic
method for generating fitness functions on binary strings. In order to use it as a
test model for mixed-integer evolution strategies, we extend it to a more general
case such that the fitness value can be computed for different parameter types.
Here we consider continuous variables in R, integer variables in [zmin, Zmaz] C
Z, and nominal discrete values from a finite set of L values. In contrast to the
ordinal domain (continuous and integer variables), for the nominal domain no
natural order is given. Mixed-integer optimization problems arise frequently in
practice, e.g. when optimizing optical filter designs [7] and the parameters of
algorithms [75].

The idea about how to extend NKL to the mixed-integer situation will be
described in three steps. First we propose a model for continuous variables, then
for those with integer variables and nominal discrete variables. Finally, we will
discuss the case of NKL that consists of all these different variable types at the
same time and allow for interaction among variables of different types. This defines
the full mixed-integer NKL model.
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Continuous NK Landscapes

In order to define continuous landscapes, we choose an extension of binary NKL
to an N-dimensional hypercube [0,1]". Therefore, all continuous variables are
normalized between [0, 1]. In the following we describe the construction of the
objective function F : [0, 1]V — [0,1):

Whenever the continuous variable takes values at the corners of the hypercube,
the value of the corresponding binary NKL is returned. For values located in
the interior of the hypercube or its delimiting hyperplanes, we employ a multi-
linear interpolation technique that achieves a continuous interpolation between the
function values at the corner. Note that a higher order approach is also possible
but we chose a multi-linear approach for simplicity and ease of programming.
Moreover, the theory of multi-linear models as used in the design and analysis
of experiments, introduces intuitive notions for the effect of single variables and
interaction between multiple variables of potentially different types [19]. For each
of the N fitness components F; : [0,1]5+1 — [0,1), we create a multi-linear

function
oK+ K

Z a [1 AND j] H [2k m\mg/z’“7 (4.4)

where AND is the bitwise and operator and x;, is the k-th epistatic gene of z;.
For instance, in the case K = 2 the formula for F;(x) becomes®:
afoo + o1 2 +ab10Ti, +ai00Ti, +ah11 7T, + Al TiTi; +aT10Ti Tiy +al11 i, Ty
Once uniformly distributed random values have been attached to the corners
of the K-dimensional hypercube (cf. Figure 4.7), we can identify the coefficients
ab, ..., abxs by solving a linear equation system (LES). However, even for mod-
erate K the computational complexity for applying general LES solvers would be
prohibitively high. An advantage of the multi-linear form (as compared to other
interpolation schemes like radial basis functions or splines) is that it allows for
an efficient computation of the coefficients by exploiting the diagonal structure of
the equation system. Accordingly, aé. can be obtained by means of the following
formula:

J—1
ah = F;[0], a5 = F[j] =Y [a{I(¢ = (¢ AND j))],j=1,....28" =1 (4.5)
=0

In order to compute the values, we have to start with j = 0 and increase the
value of j. Hence, the number of additions we need for computing all coefficients
is proportional to (2K+1 — 1)(2K+1) /2 = 22(K+1)~=1 _ oK,

Once we have the ag» values, we can use Equation 4.2 to compute the model. Of
course the domain of the x values has to be replaced by [0, 1] in that equation.
For the computation of the global optimal value of the continuous NK landscapes
the following lemma is useful:

5Note that we use binary instead of decimal numbers for the index to make the construction
more clear.
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Figure 4.7: Example HyperCube with K = 2 and the computation of a’

Lemma 3

At least one global optimum of the function F' will always be located in one of
the corners of the N dimensional hypercube, such that the computation of the
optimal function value upper bounds the computational complexity for the binary
model.

Proof

The idea of the proof is that there is an algorithm that for any given input
x* € [0,1] determines a corner of the hypercube, the function value of which
is not higher than the function value at F', given that F' has a multilinear form.
Basically, the proposed algorithm can be described as a path oriented algorithm
that searches parallel to the coordinate axis: First we fix all variables except one,
say x1, in F. It is now crucial to see that the remaining form F'(zy,25,...,z%) is
a linear function of x;. Now, because the form is linear, it is obvious to see that
either (1,23,...,2%)7 or (0,23,...2%)7 has a function value that is better or
equal than the function value at (x7,...,2%)7. We fix z1 to a value for which this
is the case, i.e. we move either to (1,z35,...,2%)7 or to (0,5,...2%)T without
increasing the function value. For the new position x'* we again fix all variables
except one. This time x5 is the free variable. Again we can move the value of x5
either to zero or to one, such that the function value does not increase. Now, the
new vector x'2* will either be (z1*,0,%,...,2%)T or (x1*,1,23,...,2%)T. After
continuing this process for all remaining variables x3 to xx we finally obtain a
vector x'2V*  all values of which are either zero or one, and the function value
is not worse than that of x*.

Theorem 4
The problem of finding the global optimal value for a continuous NKL is NP-
complete for K > 2.
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Proof

Finding the optimum in the corner is equivalent to the NP-complete binary case.
By applying Lemma 1, we can reduce the continuous case to the binary case. On
the other hand, whenever we find the global optimal solution for the continuous
case, in polynomial time we can construct a good solution that is just as good
where all optima are located at the corners in linear time. Thus, there exists a
polynomial reduction of the binary case to the continuous case.

Integer NK Landscapes

Based on our design, NKL on integer variables can be considered to be a special
case of continuous NKL. The integer variables can be normalized as follows: Let
Zmin € 7 denote the lower bound for an integer variable, and z,,4,, € Z denote
its upper bound. Then, for any 2z € [zmin, Zmaz] C Z we can compute the value
of £ = (2 — zZmin)/(Zmaz — Zmin) I order to get the corresponding continuous
parameter in [0,1], which can then be used in the continuous version of F to
compute the NKL. Note that the properties discussed in 4.3.2 and 4.3.2 also hold
for integer NKL.

Nominal NK Landscapes

To introduce nominal discrete variables in an appropriate manner a more radical
change to the NKL model is needed. In this case it is not feasible to use inter-
polation, as this would imply some inherent neighborhood defined on a single
variable’s domain z; € {d%,...,d%}, i = 1,..., N, which, by definition, is not
given for the nominal discrete case. We will now propose an extension of NKL
that takes into account the special characteristics of nominal discrete variables.

Let the domain of each nominal discrete variable z;, ¢ = 1,..., N be defined
as a finite set of maximal size L > 2. Then for the definition of a function on
a tuple of K + 1 such values we would need a table with LX*+! entries. Again,
we can assign all fitness values randomly by independently drawing values from
a uniform distribution. The size of the sample is upper-bounded by L¥+!. For
L = 2 this corresponds to the binary case. After defining N fitness components Fj,
we can then sum up the values of these components for the NKL model (Eq. 4.2).
The optimum can be found by enumerating all input values, the computational
complexity of which is now LY. The implementation of the function table and
the evaluation procedures are similar to that of the binary case. Note that for
a constant value of L and K the space needed for storing the function values is
given by NLE*1 5o is the computational complexity for generating the matrix.
The time for the function evaluations is proportional to N (K + 1).

Equipping the discrete search space with a Hamming neighborhood, in case
K = 0 the problem remains unimodal. For K > 0, we remark that for the general
problem with L > 2, the detection of the optimum is more difficult than in the
binary case. Hence, the binary case can be reduced to the case L > 2, but not
vice versa. For the case of full interaction (K=N-1) we show:
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Lemma 5
For the nominal discrete NKL with K = N — 1, L = constant, and Hamming
neighborhood defined on the discrete search space, the probability that an arbi-

trary solution x gets a local optimum is m Moreover the expected number
N

of local Optima, is m

Proof

Given the preliminaries, N(L — 1) is the number of Hamming neighbors for any
solution x € {1,..., L}". Since we assign a different fitness value from the interval

[0, 1) independently to each neighbor, the probability that the central solution, i.e.

x itself becomes the best solution, is 1/(N(L — 1) +1). Since L” is the number of

search points in {1, ..., L} we can compute the expected number of local optima
N

L
as N1

Mixed Integer NK Landscapes

It is straightforward to combine these three types of variables into a single NKL
with epistatic links between variables of different types (cf. Figure 4.6). For mixed
variables of the integer and continuous types there is no problem, since integers,
after normalization, are treated like continuous variables in the formula of F. If
there are D nominal discrete variables that interact with a continuous variable,
then the values of these discrete variables determine the values at the edges of
the K — D dimensional hypercube that is used for the interpolation according to
the remaining continuous and integer variables. Note that for different nominal
discrete values the values at the corners of the K — D dimensional hypercube will
change in almost every case.

Instead of describing the mixed variable case in a formal manner we give an
illustrating example (cf. figure 4.8). This example shows one individual with three
parameters (one continuous, one integer and one discrete), and each gene inter-
acts with both other genes. For each gene, a hypercube is created. We assume
there are three levels for the discrete gene Xy (L = 3), so the hypercube is re-
duced to three parallel planes, and the value of the discrete gene decides which
plane is chosen. More concretely, assuming the individual has the following values:
Xg =0,X; =04, X, = 0.8, the value of the discrete parameter Xy determines
which square is chosen (X4 = 0). The value for each corner is based on the fitness
matrix in Table 4.2 (bold displayed). As mentioned in the previous chapter, we
calculate the fitness value of this individual as follows:

Fr(a,x) = ap + a1 Xy + a2 X; + a3 X; X,

ao = F,(0,0) =08, a1 = F.(0,1) — ap = —0.1

as = F.(1,0) —ap = —0.1, as=F.(1,1) —ap — a1 —az = —0.1
F,(0.4,0.8) = 0.648
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Xr

Fr(1,0)=0.7 Fr(1, 1)=05

Xi

Fr(04,08)

Xd

O
Fr(0, 0)=0.8 Fr(0,1)=07 Xr

Figure 4.8: Example for the computation of a MI-NK landscape.

E.[1] = X,E 2] = XJ 0.8]0.70.70.5 0.30.70.20.9 0.50.60.30.5
Eill] = X, |E:[2] = X4 F. 0.5/0.8[0.4]0.7|[ F; [0.20.30.70.9] 7. [0.90.80.20.7
Eall] = X Ea2] = X, 0.2[0.1]0.8]0.4 0.20.50.40.6 0.80.70.30.3

Table 4.2: Example epistasis matrix (left)and fitness matrix (right).

4.3.3 Experimental Results

In order to test our mixed-integer NKL problem generator, we choose a popula-
tion size p of 4, offspring size A\ of 28 and comma strategy for our experiments.
The maximum number of generations is set to 100. Similar to experiments for
barrier functions, to evaluate the algorithm performance, we generated 10 prob-
lem instantiations for each K € {1,3,5,10, 14} so that it is still feasible to find the
global optimum by evaluating all bit strings of length N = 15. Each generated
problem consists of 5 continuous (N, = 5), 5 integer (N, = 5) and 5 nominal
discrete (Ng = 5) variables. The continuous variables are in the range [-10,10],
the integer-valued variables are also in the range [-10,10] and we used {0, 1} for
the nominal discrete variables (Booleans). We ran both MIES and ES 20 times
on each problem instance. To compare the results of the different experiments we
define the following error-measure:

error = best found fitness - best possible fitness

The results are displayed in Figure 4.9. The x-axis shows the number of genera-
tions while the y-axis shows the average error (over all experiments). As can be
seen, for both algorithms an increase in K results in an increase in error which
indicates the problem difficulty increases with K.

Like we did in experiments on barrier functions, we plot average errors of
different K for both MIES and ES in Figure 4.10. In addition, we create a box
plot for the last generation’s errors of both MIES and ES in Figure 4.11.

There we can compare overall performance between standard ES and MIES
algorithms. As can be seen, in the case of K = 1,3,5,10 the MIES show better
results than the standard ES. For K = 14 the average errors for MIES and
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Figure 4.9: The error averaged over 10 mixed-integer NK landscape problems
with N = 15 by using MIES (Top) and ES (Bottom). Each problem contained 5
continuous, 5 integer-valued, and 5 Boolean-valued variables.
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ES are similar. As K = 14 means that each variable is connected to all other
variables, the search space becomes extremely complex and it becomes too hard
for both algorithms. Under such circumstances, MIES and ES show almost the
same performance.

4.4 Summary

We presented two artificial landscapes in this chapter: Barrier function and Mixed-
Integer NK Landscapes (MINKL) and they are intensively used as test cases in
this work. By design, these artificial landscapes are very good for helping us
to learn more about performance behavior of MIES algorithm, such as conver-
gence property. In return, we can further improve the MIES and apply it to more
complex real-world applications. Moreover, we compared MIES to the standard
(continuous) ES using simple truncation of continuous variables. It turns out that
the MIES approach has a much higher convergence reliability.

About MINKL, we make some remarks here: MINKL extends NK landscape
model from discrete problem (binary case in general) domain to the mixed-integer
problem domain. It turns out that a multi-linear interpolation approach for the
continuous and integer variables provides a straightforward generalization of this
model and can be easily implemented. Using Equation 4.4, function values can be
computed in linear time. However, the detection of the global optimum turns out
to be a NP-complete problem for K > 2 and can be reduced to the problem of
detecting the global optimum for the binary case. However, an alleged drawback
of the interpolation approach is that its optima are always located in the corners
of the search space. There are possible some ways to address this problem. One
way would be to transform the input variables by means of a periodic function and
then map them back to [0, 1], e.g. by substituting x; by s(z;) = 5+ % cos(mx; + )
and restricting x; to the interval [—0.5,1.5] for ¢ = 1,..., N. It is easy to show
that the optima for this transformed function are in the same position as for the
original model. For the nominal discrete variables the binary NK landscape was
extended to a L-ary representation. In this case, the amount of random numbers
increases exponentially with L. Also, for N = K — 1 it has been shown that the
number of local optima increases exponentially with L.
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Do the difficult things while they are easy
and do the great things while they are
small. The journey of a thousand miles
begins beneath one’s feet.

Lao-tzu

Chapter 5

Parameter Optimization for
Medical Image Analysis

In the previous chapters, we introduced mixed-integer parameter optimization
with two representative real-world applications in industry - optimization of mul-
tilayer optical coatings and optimization of chemical engineering plants. We also
presented some theoretical and experimental studies on our proposed Mixed-
Integer Evolution Strategies (MIES), which show that MIES is a promising method
to tackle mixed-integer parameter optimization especially in black-box scenarios.
In this chapter, we will show another challenging optimization task which comes
from the medical field and explain why and how MIES can be applied to the
optimization of control parameters of a semi-automatic image analysis system for
Intravascular Ultrasound (IVUS) images.

IVUS is a technique used to get real-time high resolution tomographic images
from the inside of coronary vessels and other arteries. The IVUS image feature
detectors used in the analysis system are expert-designed and the default pa-
rameters are calibrated manually so-far. The new approach, based on MIES, can
automatically find good parameterizations for sets of images which achieve better
result than with manually tuned parameters. From the algorithmic point of view
the difficulty is to design a black-box optimization strategy that can deal with
nonlinear functions and different types of parameters, including integer, nominal
discrete and continuous variables. Compared with canonical Evolution Strate-
gies (ES), which are often applied to optimization problems in continuous search
spaces, the MIES turns out to be well suited for this task. The results presented
in this chapter will summarize and extend recent studies on benchmark functions
and on the IVUS image analysis optimization problem.

63
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5.1 Introduction

Feature detection in medical images is a key task in the medical field. Often
complex and variable structures, such as calcified plaque in arteries, are to be
detected and modelled in images or sequences of images. The development of
feature detection systems has received much attention in medical and computer
science research. However, the performance of most systems depend on a large
number of control parameters, and the setting of these control parameters is
usually done by means of an educated guess or manual tuning using trial and
error.

In this work we argue that manual tuning is often not sufficient to exploit the
full potential of image detection systems, i.e. it leads to suboptimal parameter
settings. We propose a versatile and robust procedure for automated parameter
tuning based on evolutionary algorithms (EAs) such as MIES. Compared to the
manual trial and error approach, with MIES the systems developer can search
for optimized parameter settings automatically and will likely obtain parameter
settings that lead to significantly higher accuracy of the feature detectors.

Among other image acquisition techniques, IVUS received major attention for
analyzing the structure of coronary blood vessels. Due to noise, pullback move-
ments of the catheter, and the variability of structures even for human experts it
can be difficult to interpret IVUS image sequences. Therefore, the development of
tailored computer assisted image analysis has received major attention in recent
years [16, 89, 103].

However, today’s methods, directed at the automated recognition of certain
structures in images, are applicable only over a limited range of standard sit-
uations. To overcome this problem an image interpretation system, based on
the paradigm of multi-agents [16, 17], using the cognitive architecture Soar [87],
was successfully developed over the past years. Agents in this system dynami-
cally adapt their segmentation algorithms. This adaptation is based on knowl-
edge about global constraints, contextual knowledge, local image information and
personal beliefs like confidence in their own image processing results.

Although in practice the multi-agent system has been shown to offer lumen and
vessel detection with precision comparable to human experts [16], it is designed for
symbolic reasoning, not numerical optimization. Besides, it is almost impossible
for a human expert to completely specify how an agent should adjust its feature
detection parameters in each and every possible interpretation context. As a result
an agent has only control knowledge for a limited number of contexts and a limited
set of feature detector parameters. This knowledge has to be updated whenever
something changes in the image acquisition pipeline. Therefore, it would be much
better if such knowledge could be acquired by learning the optimal parameters
for different interpretation contexts automatically.

This chapter addresses the problem of learning these optimal parameter set-
tings from a set of example segmentations. It is an optimization problem that is
difficult to solve in practice with standard numerical methods (like gradient-based
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strategies), as it incorporates different types of parameters, and confronts the al-
gorithms with a complex geometry (rugged surfaces, discontinuities). Moreover,
the high dimensionality of this problem makes it almost impossible to find optimal
settings through manual experimentation.

Encouraged by previous work [8, 38, 24| on optimization of image segmentation
algorithms in the medical domain and other application fields we consider MIES
as a solution method. Unlike these previous approaches, MIES are more suitable
for dealing with continuous parameters and can handle difficult mixed-integer
parameter optimization problems as encountered in the image processing domain.

5.2 Intravascular Ultrasound Image Analysis

Cardiovascular disease is the leading cause of death in the USA and coronary
artery disease has the highest percentage (53%) of death among the heart dis-
eases according to the American Heart Association Heart Disease and Stroke
Statistics [98]. Atherosclerosis is a disease characterized by a deposit of plaque in
an arterial wall over time. The disruption of an atherosclerotic plaque is considered
to be the most frequent cause of heart attack and sudden cardiac death. Studying
vulnerable plaques constitutes a major research area in the field of clinical and
medical imaging.

IVUS is a technique used to get real-time high resolution tomographic images
from the inside of the coronary vessels wall and other arteries. It is able to show
the presence or absence of compensatory artery enlargement. IVUS allows precise
tomographic measurement of the lumen area and plaque size, distribution and, to
some extent, composition of the plaque. An example of an IVUS image is shown
in Figure 5.1.

To obtain insight into the status of an arterial segment, a so-called catheter
pullback is carried out: an ultrasound probe (Figure 5.2) is positioned distally
(downstream) of the segment of interest and then mechanically pulled back (to-
day typically at a speed of 0.5mm/s) during continuous image acquisition to the
proximal (upstream) part of the segment of interest. Experienced users may then
conceptualize the complex 3D structure of the morphology and pathology of the
arterial segment from this stack of images by reviewing such a sequence repeat-
edly. Typically, one such pullback sequence consists of 500-1000 images, which
represents about 50 mm of vessel length.

As we can see from Figure 5.1, IVUS images contain image artifacts, drop-
out regions and different kinds of tissue. Furthermore, manual segmentation of
IVUS images is very time consuming and highly sensitive to intra- and inter-
observer variability [16], while the data sets are very large. This makes IVUS
image analysis a non-trivial medical application domain where a sophisticated
image interpretation approach is warranted.



66 Intravascular Ultrasound Image Analysis

Calcified Plaque Shadow

—

Sidebrangh #*

Figure 5.1: An Intravascular Ultrasound (IVUS) image with detected features.
The black circle in the middle is where the ultrasound imaging device (catheter)
was located. The dark area surrounding the catheter is called the lumen, which is
the part of the artery where the blood flows. Above the catheter a calcified plaque
is detected which blocks the ultrasound signal causing a dark shadow. Between the
inside border of the vessel and the lumen there are some soft plaques, which do
not block the ultrasound signal. The dark area left of the catheter is a sidebranch
(another vessel).

Figure 5.2: A catheter (& &+ 1mm) with a miniaturized ultrasound transducer at
the tip.
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5.2.1 Multi-Agent Segmentation of IVUS Images

In [16, 17] a state-of-the-art multi-agent system is used to detect lumen, vessel,
shadows, sidebranches and calcified plaques. The system, as shown in Figure 5.3,
is based on the cognitive architecture Soar (States, operators and results). Soar is
an architecture for constructing general intelligent systems which has been tested
successfully on many standard AT problems over the past 20 years and has been
used in many real-world applications [87, 99]. It is a very good architecture for
an image interpretation system as it satisfies the following robustness system
requirements [16]:

e Its subgoaling architectural mechanism allows it to take appropriate actions
in unknown situations,

e Its non-monotonic reasoning allows it to recover from faulty knowledge,

e An agent always takes into account all available knowledge.

vessel

lumen
agent

»

Agent Platform agent
(Soar) Interaction
shadow sidebranch
agent calcified Y| agent
plaque |4

Interaction agent

Perception Action ¢

Image -
Processing
Platform Input
Images

Figure 5.3: Global view of the multi-agent system architecture as applied to In-
travascular Ultrasound (IVUS).

With regard to IVUS features detection, image processing agents in Figure 5.3
interact with other agents through communication, act on the world by control-
ling and adapting image processing operations and perceive that same world by
accessing image processing results. Agents thereby dynamically adapt the param-
eters of low-level image segmentation algorithms based on knowledge of global
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constraints, contextual knowledge, local image information and personal beliefs.
The lumen-agent, for example, encodes and controls an image processing pipeline
which includes binary morphological operations, an ellipse-fitter and a dynamic
programming module, and it determines all relevant parameters. Generally, agent
control allows the underlying segmentation algorithms to be simpler and to be
applied to a wider range of problems with higher reliability.

5.3 Application to IVUS Lumen Detection

After testing different strategies of MIES on several artificial problems in chapter 4
which are more or less equivalent to the present problem, but can be evaluated
much faster than image processing pipeline, we used MIES to find optimal param-
eter settings for the segmentation of the lumen in IVUS images instead of manual
trial and error. Figure 5.4 shows how the MIES optimizer is integrated into the
lumen detection system. The complete image processing pipeline is shown in Fig-
ure 5.5. We focused on the lumen detector, because it can produce good results in
isolation about additional information about sidebranches, shadows, plaques and

vessels.
Mixed-Integer Parameter
. . b .
Evolution Strategies Solution

Image Image Input
Proc. Features — Images
Results Detector

Figure 5.4: Optimizing parameter settings for lumen feature detector with MIES
optimizer.

5.3.1 Fitness Functions

The fitness evaluation determines which offspring will serve as new parents in the
next generation step. So the definition of the fitness function is crucially important
for a successful application of MIES and should represent the success of the image
segmentation very well. We first experimented with a similarity measure S(c1, ¢2)
between the contour ¢y found by the lumen feature detector and the desired
lumen contour ¢; drawn by a human expert. The similarity measure is defined
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Figure 5.5: Simplified Intravascular Ultrasound (IVUS) lumen detection repre-
sented as a cascade of basic image segmentation algorithms linked together by
the lumen agent.
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as percentage of points of contour ¢; that are less than a 7 distance away from
contour cs:

nrofpoints . . .
Slenea) = 2=t 00 ) :{ Liff dleli),e) <754y

nrofpoints 0, otherwise

where d(cy(i),c2) is the Euclidian distance between a point 4 on contour ¢; and
contour cu, nrofpoints is the number of points on contour c¢;, and 7 is a preset
threshold value. This threshold 7 determines that two contours are to be con-
sidered similar when the distance between all points on contour ¢; are within
a distance 7 of co. The reason to allow for a small difference between the two
contours is that even an expert will not draw the exact same contour twice in a
single IVUS image. The fitness function itself is the calculated average similarity
over all images in a training set.

Although this measure seemed to give good results while looking at the fitness
values, visual inspection showed unexpected behavior as shown in Figure 5.6. The
reason for this behavior is that there was no penalty on the amount of distance of
contour points from the target contour. As a result contours with relatively few of
these error points could still have a high similarity S(c1, c2) value although visual
inspection showed otherwise. To take such effects into account we changed from
using a similarity measure S(c1,c2) to a dissimilarity measure D(cq, c2) which is
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defined as follows!:

nrofpoints

Dleve = > 0, wieho(i) = { @) B Al e =T

, otherwise

12:08:32 0161 12:08:32 0162 12:08:34 0181

Figure 5.6: Expert-drawn lumen contours (green) compared with a MIES param-
eter solution (yellow) using the similarity measure S(c1, c2) (Eq.5.1). The images
show that large errors may occur even though the fitness of the solution is very
good.

This measure penalizes each contour point which is more than a distance 7
away from ¢ and is proportional to the distance. It leads to much better results,
which stresses the importance of choosing an appropriate fitness function in this
problem domain.

5.3.2 Optimizer Set-up

The settings used for the MIES algorithm were (1 = 4, A = 28) with comma
strategy. The evaluation of a fitness function is a very time-consuming task. To
give an example: the evaluation of one setting of the MIES algorithm on 40 IVUS
images for 100 iterations with 4 parents and 28 offspring took about 16 hours
on a Pentium 4 (3.4GHz) computer. Evaluating these same settings on a fast to
evaluate artificial problem with the same number of evaluations took 1 hour. Ta-
ble 5.1 contains the parameters for the IVUS lumen image processing pipeline (cf.
Figure 5.5) together with their type, range, dependencies and the default settings
determined by an expert. As can be seen the parameters are a mix of continuous,
ordinal discrete (integer) and nominal discrete(including boolean) variables.

5.3.3 Results

For the experiments we used five disjoint sets of 40 images. The images were
acquired with a 20 Mhz Endosonics Five64 catheter using motorized pullback
(1 mm/s). Image size is 384 x 384 pixels (8 bit grayscale) with a pixel-size of

For MIES, the similarity measure means maximization while the dissimilarity measure
means minimization.
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0.02602 mm?. For the fitness function we took the average dissimilarity over all
40 images with 7 set to 2.24 pixels and nrofpoints = 128 (see Eq. 5.2). For each
of the 5 datasets we used the (4,28) MIES algorithm and limited the number of
iterations to 25 which resulted in 704 fitness evaluations for each dataset. The
training results are displayed in Table 5.2, where MIES solution 1 was trained on
dataset 1 by the MIES algorithm, MIES solution 2 was trained on dataset 2, etc

Table 5.2 shows that for most cases the MIES-generated parameter solutions
result in lower average contour differences when applied to both test- and training
data than the default parameters. Only parameter solution 3 applied to dataset
5 has a higher average contour difference (444.2 vs 446.4). To determine if the
best results obtained by the MIES algorithm are also significantly better than the
default parameter results, a paired two-tailed t-test was performed on the (40)
difference measurements for each image dataset and each solution using a 95%
confidence interval (p = 0.05). The t-test shows that all differences are significant
except for the difference between MIES solution 3 applied to dataset 5 and the
default parameters and the difference between MIES solution 5 applied to dataset
3 and the default parameters. Therefore we conclude that the MIES solutions are
significantly better than the default parameter solution in 92% of the cases (23
out of 25) and equal in the other two cases.

When we look at the results of the ES parameter solutions compared to the de-
fault parameter solution we see that all the differences are statistically significant
meaning that the ES solutions are significantly better than the default parameter
solution in 23 out of 25 cases but worse in the other 2 cases (ES solutions 3 and
4 applied to dataset 5).

If we look at the performance of the MIES and ES algorithms when trained
on a dataset we see that on Dataset 1 the ES solution is a little better, but the
difference is not statistically significant. On all other datasets the MIES solution
trained on that dataset is significantly better than the ES solution trained on the
same dataset. On Dataset 5 MIES solution 4 has a slightly lower fitness than MIES
solution 5 that was trained on the dataset but the difference is not statistically
significant. On Dataset 3, ES solution 4 has a lower fitness than ES solution 3 but
again the difference is not significant.

In order to learn from the results about advantageous parameter settings, we
compared the variable settings of optimized solutions to solutions with an average
fitness value (obtained at the beginning of the evolution). The results are displayed
in the parallel coordinates diagram (Figure 5.7). It is apparent that the setting of
some parameters seems to be clearly advantageous in a certain small range while
for others the setting is either indifferent or it may depend on other parameter
settings. One can observe that a scantype of 2, a medium value for the maxgray
parameter and sidecost (around 70) and a high sigma value (close to 10.0) seems
to be beneficial. Of course these results hold only for one image set and future
research needs to clarify whether generalizations are feasible. Visual inspection
of the results of the application of MIES parameter solution 4 to all 200 images
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Figure 5.7: The parallel coordinate diagrams shows a comparison of optimized
solutions (red polygons) to solutions with a relative bad fitness value (light green
polygons). The first coordinate is the fitness value and the subsequent coordinates
are the values of the variables (Lumen detector parameters) represented in the
same order as in table 5.1.

shows that this solution is a good approximator of the lumen contours as can be
seen in Figure 5.8 (bottom row). When we compare the contours generated with
MIES solution 4 to the expert drawn contours we see that they are very similar
and in some cases the MIES contours actually seem to follow the lumen boundary
more precisely. Besides being closer to the expert drawn contours, another major
difference between the MIES found contours and the contours detected with the
default parameter settings is that the MIES solutions are smoother (see Figure 5.8,
top and bottom row). Apart from looking at the average contour difference (or
fitness) of the different parameter solutions we can also compare the performance
between the MIES and ES algorithms by looking at their ability to “learn” the
dependencies between the variables as displayed in Table 5.1. In Figure 5.9 the
total number of illegal solutions evolved by both the MIES and ES algorithms are
displayed. As can be seen the MIES algorithm manages to “learn” the dependencies
much faster than the ES algorithm. In Figures 5.10 and 5.11 we have plotted the
fitness and best fitness for both the MIES and ES algorithms on Dataset 2. Invalid
solutions were given a very high fitness penalty and are omitted from the plots to
improve readability. In the case of the MIES algorithm the spread of the entire
population decreases as the population reaches the best solution, which indicates
that the step-size adaptation works properly.
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Figure 5.8: Expert-drawn lumen contours (green) compared with expert-set pa-
rameter solution (yellow, top row) and MIES parameter solution (bottom row,
yellow).
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Figure 5.9: The accumulated number of illegal solutions on Dataset 2 evolved
by both the MIES and ES (dotted line) algorithms. As can be seen the MIES
algorithm manages to “learn” the dependencies quite fast while the ES algorithm
keeps evolving invalid solutions even after 1400 fitness evaluations.
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Figure 5.10: The fitness and best fitness values during the run of the MIES al-
gorithm. As can be seen the entire population of the MIES algorithm quickly

converges to the best found fitness.
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Figure 5.11: The fitness and best values fitness during the run of the ES algorithm.
As can be seen the population does not converge to the best fitnes.
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5.4 Summary

In this chapter we described how we applied MIES to a problem in medical image
analysis, in particular the optimization of control parameters of a lumen detector
in IVUS imaging. In particular, MIES use specific variation operators for differ-
ent types (continuous, integer, and nominal discrete) of decision parameters which
control the features detector of IVUS images. All three types of mutation oper-
ators support automatic adaptation of the mutation strength and avoid biased
sampling. Besides this, they fulfill guidelines such as accessibility, uniformity, and
maximal entropy, which makes them very amenable as search operators in settings
with little or no a-priori knowledge about the search landscape.

Like the experimental results which we showed in chapter 4, a similar result is
obtained for the medical image analysis. Here the MIES always produced better or
equal results than the default parameter settings chosen by an expert. Moreover,
on all five data sets the results of the MIES were significantly better (three times)
or equal (one time) than those obtained with the standard ES, trained on the
same data set.

In summary, the results show that the MIES is a valuable technique for improv-
ing the parameter settings of the lumen detector. The results encourage further
studies on extended image sets and on other feature detectors. The results of this
study suggest also its use in other problems where parameters of image-analysis
modules need to be tuned based on training data, and more generally - in large-
scale mixed-integer optimization problems that cannot be solved with standard
mathematical programming techniques.
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Dynamic Fitness Based
Partitioning

In the previous chapters 3, 4 and 5, Mixed-Integer Evolution Strategies (MIES)
have been introduced and studied intensively from both theoretical and exper-
imental viewpoints. Being a promising technique, MIES have been successfully
used to tackle challenging parameter optimization of a multi-agent image inter-
pretation system for Intravascular Ultrasound (IVUS) images lumen detection.
However, with regard to the image analysis problem, because of the complexity
of interpretation contexts, it is impossible to find one “super optimal” solution for
each feature detector to work in all possible contexts and for all possible patients.
Therefore, it would be wise to find specific optimal parameter settings for differ-
ent groups of images instead of one global solution for all images, that is, let a
set of MIES algorithms find a set of optimal solutions for sets of optimal images
whereby the solutions and sets of images are evolved automatically.

In this chapter, we will investigate this issue and propose one technique, what
we called Fitness Based Partitioning. By using Fitness Based Partitioning, we
would like to find groups of images that require a similar parameter setting for
the segmentation algorithm while, at the same time, evolving optimal parame-
ter settings for these groups. More specifically, we will apply this methodology
to both a challenging artificial test problem and feature detection of Computer
Tomographic Angiography (CTA) images analysis. Experimental results not only
demonstrate the feasibility of Fitness Based Partitioning, but also show that MIES
can also be used for different types of medical images other than IVUS images,
for instance, feature detection of Computer Tomographic Angiography (CTA) im-
ages analysis. It is rather trivial to see that the applicability of the optimization
algorithm does not depend on the images but on the image analysis tools which
are applied to the images - to the specific parameter encoding,.
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6.1 Introduction

Medical images often represent complex and variable structures that can not be
easily modeled. Moreover, they can suffer from a range of imperfections due to
the image acquisition modalities. Today’s methods, directed at the automated
recognition of certain structures in images, are applicable only over a limited
range of standard situations and in some cases only reach suboptimal results.
In chapter 5 we have compared Mixed-Integer Evolution Strategies (MIES) and
standard Evolution Strategies (ES) for finding optimal parameter settings for
the segmentation of Intravascular Ultrasound images. The results show that the
parameter solutions evolved by the MIES and ES algorithms are better than the
original parameter settings. However, the results also indicate that different sets
of images require different parameter settings for an optimal image segmentation.

The ideal solution would be to cluster images according to their image seg-
mentation context and optimize parameters for each individual context separately.
Unfortunately the number of image segmentation contexts is not known a priori
nor do their characteristics. There is usually also no natural distance measure [54]
to cluster images into groups that need similar parameter settings for an optimal
segmentation result. Only their degree of belonging to a group, characterized by
a particular set of parameters, can be measured by means of a training error for
that image, after the parameters have been optimized for that group.

A possible approach for this kind of multi-level optimization problem could
be cooperative coevolution (e.g., see [120, 97]) in which one evolves both a set of
parameter solutions and sets of images at the same time. However, this approach
requires a large number of fitness evaluations which is very computationally (and
thus time) intensive, since one has to do a lot of image processing, and therefore
not attractive for our problem.

To solve the aforementioned problems we propose a multi-level optimization
technique - the so-called Fitness Based Partitioning. Given a set of parameter
solutions, we can partition the images according to which solution gives the best
segmentation result. The fitness measure is then used as a “distance metric” to
determine which partition (and corresponding MIES solution) is the best match
for an IVUS image. By alternating partitioning and parameter optimization for
each partition, images are dynamically repartitioned and parameter solutions are
optimized.

This chapter is structured as follows: Fitness based partitioning will be in-
troduced in Section 6.2. This approach will then be tested on an artificial test
problem in Section 6.3 where the goal is to find multi-dimensional clusters by
evolving combinations of uniform and normal distributions based on given data
points in a multi-dimensional space. Next, in Section 6.4, Computed Tomographic
Angiography (CTA) lumen detection will be introduced. Fitness Based Partition-
ing will then be applied to CTA lumen segmentation. The goal is to dynamically
partition the CTA image training set during the MIES parameter optimization
process into groups of images which require similar parameter settings for optimal
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lumen segmentation. Each group of images would correspond to a similar image
segmentation context (for the image segmentation algorithm) and have an opti-
mal parameter solution. Some important experimental results will be presented
as well in this section. The short conclusions and outlook for the future work will
be given eventually.

6.2 Dynamic Fitness Based Partitioning

In general the multi-level optimization task is to find a proper fit of partitioning
comprising Np partitions; for each of the partitions P, (k € [1, Np]) we search
for parameter settings which will result in an optimal solution for all problem
instances in Pj. More concretely, in the case of lumen segmentation, we try to
partition all angiographic images, and for each image partition we look for a
parameter solution which results in the best possible lumen segmentation for
those images. In order to solve this multi-level optimization problem we designed
a 2-level algorithm with an inner and an outer loop.

In the outer loop the goal is to redistribute problem instances in order to
achieve an improved global quality and to balance the size of the partitions. Aim-
ing for this, a deterministic approach will be employed to determine how problem
instances should be (re-)partitioned and when to split or merge partitions.

In the inner loop the aim is to optimize parameter solutions for the problem
instances in each of the Np partitions. This task will be performed by evolutionary
algorithms, in our case Mixed-Integer Evolution Strategies, since they can handle
different parameter types simultaneously.

Let Z = {I1,...,Iny} denote a set of images (or training instances), a € A =
{1,..., K} an assignment of the images to one of K partitions, and S denote a
set of control parameters for the segmentation algorithm. Then the optimization
problem of finding an optimal partitioning is stated as follows:

K

a* = arg mingc 4 > MMEq(k) (6.1)
k=1

Here MME, (k) stands for ’minimized mean error’ and denotes the average
error on instances of a partition k over all training instances in that partition,
provided the segmentation software uses an optimized set of control parameters
for solutions on that partition, in symbols:

N

1 .
MME, (k) = min — 2:1 Indicator(a; = k)errors(I;) (6.2)
=

Here Indicator : {true, false} — {0,1} denotes the indicator function with
Indicator(false) = 0 and Indicator(true) = 1. We are also interested in the
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optimal parameter sets (or solution vectors) of the partitions k =1,..., K, i.e.
N
« . 1 .
s*(a, k) = arg Millges ZIndlcator(aj = k)errors(I;), (6.3)
j=1

in particular in those for the optimized partitioning a*.

More concretely, in the case of lumen segmentation we want to automatically
find groups of medical images while at the same time evolving a set of optimal
parameters for detecting the lumen in the images in each of these groups.

In order to solve this multi-level optimization problem we use Fitness Based
Partitioning. The top level goal is to optimize the (re-)assignment of problem
instances, in our case medical images, to partitions so that the optimal solution
for each partition is also the optimal solution for each particular problem instance
in that partition.

The second level optimization task is to find an optimal solution for all problem
instances within a partition. For this we use Mixed-Integer Evolution Strategies
(MIES), introduced in [38]. Mixed-Integer Evolution Strategies are a special type
of evolution strategy that can handle mixed-integer parameters (continuous, ordi-
nal discrete, and nominal discrete) by combining mutation operators of Evolution
Strategies in the continuous domain [107], for integer programming [101], and for
binary search spaces [3].

6.2.1 Algorithm

The detailed procedure for this 2-level optimization method is described in Algo-
rithm 9. During the initialization phase all the problem instances (e.g., images)
are distributed over the K partitions. Next a MIES algorithm MIES,, is assigned
to each partition Pg.

The main loop of the Fitness Based Partitioning algorithm consists of four
steps. The first step is to run each MIES; algorithm on the problem instances
in its corresponding partition Py for G iterations. This step performs the second
level optimization task.

The second step is to select the best evolved parameter solution sj evolved by
each MIES,, algorithm and to test it on all problem instances.

Step 3 is then to reassign all problem instances so that each problem instance
1 is assigned to the partition whose corresponding MIES algorithm offers the best
parameter solution. This step performs the top level optimization task.

After all the problem instances have been reassigned to their “new” partitions
the fourth step is to check for “empty” partitions (partitions with no problem
instances). Empty partitions are not useful, since their corresponding MIES algo-
rithms cannot optimize anything. The solution we have chosen is to move half the
problem instances of the largest partition to the empty partition. Additionally, we
replace the population of the MIES algorithm associated with the empty partition
with a copy of the population of the MIES algorithm associated with the largest
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partition. This effectively removes a non-useful empty partition and splits a large
partition into two. Another choice which might be more effective sometimes could
be to split the partition in which results of MIES; have the largest variance.

Algorithm 9 Fitness Based Partitioning
1: /* Initialization */
2: Divide the set of problem instances Z randomly over the partitions.
3: Initialize the populations of the K MIES algorithms.
4: for T main loop iterations do

5. /*step 1 */

6: for each partition P, do

7: run MIES; on P for G iterations.

8: end for

9:  /*step 2 */

10:  for each MIES; do

11: select best individual/solution sy

12: apply best individual/solution sy, to all problem instances in Z

13:  end for

14:  /* step 3 %/

15:  for each problem instance I € 7 do

16: redistribute I to the partition Py for which sy offered the best solution.
17:  end for

18:  /*step 4 */

19:  while the smallest partition Pg is empty do

20: copy the population of MIES, of the largest partition Pr to MIESg
21: divide the problem instances of Pj, over P;, and Ps.

22:  end while

23: end for

6.3 Artificial Test Problems and Results

In this section we test the feasibility of “fitness based partitioning" on artificial
problems as a first step toward its application to the real CTA lumen feature
detector system. This is done because testing out various algorithm settings and
learning about their behavior using medical images is computationally too de-
manding to be practical. However, our test problems are designed in such a way
that success may be expected on real problems, for instance, the data used in the
test problems are representative for real cases.

The basic idea of our test setup, as visualized in Figure 6.1, is the task of
finding a set of multidimensional distributions based on given data points. Two
parts of the test problem need to be distinguished: (1) initialization/setup phase,
(2) evaluation of a solution. Next, we give a brief description of both phases,
followed by the detailed description of experiments and results.
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Figure 6.1: Fitness based partitioning for randomly generated data samples

6.3.1 Initialization/Setup

In the initialization/setup phase, the problem generator creates sample points in
D-dimensional space using a random number generator which can generate values
using either a uniform or normal distribution. Using the problem generator we
created Np “clusters" of sample points.

In more detail, the initialization procedure samples a set of N; points Z =
{(xM, .. x(ND} ¢ (RP)N1. The points are realizations of Np different D -
dimensional random variables Xi,..., Xn,. For each random variable N;/Np
points are generated independently. For any k € [1, Np|, the distribution of the

random variable X}, is determined by the parameters ufik), o;k). The distribution
of each random variable is an independent joint distribution composed of uniform
and normal distributions. The values at the odd vector positions are sampled from
1-D normal distributions with mean value ufik) and standard deviation aék). The
values at the even vector positions are sampled from 1-D uniform distributions

with interval width 40((1k) and mean value ufik).

6.3.2 Evaluation

The test problem is to estimate the parameters and distribution types of the Np
multivariate distributions based on the initialized data points. We work with the
following representation of solutions, encoded in the individuals of the EA. For
each dimension d € [1, D] an individual has three parameters: an estimated mean
value iy € R, an estimated standard deviation or, in case of uniform distribution,
interval width 64 € R and an estimated distribution type 74 (0: uniform, 1: nor-
mal). In case of a uniform distribution the minimum and maximum possible value

are now defined as ﬂfik) — Q&ék) and ﬂfik) + 2&((1k) respectively. Thus each individual
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looks like: (ugk) A(k) A(k) . ﬂ&k), A((ik) A(k) . A%), 5 k) A(k)) where k denotes

the partition the 1nd1v1dua1 represents
For the fitness function we use a maximum log-likelihood approach, whereby
for each individual the fitness is calculated as:

‘Pk| D
fitness = Z Zlog PDF (k) (k)( glki))], (6.4)
=1 d=1

where x; denotes the d-th dimensional value of the i-th sample point from

partition Pj.

The probability density function PDF A5 5 : R — [0,1] is described as:
(i) _ (k)
L6 € [a? - 260, 0 + 260 )L 59 ofunitorm
PDFf(k) = <k ) (fc)2 B (k)
d L exp(—% 7, = 1(normal)

2(s ‘“)

withd=1,...,D,i=1,...,|Ps|, k=1,...,Np, and I : {true, false} — {0,1}
being the indicator function: I(true) = 1,1( false) = 0.

6.3.3 Experimental Results

In this experiment, the MIES algorithms were programmed using the Evolving
Objects library (EOlib) [62]. EOIlib is an Open Source C++ library for all forms
of evolutionary computation and is available from http://eodev.sourceforge.
net. The test-data generator was created using the random number generator
from EOQlib. For each combination of dimensionality and number of clusters we
created 10 problem instantiations and on each problem instantiation we ran the
fitness-based partitioning system 20 times using different random seeds for the
MIES algorithms. Each generated cluster consists of 100 sample points.

For the MIES algorithms we used a plus-strategy with a population size of 40
and an offspring size of 280. After each redistribution cycle MIES algorithms were
run for T iterations, with 7" dependent on the dimension D of the sample points.
T was set to 50 for D =2, to 75 for D = 4, and to 100 for D = 6.

The results in Table 6.1 show that, in most cases, the fitness-based partitioning
system manages to evolve a combination of uniform and normal distributions to
describe each cluster. However, for D = 4 and Np = 20, the system fails in two
cases. In the first case a partition of 101 and a partition of 99 sample points result
(vs. 100 each). In the second case, one partition is split into 2 smaller partitions
containing 50 sample points each, while 2 other partitions are merged into one
larger partition with 200 sample points. For the 6 dimensional problem with 10
clusters the only failure was a single sample point that was mispartitioned as well.
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Dimensions T Partitions | Succesful/Total Iterations Outer Loop
D Np runs Average | S.D. Minimum | Maximum
2 50 3 200/200 7.375 3.57 1 18
4 75 10 200/200 16.07 3.44 9 31
4 100 20 198/200 23.21 3.44 16 36
6 100 10 199/200 12.35 4.45 5 43
6 100 20 197/200 14.87 3.66 9 34

Table 6.1: The results of the different experiments. Iterations outer loop (successful
runs) means that all the N-dimensional data points that were originally created in
a cluster end up in the same partition. Since the MIES algorithms have to find the
optimal distribution parameters for each dimension, the number of variables to
optimize is three times the dimension of the data points to be partitioned. For the
successful runs we have measured the average, minimum and maximum number
of iterations as well as standard deviation (S.D.), until a stable partitioning was
reached.

6.4 Computed Tomographic Angiography and Ex-
perimental Results

Since the introduction and increasing propagation of modern multi-slice computed
tomography scanners, computed tomographic angiography has become a popular
diagnostic modality in the visualization and evaluation of arteries and the de-
tection of narrowings (stenoses). Computed Tomography is an imaging technique
which results in a 3D image of the internals of an object using a series of 2D X-ray
images.

In Leiden University Medical Center (LUMC), a system has been developed
for the quantitative analysis of coronary Computed Tomographic Angiography
(CTA) [84] which consists of 5 steps. In the first step the vessels are segmented
in the 3D image, followed in step 2 by the extraction of the vessel centerline. The
third step is to construct a curved multiplanar reformatted (CMPR) image using
the detected centerline (see Figure 6.2). The resulting 3D image stack contains
2D images perpendicular to the centerline, and allows for the visualization of
the the entire length of the vessel in a single 3D image. The fourth step is the
segmentation of the lumen boundary (the part of the vessel where the blood
flows) using a combination of longitudinal and transversal contour detection. It is
this step that we will optimize using Mixed-Integer Evolution Strategies (MIES)
and Fitness Based Partitioning. The fifth step is the quantification of the vessel
morphological parameters.

6.4.1 Experiments and Results

The Fitness Based Partitioning approach as described above is tested on 9 CMPR
image stacks of coronary arteries. Each CTA image stack consists of 59 to 82
images and each image consists of 32 x 32 pixels (16 bit signed grayscale with a
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Figure 6.2: A stack of CMPR images on the left with the centerline going through
the center of each image and the corresponding lumen contours with a single
CMPR slice on the right.

spacing of 0.5mm).

To test the effect of the number of partitions, we experimented with up to 6
partitions. In case 1 partition is used the algorithm behaves like a normal sin-
gle MIES algorithm since there is no need to redistribute the images to other
partitions. For each data set and number of partitions we run the Fitness Based
Partitioning algorithm 10 times using different random seeds to initialize the
MIES algorithms. To initialize the K partitions with images we simply divided a
data set sequentially into K (almost) equally sized parts. We also experimented
with other initialization techniques (e.g., random), but they gave slightly worse
results. This is probably caused by the fact that two consecutive images in a stack
correspond to two consecutive pieces of artery and therefore, in general, require
a similar parameter solution.

For the MIES algorithms in step 1 of Algorithm 9 we use a plus-strategy (u+\)
with ¢ = 4 parents and A = 28 offspring individuals. All variables have their
own stepsize or mutation probability parameter which undergo self-adaptation as
described in [38]. The parameters for the CTA lumen segmentation consists of 13
integer and 2 nominal discrete (Boolean) parameters.

6.4.2 Evaluation

In order to evaluate the fitness of a parameter solution evolved by a MIES algo-
rithm, the lumen contour resulting from a particular parameter setting is com-
pared to the expert contour drawn by a physician. The fitness function computes
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the average error Fy(I) for each image I in partition Py as:

- |points| d(Cp,Ep)

Fy(I) = (6.5)

|points| ’

where d(C), E,) is the Euclidean distance between the p-th point of the “evolved”
contour C' and the expert drawn contour E. Note that I} corresponds to the
function error in the general problem definition given in Eq. 6.1 to 6.3. Both
contours have the same number of points since we resample all contours from the
center of the image every 2 degrees resulting in 180 points for each contour.

The fitness of an individual parameter solution is then computed as the average
minimized error of all images I in partition Pj:

Fi(I)
fitness = E 6.6
icr, 1Tl o
k

To determine the overall fitness result of our Fitness Based Partitioning algorithm
we compute the average fitness of all images I € 7 as:

K
overall fitness = Z Z FTI(|I) (6.7)

k=1I€P),

6.4.3 Results

The results in Tables 6.2 and 6.3 show that generally more partitions results in
better average fitness values and thus better contours. The only exception is data
set 6 where the fitness results for 6 partitions are worse than for 5 partitions,
but this difference is not statistically significant (using an independent samples
t-test with a 95% confidence level(p=0.05)). If we look at the differences in fitness
values between 1 and 2 partitions we see that only for data set 9 the difference in
fitness values is not statistically significant. This indicates that for our problem we
should use at least 2 partitions. For data set 2 all differences between consecutive
number of partitions (1 and 2, 2 and 3, ...) are statistically significant. For data
sets 4 and 5 the difference between 3 and 4 partitions is statistically significant
which could mean that for these data sets we should use at least 4 partitions. We
see the same for data sets 7 and 8 where the difference in average fitness value
between partitions 4 and 5 is statistically significant.

When we look at the final image partitioning after the algorithm has ended
we see that different random seeds (and thus MIES population initializations)
do not always lead to exactly the same partitions. However, an analysis of the
found partitions shows that we can clearly see groups of images which repeatedly
end up in the same partitions. There are several reasons why we do not see all
images end up in similar partitions every single run. The main reason seems to
be that the partitioning process does not always stabilize for some random seeds.
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Number of Partitions
Data )

Set avg s.d. min | max avg s.d. min | max avg s.d. min | max
1 0.184 | 0.007 | 0.177 | 0.203 || 0.175 | 0.006 | 0.166 | 0.184 || 0.171 | 0.005 | 0.159 | 0.178
2 0.118 | 0.003 | 0.113 | 0.124 || 0.113 | 0.002 | 0.110 | 0.116 || 0.108 | 0.003 | 0.104 | 0.113
3 0.151 | 0.004 | 0.144 | 0.160 || 0.149 | 0.005 | 0.141 | 0.156 || 0.144 | 0.004 | 0.140 | 0.152
4 0.153 | 0.004 | 0.149 | 0.163 || 0.152 | 0.005 | 0.144 | 0.161 || 0.151 | 0.005 | 0.144 | 0.159
5 0.233 | 0.009 | 0.215 | 0.249 || 0.229 | 0.012 | 0.213 | 0.253 || 0.223 | 0.012 | 0.209 | 0.249
6 0.207 | 0.025 | 0.185 | 0.276 || 0.188 | 0.008 | 0.180 | 0.199 || 0.192 | 0.011 | 0.178 | 0.213
7 0.228 | 0.010 | 0.215 | 0.250 || 0.210 | 0.010 | 0.194 | 0.234 || 0.197 | 0.010 | 0.184 | 0.218
8 0.143 | 0.005 | 0.137 | 0.156 || 0.136 | 0.003 | 0.132 | 0.142 || 0.135 | 0.003 | 0.129 | 0.138
9 0.146 | 0.010 | 0.134 | 0.170 || 0.140 | 0.006 | 0.135 | 0.156 || 0.135 | 0.006 | 0.130 | 0.150

Table 6.3: The average (plus standard deviation), minimum and maximum overall fitness values for 4 to 6 partitions. Lower

values correspond to better contours.
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Other possible reasons for finding different image partitionings are that there are
more image segmentation contexts than partitions or maybe there are no real
distinct groups of images with respect to the image segmentation parameters.
Naturally, the number of image segmentation contexts also depends on our image
segmentation algorithm and how robust or sensitive it is.

In Figures 6.3 and 6.4 results are shown for 2 images from data set 2 af-
ter fitness based partitioning using 2 partitions. The light gray contours in the
left images are found using parameter settings evolved for a partition including
the image in Figure 6.3. The light contours in the right images are found using
parameter settings evolved for the other partition, which included the image in
Figure 6.4. As can be see both parameter settings result in contours similar to
the dark gray expert drawn contours for the image for which they were optimized
but fail to find satisfactory contours in the other images.

Figure 6.3: Found lumen contours segmented using two different parameters set-
tings. The light gray contour in the left image was found using parameter settings
evolved for the partition to which this image was assigned. The light gray con-
tour on the right was found using the parameter settings evolved for the other
partition. The dark contour in both images indicates the expert-drawn contour.

6.5 Summary

In this chapter we investigate the use of Fitness Based Partitioning in order to
find sets of optimal parameters for the segmentation of the lumen in Computed
Tomographic Angiography images. The purpose of Fitness Based Partitioning is
to group images into partitions which require similar parameters settings while
at the same time evolving optimal parameter settings for each group. Grouping
images into different partitions is done, because one optimal parameter setting
for each and every image is not to be expected.

The results in Tables 6.2 and 6.3 show that Fitness Based Partitioning does
indeed produce sets of parameter settings which lead to better lumen segmenta-
tions when compared to one global optimal solution for all images.
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Figure 6.4: Found lumen contours segmented using two different parameters set-
tings. The light gray contour in the right image was found using parameter settings
evolved for the partition to which this image was assigned. The light gray contour
on the left was found using the parameter settings evolved for the other partition.
The dark contour in both images indicates the expert-drawn contour.

Analysis of the final image partitioning results, obtained by running the al-
gorithm with different random seeds, shows that groups of images (but not all)
usually end up on the same island. However, there remains some sensitivity to
the random seed used.

In the future we want to reduce this sensitivity by using larger populations
which cover the search space more completely. This does, however, have a negative
impact on computation time. Another option is to make the image re-assignment
method more flexible and less "greedy". We intend to extend the Fitness Based
Partitioning algorithm with merge and split heuristics to automatically find an
optimal number of partitions.

Once the partitions found by the Fitness Based Partition algorithm become
more stable we are interested in extracting common features from these images
that can act as a kind of image fingerprint, so we can automatically determine
which parameter solution to use for a new image.
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There is never an end to learning. The
dye extracted from the indigo is bluer
than the plant; so is the ice colder than
the water.

Xunzi

Chapter 7

Metamodel Assisted Mixed
Integer Evolution Strategies

So far we have introduced Mixed-Integer Evolution Strategies (MIES) and their
applications to parameter optimization for feature detection of a multi-agent med-
ical image analysis system. One of the big challenges is that the evaluation of the
fitness function is computationally expensive. This chapter discusses MIES as-
sisted by metamodels, which is based on radial basis function networks (RBFN).
The goal is to make MIES more suitable for optimization with time consuming
evaluation functions.

A RBFN is an artificial neural network that uses radial basis functions as
activation functions. They are quite often used in function approximation, time
series prediction, and control. A novelty of our presented research here is that
RBFN are studied for metamodeling in heterogeneous (mixed-integer) parameter
spaces. A heterogeneous metric (HEOM) is adopted that is in conformity with the
design philosophy of the MIES. In addition, cross-validation based optimization
techniques are suggested for adjusting hyper-parameters of the model and avoid
singularities. Empirical studies on prediction of random sets indicate good pre-
diction capabilities of the proposed RBFN for functional landscapes of moderate
dimension/smoothness. The influence of the training set size as well as of the di-
mension on computational complexity and accuracy of the RBFN is investigated.

In the metamodel-assisted MIES, a RBFN metamodel is built and updated
after each generation. The metamodel is used for selecting a small subset of off-
spring individuals from a bigger set of variations and thereby increase the number
of promising solutions in the offspring population. The algorithm is designed in
such a way that, in case of failure of the metamodel (e.g. “random" predictions),
the metamodel-assisted MIES behaves like a standard MIES. Experimental re-
sults, both on artificial test problems and on a real world application, namely
the optimization of feature detectors in ultrasound images, indicate that a clear
acceleration can be achieved by using heterogeneous RBFN.

95



96 Introduction

7.1 Introduction

As we learned already, MIES are a special instantiation of evolution strategies
that can deal with different parameter types (continuous, integer and nominal
discrete) simultaneously. In the previous chapters, we already demonstrated that
being a promising method, MIES have been successfully applied in optical filter
design, the optimization of control parameters of chemical engineering plants and
the optimization of multi-agent image interpretation systems for medical image
(e.g., Intravascular Ultrasound (IVUS) and Computer Tomographic Angiography
(CTA) image ) analysis.

However, as it is the case for other evolutionary algorithms, one main challenge
in applying MIES to real-world applications is that it needs a large number of
fitness evaluations before an acceptable result can be obtained. For instance, for
IVUS image lumen detection, one candidate parameter solution must be tested by
the hundreds of IVUS images. This is very time consuming and the computation
time for one evaluation on a single-processor machine ranges from several minutes
up to hours depending on the amount of training data used.

A promising approach for reducing computation time in such cases is to as-
sist the evolutionary algorithms with fast-computable prediction models. Meta-
models are data-driven function approximations that are learned from the set
of evaluations of a deterministic objective function (or a subset of it). Meta-
models are now widely used for function approximation in continuous search
spaces [37, 35, 45, 44, 22, 56, 118|. However, their application in discrete search
spaces remains sporadic [126], and to our knowledge there are not yet metamodel-
assisted evolutionary algorithms for mixed-integer search spaces. This chapter
proposes a promising algorithm for the latter problem domain.

In this work we focus on radial-basis function networks [21, 45] and, by us-
ing a heterogeneous distance measure, we use these techniques for prediction in
mixed-integer search spaces. Radial basis function networks are distance-based
predictors, i.e. they compute the prediction based on a weighted approach, where
the influence of neighboring points is measured by means of a non-linear distance-
based kernel (or activation function). The fact that RBFN are based on relative
distances to neighbors rather than on absolute position in Euclidean space makes
them suitable to application in metric spaces which are not vector spaces, such
as mixed-integer search spaces. A crucial point, however, is still the choice of a
metric. In this chapter we choose a heterogeneous metric that takes into account
the inherent properties of the parameter types involved (continuous, integer, and
discrete).

In literature many ways of how to integrate metamodels in an Evolutionary
Algorithm (EA) have been proposed [55]. In this chapter we choose a straightfor-
ward approach using metamodels as a filter. The basic idea is to generate a large
“pre-population" of offspring individuals and then - based on the predictions of
the metamodel - select a small subset of them for precise evaluation. Only the
subset of precisely evaluated individuals is considered for replacement. The choice
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of population sizes is governed by the idea that, in case of random predictions, the
behavior of the metamodel-assisted MIES resembles that of an canonical MIES.
However, we assume that in most cases the predictions with the metamodel are
better than pure random predictions and therefore the metamodel can help to im-
prove the quality of the sample generated with the randomized search operators.

This chapter is organized as follows. In section 7.2 some classical functional
approximation models, such as Polynomial and Kriging models, will be reviewed
briefly. Particularly, radial basis function networks will be discussed thoroughly in
section 7.3. Next, in section 7.4, the metamodel-assisted mixed-integer evolution
strategies are described. The proposed metamodel assisted mixed integer evolution
strategies are applied to evaluation on artificial test problems in section 7.5. Then
they are applied to the parameter optimization of an IVUS feature detector in
section 7.6. Finally, a short summary and future work are presented in the last
section.

7.2 Functional Approximation Models

Traditionally, there are two basic approaches which can be applied to approx-
imation in optimization: functional approximation and problem approximation.
Here we will discuss functional approximation in detail. About other types of
approximation methods, we recommend [56]. In functional approximation, an al-
ternate and explicit expression is constructed for the fitness function. Taking the
intravascular ultrasound image analysis as an example, instead of evaluating its
performance using a multi-agent feature detection system, an explicit mathemat-
ical model can be constructed and used to predict outputs according to given
inputs.

7.2.1 Polynomial Models

Polynomial approximation model is widely used and its form can be given as
follows:

§=Po+ Z Biwi + Z Br—1+i+TiT; (7.1)

1<i<n 1<i<j<n

where 3y and 3; are the coefficients to be estimated, and the number of terms in
the quadratic model is ny = (n + 1)(n + 2)/2 in total, where n is the number of
input variables. Least square method (LSM) and gradient method can be used to
estimate the unknown coefficients of the polynomial model.

7.2.2 Kriging Model

The Kriging model is another popular approximation model. Kriging was origi-
nated by the mining engineer Krige, who used this method to estimate ore con-
centrations in gold mines. In recent years it has been successfully used in meta-
modelling and optimization [35, 94]. It can be seen as a combination of a global
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model plus a localized “deviation":

y(x) = g(x) + Z(x) (7.2)

where g(x) is a known function of x as a global model of the original function,
and Z(x) is a Gaussian random function with zero mean and non-zero covariance
that represents a localized deviation from the global model. Usually, g(x) is a
polynomial and is reduced to a constant § in many cases.

7.2.3 Neural Networks

An Artificial Neural Network (ANN) is defined as a data processing system con-
sisting of a large number of simple, interconnected processing units. The archi-
tecture of ANN has been inspired by information processing structures found in
the multilayered cerebral cortex of brains. Neural networks have also shown to
be effective tools for function approximation. Feedforward multilayer perceptrons
(MLP) [50] and radial basis function networks (RBFN) are two well studied mod-
els among others. In the next section, we will discuss RBFN in detail.

Feedforward multilayer perceptrons

A feedforward multilayer perceptrons with one input layer, two hidden layers and
one output neuron can be described by the following equation:

L K n
y=> ufO wl FO whe) (7.3)
k=1 =1

=1

where n is the input number, K and L are the number of hidden nodes, and f(-)
is called activation function, which usually is the logistic function

1

- 7.4
T4eo (7.4)

f(2)

7.3 Radial Basis Function Networks

Radial basis function networks (RBFN) were proposed as artificial neural networks
for function interpolation in [21]. They were proposed to assist evolutionary algo-
rithms in [45], and were combined with evolution strategies in [44]. Formally, they
are similar to Kriging interpolation techniques [36], though Kriging methods are
motivated in a different way. As distance based interpolation function RBFN are
suitable for functions, interpolation in metric spaces that not necessarily need to
be continuous vector spaces. Also, differentiability of functions is not explicitly re-
quired. However, we do assume that the difference in function values is positively
correlated with the distance to a given point, and choose the metric accordingly.

Radial basis function networks [21, 45] are three-layer fully connected feedfor-
ward networks (cf. Figure 7.1). They perform a nonlinear mapping (R¢ — R™)
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Input Input Output Input Input Output
Layer Layer Layer Layer Layer Layer

Figure 7.1: Possible structures of Radial Basis Function Network.

from the d inputs to the m hidden units followed by a linear mapping (R™ — R')
from the hidden units to the [ outputs. In this chapter only the case of [ = 1 will
be first considered (Figure 7.1).

In our case we will deviate from the standard definition and define radial basis
function networks for metric spaces. Let M denote a metric space with distance
measure A : M x M — R, then M — R™ denotes a radial basis function network
for a general metric space.

When applied for function approximation, the neural network is trained during
a training phase, with data from known function evaluations. The weights of the
linear function from the hidden layer to the output are adapted in a way that
the deviations between the known output values to the predicted output values
are minimized. Then, in the prediction phase, a point x € M is presented to the
neural network and the neural network predicts the response.

Giannakoglou et al. [45] introduced a straightforward approach on how to
employ RBF networks for function interpolation in the sense that results for
points in the training set shall be reproduced exactly. Its architecture is described
as follows: Let again x(*), ... x("™) denote the evaluated points of the database,
and yM = y(xM), ..., 3™ = y(x(™). Then define for each evaluated point x()
a RBF center:

b .=x® i=1,...,m (7.5)

Let r : Ry — R{ a positive definite function on Ry, then we define the activation
function of the hidden layer via:

h(x,b®) =r(A(x,b?)),i=1,...,m (7.6)
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The activation function based on r is called a radial basis function because
its value depends on the distance of x to the RBF center. For r : Rf — R
Giannakoglou suggests the function

ro(A(x,x")) = exp(—0A(x — x)9), with ¢ =2 (7.7)

with a value for 6 that, as a default, was set to 1.
The prediction function gy from the input values to the output value of the
RBFN is defined as a linear function with a-priori unknown weights:

m

g(h . h™) =y e h(x, b)) (7.8)

=1

The values of 1Y) need to be adapted in the training phase. The output values
of the training points have to be reproduced by the neural network, whenever we
demand for exact interpolation of the results. This is expressed by the system of
equations:

m

S e Ohx),xD) £y j =1, n (7.9)

i=1

Rewritten in matrix form this reads:

h(X(l),b(l)) h(X(l),b(m)) P
B MY o () by | |
—_———
H ¥ 7.10
e (7.10)
*
—_————
Yy

Note that H is a symmetric m x m matrix. The symmetry of the matrix H fol-
lows immediately from the equivalence of the RBF centers b(),i = 1,...,m with
the input patterns x(¥, i = 1,...,m and the symmetry of the distance measure.

Assuming that there are no equal points in the database and that the RBF is
positive definite, the weights () i = 1,...,m are given by the solution of this
system, i.e.

Yp=H'y (7.11)

After computing the values of the vector ¢ (training phase) we can now use
them for predicting output values for any x € M by using equation 7.9.
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7.3.1 Heterogeneous Metric

A crucial step in adapting the RBFN method for mixed-integer spaces is the
choice of an appropriate distance measure. For continuous spaces the Euclidean
metric seems to be a straightforward choice, while for nominal discrete spaces an
overlap metric seems suitable, as it does not assume any continuity of the objective
function w.r.t. to a particular ordering of the domain. For two integer parameter
vectors the distance can be measured by means of the Manhattan distance in
a straightforward way. This is the accumulated distance when computing the
difference of single parameter values of the variables. In combination with the
MIES the choice of the Manhattan distance is also in conformity with the mutation
operator, who generates samples with a ¢; symmetric distribution. To combine
different metrics we adopt the HEOM approach by Wilson and Martinez [122],
which suggests to take the square root of the sum of distances of the partial
parameter vectors. Let A, (r,r') = Y7 (r; — ri')?, AL(z) = Y72, |2 — =[], and
Ag(d,d") = > I(d; # d}) with I(true) = 1,1(false) = 0. Then the combined
heterogeneous metric A, for x = (r o z o d) reads:

AL (x,x") = /A (r,v) + AL(z,2') + Ag(d,d'). (7.12)

In order to improve prediction accuracy, we adapted the parameter ¢ during the
training phase. This was done by means of a global minimization of the cross-
validated error using a grid sampling method. The effect of this procedure is sig-
nificant as our preliminary experiments revealed. In order to adapt the parameter
we take compute

0" = argmin ge (100 min ..., 100mas } LCVE(0) (7.13)

with LVCE being the quadratic error of leave one-out-cross-validation for an
equidistant set of values T' = {Oin, ..., Omaz }, in the experiments we choose
the set T = {—4, ...,1}. The motivation of using a logarithmic grid based op-
timization of @ is that we need (1) a fast and (2) a reliable optimization routine
for 6. It is due to our experience much more important to hit the right order of
magnitude with 6 than to fine-tune its value. For much too high values of 6 the
matrix H will be close to a unit matrix, and in case of too low 6 values it will be
a matrix filled with ones. In the latter case the matrix is almost singular (causing
problems with matrix inversion). We omit a fine tuning of 0, as, due to the high
cost for matrix inversion, this would be very time consuming and the added value
is questionable.

The computational complexity of the training step is governed rather by the
number of samples than by the dimension of the search space. The time complex-
ity of computing the matrix H scales as O(dm?), where d is the number of input
variables, whereas the inversion of the matrix scales with O(n?) if we use, for
example, Gaussian elimination. There are more efficient inversion routines avail-
able, such as Strassen’s algorithm, but to our knowledge the decreased complexity
leads to an effective decrease in computation time only with very high problem



102 Metamodel Assisted MIES

dimensions. Given this the overall complexity Tiraining(m,d,T) of the training
phase reads:
Tiraining(m, d, T) = |T|(m?*d + m?) (7.14)

In contrast, the time for predicting the output value, given a set of weights v is
only linear. More precisely it scales with O(dm)

As a conclusion, these considerations show that we should consider the training
phase as the main computational effort and the number of samples being the main
determinant of the effort in that phase. This observation will govern the decision
on how to build the RBFN-MIES in the following chapter.

7.4 Metamodel Assisted MIES

Although MIES were already successfully applied to some real-world application,
they usually need a large number of fitness evaluations before an acceptable result
can be obtained. To accelerate the MIES it could be interesting to estimate the fit-
ness function by constructing an approximate model. Here we propose metamodel-
assisted MIES which use radial basis function networks (RBFN) to predict fitness
values. The main loop of the RBFN-MIES is displayed in algorithm 10. Some
features distinguish RBFN-MIES from standard MIES:

1. All exactly evaluated individuals are recorded.

2. The metamodel is updated in each generation based on the K™ latest records
from database.

3. The AT (>> \) offspring are created in each generation and evaluated by the
metamodel.

4. The best A individuals are taken for the precise evaluation.

The proposed scheme widely corresponds to the metamodel-assisted evolution
strategy (MAES) as proposed by Emmerich et al. [37]. However, there is an im-
portant difference: While in the MAES a metamodel is trained for each individual,
the RBFN-MIES trains one single metamodel for a whole generation of individu-
als. This allows to use a larger size of the training population, which, due to our
initial studies is of crucial importance to achieve a good prediction quality.

7.5 Study on Artificial Test Problem

7.5.1 Prediction Accuracy Study

We first study the prediction accuracy of the radial basis function networks on
the mixed integer domain depending on the dimension of the search space and
sample size. As we described in section 7.3, the heterogeneous metric is used to
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Algorithm 10 Main loop of RBFN-Assisted MIES
1 t+—0
2: Initialize population P; of KT, including u, individuals randomly generated
within the individual space I
: Evaluate the P; and insert results to database D
: while Termination criteria not fulfilled do
Train RBFN based on KT latest evaluations
Generate the AT offspring
Predict fitness of AT offspring
Select the best A individuals out of A™ offspring
Evaluate A selected individuals by using original fitness function, and insert
results to database D
10:  Select the p best individuals for P,y from A offspring
11: t—t+1
12: end while

© ® PR

compute distance for different parameter types. The mixed-integer sphere function
(Eq. 7.15) will be used as our test problem.

fsphere r,z, d ZT' +ZZ +Zd2 — min (715)

Note that the discrete values are treated as nominal discrete values by the evolu-
tion strategy. Therefore it is not possible to exploit the ordering on the integers
as it does for the integer variables.

The experiment was set up as follows: Firstly, we generate a certain number of
training samples. Each sample consists of three parameter types. The boundary
for each parameter type is defined as r; € [0,10],2; € [0,10],d; € {0,...,9}.
These training samples, as well as their precise fitness values, will be used to
train a RBFN. Secondly, we use this trained RBFN to make prediction on other
randomly generated 1000 test samples. Differences between predicted and precise
fitness value on test samples will indicate how good the approximation ability
of RBFN is. Figure 7.2 displays results of the RBFN for a mixed-integer sphere
problem in different dimensions and for different numbers of training samples.
The results indicate that the number of training points is crucial for achieving a
metamodel of good quality (from top to down). The dimension (from left to right)
of the search space has slightly less impact. However, the results indicate that the
accuracy of the prediction decreases clearly when increasing the dimension. With
moderate dimensions, however, the approximations are much better than random
guesses. These results prove that RBFN can be applicable not only in continuous
but also in mixed-integer spaces, if the distance measure is chosen appropriately.
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Figure 7.2: Scatter plots for exact fitness value (X-Coordinate) and predicted fit-
ness value (Y-Coordinate) of 1000 test samples by using different training samples
on generalized sphere function.

7.5.2 Applying RBFN-MIES to Test Problems

Before we apply RBEN-MIES to a medical image analysis problem, we study its
behavior on two artificial test problems. For both cases we use (u = 4, = 28)
strategy. We first test RBFN-MIES on the generalized unimodal sphere function,
with n, = n, = ng = 5 and the same boundary condition as described above.
The test result on the sphere function is shown in Figure 7.3. It shows that MIES
assisted by RBFN can accelerate the convergence speed compared to the strandard
MIES.

Another test problem is the more complex and multimodal barrier problem
(cf. Chapter 4). Barrier functions produce mixed-integer optimization problems
with a scalable degree of ruggedness (determined by control parameter C) by
generating an integer array A using Algorithm 8 in chapter 4.

Fig. 7.4 shows experimental results on the 15-D drempels function with control
parameter C=20. For the test in Fig. 7.4, we set K+ of RBFN-MIES to 64. It
turns out that, when optimization problems become more difficult, that is more
rugged, the training number of the training samples must be increased to ensure a
good quality of RBFN predictions. Moreover, on this rugged landscape the MIES
without RBFN-assistance detects the global optimum more reliably in the long
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Figure 7.3: Average convergence histories of 20 runs of the 15-D sphere optimiza-
tion problem with the MIES and RBFN-MIES (K+ = 64). The upper figure shows
the average results for both strategies. In the lower figure additional information
on outliers and confidence margins are displayed using box error plots for the runs
with the MIES (left) and RBFN-assisted MIES (right).
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Figure 7.4: Average convergence histories of 20 runs of (RBFN-)MIES (K+ = 64)
on 15-D drempels problem with C=20. The upper figure shows the average results
for both strategies. In the lower figure additional information on outliers and

confidence margins are displayed using box error plots for the runs with the MIES
(left) and RBFN-assisted MIES (right).
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run. This indicates an increased tendency of convergence towards sub-optimal
solutions in case of multimodal optimization. A possible explanation can be that
using a prediction makes it more difficult to leave the attractor of a local optimum.
Counteracting this problem will be a topic of future research. However, on average,
the results obtained with the RBFN-assisted MIES are better and good results
are obtained faster.

7.6 Apply RBFN-MIES to IVUS Image Lumen
Detection

MIES were already used to find optimal parameter settings for the segmentation
of the lumen in IVUS images. In this work, we optimize a new image processing
pipeline with 23 optimization variables (as compared to 16 parameters in the
previous chapter).

Evaluating an image processing pipeline on given parameter settings is very
time consuming. The evaluations of one setting of the MIES algorithm on 100
IVUS images took about 1 minute, i.e. for 10 generations with 4 parents and
28 offspring took about 5 hours on a Pentium 4 (3.4GHz) computer. Therefore
a metamodel-assisted approach seems promising as we can make use of existing
evaluation results, which could help MIES to accelerate convergence speed and
does not considerably increase the total computational time, in particular in cases
when training data for the metamodel is already available.

Like we did for the artificial test problems, we use (1 = 4, = 28) MIES
strategy. We set K™ = 32, that is, the latest 32 precisely evaluated individuals
are used to update the RBFN in each generation. We run both standard MIES
and RBFN-MIES on 100 IVUS images. The first preliminary experimental result
is shown in Fig. 7.5. As we can see from the result, RBFN-MIES slightly accel-
erate the convergence speed compared to the standard MIES without metamodel
assistance. Of course, we can increase the K™ to make RBFN prediction more
precisely. However, as we mentioned during the discussion of the runs of test cases,
by doing this we will also need some extra computation time to train RBFN in
each generation.

7.7 Summary

In this chapter we propose radial basis function networks assisted mixed integer
evolution strategies. To study the behavior of RBFN-MIES, we first applied it
to different artificial test problems, and then to parameter optimization of the
IVUS image lumen feature detector. The experimental results indicate that by
constructing/updating such an approximate model in each generation, accelera-
tion on convergence speed can be achieved, provided training data for the RBFN
is available (e.g. from previous runs). Moreover, we showed by scatter plots that
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Figure 7.5: Average convergence histories of 10 runs of the IVUS lumen detection
optimization problem with (RBFN-)MIES. The upper figure shows the average
results for both strategies. In the lower figure additional information on outliers
and confidence margins are displayed using box error plots for the runs with the
MIES (left) and RBFN-assisted MIES (right).
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the predictions of the RBFN on the mixed-integer data are highly correlated to
the true function values. When the optimization task difficulty increases, it will
be more difficult for the metamodel to make good predictions and the size of the
training set needs to be increased. According to our design, in case of failure of
the metamodel the RBFN-MIES regresses to a standard MIES.

As mentioned in the previous part, this is the first study on using RBFN-
assisted MIES. The results are promising, but still there remain challenges. Firstly,
in this chapter we need initial training data for the RBFN in order to achieve a
significant acceleration. This data can be taken (“recycled”) from previous runs
or otherwise needs to be computed causing an increased computational effort.
A possible way to generate training data efficiently would be to generate them
“on the fly”, that is to apply the RBFN in the first generations until enough
training data are available. The performance of this 'cold start’ strategy needs to
be assessed in future work.

Another question that arises is how we can decide whether one precisely eval-
uated individual should be recorded or not. By discarding points that are very
similar to existing points the diversity of the training samples can be increased,
which can lead to enhanced quality and numerical stability. In this context, it is
also interesting to study problems like overfitting and prevention of deceptive pre-
diction. A promising approach to avoid such effects could be an online monitoring
of the model quality. To counteract overfitting also regularization techniques can
be considered in future work as well as unsupervised methods like self-organizing
maps.

In addition to parameter studies the performance of the RBFN-MIES needs
to be tested on a larger number of problems, including further, more challenging,
problems from medical image analysis. From a theoretical point of view it will
be interesting to access how continuity assumptions, such as Lipschitz continuity,
can be generalized for mixed-integer domains and how the quality of the mixed-
integer RBFN is related to such properties. A goal of such considerations would
be a theory that allows to mark the boundary between functions that can be
approximated and those where approximation fails.






Chapter 8

Mixed-Integer Evolution
Strategies with Dynamic
Niching

Mixed-Integer Evolution Strategies (MIES) are a natural extension of standard
Evolution Strategies (ES) for addressing optimization of various types of variables
— continuous, ordinal integer, and nominal discrete — at the same time. Like most
Evolutionary Algorithms (EAs), they experience problems in obtaining the global
optimum in highly multimodal search landscapes. Niching methods, the extension
of EAs to multimodal domains, are designed to treat this issue. In this study
we present a dynamic niching technique for Mixed-Integer Evolution Strategies,
based upon an existing ES niching approach, which was developed recently and
successfully applied to continuous landscapes. The new approach is based on the
heterogeneous distance measure that addresses search space similarity in a way
consistent with the mutation operators of the MIES. We apply the proposed
Dynamic Niching MIES framework to a test-bed of artificial landscapes and show
the improvement on the global convergence in comparison to the standard MIES
algorithm.

8.1 Introduction

Evolutionary Algorithms (EAs) have the tendency to converge to a single solu-
tion [3, 83], even if the search landscape has multiple globally optimal solutions.
This is due to effects such as genetic drift [104] , fast takeover [3], and disruptive
recombination [92]. Population diversity loss in EAs does not only make it diffi-
cult to obtain multiple global optima, but may also prevent the algorithm from
locating the global optimum.

Niching techniques have been proposed to counteract population diversity loss



112 Niching with Evolution Strategies

in EAs. They support parallel convergence into multiple attraction basins in a
multimodal landscape within a single run. Niching techniques have been mainly
developed within the framework of Genetic Algorithms (GAs) in the past decades
(see, e.g. [112] and [83]), and have recently also received increasing attention from
the Evolution Strategies (ES) community [92, 111, 116, 117].

The application of niching in ES proved to be very successful in improving con-
vergence reliability and solution diversity in multimodal continuous optimization.
However, it remains an open question, whether niching can also be incorporated
into mixed-integer search spaces, which are of great practical relevance [7]. In this
chapter we investigate whether niching is also beneficial in this problem domain
by combining the niching approach by Shir et al. [111] with the Mixed-Integer
Evolution Strategy (MIES) [38, 77].

A crucial step will be the definition of an appropriate metric that is compatible
with the neighborhood structures used by the search operators of the Mixed-
Integer Evolution Strategies. Thereby we aim for a coherent algorithm design
which will make a theoretical analysis of the algorithm more accessible. It is
a known drawback that the MIES has difficulties to converge to global optima
of highly multimodal landscapes [78]. Based on selected test problems, such as
Mixed-Integer NK Landscapes [78] and Barrier Functions [77], we study whether
the introduction of niching improves the MIES performance on such landscapes.

8.2 Niching with Evolution Strategies

Niching methods are techniques that originally promote the formation and main-
tenance of interim subsolutions in the genetic algorithms (GA) on the way to sin-
gle, final solution [83]. Not only are they necessary if one is interested in finding
multiple solutions to a problem of multimodal function optimization and multi-
objective function optimization classification, but also they are useful for finding
better single solutions to very hard problems. In this section, we will give a brief
overview of ES niching techniques with respect to Mahfoud’s niching methods.

8.2.1 Motivation

As we addressed in the former section, the canonical ES suffered from several
effects - select pressure, operator disruption and random genetic drift, which in-
terrupt the formation and maintenance of multiple solutions [110]. As a result of
these effects, the evolution process are pushed towards a rapid convergence into
a single solution, even when multiple solutions are required by a given problem.

Selective Pressure

Traditional deterministic selection strategies of the standard ES intuitively implies
high selective pressure. A quantitative analysis of selective pressure was given by
Goldberg and Deb by introducing the takeover time [46] concept, which is defined



Chapter 8 113

as the minimal number of generations until repeated application of the selection
operator yields a uniform population filled with copies of the best individual. Back
analyzed the ES selection mechanisms and showed that both (u, A) and (u + )
selection strategies have very short takeover times (or high selective pressure).

Operator Disruption

In the standard ES, the mutation operator can be regarded as an operator with
negligible disruption effect, while the recombination operator, by contrast, has
a disruptive nature and modifies a coordinate of the decision parameters to be
optimized.

Genetic Drift

Genetic drift is a stochastic process in which the diversity is lost in finite popula-
tions [64]. Due to the finite number of offspring, a distribution of genetic properties
is transferred to the next generation in a very limited manner and consequently
the distribution will approach an equilibrium distribution. Since small population
sizes are used in the standard ES, the genetic drift occurs and causes the loss of
diversity within the population. Especially in multimodal functions, such an effect
causes a convergence to an equilibrium distribution around a single attractor [104].

8.2.2 Dynamic ES Niching

In the following part, we will describe the framework for applying niching tech-
niques in the standard ES, which was originally proposed by Shir in [110, 111]. In
particular, distance metric dy, ,; and niche radius p will be discussed.

Distance Metric

Originally, the canonical ES was developed for tackling problems in real-valued
searching space. The metric for measuring the distance between individuals is
defined as follows: given two individuals in the search space with dimension n, z; =
(€16, 22,4, ...,%pn;) and &5 = [21,5, 22 j, ..., Tn ], the distance d, ., is calculated
using a euclidean distance norm given in Equation 8.1 below.

Aoy, = | D (Thi — Tk 5)? (8.1)

k=1

The Niche Radius

The original formula for calculating niche radius p in GA was derived by Deb and
Goldberg in [29]. It is straightforward to adopt the formula but using the distance
metric which was defined by equation 8.1.
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Given the number of peaks ¢ in the solution space, every niche is considered
to be surrounded by a n-dimensional hypersphere with radius p which occupies
% of the entire volume V of the space. The volume V' can be computed through
formula below:

V=cr"

where ¢ is a constant and given explicitly by:

T o
= =, I'(n) = / 2" Lexp(—x)dx
(3 +1) 0

Given the lower and upper boundary values Ty min, Tk,maz in the decision param-
eter space, r is defined as follows:

1 |« )
r= 5 Z(xk,marc - xk,min)

k=1

If we divide the volume into ¢ parts, we can get following formula:

n 1 n
cpt = —cr
q
which yields
r
p= (8:2)

Dynamic Niching ES Algorithm

Next, we outline and discuss the Dynamic Niching ES Algorithm [109] in detail.
The algorithm starts with the initialization of ¢ niches with p individuals and their
evaluation. Then, the following loop is repeated until a termination criterion is
met: Firstly, for each niche the algorithm generates A\ offspring based on the u
parents. Depending on the instantiation of the algorithmic ES kernel, mutation
and recombination operators are employed for this purpose.

By restricting recombination to the dynamically updated niches, the algorithm
enforces a mating restriction scheme which allows competitive mating only within
the niches. This is done to prevent disruptive effects of the recombination oper-
ator [92]. The concept of fixed mating resources is strictly enforced: For every
niche the same number of offspring is generated, also referred to as the mniche
hosting capacity. This measure is taken in order to prevent genetic drift effects,
as described e.g. in [104].

Upon fitness evaluation of the new individuals, offspring and parent individ-
uals are merged into one population comprising now ¢ x (u + A) individuals.
The algorithm then employs a sub-routine for dynamically identifying the vari-
ous fitness-peaks of every generation (which uniquely define the niches) and then
assigns each individual to a niche. The classification into niches is carried out in
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a greedy manner, by means of the so-called Dynamic Peak Identification (DPI)
algorithm [85]. The latter is outlined as Algorithm 11.

Besides the global selection phase taking place in the niche forming process,
which will be described later, a local environmental selection takes place within
each niche, that enables step-size adaptation to the local topography of the niches.
If the number of individuals in a peak set is less than u, the algorithm creates
new samples in the search space and adds them to the niche until it contains p
individuals. A summary of the algorithm is given in Algorithm 12.

Algorithm 11 Dynamic Peak Identification (DPT)

in: Population Pop, # niches ¢, niche radius p
out: Peak sets DPS
Sort Pop in decreasing fitness order
1:=1
NumPeaks =0
DPS := & {Set of peak elements in population}
while NumPeaks # q and i < popSize do
if Popli] is not within sphere of radius p around peak in DPS then
DPS := DPSU{Popli]}
NumPeaks := NumPeaks + 1
end if
i:=i+1
: end while

=

R B A

— =
= O

The number of expected niches, ¢, is given as input to the algorithm. The
distance calculation is implemented with the Euclidean metric (Equation 8.1) in
the decision parameter space since all parameters are continuous. The niche radius
p itself is approximated a-priori with Equation 8.2 and remains fixed during the
run.

8.3 Dynamic Niching for Mixed-Integer ES

To incorporate MIES into the Dynamic Niching ES framework we must define
a proper distance metric for the mixed-integer space. For continuous spaces the
Euclidean metric seems to be a straightforward choice, while for nominal discrete
spaces an overlap metric seems suitable, as it does not assume any continuity of
the objective function w.r.t. a particular ordering of the domain. For two integer
parameter vectors the distance can be measured by means of the Manhattan dis-
tance in a straightforward way. This is the accumulated distance when computing
the difference of single parameter values of the variables. In combination with the
MIES the choice of the Manhattan distance is also in conformity with the sym-
metry assumptions used in the design of the mutation operator, which generates
samples from an ¢; symmetric distribution. We combine the different metrics using
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Algorithm 12 Niching-ES.
in: Number of niches ¢, Niche radius p
out: Optimized solution(s)

1: Initialize ¢ equally-sized niches of size p randomly
2: Evaluate all new individuals in all niches
3: while Termination criteria not full filled do
4:  for every niche i =1...q do
generate A offspring from p parents
Evaluate fitness of A offspring individuals
Update best found solution(s)
end for
Combine all x + X individuals from niches into one population
10:  Compute the Dynamic Peak Set with DPI (Algo. 11)
11:  Select p best individuals per niche
12:  for every niche i =1...¢q do

13: if p; = number of individuals in niche i < u then
14: Generate and Evaluate p — p; new individuals
15: end if

16: end for
17: end while

the Heterogeneous Euclidean-Manhattan-Overlap Metric (HEMOM) approach by
Wilson and Martinez [122]. According to the parameter type (cf. the search space
definition in section 3.3.1), the specific distance metric can be used to compute dis-
tance. More specifically, we summed these different distance metrics up according
to Equation 8.3 below:

Ay (zi, 7)) = (25 — 24)? if ;2] € R;

AL (g, x)) = |@; — if x;, 2 € Z;
Az, x}) = (8.3)

1 if o !
Ag(zi,xf) =1z, 2)) = { if o # xf if x;, 2 € D.

0 ife;, =2

Then the combined heterogeneous distance metric Apixeq for h = (rozod) reads:

Amixed(h,h) = /A, (r,1') + A.(z,2') + Ag(d, d'). (8.4)

By using the aforementioned heterogeneous distance metric, the niche radius
Pmixed 1N the mixed-integer search space now can be approximated as follows:

(8.5)
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Here max Ax; denotes the maximum distance value of parameter x; within its
possible boundary. For x; € D, the maximum distance is always 1 according to
the definition of overlap metric. In practice, one parameter can overpower the
other parameter because of different range. To avoid this, distances are often
normalized relative to their acceptable range values. For different normalization
techniques, please refer to [122]. ¢ denotes the number of peaks in the solution
space. We assumed that every niche with radius ppixed OCcupies %—th of the entire
volume of the space.

8.4 Test Functions and Experimental Results

To investigate the behavior of our algorithm, we applied it to two carefully de-
signed mixed-integer multimodal functions in various dimensions. Specifically, we
are interested in the global convergence. Performance comparison between Dy-
namic Niching MIES with standard MIES is also presented.

8.4.1 Barrier Function

Barrier functions, introduced in chapter 4, create mixed-integer optimization
problems with a scalable degree of ruggedness (determined by parameter C').
To test the Dynamic Niching MIES and standard MIES algorithm we generated
barrier functions for C' = 20, C' = 200, C' = 2000 and C' = 5000 and ran both the
Dynamic Niching MIES and a standard MIES algorithms 20 times with different
random seeds. For the Dynamic Niching MIES we used 5 niches with © = 15 and
A = 75 for each niche. For the MIES algorithm we used a (75 4+ 500) strategy
thereby making sure that the number of parents, offspring and fitness evaluations
per generation is the same for both algorithms.

The results of the experiments are displayed in Figure 8.1. Although the Dy-
namic Niching MIES converges a little slower than the standard MIES algorithm
it does reach the same performance in the end. In the case of C=2000 Dynamic
Niching MIES performs slightly better than the standard MIES on average. The
possible explanation is that the barrier function landscape with C=2000 is harder
than others. The standard MIES converges faster but Dynamic Niching MIES has
a better chance of getting rid of local traps at last.

8.4.2 Mixed-Integer NK Landscapes

NK landscapes (NKL, also referred to as NK fitness landscapes), introduced by
Kauffman [61], were devised to explore the way that epistasis controls the ‘rugged-
ness’ of an adaptive landscape. They are particularly used as test problem gener-
ators for Genetic Algorithms (GAs) to understand the dynamics of evolutionary
search. The ruggedness and the degree of interaction between variables of NKL
can be easily controlled by two tunable parameters: the number of genes N and
the number of epistatic links of each gene to other genes K. Moreover, for given
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Figure 8.1: Average best fitness results over 20 experiments for barrier functions
with C' = 20, C' = 200, C = 2000 and C' = 5000 for both the Dynamic Niching
MIES and standard MIES algorithms.

values of N and K, a large number of NK landscapes can be created at random.
Mixed-Integer NK-Landscapes (MI-NKL) were introduced in chapter 4 and are
an extension of NKL from the traditional binary case to a mixed variable case
with continuous, nominal discrete, and integer variables. The resulting test func-
tion generator is a suitable test model for our dynamic niching Mixed-Integer
Evolution Strategy.

In order to test our Dynamic Niching MIES algorithm we tested it on different
Mixed-Integer NK landscapes with 15 variables (5 continuous (range [—10, 10]), 5
integer variables (also range [—10,10]) and 5 nominal discrete variables (Boolean
({0,1})). We generated 10 random MI-NKL for different levels of K (2, 5, 10, and
14) to simulate different problem difficulties and both the Dynamic Niching MIES
and standard MIES algorithms were run 20 times on each MI-NKL using different
random seeds. We used a total population size of 75 for both the standard MIES
and Dynamic Niching MIES algorithm (15 individuals per niche) and an offspring
size of 500 (100 per niche). To compare (and average) the results of the different
experiments we used the following error-measure:

error = best found fitness - best possible fitness

The results of the experiments are displayed in Figure 8.2. For K = 2 and
K =5 we see, similar to the results of the barrier functions, that the standard
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Figure 8.2: The error average of both Dynamic Niching MIES and standard MIES
on different mixed-integer NK landscape problems with N = 15.

MIES algorithm converges faster. However, on the MI-NKL the Dynamic Niching
MIES algorithm manages to achieve a better result on average. If we look at the
results for more rugged (and harder) MI-NKL with K = 10 and K = 14 we see
that the Dynamic Niching MIES outperforms the standard MIES algorithm both
in convergence speed and final solution quality.

We also compared the number of experiments the Dynamic Niching MIES
and MIES algorithms find the global optimum, and the results are presented in
Table 8.1. For K = 2 the Dynamic Niching MIES algorithm finds the optimum
174 times out of 200 (10 different MI-NKL times 20 runs) while MIES finds it
143 times. As K increases both algorithms find the optimum less often, which is
expected since the difficulty increases. For K = 5, 10 and 14 the Dynamic Niching
MIES finds the optimum 92, 19 and 8 times respectively. MIES only manages to
finds the optimum 67, 6 and 3 times for K = 5, 10 and 14. Thus, the Dynamic
Niching MIES algorithm does not only result in a lower average error but also
manages to find the global optimum more often.

8.5 Summary

Studies on artificial landscapes reveal that the proposed heterogeneous niching
can be a useful ingredient in highly rugged landscapes. On MI-NK Landscapes it
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K | Dynamic Niching MIES | MIES
2 174 143

5 92 67
10 19 6

14 8 3

Table 8.1: The number of times the Dynamic Niching MIES and MIES algorithms
found the global optimum out of a total of 200 experiments (10 different MI-NKL
times 20 runs).

clearly improves the chances to obtain the global optimum. In more simple land-
scapes it only slightly slows down the convergence speed compared with standard
MIES. In conclusion, it can be said that in case of simple problems the usage of
the new strategy will not be harmful and in the case of highly rugged problems
it can lead to solutions of better quality than standard MIES.

In the future the Dynamic Niching MIES should be tested on additional prob-
lems, including real-world applications. Moreover, a deepened understanding of
niche formation process in mixed-integer landscapes and the influence of strategy
parameters may help to further improve its performance.
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Mixed-Integer Evolution
Strategies with Bayesian
Networks

As we learned from the previous sections of this thesis, mixed-integer optimization
problems arise in various application fields, such as chemical engineering and the
medical image processing. Stochastic optimization algorithms, such as evolution
strategies and estimation of distribution algorithms, can be used as solution meth-
ods for solving these problems approximately. Especially for real-world problems
they often prove to be powerful methods due to their flexibility and robustness.

However, a shortcoming of existing mixed-integer evolutionary algorithms,
such as Mixed-Integer Evolution Strategies (MIES), is that their variation pro-
cedures mutate each decision variable independently. Therefore, dependencies be-
tween variables, even if they are known a-priori, cannot be taken into account.
This chapter aims at designing and testing a mixed integer evolutionary algorithm
that can utilize knowledge about such dependencies. The development of the new
approach is motivated by problems in medical image analysis where the param-
eters of a medical image processing pipeline are to be optimized (cf. chapter 5).
Though the optimization of these systems is essentially a black-box optimization
problem, dependence information can be extracted heuristically from the known
structure of the processing pipeline (Figure 5.5 in chapter 5).

Inspired by existing works, we propose a Mixed-Integer Bayesian Optimization
Algorithm (MIBOA), that is a variant of Estimation of Distribution Algorithms
(EDAs) and extends the Bayesian Optimization Algorithm (BOA!), from binary
optimization problems to mixed-integer optimization problems using special types
of Bayesian Networks dealing with random variables of mixed-type. EDAs do nei-
ther have a crossover nor a mutation operator. Instead, a new population is gen-

IWith fixed network structure.
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erated by sampling the probability distribution, which is estimated and updated
based on the distribution of recently obtained “successful” individuals. Different
instantiations of EDAs differ by the distribution types and update rules they
use. For instance, the classical Population-Based Incremental Learning (PBIL)
algorithm samples from an independent joint distribution of Bernoulli type [9],
while the Univariate Marginal Distribution Algorithm (UMDA) [69, 108] features
independent joint distributions of Gaussian type.

We show that a-priori knowledge on dependencies between decision variables
can be exploited by this algorithm in order to improve convergence speed and relia-
bility. In discussing the properties of heterogeneous Bayesian Networks, represent-
ing multivariate distributions of mixed-variable type, we point out which kind of
dependence information can be utilized. Moreover, a special type of mixed-integer
NK-landscape (cf. chapter 4) that is well suited for testing the new approach, the
so-called Acyclic Directed Graphic Models (ADG) based NK-landscape, will be
introduced.

The chapter is structured as follows: Section 9.1 introduces the basic knowl-
edge of graph theory and Bayesian Networks. In Section 9.3 we discuss briefly
estimation of distribution algorithms with independent sampling distributions in
contrast to canonical evolution strategies (ES). Section 9.4 introduces Bayesian
optimization and generalizes it to the mixed-integer case. After introducing test
problems based on NK-landscapes in Section 9.5, we present results of mixed-
integer BOA on these landscapes. Finally, the main results of the chapter are
summarized and directions of future research are discussed.

9.1 Learning with Bayesian Networks

In this section, we will provide a short introduction to Bayesian Networks, espe-
cially parameter learning with Bayesian Networks.

9.1.1 Graphical Models

“Graphical models are a marriage between probability theory and graph theory.
They provide a natural tool for dealing with two problems that occur throughout
applied mathematics and engineering — uncertainty and complexity — and in par-
ticular they are playing an increasingly important role in the design and analysis
of machine learning algorithms” [59].

In general, there are two main kinds of graphical models (see Figure 9.1 below):
Undirected graphical models and Directed graphical models. In this work, we focus
our attention on acyclic directed graphical models, which are very popular within
the Artificial Intelligence (AI) and statistics communities .
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Figure 9.1: A sample undirected graphical model (left) and a sample directed
graphical model (right).

9.1.2 Bayesian Networks

In a nutshell, a Bayesian Network is an acyclic directed graphical model that
encodes probabilistic relationships among variables of interest, in which nodes
represent random variables and the arcs denote conditional independency assump-
tions. That is, for a given ADG, an arc from node A to B can be interpreted as A
“causes” B. Related to our case, nodes represent control parameters in the given
image processing pipeline. Combined with statistical techniques, Bayesian Net-
works (BNs) have several advantages for data analysis in contrast to other data
representations, such as decision trees and rule bases [51]:

(1) BNs can handle incomplete data sets, because the model encodes dependen-
cies among all variables.

(2) BNs allow us to learn about causal relationships, and hence is very useful
for us to gain understanding about a problem domain.

(3) In conjunction with Bayesian statistical techniques, BNs facilitate the com-
bination of domain knowledge and data.

(4) BNs are a promising approach to avoid the overfitting of data.

Because of these aforementioned advantages, Bayesian Networks are applied to
many real-world applications from different research domains. For instance, bioin-
formatics, document classification and decision support systems. In this work,
Bayesian Networks will be used to model knowledge in medical domain. Specifi-
cally, we will use Bayesian Networks to encode probabilistic relationships among
decision variables of a medical image feature detector (cf. “image processing pipeline
for lumen feature detection” in chapter 5). For more detailed information about
graph theory and Bayesian Networks, readers are suggested to check literature
such as [51] and [59].
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9.1.3 Bayesian Parameter Learning

Through BNs, we can learn the structure (topology) of the model, or the parame-
ters, or learn both of them. The table 9.1 gives a clear view about how to classify
learning methods in different situations. Referred to the optimization of the image

Observability
Structure Full Partial
Known | Closed form Expectation Maximization (EM)
Unknown | Local search | Structure expectation maximization

Table 9.1: Contigency table for classifying learning methods

processing pipeline (Figure 5.5 in chapter 5), it is clear that the structure of the
pipeline is known to us in advance and all nodes are observable. The learning in
this case is to find the maximum likelihood estimates (MLEs) of the parameters
of each conditional probability distribution (CPD), which contains M cases and
are assumed to be independent. The normalized log-likelihood of the training set

D ={D,...,Dp} is a sum of terms, one for each node:
:—logHPr D,,|G) = ZZlogPXUD Xi), D)
1=1 m=1

where P,(X;) are the parents of X;. The log-likelihood scoring function decom-
poses according to the structure of the ADG; hence we can maximize the contri-
bution to the log-likelihood of each node independently.

9.2 Problem Definition of Mixed-Integer Optimiza-
tion

Now, let’s review the definition of mixed-integer optimization. In this contribution
we define the mixed-integer optimization as follows:

minimize f(r,z,d),reRl,ZGZm,deDl X ...Dy, (9.1)

Here, r denotes a vector of real numbers, z is defined from a finite set of integer
values (or ordinal discrete values), whereas d defines a n-tuple of nominal discrete
variables with finite domains D;,i = 1,...,n. The function f is considered to be
a black-box function, or, more precisely, a function the mathematical structure of
which is mainly unknown to the user. The only a-priori knowledge that we can
exploit about f are assumptions about parameter dependencies (interaction of
variables). A common feature of functions in which interactions occur is that they
cannot be decomposed into a sum of functions depending only on single variables
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(separable function). For example, if r; interacts with z; and all other parameters
are independent from each other, we can write the function as:

f(ryz,d) = fria(r,z) + fa(r2) +-- 4 filr) + figa(ze) + ...
+fl+m(zm) + fl-l—m-l—l(dl) + -+ fl+m+n(dn)

where fi141(r1,21) cannot be written as a sum of functions of r1 and z;. Non-
separability makes it potentially difficult to optimize these functions by optimiza-
tion routines that exploit such an assumption, such as coordinate search but also
evolutionary algorithms that mutate variables independently from each other. In
Section 9.5, with the ADG-based NK-landscapes, an example for a function class
in which various variable interactions can be introduced will be discussed.

9.3 Algorithms with independent sampling distri-
butions

Next, let us introduce the evolution strategy (ES) and the estimation of distri-
bution algorithm (EDA) as two basic evolutionary algorithms for parameter op-
timization?: The canonical (11 + \) evolution strategy has the following iteration
scheme:

Step 1 : Create initial population P < {(a1,<1),..., (au.cu)}, where ¢; denotes a
vector of dispersion parameters of the mutation distribution, e.g. standard
deviations or mutation probabilities.

Step 2 : Create offspring population @ of size A by choosing randomly elements
from P and mutating first the distribution parameters ¢; to ¢/ and then the
object variables a; using distribution parameters .

Step 3 :Set P to the p best points (with respect to f) coupled with their mutated
distribution parameters ¢’ out of P U Q.

Step 4 : If termination criterion is reached, return best found solution, otherwise
go to Step 2.

In contrast to this, estimation of distribution algorithms apply the following main
loop:

Step 1 : Initialize distribution parameters of distribution Dy.

Step 2 : Create offspring population @ of size A by sampling from the distribution
Dey.

Step 3 : Set P to the u best points in @) with respect to f.

2The ES is introduced, as it is a state-of-the-art technique in mixed integer optimization we
will compare to later.
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Step 4 : Update parameters 6 of the distribution Dy as a weighted average of
the estimation of # based on P and the current parameter set 6.

Step 5 : If termination criterion is reached, then return best found solution,
otherwise go to Step 2.

While in ES the basic variation operator is mutation, the variation operator in
EDA is sampling from a multivariate distribution the parameters of which are
dynamically updated based on positive examples.

Next, let us describe the mutation and sampling procedure for the mixed-
integer case (without parameter dependencies).

The mutation of mixed-integer evolution strategies can be described as a pro-
cedure:

Continuous mutation: Set r; = r; + Normal(0,s,), i =1,...,1.
Integer mutation: Set z; = z;+Geometric(0, s,)—Geometric(0,s,),i=1,...,L.

Nominal discrete mutation: If Uniform(0,1) < pg set d; to a random value
from D; — {d;}.

Here Normal(0, s,) computes a normally distributed random number with stan-
dard deviation parameter s,., Geometric(0, s,) generates geometrically distributed
random variables with mean s, [77], while Uniform(0, 1) generates a uniformly dis-
tributed random number between 0 and 1. Before the mutation of the distribution
parameter s, we employ the log-normal distribution as proposed by Schwefel [107]
et al. s, « s, exp(7,Normal(0, 1)) with 7. = 1/+/] being the learning rate. Accord-
ingly, s, < s, exp(7,Normal(0, 1)), with 7, = 1/y/m is used to adapt the step-size
for integer mutations. The probability parameter p, is mutated based on a logistic
mutation (see e.g., [105] et al.) that ensures that the value of py stays in ]0, 1[. All
three mutations of strategy parameters have the property that increments of the
value are as likely as decrements. The ES discussed here is termed mixed-integer
evolution strategy and was discussed in several publications [38, 77].

For the sampling in the mixed-integer estimation of distribution algorithm
similar distribution types are used. We employ the joint distribution Dy composed
of

e a vector of [ independent multivariate normal distributions, with mean val-
ues i1, - .., and standard deviations oy, ..., 0;.

e a vector of m random variables of type & + Z1(s.) — Z2(sz), whereas Z;(s.)
and Z5(s,) denote indentically independent geometrically distributed ran-
dom variables with mean value s..

e a vector of n Bernoulli distributed binary random variables with probability
parameters pi, ..., Pp.
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The described estimation of distribution algorithm is new for the mixed-integer
search space. However, for binary nominal discrete parameters the algorithm is the
classical population based incremental learning (PBIL) algorithm [9] and, reduced
to its continuous part, it equals the so-called Univariate Marginal Distribution
Algorithm (UMDA) [108, 69]. In the sequel, we will refer to the EDA algorithm
for mixed-integer search space as MIPBIL.

The aforementioned two algorithms are used as reference algorithms to find
out whether the introduction of dependency information improves the algorithms
behavior or not. Next, we will look at an extension of MIPBIL that allows to
integrate dependency information.

9.4 Mixed-Integer Bayesian Optimization Algorithm

In order to design a new mixed-integer estimation of distribution algorithm that
can take into account dependencies between variables of the objective functions we
will replace the independent joint distribution Dy used in the MIPBIL approach
by an heterogeneous Bayesian Network with fixed structure. This approach is also
used in the Bayesian optimization algorithm (BOA) by Pelikan et al. [91]. Their
BOA method is applied for binary search spaces and also learns the structure
of the network, while our approach is defined for mixed-integer search spaces
and requires a-priori knowlege on the dependency structure of variables in the
objective function. To emphasize the similarity to the BOA algorithm, we will
term the new approach Mixed-Integer BOA (MIBOA).

Bayesian Networks yield very powerful probabilistic graphical representations.
The key to their popularity is their ease of representation of independency rela-
tions, and their support for reasoning with uncertainty.

A Bayesian Network is a graphical representation of a probabilistic problem,
formally defined as a pair B = (G, P), where P is the joint probability distribution
on the set of random variables and G is an ADG representing the dependency and
independency relations among this set of random variables, where each graphically
represented marginal and conditional independency also has to be valid in the joint
probability distribution [90]. Clearly, the definition of Bayesian Networks implies
as well that a dependence in the graph does not have to define a dependence in
the joint probability distribution P.

Let {Xi,...,Xq} be a set of random variables. Then, based on the inde-
pendency relations in the graph G, the joint probability distribution P can be
factorised as follows:

d
P(Xy,....Xa) = [[ P(X0 | m(Xy)), (9.2)

v=1

where 7(X,) denotes the graphically represented set of parents of random variable
X,. This implies that a joint probability distribution can be defined in terms of
local distributions resulting in significant computational savings.
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For reasoning in Bayesian Networks there are several exact methods proposed
that make use of local computations [26]. Here, local computations are based on
the construction of join trees.

Hybrid Bayesian Networks consist of both discrete and continuous random
variables [25]. In these networks, local computations are possible, however, the
correctness of the inference method depends on whether parents of a variable are
discrete, continuous, a mixture of discrete and continuous, and on the choice of
the local probability distribution.

The first method, introduced by Lauritzen [70] using ezact inference, is based
on conditional Gaussian distributions. The restriction of this inference is that
discrete random variables are not allowed to have continuous parents when hybrid
Bayesian Networks are concerned. To overcome this problem, Koller proposed a
method which defines the distribution of these discrete nodes by a mixture of
exponentials. However, for the inference, Monte Carlo methods are used [65].
As another solution to this problem, we may discretise continuous variables, but
discretisation introduces errors because we use approximation methods. However,
in the experiment performed in this contribution we did not yet study the case
of discrete nodes having continuous parents. For the Bayesian Networks related
experiments the BNT tool developed by Murphy was used [86]. The same basic
algorithm as for PBIL was used, except that the distribution type and the update
procedure was changed. A detailed description of the update algorithm would
exceed the scope of this work, and we refer to [86].

9.5 ADG-based NK-landscapes

ADG-based NK-landscapes (ADG-NKL), that we will introduce next, are attrac-
tive as models for optimization as their interaction structure corresponds to the
dependence structure of Bayesian Networks. Let x1, ..., x4 denote a set of deci-
sion variables (the type of which can be continuous or discrete) and assume the
interaction structure of the function is described by some ADGs. Each ADGs is
basically defined by a function 7(-) that assigns the set of parent nodes to each
node, where the nodes represent parameters to be optimized. Then the ADG-
based NK-landscape can be written as a function of component functions f;:

d
flar,. . ma) = filwi, w(x) (9.3)
i=1
Note that this expression has the same structure as the expression log P(X7, ..., X,)
(see Equation (9.2)). Note also that the x4, ..., x4 denote variables of the objec-
tive function in contrast to X1, ..., Xy which denote random variables.

The construction of the ADG-based NK-landscapes corresponds to that of
classical mixed-integer NK-landscapes [78] with one exception. As for classical
NK-landscapes for each decision variable (or gene) x; we choose K epistatic genes
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f(x) = fi(dr) + fa(da,dr) + f3(ds,dr) + fa(r1,di,d3) + fs(z1,ds)

Figure 9.2: Example for an ADG-based NK-landscape. The function values at
the edge of the search space [0,1]¢ are set randomly between 0 and 1. Values
inbetween are interpolated [78].

that interact with x;, in ADG-based NK-landscapes we chose exactly the par-
ent nodes as epistatic genes. Note that the number of them can vary with the
index of the decision variable in question. That is why the K in the expression
"NK-landscape’ is not referring to the number of epistatic genes anymore - we
kept it, however in the term, as it makes it easier to match the corresponding
well known NK-landscapes with the ADG-based NK-landscapes. As with clas-
sical NK-landscapes, the definition of the component functions in ADG-based
NK-landscapes is based on randomly generated function tables [78], as visualized
in Figure 9.2. In the mixed-integer case multilinear functions are used to interpo-
late between the randomly chosen function values at the edges of a hypercube as
described in [78].

9.6 Experimental Results

In order to check whether a-priori knowledge on the interaction structure inte-
grated in the structure of the Bayesian Network helps to speed up search we have
conducted experiments on various ADG types that are visualized in Figure 9.3.
These ADGs were used to construct NK-landscapes that indicate that the repre-
sented independency and dependency relations respectively in an ADG are also
included in the NK-landscape constructed from this ADG. The same ADG is used
as a structure for the Bayesian Network as a-priori knowledge. For the probability
tables, however, no a-priori knowledge is used. They are initialized based on the
first population of selected individuals.
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Figure 9.3: Various types of ADGs used to define ADG-based NK-landscapes and
corresponding Bayesian Networks. From left to right, ADGs are termed ’chain’,
‘struct2’, 'struct3’, 'bitree’, 'tritree’, and 'invtree’. Node types are defined as fol-
lows: discrete nodes(1-5), continuous nodes(6-10), integer nodes(11-15).

We applied three types of algorithms on ADG-based NK-landscapes. 15 vari-
ables are considered, 5 for each type (1=m=n=5). As the population size turned
out to be a crucial parameter, two different population sizes, 28 and 100, are tried.
A number of 20 runs were statistically evaluated for each strategy.

Figures 9.4 to 9.6 show convergence dynamics for different sample landscapes
defined by their ADG, each of which has a different structure. Averaged objective
function values (difference to the global optimum) and standard deviations are
plotted versus the number of evaluations performed.

On the landscape ’chain’ (Figure 9.4), the MIBOA performs best, when the
population size is set to 100. For a population size of 28 the MIBOA performs
almost equally to the MIES. In both cases the MIPBIL algorithm was clearly
outperformed.

On the landscape ’bitree’ (Figure 9.5), a binary tree, the MIBOA performs
best, when the population size is set to 100. For a population size of 28 the
MIBOA is faster but in the long run MIPBIL results in (almost) the same good
value. MIES seems to have a problem with this landscape, which may be due to
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Figure 9.4: Convergence dynamics of MIES, MIPBIL, and MIBOA on a ’chain’-
type ADG-NKL.
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type ADG-NKL.
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step-size reduction which can be harmful in multimodal landscapes. The large
standard deviation supports this conjecture.

On the landscape 'invtree’ (Figure 9.6), again the MIBOA has a big advantage
in the beginning. Here this acceleration is more visible than for the previous
landscape types. Again the MIES algorithm seems to have problems to converge
to the global optimum, while the MIPBIL is more reliable, but suffers from a low
convergence speed.

Comparing a population size of 100 with a population size of 28, it was ob-
served that the MIBOA algorithm performs better with the larger population size.
The standard deviation of results in that case is remarkably lower, indicating a
good reliability of the good results. In Table 9.2 we summarize more results, in-
cluding the ADG types ’tritree’, 'struct2’, and ’struct3’. The ranking after 2000,
5000, 10000, and 20000 iterations is reported. This table provides further evidence
for the hypothesis that the introduction of the dependence information in the MI-
BOA is beneficial. In addition, it can be observed that a small population size
helps to speed up convergence of the algorithm in the short term, while a large
population size improves its long term behaviour. For further details and results
of this study we refer to [125].

9.7 Summary

In this chapter we studied how knowledge on acyclic dependency structures can
be integrated into stochastic optimization for mixed-variable search spaces. The
Mixed-integer Bayesian Optimizaton Algorithm (MIBOA), an estimation of dis-
tribution algorithm working with heterogeneous Bayesian Networks with a-priori
set structure, was designed and studied. As a test environment mixed-integer NK-
landscapes have been modified to ADG-based mixed-integer NK-landscapes. The
dependence structure of their variables is defined as an ADG and, as a proof of
concept, it had to be studied whether the MIBOA can exploit a-priori knowledge
on this dependency structure or not. The test shows that the MIBOA algorithm
can indeed take advantage of this a-priori information on dependencies. In all
cases of ADGs discussed (’chain’; ’struct2’, ’structd’, ’bitree’, ’tritree’, and ’in-
vtree’) we observed a performance gain as compared to mixed-integer evolution
strategies and estimation of distribution algorithms, both working with an inde-
pendent joint distribution, namely MIES and MIPBIL. The population size of
MIBOA turned out to be an important parameter to control the trade-off be-
tween fast convergence speed in the beginning and reliable convergence to the
global optimum towards the end of the search. Future work will have to focus
on studies on further synthetic and real-world problems, including cases where
discrete parameters depend on continuous parameters, which turned out to be
difficult to handle. In particular we are interested in applying the new algorithm
in the context of optimization of image processing pipelines, the acyclic structure
of which makes the MIBOA a particularly promising technique.
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Conclusion

Targeting specifically at challenging mixed-integer black-box optimization prob-
lems, in this dissertation, we proposed so-called Mixed-Integer Evolution Strate-
gies (MIES) and did a thoroughly research on it from both theoretical and practi-
cal point of view. As a special variant of canonical Evolution Strategies (ESs), not
only do MIES share some common characteristics with ESs — they both belong to
the class of randomized search heuristics and use principles of organic evolution,
such as selection, recombination, and mutation — MIES also expand ESs from
traditional continuous optimization domain to more complicated mixed-integer
parameter optimization field, in which simultaneous optimization of continuous,
integer, and nominal discrete parameters is often required. In addition to sys-
tematic experiments on our carefully designed synthetic functions (e.g., barrier
functions and mixed-integer NK-landscapes), MIES have been successfully applied
to various real world problems, for instance, optimization of control parameters
of a semi-automatic image analysis system for medical images.

In this thesis, our presented work is divided into three parts: (1) Mixed-Integer
evolution strategies; (2) Application to medical image analysis; (3) Advanced top-
ics. In the rest of this chapter, we summarize our conclusions chapter by chapter
and furthermore discuss some issues for future work.

Part I: Mixed-Integer Evolution Strategies

Chapter 2

We presented different types of mixed-integer nonlinear programming problems
and talked briefly about some classical methods which come from traditional
mathematical programming research field. In comparison with these what we
called “white-box” optimization problems, “black-box” optimization problems nor-
mally with unclearly objective function structure and high dimensionality are
more difficult to deal with. Some heuristic methods, such as Genetic Algorithms
(GAs) and Simulated annealing (SA), come into play under such circumstances.
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Chapter 3

In this chapter, the design philosophy of the MIES, which are derived from stan-
dard ESs, were explained explicitly. Furthermore, we made some theoretical stud-
ies on MIES, such as self-adaptation of stepsize and the global convergency prop-
erty.

Chapter 4

Two artificial landscapes — Barrier functions and Mixed-Integer NK Landscapes
(MINLP) — were introduced in this chapter. Experimental results showed that
these functions can be used as ideal test cases for helping us to learn more about
MIES. Besides, they give readers a good chance to make comparison between
MIES and standard ESs.

Future Work for Part I

In part I, mixed-integer optimization, especially black-box mixed-integer param-
eter optimization, was discussed at first. Next, mixed-integer evolution strategies
were introduced and studied through several carefully designed artificial test func-
tions. By analyzing (e.g., statistical study) some important experimental results,
we gained deep insights about MIES algorithm, such as convergence behavior.
As we always emphasized, by design, MIES are capable to tackle the “black-
boz” mixed-integer parameter optimization problems. However, as an alternative,
MIES can also be used to solve some classical mixed integer nonlinear program-
ming problems. In the future, we would like to do some further investigation on
how to apply MIES to these classical optimization problems from mathemati-
cal programming field, for instance, study on how to construct proper penalty
functions based on complex constraints.

Part II: Application to Medical Image Analysis

Chapter 5

In this chapter, we presented the complete framework of how to apply MIES to an
optimization problem in medical image analysis. The experimental results showed
that the MIES always produced better or equal results than the default parameter
settings chosen by an expert. This observation underpinned our claim that MIES
is a valuable technique for improve the parameter settings of the lumen detector.

Chapter 6

We investigated the use of fitness based partitioning in order to find sets of op-
timal parameters for the segmentation of the lumen in Computer Tomographic
Angiography (CTA) images. The results showed that fitness based partitioning
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does indeed produce sets of parameter settings which lead to better lumen seg-
mentations when compared to one “super” solution for all images.

Future Work for Part I1

In this part, our proposed MIES were applied to a specific application which
comes from medical research field: the optimization of control parameters of a
semi-automatic image analysis system for medical images, such as Intravascu-
lar Ultrasound (IVUS) and Computer Tomographic Angiography (CTA) images.
Specifically, dynamic fitness based partitioning was proposed to help system to
find specific optimal parameter settings for different groups of images instead of
optimal solution for all images.

For the future work, it would be worth trying MIES on larger image sets as
well as on other feature detectors except for lumen, such as calcified plaque, vessel
border, shadow and sidebranch. About dynamic fitness based partitioning, we
intend to extend this algorithm with merge and split heuristics to automatically
find an optimal number of partitions.

Part III: Advanced Topics

Chapter 7

This chapter talked about the metamodel-assisted MIES, which is based on radial
basis function networks (RBFN). The reason for this is that the evaluation of one
parameter settings for feature detection of a multi-agent medical image analysis
system is computationally expensive. By introducing a metamodel, such as RBFN,
acceleration on convergence speed of MIES can be achieved.

Chapter 8

In this chapter, we presented a dynamic niching technique for MIES. In compari-
son with an existing ES niching approach, our approach is based on the heteroge-
neous distance measure that addresses search space similarity in a way consistent
with the design philosophy of the MIES. The experimental results showed that
MIES with dynamic niching perform well in obtaining the global optimum in
highly multimodal search landscapes, such as mixed-integer NK landscapes.

Chapter 9

We proposed a Mixed-Integer Bayesian Optimization Algorithm (MIBOA) in this
chapter to overcome a known shortcoming of existing mixed-integer evolutionary
algorithms — their variation procedures mutate each decision variable indepen-
dently, and as a result of it, a-priori dependencies knowledge between variables
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cannot be taken into account. The test results showed that the MIBOA algorithm
can indeed take advantage of such kind of a-priori information on dependencies.

Future Work for Part III

In the final part, we studied several advanced techniques — radial basis function
networks (RBFN), dynamic niching and Bayesian networks — which can be used
together with MIES to further improve the performance of algorithm. In the fu-
ture, we would like to continue with our studies on these topics from the following
perspectives: (1) RBFN-MIES needs to be tested on more challenging problems,
such as problems from medical image analysis. A theoretical study on how conti-
nuity assumptions can be generalized for mixed-integer domains would also be an
interesting topic for our future work; (2) MIES with dynamic niching should be
tested on real-world applications, and we can gain a deepened understanding of
niche information process; (3) For MIBOA, the future work could be focused on
more difficult cases where discrete parameters depend on continuous parameters.



Appendix A

Selected Synthetic Functions

Besides the two artificial test problems Barrier function (section 4.2) and MINKL
(section 4.3), we will now present four other mixed-integer test problems: Gen-
eralized sphere function, weighted sphere function, modified step function, and
general quadratic function.

A.1 Generalized Sphere Function

The generalized sphere model (Function f1) is an extension of a standard prob-
lem [38], This problem is relatively simple, as it is decomposable and unimodal.
We can use it to gain some insights of how an algorithm behaves on rather simple
problems and thus to estimate the best case behavior of the algorithm.

1(r,z,d) Zr —|—Zz —|—Z:d2 (A.1)

A.2 'Weighted Sphere Function

The weighted sphere model (Function f3) represents a function with an elliptical
geometry. Experiments on this function can detect if a speed up can be achieved
by the learning of individual strategy parameters for each parameter. Furthermore
it is an example for a function with a simple quadratic and convex geometry.

2(r,z,d) er —l—Zzz +sz2 (A.2)
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A.3 Modified Step Function

The step function (Function f3) has been chosen to show that MIES is capable
to tackle large plateaus in the fitness landscape. The plateau is used for linked
areas of neighboured solutions in the search space, that lead to the same fitness
value. Such plateaus happen in practical applications for example when searching
for feasible points, using penalty functions that are proportional to the number
of violated constraints or simulation errors.

T

fa(r,z,d) = ZLmJQ + i(zz div 10)? + Z(dz mod 2)? (A.3)

i=1 i=1 i=1

A.4 General Quadratic Function

The general quadratic function (Function fy) represents a strong interaction be-
tween all parameters. The contour lines of this function have approximately the
shape of ellipsoids.

n

f4(I‘,Z,d) = Z(Z Tj+ 25+ dj)Q (A4)

i=1 j=1
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Samenvatting

In natuurlijke systemen is het nastreven van een optimale toestand een heel be-
langrijk verschijnsel. Atomen, bijvoorbeeld, proberen optimale bindingen aan te
gaan waardoor ze in een toestand van laagste energie geraken, levende mieren
zijn in staat zich aan de veranderende omgeving aan te passen en de kortste weg
te vinden van nest naar voedselbron, en de gezamenlijke beweging van een vo-
gelzwerm doet de kans toenemen dat hun waakzaamheid tot succes leidt. Deze
verbazingwekkende oplossingen van de hand van de natuur zijn voor wetenschap-
pers en technici altijd al een bron van inspiratie geweest bij het aangaan van
allerlei toepassingsuitdagingen in onze leefwereld. Natural computing is een on-
derzoeksgebied waarin gebruik wordt gemaakt van op de natuur geinspireerde
berekeningstechnieken en waarin algoritmen worden ontwikkeld voor het oplossen
van problemen uit de reéle wereld. Wij richten onze aandacht op evolutionary com-
putation, op dit moment een van de gebieden in de informatica waarin de meeste
onderzoeksaktiviteit gaande is, met een enorm aantal succesvolle toepassingen
op problemen uit de reéle wereld en met, voor sommige technieken, heel ver on-
twikkelde theoretische onderbouwingen. In plaats van kenmerkende eigenschappen
van afzonderlijke biologische organismen precies na te maken, ontleent evolutio-
nary computing zijn inspiratie aan de dynamiek van hele populaties van organis-
men. Daarbij wordt gebruik gemaakt van begrippen als mutatie, recombinatie en
selectie, om het organische evolutieproces na te bootsen, waarin survival of the
fittest, van de meest geschikte, en fenotypische variatieprincipes een belangrijke
rol spelen en leiden tot een een betere aanpassing van een populatie van indi-
viduen aan een gegeven evolutioniare omgeving. Dit betekent dat individuen met
een grotere geschiktheid, fitness, dan ook betere kansen hebben op overleven en
op nakomelingen. Het is in de litteratuur gebruikelijk om de hele verzameling van
algoritmen die van dit organische evolutieproces zijn afgeleid, aan te duiden met
evolutionaire algoritmen (EAs).

Het oorspronkelijke idee achter ons werk is, de canonieke EvolutieStrategieén
(ESsen) uit het traditionele domein van optimalisering met reéle parameters, uit
te breiden naar het optimaliseringsdomein met mixed-integer parameters. Dit is
nodig, omdat in het bedrijfsleven zich talrijke op de praktijk gerichte optimali-
seringsproblemen voordoen waarbij de verzameling van beslissingsvariabelen con-
tinue, integerwaardige en anderszins discrete variabelen omvat. Bovendien zouden
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doelfuncties voor dit type probleem gebaseerd kunnen worden op grootschalige
simulatiemodellen, of ook zou de structuur van de doelfuncties te ingewikkeld
kunnen zijn om in zo'n model op te nemen. Vanwege deze mogelijke compli-
caties wordt dit type optimaliseringsproblemen gecatalogiseerd als de categorie
van black-box-optimaliseringen. Hierop kunnen de klassieke optimaliseringstech-
nieken, afkomstig uit het onderzoeksgebied van de Mathematische Programmering
(MP), niet zo maar worden toegepast, omdat deze gebaseerd zijn op de eigenschap,
dat met een verdeel-en-heers-aanpak de zoekruimte altijd efficiént doorlopen kan
worden. Daarentegen is het nieuwe algoritme dat wij voorstellen, de zogenoemde
Mixed-Integer Evolution Strategies (MIES), heel wel in staat tot goede oplossin-
gen te komen voor deze uitdagende black-boz-optimaliseringsproblemen, namelijk
door gebruikmaking van daartoe ontwikkelde variatie-operatoren toegespitst op
klassen van mixed-integer parameters.

Binnen onze onderzoeksaktiviteiten hebben we niet alleen MIES geitroduceerd
en vanuit theoretisch standpunt diepgaand bestudeerd, maar we hebben ook een
raamwerk ontwikkeld voor het toepassen van MIES op de optimaliseringsproble-
matiek uit de reéle wereld van het medisch onderzoek. Meer in het bijzonder
passen we MIES daar toe op de optimalisering van besturingsparameters van een
semi-automatisch beeldanalysesysteem voor IntraVasculaire UltraSoundbeelden
(IVUS). Dit zijn real-time, hoge-resolutie-tomografiebeelden die de binnenkant
van een kransslagader laten zien of van andere slagaders. IVUS-beelden zijn lastig
te interpreteren, wat er weer toe leidt dat handmatige segmentering in hoge mate
gevoelig is voor geringe veranderingen door toedoen van een enkele waarnemer
of door toedoen van het samenspel der waarnemers. Aldus heeft de ontwikkeling
van een systeem voor het opsporen van karakteristieken in IVUS-beelden veel
aandacht gekregen in het medisch onderzoek en in het informatica-onderzoek.
De performance van de meeste systemen hangt echter af van een groot aantal
besturingsparameters, die met de hand lastig te optimaliseren zijn, en die mede
athankelijk kunnen zijn van verschil in interpretatiecontext. Deze parameters zijn
bovendien onderhevig aan verandering, als er in het registratieprocess van de
beelden iets wijzigt. Vergeleken met andere aanpakken kan er met MIES door de
systeemontwikkelaar geautomatiseerd worden gezocht naar optimale parameter-
instellingen, waarbij de kans groot is op het vinden van een parameterinstelling
die resulteert in een significant hogere nauwkeurigheid bij het opsporen van de
karakteristieken.

De inhoud van dit proefschrif bestaat uit drie delen: (1) de inleiding, en het
theoretisch onderzoek aan het nieuwvoorgestelde optimaliseringsalgoritme; (2)
het gebruik ervan bij toepassingen uit de reéle wereld, en wel bij parameteropti-
malisering in medische beeldanalyse; (3) geavanceerde onderwerpen zoals Niche-
technieken. Meer in het bijzonder worden in het theoriedeel de state-of-the-art
MIES-algoritmen geintroduceerd en vervolgens worden ze getest op verschillende,
zorgvuldig ontworpen artificial landscapes, bijvoorbeeld op gegeneraliseerde NK
landscapes. Het deel van de toepassingen uit de reéle wereld gaat voornamelijk
in op parameteroptimaliseringsproblemen uit het medisch onderzoeksgebied. De
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door ons voorgestelde MIES-algoritmen worden toegepast, om een multi-agent-
systeem te optimaliseren dat ontwikkeld was voor het opsporen van karakter-
istieken in medische beelden. Tevens worden enkele belangrijke waarnemingen uit
de experimenten vermeld. Ten einde de performance van onze algoritmen nog meer
te verbeteren, worden in het derde deel enkele geavanceerde technieken onderzocht
die in combinatie met MIES kunnen worden gebruikt, bijvoorbeeld de technieken
Metamodel-Assisted Optimalisatie, Niche-Technieken and Bayesian Learning.

In meer detail kan het proefschrift als volgt worden samengevat.

Hoofdstuk 2 geeft eerst een kort overzicht van de essentiéle terminologie voor
globale optimalisering en in het bijzonder introduceert het het mixed-integer
parameteroptimalisatieprobleem. Verschillende klassieke algoritmen uit de tradi-
tionele Mathematische Programmering (MP) worden er besproken, zoals Branch-
en-Bound-methoden (BB) and Outer-Approximation-methoden (OA). Tegeno-
vergesteld aan deze white-bor optimaliseringsaanpak wordt het raamwerk voor
mixed-integer parameteroptimalisering binnen het black-boz scenario besproken,
en wel heel gedetailleerd. Ook worden twee representatieve toepassingen uit de
reéle wereld — ontwerpen van optische filters en optimalisering van chemische
fabrieken — gegeven, als voorbeelden ter motivatie.

In Hoofdstuk 3 introduceren we eerst het algemene raamwerk van EAs. Daarna
geven we een expliciete uitleg van de grondslagen van de canonieke ESsen, welke
op hun beurt de kernen vormen van de algoritmen van de door ons voorgestelde
aanpak MIES, gericht op mixed-integer-parameteroptimalisering. Vervolgens wor-
den in detail de filosofie achter het ontwerp van MIES en verschillende belangrijke
eigenschappen ervan besproken.

In Hoofdstuk 4 stellen we twee innovatieve, geconstrueerde testproblemen
voor, Barrier Functies en Mized-Integer NK landscapes (MINKLs). De barrier
functies worden aangemaakt door een multimodale probleemgenerator die inte-
geroptimaliseringsproblemen produceert met een schaalbare onregelmatigheids-
graad maar zonder interactie tussen de variabelen. MINKLs zijn uitbreidingen
van standaard NK landscapes (NKLs), die zelf weer stochastisch gegenereerde
pseudo-boolean functies zijn van N bits (de genen) en met K interacties tussen
de genen. Deze twee kunstmatige testproblemen worden zorgvuldig ontworpen
en de experimentele resultaten laten zien dat zij bijzonder nuttig zijn voor het
begrijpen van de dynamiek van evolutionair zoeken binnen de mixed-integer toe-
standsruimte.

MIES toegepast op parameteroptimalisering van IVUS-beeldanalyse, wordt in
Hoofdstuk 5 besproken. Er wordt een geavanceerd multi-agent-systeem geintro-
duceerd dat bestemd is voor het opsporen van karakteristieken van IVUS-beelden,
van lumen-karakteristieken in het bijzonder, en het raamwerk voor het optimali-
seren ervan met behulp van MIES wordt uitgelegd samen met enkele veelbelovende
experimentele resultaten.

In Hoofdstuk 6 onderzoeken we het gebruik van indelingen naar fitness, om
groepen van Computed-Tomographic-Angiography-beelden (CTA) te kunnen vin-
den waarvoor een vergelijkbare parameterinstelling vereist is ten behoeve van
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het segmenteringsalgoritme, terwijl deze parameterinstellingen voor de groepen
tegelijkertijd blijven evolueren.

Hoofdstuk 7 bespreekt hoe metamodellen moeten worden gebruikt, radial-
basis-function-netwerken (RBFN) met name, om MIES te ondersteunen bij het
uitvoeren van optimaliseringstaken met tijdrovend gebruik van evaluatiefuncties,
zoals analyse van IVUS-beelden.

Hoofdstuk 8 bespreekt een dynamische niche-techniek voor MIES die is geba-
seerd op een bestaande ES niche-aanpak en die kort geleden ontwikkeld is en
succesvol is toegepast op continuous landscapes. De nieuwe techniek is gebaseerd
op de heterogene afstandsmaat die rekening houdt met overeenkomsten tussen
toestandsruimten, en die in zekere zin consistent is met de mutatie-operatoren
van MIES.

Hoofdstuk 9 introduceert een nieuw algoritme voor het schatten van verdelin-
gen, dat een uitbreiding is van de toepasbaarheid van het Baysiaanse optimali-
seringsalgoritme (met een vaste netwerkstructuur) en wel van binaire naar mixed-
integer-optimaliseringsproblemen. Experimentele resultaten laten zien, dat door
het hier voorgestelde algoritme a-priori-kennis van afhankelijkheden tussen be-
slissingsvariabelen ingezet kan worden ter verbetering van convergentiesnelheid
en betrouwbaarheid. Het is binnen dit algoritme dat MIES als subalgoritme zijn
werk doet in het zelf-organiserende clustering-proces.
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