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Chapter 1IntrodutionSearhing for an optimal state is one of the most important phenomena in naturalsystems. For instane, atoms try to form optimal bonds thereby obtaining energyminimal states, real ants are apable of adapting to the hanging environment and�nding shortest path from the nest to the food soure, and the aggregate motionof a �ok of birds inreases the suess rate of their vigilane. These amazingsolutions from nature have always been a soure of inspiration for sientists andengineers to takle various hallenging appliations in our world. Natural om-puting is a �eld of researh that works with omputational tehniques inspiredby nature and develops algorithms for solving omplex real-world problems [68℄.In general, natural omputing onsists of mainly three branhes, in whih eahhas its own representative tehniques (Table 1.1): Among these aforementionedNatural Computing Branhes Representative TehniquesComputing inspired by natural systems evolutionary omputation, neural networks,swarm intelligene, et.Simulation and emulation of nature lindenmayer systems and arti�ial life.Computing with natural materials DNA omputing and quantum omputing.Table 1.1: Di�erent natural omputing branhes and its typial tehniques.tehniques, we fous our attention on evolutionary omputation, whih nowa-days is one of the most ative researh �elds of omputer siene with a hugeamount of suessful appliations to real-world problems and for some tehniquesa highly developed theoretial foundation. Rather than emulating features of asingle biologial organism, evolutionary omputation draws its inspiration fromthe dynamis of an entire population of organisms. It uses the onepts of muta-tion, reombination, and seletion to mimi the proess of �organi evolution�, inwhih survival of the �ttest and phenotypi variation [28℄ priniples play an im-portant role and lead to better adaptation of a population of individuals to a given



2 Overview of Thesisevolutionary environment, that is, individuals with the higher �tness1 have betterhanes of survival and multiplying. The whole olletion of algorithms, whih arederived from this �organi evolution� proess, are normally termed evolutionaryalgorithms (EAs) in literature.The original idea of our work is to extend the anonial Evolution Strategies(ES) - whih is one of three omputation paradigms2 of EAs - from traditional real-valued parameter optimization domain to mixed-integer parameter optimizationdomain. This is neessary beause there exist numerous pratial optimizationproblems from industry in whih the set of deision variables simultaneously in-volves ontinuous, integer and disrete variables. Furthermore, objetive funtionsof this type of problems ould be based on large-sale simulation models or thestruture of the objetive funtions may be too omplex to be modeled. From thisperspetive, optimization problems of this kind are lassi�ed into the blak-box op-timization ategory. For them, lassi optimization tehniques, whih ome fromMathematial Programming (MP) researh �eld, an not be easily applied, sinethey are based on the assumption that the searh spae an always be e�ientlyexplored using a divide-and-onquer sheme. While our new proposed algorithm,the so-alled Mixed-Integer Evolution Strategies (MIES), by ontrast, is apableof yielding good solutions to these hallenging blak-box optimization problems byusing speialized variation operators tailored for mixed-integer parameter lasses.In this work not only did we introdue MIES and study it intensively from atheoretial point of view, but also we develop the framework for applying MIESto the real-world optimization problem in the medial �eld. More spei�ally, weapply MIES to the optimization of ontrol parameters of a semi-automati imageanalysis system for Intravasular Ultrasound (IVUS) images, real-time high res-olution tomographi images whih show the inside of oronary or other arteries.IVUS images are di�ult to interpret whih auses manual segmentation to behighly sensitive to intra- and inter-observer variability [66℄. Thus, the develop-ment of feature detetion systems for IVUS images has reeived muh attentionin medial and omputer siene researh. However, the performane of most sys-tems depend on a large number of ontrol parameters that are hard to optimizemanually and may di�er for di�erent interpretation ontexts. Moreover, these pa-rameters are subjet to hange when something hanges in the image aquisitionproess. Compared to other approahes, with MIES the system developer ansearh for optimized parameter settings automatially and likely will obtain pa-rameter settings that lead to signi�ant higher auray of the feature detetors.1.1 Overview of ThesisThe ontents of this dissertation onsist of three major parts: (1) the introdutionand theoretial study of the newly proposed optimization algorithm; (2) Its ap-1It is determined by the given environment .2Another two omputation paradigms are Evolutionary Programming (EP) and Geneti Al-gorithms (GAs).



Chapter 1 3pliation to the real-world appliation, that is, parameter optimization of medialimage analysis; (3) advaned topis, suh as Nihing tehniques. More spei�-ally, in the theoretial part the state-of-the-art MIES algorithms are introdued,and then they are tested on several arefully designed arti�ial landsapes, for in-stane, generalized Nk landsapes. The real-world appliation part mainly fouseson parameter optimization problems from medial researh �eld. Our proposedMIES algorithms are applied to optimize a multi-agent system, whih was de-veloped for medial image feature detetion. And some important experimentalobservations will be presented. In the third part, some advaned tehniques, whihan be used in ombination with MIES, are investigated to further improve theperformane of our algorithms, for example, Metamodel-Assisted Optimization,Nihing Tehniques and Bayesian Learning.The more detailed struture of this thesis an be summarized as follows:Chapter 2 �rst provides a brief overview of the essential terminology of globaloptimization, and the mixed-integer parameter optimization problem is intro-dued spei�ally. Several lassi algorithms from the traditional MathematialProgramming (MP) researh �eld, suh as Branh-and-Bound (BB) and OuterApproximation (OA) methods, are reviewed after. As opposed to this white-boxoptimization methodology, the framework for mixed-integer parameter optimiza-tion in the blak-box senario is disussed in very detail. Two representative real-world appliations - optial �lter design and hemial plant optimization - are alsopresented as motivating examples.In Chapter 3 we �rst introdue the general framework of EAs. Next, we explainthe fundamentals of the anonial ES expliitly, whih serves as the algorithmikernels of our proposed methodology - MIES for mixed-integer parameter opti-mization. Then the design philosophy of MIES and several important propertiesare disussed in detail.In Chapter 4, we propose two innovative syntheti test problems - BarrierFuntions and Mixed-Integer NK landsapes (MINKL). Barrier funtions are re-ated by a multi-modal problem generator that produes integer optimization prob-lems with a salable degree of ruggedness but no interation between variables.MINKL are an extension of standard NK Landsapes (NKL), whih are stohasti-ally generated pseudo-boolean funtions with N bits (genes) and K interationsbetween genes. These two arti�ial test problems are arefully designed and exper-imental results show that they are partiular useful to understand the dynamisof evolutionary searh within the mixed-integer spae.MIES for parameter optimization of IVUS image analysis are presented inhapter 5. An advaned multi-agent system for IVUS image features detetion,espeially for lumen feature detetion, is introdued and the framework for opti-mizing this system using MIES is proposed as well as some promising experimentalresults.In Chapter 6 we investigate the use of �tness based partitioning to �nd groupsof Computed Tomographi Angiography (CTA) images that require a similarparameter setting for the segmentation algorithm while at the same time evolving



4 Overview of Publiationsoptimal parameter settings for these groups.Chapter 7 disusses how to use metamodels, in partiular radial basis funtionnetworks (RBFN), to assist MIES when applied to optimization tasks with timeonsuming evaluation funtions, like IVUS image analysis.Chapter 8 presents a dynami nihing tehnique for MIES, based upon onan existing ES nihing approah, whih was developed reently and suessfullyapplied to ontinuous landsapes. The new method is based on the heterogeneousdistane measure that addresses searh spae similarity in a way onsistent withthe mutation operators of the MIES.Chapter 9 introdues a new estimation of distribution algorithm that extendsthe Bayesian optimization algorithm (with �xed network struture) from binaryoptimization problems to mixed-integer optimization problems. Experimental re-sults show that a-priori knowledge on dependenies between deision variablesan be exploited by this proposed algorithm in order to improve onvergenespeed and reliability. In this algorithm, MIES serves as a sub-algorithm in the selforganized lustering proess.1.2 Overview of PubliationsHere we give an overview of the way in whih parts of this thesis have beenpublished.Chapter 3: Mixed Integer Evolution StrategiesThe ontent of this hapter is partly based on researh, whih was aepted forpubliation as a hapter ontribution in a book on Evolutionary Image Anal-ysis and Signal Proessing of Springer �Studies in Computational Intelligene�series [79℄.Chapter 4: Syntheti Mixed-Integer LandsapesA major portion of this hapter is published in the Proeedings of the NinthInternational Conferene on Parallel Problem Solving from Nature (PPSN IX,2006) [78℄ and an extended abstrat in the Proeedings of the 18th Belgium-Netherlands Conferene on Arti�ial Intelligene (BNAIC'06) [32℄.Chapter 5: Parameter Optimization for Medial Image AnalysisMajor parts of this hapter are published in the Proeedings of the 1st Interna-tional Workshop on Computer Vision for Intravasular and Intraardia Imag-ing (MICCAI 2006) [18℄, Proeedings of Geneti and Evolutionary ComputationConferene (GECCO'06) [77℄, Proeedings of Sixth EuropeanWorkshop on Evolu-tionary Computation in Image Analysis and Signal Proessing (EvoIASP'06) [75℄,Proeedings of Adaptive Computing in Design and Manufature (ACDM'06) [76℄



Chapter 1 5and an extended abstrat in the Proeedings of the 18th Belgium-NetherlandsConferene on Arti�ial Intelligene (BNAIC'06) [39℄.Chapter 6: Dynami Fitness Based PartitioningThis hapter is published in the Proeedings of the Seventh European Work-shop on Evolutionary Computation in Image Analysis and Signal Proessing(EvoIASP'07) [72℄, an extended abstrat in the Proeedings of the 19th Belgium-Netherlands Conferene on Arti�ial Intelligene (BNAIC'07) [73℄ and Proeed-ings of Eighth European Workshop on Evolutionary Computation in Image Anal-ysis and Signal Proessing (EvoIASP'08) [33℄.Chapter 7: Meta-Model Assisted Mixed Integer Evolution StrategiesThe researh results in this hapter are published in the Proeedings of the IEEECongress on Evolutionary Computation (IEEE CEC 2008) [80℄.Chapter 8: Mixed-Integer Evolution Strategies with Dynami NihingThis hapter is based on publiation in the Proeedings of 10th InternationalConferene Parallel Problem Solving from Nature (PPSN X, 2008) [74℄.Chapter 9: Mixed-Integer Evolution Strategies with Bayesian LearningParts of this hapter are published as a full paper ontribution in the Pro-eedings of the 20th Belgium-Netherlands Conferene on Arti�ial Intelligene(BNAIC'08) [40℄.





Part IMixed-Integer EvolutionStrategies





The expetations of life depend upondiligene; the mehani that would perfethis work must �rst sharpen his tools.Confuius
Chapter 2Mixed-Integer ParameterOptimizationTo start our journey, good preparation is always required. This hapter lays thegroundwork for our study in this dissertation. Like we delared in hapter 1,the original goal of our work is to develop e�ient and robust methods to dealwith mixed-integer parameter optimization problems partiularly in blak-box op-timization senario. Therefore, it is important for us to �rst introdue the el-ementary terminology of the global optimization, espeially the mixed-integerparameter optimization. As a traditional approah of formulating optimizationproblems, Mathematial Programming (MP) as well as its major sub�elds, suhas Linear Programming (LP) and Mixed-Integer Programming (MIP), will alsobe overed expliitly. Next, two well-established tehniques - Branh-and-Bound(BB) and Outer Approximation (OA) - will be reviewed thoroughly, beause theyare widely used for solving Mixed-Integer Nonlinear Programming (MINLP) prob-lems in pratie. As opposed to these white-box based optimization problems, wewill address blak-box optimization in mixed-integer parameter searh spae. Atlast, two seleted optimization appliations from industrial �eld will be presented.2.1 Global OptimizationThe global optimization problem an be generalized in terms of �nding the om-bination of parameters whih optimize a given quantity depending on these pa-rameters, possibly subjet to some restritions on the allowed parameter ranges.The quantity to be optimized is alled the objetive funtion1; the parameterswhih may be hanged in the quest for the optimum are alled ontrol or deisionvariables ; the restritions on allowed parameters values are known as onstraints.1Also alled performane measure, loss funtion, or �tness funtion in some ontext.9



10 Mathematial ProgrammingIt is ustomary to write the global optimization problem as follows:minimize f(x) ∈ R (2.1)subjet to gi(x) ∈ R ≤ 0 i ∈ Ig
hj(x) ∈ R = 0 j ∈ Ih

x ∈ Θ, Θ 6= ∅where f(x) : x ∈ Rn is the objetive funtion and its value is alled the objetivevalue of this funtion. gi(x) and hj(x) are the set of onstraint funtions. Con-straint equations of the form g(x) ≤ 0 denote inequality onstraints, and thoseof the form h(x) = 0 denote equality onstraints. Ig represents the inequalitiesindex set, and Ih indiates the index set of equalities. Θ represents non-empty setof allowable values for x and is de�ned as:
Θ = {x ∈ R

n | gi(x) ≤ 0 ∧ hj(x) = 0} (2.2)Consequently, the optimal solution set an be desribed as follows [114℄:
Θ∗ ≡ arg min

x∈Θ
f(x) = {x∗ ∈ Θ : f(x∗) ≤ f(x) for all x ∈ Θ} (2.3)where �arg min

x∈Θ
� an be read as: Θ∗ is the set of values x = x∗ that minimize(maximize in the ase of �≥�) f(x) subjet to x∗ satisfying the onstraints repre-sented in funtions gi(x) and hj(x). In general, when the Θ of the problem is notonvex 2, there may be several loal minima and maxima, where a loal minimum

x̂ is de�ned as a point for whih there exists some δ > 0 so that for all x suhthat ‖x− x̂‖ ≤ δ the expression f(x̂) ≤ f(x) holds.2.2 Mathematial ProgrammingTraditionally, to apply optimization onepts and tools optimization problems arefrequently modeled by using Mathematial Programming (MP). MP is onernedmainly with optimization problems whose objetive(s) and onstraints an belearly desribed by using algebrai mathematial expressions. MP is the branhof applied mathematis and numerial analysis that fouses on reahing �best�solutions (or deisions) by means of mathematial optimization models. It is asubbranh of operations researh3 (OR) and there exists a rih body of knowl-edge surrounding these optimization tehniques. Many di�erent sub�elds an bede�ned based on what kind of mathematial model is to be used to desribe theoptimization problem at hand [123℄. In the following parts, we will review ma-jor sub�elds of MP, espeially Mixed-Integer Nonlinear Programming (MINLP)problems and orresponding tehniques.2Even if Θ is onvex there may be multiple loal optima, as a result of non-onvexity of f(x).3Also known as management siene (MS).



Chapter 2 112.2.1 Linear vs. NonlinearA linear programming (LP) problem is an optimization problem whih satis�esthe following requirements: (1) Objetive funtion f is a linear funtion; (2)Both inequality onstraint funtions gi(i ∈ Ig) and equality onstraint funtions
hj(j ∈ Ih) are linear funtions. In LP problems, the linear onstraints result ina onvex feasible solution spae. Some algorithms are developed based on thisharateristi, for example the Simplex algorithm [27℄, whih is very e�ient inpratie: its worst-ase omplexity is exponential in the number of problem vari-ables.As opposed to LP problems, there are also a large number of optimizationproblems in whih their objetive and onstraints funtions are nonlinear in de-ision variables x. Problems in this ategory are alled Nonlinear Programming(NLP) problems. Beause of the nonlinearity of onstraint funtions or the obje-tive funtion, the onvexity of the solution spae an not be guaranteed anymore.As a onsequene of nononvexity, NLP problems may have many di�erent loaloptima ompared to LP problems, and hoosing the best one is an extremely hardtask. Several nonlinear programming algorithms have been developed to obtainthe onvex solution spae by linearising the onstraints �rstly, and, as a seondstep, employ some LP methods to �nd an optimal feasible solution.2.2.2 Integer vs. Mixed-IntegerDivisibility is a ommon assumption in many optimization methods. It requiresthat eah deision variable xi is allowed to assume frational values. A LP problemin whih some or all of the variables must be non-negative integers is alled anInteger Programming (ILP) problem. IP problems an be further lassi�ed intopure Integer Programming and Mixed-Integer Programming (MILP). An IntegerProgramming (IP) problem in whih all deision variables need to be integers isalled a pure integer programming problem. An integer programming problem inwhih only some of the variables are required to be integers is alled Mixed-IntegerProgramming (MILP) problem.2.2.3 Mixed-Integer Nonlinear ProgrammingIn real world, many optimization appliations are not only omplex and halleng-ing beause their deision variables are ombinations of real and integer variables,but also their objetive funtion and onstraint funtions are nonlinear. For exam-ple, problems in the optimization of proess �owsheets, portfolio seletion, bathproessing in hemial engineering, and optimal design of gas or water transmis-sion networks [48, 63℄. The Mixed-Integer Nonlinear Programming (MINLP) is anatural approah of formulating these kind of problems where it is neessary tosimultaneously optimize the system struture (disrete) and parameters (ontin-uous) [23, 42℄.



12 Mathematial ProgrammingMINLP problems are very hard to solve in pratie, beause they ombine allthe di�ulties of their sublasses: the ombinatorial nature of Mixed-Integer Lin-ear Programming (MILP) and the di�ulty of solving Nonlinear Programming(NLP). In general, these two sublasses problems an be lassi�ed into the lass of
NP -hard problems. Although they are very hard to solve, the omponent stru-ture of MILP and NLP within MINLP provides a olletion of natural algorithmiapproahes, exploiting the struture of eah of the subomponents. Analogous toEquation 2.1, we now state the general MINLP problem as follows:minimize f(x,y) ∈ R (2.4)subjet to gi(x,y) ∈ R ≤ 0 i ∈ Ig

hj(x,y) ∈ R = 0 j ∈ Ih
lbx ≤ x ≤ ubx

lby ≤ y ≤ uby

x ∈ R
n n ≥ 0

y ∈ Z
m m ≥ 0where f : Rn × Zm → R is alled the objetive funtion. The members of thesolution spae are bounded from above and below by ub and lb respetively. x isa real valued vetor in Rn and y is an integer (normally binary) valued vetor in

Zm. Please note that the objetive funtion f and onstraint funtions gi, hi arenonlinear in this situation.There are several tehniques employed to solve MINLP problems. They di�erin omplexity and running time as well as solution priniple and sope of appli-ation. Branh-and-Bound (BB) and Outer Approximation (OA) are two widelyused methods.Branh-and-BoundBranh-and-Bound (BB) is an intelligently strutured searh for all the feasiblesolutions [71℄. It is non-heuristi, in the sense that it maintain a provable upperand lower bound on the (globally) optimal objetive value [20℄ and after ter-mination will obtain the optimal solution. The spae of all feasible solutions isrepeatedly partitioned into smaller and smaller subsets, and a lower bound4 isalulated within eah subset. Subsets with a bound that exeeds the ost of aknown feasible solution are exluded from all further steps. The partitioning pro-edure ontinues until a feasible solution is found suh that its ost is no greaterthan the lower bound for any other subset.Using pseudoode to explain Branh-and-Bound (BB) method, one an use thefollowing de�nitions [14, 49, 81℄: a list L of unsolved subproblems5 Si, whih wereobtained by relaxing some or all of the integer requirements; ub, an upper bound4in the ase of minimization.5Or node, denote the problem assoiated with a ertain portion of the feasible region ofMINLP



Chapter 2 13on the value of objetive funtion f ; lbSi
, a lower bound on the value that f anhave in subproblem Si; ative set, the list of subproblems that must still be solved;

(x∗,y∗), a reord of the best integer solution (or inumbent solution) whih hasbeen found by the algorithm so far. The basi branh-and-bound method an begeneralized as algorithm 1.Algorithm 1 The Branh-and-Bound Algorithm1: Initialize:
L, (x∗,y∗), and ub.2: Selet:Choose an unsolved subproblem Si from L. Stop if L = ∅. If there is aninumbent solution, then that is an optimal solution. Otherwise, the MINLPis infeasible.3: Solve:Solve the nonlinear programming relaxation of Si. A solution (x̂, ŷ)Si

and lbSiare obtained on the optimal value of this subproblem.4: Prune:If the relaxed subproblem Si was infeasible, then Si will not provide a bettersolution to MINLP than the known inumbent solution. The same as lbSi
≥

ub. Delete suh Si from L and return to the Selet step.5: Integer Solution:If ŷ is integer, then a new inumbent integer solution has been obtained.
(x∗,y∗) = (x̂, ŷ) and ub is set to the optimal value of Si6: Branh:If there exist at least one yk is frational value in the solution on the Si,then onsider splitting the Si. Create a new subproblem Si1 by adding theonstraint yk ≤ ⌊ŷk⌋. Create another subproblem Si2 by adding the onstraint
yk ≥ ⌈ŷk⌉.Remove Si and add problems Si1 and Si2 to L. Return to Seletstep.There are various hoies to be made during the ourse of algorithm 1, suh asthe hoie of the subproblem to evaluate, and the way to divide the feasible region.An advantage of this algorithm is the lear deoupling of the ontinuous anddisrete optimizers. Any usable ontinuous optimizer maybe used for solving therelaxed problem while the Branh-and-Bound (BB) method searhes through thedisrete spae for the optimal solution. However, a major disadvantage is the speedissue. In the worst ase the algorithm requires e�ort that grows exponentially withproblem size. For instane, in the binary ase, eah Si reates at most two newsubproblems Si1 and Si2 , whose set an be represented as a binary tree. As aresult, there are total 2m subproblems to be solved, where m is the number ofdisrete variables whih is de�ned in 2.4.



14 Blak-Box OptimizationOuter ApproximationThe outer approximation sheme is another ommon tehnique for solving a lassof MINLP problems. The outer approximation method approximates the non-linear spae utilizing linear onstraints. Supporting linear hyperplanes are alu-lated at eah iteration of the algorithm. Sine we have e�ient methods of solvinglinear programming problems, we may utilize these to solve for the MINLP prob-lem. These linearizations overestimates the feasible region while at the same timethe optimal solution is underestimated. Beause many onstraints are introdued,the problem may beome intratable. For more detailed explanation of OuterApproximation methods, we reommend the following referenes [31, 41℄.2.3 Blak-Box OptimizationAs we an see, the methodology behind these aforementioned MP tehniques forsolving optimization problems have often followed a pattern: Given a very spe-i� lass of problems with some known properties, design an algorithm to solvethem. However, the appliability of these optimization algorithm is very restrited,beause they work stritly based on assumptions about the properties of the ob-jetive funtions. For example, the Branh-and-Bound (BB) method is espeiallydesigned for takling mixed-integer nonlinear optimization problems. Unfortu-nately, these divide-and-onquer based tehniques may fail when optimizationproblems possess the following properties:(1) Only little knowledge about the objetive funtion is available, suh as op-timization tasks whih are mainly based on large-sale simulation modelsand the details of whih often are inaessible.(2) The objetive funtion is very omplex, for instane multimodal, high di-mensional and non-di�erentiable. As a onsequene, the assoiated ompu-tational burden for this kind of optimization problems easily an beomeexessive for some lassi MP methods.From this perspetive, these problems would fall into the lass of blak-box opti-mization problems, in whih only little assumption about the objetive funtionan be made or the objetive funtion is too omplex to be modeled. In thismodel of optimization, the objetive funtion is often available for the optimizeras a blak-box without assuming any loal or global information [60℄. Next, wewill give a formal de�nition of blak-box optimization based on [60℄.Let us denote the �nite input and output spaes by X and Y, respetively. Thegeneral blak-box optimization problem an be formally de�ned as the followingequation system: For a given input deision parameters vetor x in the feasibledomain X , after evaluation through the blak-box funtion (e.g. simulator) a value
y = Φ(x) ∈ Y is returned.

Φ : X → Y, x 7→ Φ(x) =: y (2.5)



Chapter 2 15In the ase of minimization, a blak-box optimization problem is to �nd optimal
x∗ ∈ X suh that Φ(x∗) ≤ Φ(x) for all x ∈ X . The performane of the optimizationalgorithm used in this senario, suh as EAs, depends on the information olletedby sampling di�erent areas of the searh spae. More onretely, we explain thisblak-box optimization model by using Figure 2.1 below - a sample optimizationproblem with a simulator involved. In general, the ombination of simulator andoptimizer typially involves tehnial problems suh as extrating the relevantsimulator output data and aggregating the output data into a meaningful objetivefuntion. As one an see, the objetive funtion is de�ned in regard to the output(Y ) of the simulator. The optimizer then uses these values to searh for optimalsolution(s) x∗.

Simulator 

Optimizer 

Objective 

Function 

?      !"#$ % 

&#$"#$ 

 ' 

(()) * +,! Figure 2.1: Outline of the general priniple of oupling simulation and optimiza-tion.2.3.1 Mixed-Integer Blak-Box OptimizationIf an input deision variables vetor x is omprised of di�erent types of variables- ontinuous, ordinal disrete (integer) and nominal disrete variables6, the or-responding optimization problem is alled mixed-integer blak-box optimizationproblems. As we addressed in hapter 1, this kind of optimization problems willbe the main fous of our researh and will be studied in detail.2.3.2 Related WorksFrequently, blak-box optimization algorithms are lassi�ed based on whether theyare deterministi or non-deterministi. More spei�ally, a deterministi methodis to enumerate andidate solutions of the optimization task. Grid searh and pat-tern searh are two representatives among these deterministi methods. However,6This is di�erent from mixed-integer variables de�nition in MINLP problems, more detailedexplanation are available in hapter 3



16 Seleted Appliationsfor most of real-world optimization problems, it beomes pratially impossiblebeause of the exponential growth with the number of dimensions. This is oftenreferred to as the �urse of dimensionality� [10℄. Contrary to these deterministialgorithms, stohasti algorithms (often heuristi) try to solve the problem by in-troduing some random hoies in the searh and this makes them more suitablefor pratial appliations. In pratie, there are a large number of stohasti al-gorithms available, suh as simulated annealing, bayesian learning and lusteringmethods [60℄. And our proposed MIES also belongs to this ategory.2.4 Seleted AppliationsTo illustrate the point of mixed-integer blak-box optimization, let us have alook on two representative real-world optimization tasks - the optimization ofmultilayer optial oatings [7, 4℄ and the optimization of a hemial engineeringplant [38℄. For these two seleted real-world appliations, either its objetive fun-tion is very omplex or its expensive evaluation goes through a simulation soft-ware, the detail of whih are inaessible. In both ases, lassial Mixed-IntegerNonlinear Programming (MINLP) tehniques an not be easily applied. That iswhy it is highly desirable to develop new strategies to takle problems of suha kind. We would like to mention some important harateristis, whih weresummarized in [4℄, of these pratial appliations as follows:
• Pratial onsiderations require to �nd a robust optimum, i.e., an optimumthat is insensitive with respet to small variations of the parameter values.
• The objetive funtion is multimodal, high-dimensional, and non-di�erentiable,with a feasible region of the searh spae that is haraterized by nonlinearonstraints.
• In some ases, the objetive funtion evaluation requires a run of a simula-tion model representing the real system to be optimized.
• Beause of di�erent parameter types, a standard representation suh asbinary strings or real-valued vetors is di�ult to apply to these problems.2.4.1 Optimization of Multilayer Optial CoatingsProblem De�nitionThe objetive of the multilayer optial oatings (MOCs) design is to �nd a se-quene of layers of ertain materials and ertain thiknesses (Figure 2.2), suh thatall unwanted frequenies are ut o�, while the wanted frequenies pass withoutany re�etion.The matrix method, whih is based on the Maxwell equations, is used to modelMOCs as follows: the re�etane R for a given wavelength λ that depends on a
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Figure 2.2: Multilayer optial oating. Figure ourtesy of Bäk [4℄vetor ~d of the geometri thiknesses of the layers and the refrative indies ~η ofthe materials of the orresponding layers:
R(~d, ~η, ~λ) =

4ηaηs

|ηaB(~d, ~η, ~λ) + C(~d, ~η, ~λ)|2
(2.6)where ηa and ηs desribe the refrative index of the adjaent medium and thesubstrate. B and C are non-linear terms of ~d, ~η and ~λ. The objetive funtion fan be obtained by alulating the mean squared di�erene between the targetwavelength pro�le and the pro�le of the give design sampled at m equidistantwavelengths λi in the range of interest.Objetive FuntionThe quality of a design an now be obtained by alulating the mean squareddi�erene between the target wavelength pro�le and the pro�le of the given designsampled at m equidistant wavelengths λi in the range of interest. The objetivefuntion is de�ned as follows:

f(~d, ~η) =

√
√
√
√

1

m

m∑

i=1

R(~d, ~η, ~λ)2 → min (2.7)The �tness landsape of the objetive funtion de�ned by equation 2.7, a three-dimensional plot of RMS-values for a two-layer �lter with η1 = 2.2, η2 = 4.2,and d1, d2 varying in the range 0 − 20µm is shown in �gure 2.3. The landsape



18 Seleted Appliationsis haraterized by parallel �waves� separated by valleys of inreasing depth anddereasing width. As a onsequene, optimization algorithms may be trappedwithin a loal optimal valley.

Figure 2.3: Topology of the RMS merit funtion in ase of a �xed two-layer �lterstruture with η1 = 2.2 and η2 = 4.2. Figure ourtesy of Bäk, et al. [7℄Optimization for MOCs design is a very di�ult task beause: (1) It involvesreal-valued thikness and integer-valued refrative indies variables; (2) Dimen-sionalities of deision variables are very high; (3) Equations whih are used toompute objetive values are very omplex; (4) The number of dimensions is vari-able in the most general formulation of this problem.2.4.2 Optimization of Chemial Engineering PlantsProblem De�nitionThe optimization of hemial engineering plants is another hallenging applia-tion. The goal is to searh for an optimal parameter on�guration for a spei�hemial engineering plant. A possible �owsheet for the Hydrodealkylation (HDA)proess is displayed in Figure 2.4. The aim of the HDA proess is the produtionof benzene from toluene. The annual pro�t is to be maximized.
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Figure 2.4: Flowsheet of the HDA proess network with di�erent hemial devies(unit operations) onneted by material streams. The intervals and disrete setsindiate the domain of deision parameters to be optimized. Figure ourtesy ofEmmerih, et al. [38℄Objetive FuntionBy de�nition, there are three types of deision parameters involved into the opti-mization proedure and they are indiated in Figure 2.4. The evaluation is arriedout through one rigorous simulation model and this is presented in Figure 2.5 (f.Figure 2.1). This optimization problem is also di�ult beause: (1) there exist dif-ferent types of deision parameters; (2) �tness evaluation is based on a ommerialsimulation software and we have no aess to details of its implementation. Thelassial tehniques, suh as BB and OA, are not appliable in this ase.2.5 SummaryIn this hapter, di�erent types of optimization problems are presented and thespeial attention is paid to mixed integer nonlinear programming problems, whihour a lot in real-world appliations and are extremely hard to handle in pratie.To takle these very hard problems, some promising methods whih ome eitherfrom lassial mathematial programming or heuristi domains are disussed indetail.As we emphasized at the very beginning of this thesis, ompared to �white-box� optimization problems, we are more interested in problems from �blak-
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Constraint ControlFigure 2.5: The interation between the �owsheet simulator ASPEN PLUSTM andthe optimizer. Figures ourtesy of Emmerih, et al. [38℄box� senarios. Unlear objetive funtion struture and high dimensionality makethese blak-box optimization problems more hallenging and it is di�ult to ap-ply methods from the traditional mathematial programming researh �eld, likeBranh-and-Bound (BB) algorithm. By ontrast, some heuristi methods providepossibilities to establish a onnetion between andidate solutions and the orre-sponding problem domain and lead us to a global/loal optimum in an intelligentway.Among many well studied heuristi methods, tehniques from EvolutionaryComputation domain, espeially Evolution Strategies (ES), will be further inves-tigated in this work.



Chapter 3Mixed-Integer EvolutionStrategiesIn hapter 2 we introdued mixed-integer parameter optimization, espeially in ablak-box optimization senario. Now, we will propose one promising algorithm,the so-alled Mixed-Integer Evolution Strategies (MIES), whih are apable todeal with the aforementioned blak-box mixed-integer parameter optimizationproblems. This hapter is organized as follows: �rstly, Evolutionary Algorithms(EAs) will be reviewed. Some important harateristis of eah EAs model willbe presented next. Then, Evolution Strategies (ES) will be disussed brie�y, es-peially some important omponents of anonial (µ+
, λ)- ES, suh as individualsstruture, mutation, reombination and seletion. Finally, a more general frame-work for mixed-integer parameter optimization by using the MIES will be pro-posed in the rest of the hapter.3.1 Evolutionary AlgorithmsES is one important branh of EAs, and other two branhes are Geneti Al-gorithms (GAs) and Geneti Programming (GP). As we addressed, EAs derivefrom Darwin's theory of the survival of the �ttest and mimi the proess of or-gani evolution by using operators �population�, �mutation�, �reombination� and�seletion� [52℄. The better an individual performs under ertain onditions thegreater its hane to live for a longer and generate o�spring, whih in turn in-herit the parental geneti information. Over the ourse of evolution, this leadsto a penetration of the population with the geneti information of individuals ofabove-average �tness [5℄.A high level abstration of all essential omponents of standard implementa-tions of evolutionary algorithms is given in Algorithm 2, for more detailed informa-tion about di�erent evolutionary omputation models (Geneti Algorithms, Evo-



22 Evolution Strategieslution Strategies and Geneti Programming) we reommend books [34, 58℄. BasedAlgorithm 2 General shema of an evolutionary algorithm1: t := 02: Initialize population with random andidate solutions3: Evaluate eah andidate solution4: while terminate ondition is not satis�ed do5: Selet parents6: Reombine pairs of parents7: Mutate the resulting o�spring8: Evaluate new andidate solution9: Selet individuals for the next generation10: t := t+ 111: end whileon this algorithm desription, some important features of EAs an be summed upas follows: EAs are population based, they mostly use reombination or mutationto generate new andidate solutions, and they are stohasti.3.2 Evolution StrategiesEvolution Strategies (ES) were founded in the early 1960s by Rehenberg andShwefel at the Tehnial University of Berlin (TUB). In the beginning, ES weredevised for the automati design and analysis of onseutive experiments withstepwise variable adjustments driving a suitably �exible objet into its optimalstate in spite of environmental noise [12℄. The �rst dissertation in the �eld ofES was ompleted by Rehenberg [95, 96℄ in 1971. In his thesis, Rehenberg an-alyzed the (1+1)-ES with Gaussian mutations on two very di�erent real-valuedfuntions - hypersphere and retangular orridor funtion, and was able to showits onvergene veloity, the ahieved order of onvergene and the optimal mu-tation strength. Born proposed population based (µ + 1)-ES [15℄ and proved theonvergene with probability 1. By applying priniples from organi evolution inmore rigorous way, Shwefel extended the (1+1)-ES towards a (µ + λ)-ES and
(µ, λ)-ES and proposed an ES apable of self-adapting some of its strategy pa-rameters [106, 107℄. In the following setions, we will explain the omponentsof lassial (µ+

, λ)-ES in detail (f. Algorithm 3), sine it is seen as laying thefoundations for our proposed Mixed-Integer Evolution Strategies (MIES).3.2.1 Individuals StrutureCanonial Evolution Strategies (ES) are typially used for ontinuous parame-ter optimization (Rn → R). For a given optimization problem f(~x) → min, anindividual of the evolution strategy onsists of two omponents:



Chapter 3 231. A andidate solution (a set of deision variables or ontrol parameters),whih is represented as ~x ∈ Rn;2. Endogenous strategy parameters, whih an be further divided into two sets,mutation step sizes ~σ and rotation angles ~α (~α are not always used). ~σ es-sentially enode the n-dimensional normal distribution and are to be used toontrol ertain statistial properties of the mutation operator. The ~α valuesrepresent interations between the step sizes used for di�erent variables. En-dogenous strategy parameters are very speial in ES and an evolve duringthe whole evolution proess.Putting it all together, an individual in ES an be given in a more general formthrough a triple: ~a = (~x, ~σ, ~α).3.2.2 MutationMutations are the primary soure of geneti variation in ES and are arried outby adding ∆xi to eah xi, where the ∆xi values are randomly drawn using thegiven normal distribution N(0, σ) with zero mean and strandard deviation σ. Inpratie, the mutation step sizes ~σ are not set by the user, rather they are o-evolving with the solutions ~x. To ahieve this it is essential to modify the σ value�rst, and then mutate the xi values with the new σ. The orresponding updatingproedure an be de�ned as:
x′i = xi +N(0, σ′) (3.1)where σ′ is the mutated value of σ. Next, we will desribe three speial ases ofmutation whih are often used to mutate the value of σ in ES [34℄.Unorrelated Mutation with One Step SizeIn this ase, the same distribution is used to mutate eah xi, as a result eahindividual inludes only one strategy parameter σ. The mutation mehanism isspei�ed by the following formulas:

σ′ = σ · eτ ·N(0,1) (3.2)
x′i = xi + σ′ ·Ni(0, 1)where σ is mutated eah time step by multiplying it by a term eτ ·N(0,1). N(0, 1)denotes a draw from the standard normal distribution, while Ni(0, 1) denotes aseparate draw from the standard normal distribution for eah variable xi. Theparameter τ an be interpreted as learning rate and readers an refer to [3℄ for amore detailed explanation.



24 Evolution StrategiesUnorrelated Mutation with n Step SizesCompared to one step size unorrelated mutation, n step sizes mutation treatsdimensions di�erently and an learn axes-parallel mutation ellipsoids. This is be-ause that the �tness landsape an have a di�erent slope in one diretion thanin another diretion. Now, the mutation mehanism an be desribed as follows:
σ′
i = σi · eτ ·N(0,1)+τ ′·Ni(0,1) (3.3)
x′i = xi + σ′

i ·Ni(0, 1)where τ and τ ′ are alled global and loal learning rate respetively. The om-mon base mutation eτ ·N(0,1) allows an overall hange of the mutability, while the
eτ

′·Ni(0,1) provides the �exibility to use di�erent mutation strategies in di�erentdiretions.Correlated MutationThis version of mutation allows the ellipses to have any orientation by rotatingthem with a ovariane matrix C. The vetors ~σ and ~α represent the ompleteovariane matrix of the n-dimensional normal distribution, where the ovarianesare given by rotation angles αi desribing the oordinate rotations neessary totransform an unorrelated mutation vetor into a orrelated one. The ompletemutation mehanism is performed aording to:
σ′
i = σi · eτ ·N(0,1)+τ ′·Ni(0,1) (3.4)

α′
j = αj + β ·Nj(0, 1)

~x′ = ~x+N(~0,C(~σ′, ~α′))where N(~0,C(~σ′, ~α′)) denotes the orrelated mutation vetor and β ≈ 0.0873.The details of this kind of mutation an be found in the literature e.g. in [100℄.To make these di�erent types of mutation more lear to readers, we illus-trate how the degrees of freedoms grow as the number of strategy parameters isinreased in Figure 3.1. As one an see, eah of the three �gures shows a two-dimensional (n = 2) hypothetial objetive funtion topology, inluding isolinesof equal objetive funtion value and the loation of a global optimum ~x∗. Thegray-shaded irles and ellipsoids orrespond to individuals and their orrespond-ing probability distribution to produe an o�spring. For nσ = 1 (the left �gure),all distributions are spherially symmetri and only the radius of the irles isindividually di�erent. For nσ = 2 (the middle �gure), step sizes along one dimen-sion might be di�erent from the one along other dimension, suh that preferenesearh diretions an be adjusted. For nσ = 2, nα = 1, the ellipsoids an rotateand therefore allow an adjustment of arbitrary preferene diretions regardless ofthe oordinate system.
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Figure 3.1: Shemati visualization of the three di�erent types of self-adaptivemutation in Evolution Strategies. Left: nσ = 2, middle: nσ = 2, right: nσ =
2, nα = 1. Figures ourtesy of Thomas Bäk [6℄3.2.3 ReombinationThe basi reombination sheme in Evolution Strategies (ES) involves two parentsthat reate one o�spring. Aording to the manner of reombining parent alleles,reombination an be lassi�ed into disrete and intermediate reombination. Thisan be formalized as follows:

zi =







(xi + yi)/2 intermediate reombination
{

xi if U(0, 1) > 0.5

yi otherwise disrete reombination (3.5)where U(0, 1) denotes a draw from one given uniform distribution. In ases wherethe whole population of µ individuals is used to generate one o�spring, we aretaking about global reombination. In pratie, disrete reombination is reom-mended for the objet/deision variable part and the intermediate reombinationis suggested for the strategy parameters part. This sheme preserves diversitywithin the solution spae while assuring a more autious adaptation of strategiesparameters.3.2.4 SeletionThe lassial Evolution Strategies (ES) o�er two di�erent variants for seletingandidate solutions for the next iteration of the main loop of the algorithm:omma(indiated by ,) and plus (indiated by +) seletion.Comma seletionIn this situation, after µ parents reate λ > µ1 o�spring by means of reombina-tion and mutation, the best µ o�spring are deterministially seleted to replae1The ratio of µ to λ is alled seletive pressure in ES, and µ/λ = 1/7 is strongly reommended.



26 Mixed-Integer Evolution Strategiesthe parents. Using this kind of seletion the best member of the population atgeneration t + 1 might perform worse than the best individual at the previousgeneration t, Thus the strategy ould esape from the loal optimum and reaha better optimum. Comma seletion is advantageous in the ase of multimodaltopologies.Plus seletionIn ontrast, the (µ+λ) strategy selets the µ survivors from the union of µ parentsand λ o�spring, suh that a monotoni ourse of evolution is guaranteed. Thissheme is typially used in a steady-state setting or under irumstanes where�tness deteriorations from one generation to the next are stritly unaeptable.3.2.5 Results of Theoretial StudyThe theoretial study on ES algorithms fouses mainly on the onvergene veloityand onvergene reliability. The former onentrates on the speed of the algorithmwhen a loal optimum is approahed, while the latter targets on proving that thealgorithm is apable of �nding the global optimum of the given objetive funtion.For onvergene reliability, so far, the onvex ase an be handled under strongsimpli�ations of the objetive funtions that an be analyzed. The onvergenereliability analysis yields a result for t → ∞ independent of the objetive fun-tion [11℄. As one an see from the following setions, we will also apply the similarstudies on proposed Mixed-Integer Evolution Strategies (MIES).Based on the brief review of anonial Evolution Strategies (ES), espeially
(µ+

, λ)-ES, we an make a short summary now. Compared to other EA models, e.g.Geneti Algorithms (GAs), Evolution Strategies (ES) are operating ompletely ona phenotypi level and this give them a good opportunity to utilize muh moreknowledge about the appliation. Moreover, the self-adaptation of strategy param-eters provides a larger �exibility for ES over the omplete evolution proess [2, 52℄.Last but not least, ES ombines onvergene veloity and onvergene reliabilityin a more robust way. With respet to all these important properties, EvolutionStrategies (ES) should prove to be global optimization algorithms and ompetitivewith other global optimization methods.3.3 Mixed-Integer Evolution StrategiesMixed-Integer Evolution Strategies (MIES) is a speial variant of an EvolutionStrategies (ES) for the simultaneous optimization of ontinuous, integer, and nom-inal disrete parameters. It ombines mutation operators of Evolution Strategiesin the ontinuous domain [107℄, for integer programming [101℄, and for binarysearh spaes [3℄. These operators have in ommon that they have ertain desir-able properties, suh as symmetry, salability, and maximal entropy, the detailsof whih will be disussed later. The MIES was originally developed for optial



Chapter 3 27�lter optimization [7, 105℄, and hemial engineering plant optimization [38, 47℄.Reently, as disussed in this ontribution, it has been used in the ontext ofmedial image analysis [75, 77℄. In the latter work also its onvergene behavioron various arti�ial landsapes was studied empirially, inluding a olletion ofsingle-peak landsapes in [38℄ and landsapes with multiple peaks in [77, 78℄.3.3.1 Problem De�nitionMany appliation problems from industry involve the simultaneous use of on-tinuous, integer, and nominal disrete objetive variables. The problem of mixedinteger parameter optimization an be formalized as follows: let r1, . . . , rnr
de-note a set of real-valued deision variables, z1, . . . , znz

denote a set of integerdeision variables, and d1, . . . , dnd
denote a set of nominal disrete deision vari-ables, eah of whih is taken from a �nite domain. The �nite domains for thenominal disrete variables will be denoted with D(1), . . . , D(nd). We do notenode nominal disrete variables as integers, in order to exploit the fat thatthere is no meaningful a-priori ordering given for the domain of them. Further-more, let f : Rnr × Znz × D(1) × · · · × D(nd) → R denote an objetive funtionto be minimized, gi : Rnr × Znz × D(1) × · · · × D(nd) → R, i = 1, . . . , ng and

hj : Rnr × Znz ×D(1) × · · · ×D(nd) → R, j = 1, . . . , nh denote onstraint fun-tions. Then the mixed integer parameter optimization problem an be de�nedas:
f(r ◦ z ◦ d) → min (3.6)
gi(r ◦ z ◦ d) ≤ 0, i = 1, . . . ,m

hj(r ◦ z ◦ d) = 0, j = 1, . . . , n

ri ∈ [r
(min)
i , r

(max)
i ], i = 1, . . . , nr

zi ∈ [z
(min)
i , z

(max)
i ], i = 1, . . . , nz

di ∈ D(i), i = 1, . . . , ndHere, the onstants r(min)
i and r(max)i de�ne lower and upper bounds for the realvariables and the onstants z(min)

i and z
(max)
i de�ne lower and upper boundsfor the integer variables. The symbol ◦ denotes tuple onatenation. In ontrastwith mixed integer nonlinear programming (f. setion 2.2), here three types ofvariables our:Continuous Variables, denoted with ri, are taken from an interval Ri ⊂ Rand their values are represented as �oating point numbers. In the imageproessing �eld, for instane threshold parameters or a radius parameter fora geometrial shape are often represented as ontinuous variables.Integer Variables, denoted with zi, are taken from a range of integer variables

Zi ⊂ Z. Important harateristis of integer variables are that their valueshave a smallest neighborhood (as opposed to ontinuous variables) and that



28 Mixed-Integer Evolution Strategiesa linear ordering is de�ned on the values (as opposed to nominal disretevariables). The number of gray values in an image is a typial example ofan integer variable in the image proessing domain.Nominal Disrete Variables, denoted with di, are variables the value of whihare taken from a �nite domain, denoted with Di. Neither a metri nor anordering is de�ned on this domain. An example is a variable whih takes itsvalue from a set of geometrial shapes (ellipse, square, triangle). Also binaryvariables (suh as swithes) belong to this lass of variables.As we are interested in the blak-box senario we assume that the struture of f ,
gi, i = 1, . . . , ng and hj , j = 1, . . . , nh is unknown or we only an make some verygeneral statements about it, suh as ontinuity assumptions based on a similaritymeasure de�ned on the searh spae [53℄. As a result of this it beomes harderto apply standard tehniques from mathematial programming - so alled mixed-integer nonlinear programming methods [42℄ to solve them deterministially, suhas outer approximation (OA) [31℄, branh-and-bound (BB) [14℄, and generalizedBenders deomposition [43℄.In ases where mathematial programming tehniques fail, metaheuristis formixed integer optimization an be an interesting method to heuristially searhfor solutions that improve the objetive funtion value. In order to solve mixedinteger optimization problems with metaheuristis two general approahes an beonsidered:
• Hierarhial Approah : Separate the disrete problem from the ontinu-ous problem by optimizing the disrete variables in an higher level optimiza-tion problem and treating the optimization of the ontinuous parameters asa subproblem [119, 82, 96℄
• Simultaneous Approah : Optimize disrete and ontinuous parameterssimultaneously . In this approah we onsider that similarity of parametervetors due to a appropriate metri as being positively orrelated to thesimilarity in funtion values [47, 105℄.The seond method is worth requiring more attention and there are two reasonswhy we favor this approah over the hierarhial approah: Firstly, the hierarhi-al approah requires a sub-optimization of ontinuous parameters for eah set ofdisrete parameters hosen in the outer level. This an be very time onsuming.Seondly, in the hierarhial approah it is di�ult to onsider orrelations be-tween disrete and ontinuous variables, as they are stritly separated from eahother. In the following, we will disuss the design philosophy of MIES in detailand present several important properties.3.3.2 Algorithm desriptionThe problem of designing an evolution strategy for a new type of searh spaebreaks down into three subtasks:



Chapter 3 29(1) de�nition of the generational yle,(2) de�nition of the individual representation,(3) de�nition of variation operators for the representation of hoie.These subtasks will be disussed next.The hosen algorithm will be an instantiation of a (µ+
, λ)-ES for mixed-integerspaes. It generalizes the more ommon (µ+

, λ)-ES for ontinuous spaes, the dy-nami behavior of whih was subjet to thorough theoretial and empirial studies.For instane, Shwefel [107℄ ompared it to traditional diret optimization algo-rithms and Bäk [3℄ to other evolutionary algorithms. Theoretial studies of theonvergene behavior of the ES were arried out for instane by Beyer [11℄, Oy-man [88℄ and Rudolph [102℄. A omparison to other evolutionary algorithms suhas Geneti Algorithms an be found in Bäk [3, 52℄. The results indiate that theES is a robust optimization tool that an deal with a large number of pratiallyrelevant funtion lasses, inluding disontinuous and multimodal funtions. Inaddition, the ES performane sales well with the searh spae dimension.Generational CyleThe main proedure of the ES is desribed in Algorithm 3. After a uniform ran-dom initialization and evaluation of the �rst population P (0) of µ individuals(parameter vetors taken from an individual spae I) and setting the generationounter t to zero the main loop of the algorithm starts. In a �rst step of the iter-ation the algorithm generates the set Q(t) of λ new o�spring individuals, eah ofthem obtained by the following proedure:Two individuals are randomly seleted from P (t) and an o�spring is gener-ated by reombining these parents and then mutating (random perturbation) theindividual resulting from the reombination. In the next step of the iteration,the λ o�spring individuals are evaluated using the objetive funtion to rank theindividuals (the lower the objetive funtion value the better the rank). In aseof a (µ + λ) seletion, the µ best individuals out of the union of the λ o�springindividuals and the µ parental individuals are seleted. In ase of a (µ, λ) seletionthe µ best individuals out of the λ o�spring individuals are seleted. The seletedindividuals form the new parent population P (t + 1). After this, the generationounter is inremented. The generational loop is repeated until the terminationriterion2 is ful�lled.RepresentationAn individual in an Evolution Strategy ontains the information about one solu-tion andidate. The ontents of parent individuals is inherited by o�spring indi-viduals and is subjet to variation. The standard representation of a solution in2In most ases a maximal number of generations is taken as termination riterion.



30 Mixed-Integer Evolution StrategiesAlgorithm 3 (µ+
, λ)-Evolution Strategy1: t← 02: initialize Population P (t) ∈ Iµ3: evaluate the µ initial individuals with objetive funtion f4: while Termination riteria not ful�lled do5: for all i ∈ {1, . . . , λ} do6: hoose uniform randomly parents ci1 and ci2 from P (t) (repetition ispossible)7: xi ← mutate(reombine(ci1 , ci2))8: Q(t)← Q(t) ∪ {xi}9: end for10: P (t+1)← µ individuals with best objetive funtion value from P (t)∪Q(t)(plus), or Q(t) (omma)11: t← t+ 112: end whilean ES individual is a ontinuous vetor. In addition parameters of the probabil-ity distribution used in the mutation (suh as standard-deviations or step-sizes)are stored in the individual. The latter parameters are referred to as strategyparameters.To solve mixed-integer problems with an Evolution Strategy we extend thereal-vetor representation of individuals by introduing integer and nominal dis-rete variables as well as strategy parameters related to them. The domain of anindividual then reads:

I = R1 × · · · ×Rnr
× Z1 × · · · × Znz

×D1 × · · · ×Dnd
×AsHere, As denotes the domain of strategy parameters and is de�ned as:

As = R
nσ+nς

+ × [0, 1]np , nσ ≤ nr, nς ≤ nz, np ≤ ndAn individual of a population P(t) in generation t is denoted as:
~a = (r1, . . . , rnr

, z1, . . . , znz
, d1, . . . , dnd

, σ1, . . . , σnσ
, ς1, . . . , ςnς

, p1, . . . , pnp
)The so-alled objet variables r1, . . . , rnr

, z1, . . . , znz
, d1, . . . , dnd

determine theobjetive funtion value and thus the �tness of the individual (f. Equation 3.6).Here, r1, . . . , rnr
denote real valued, z1, . . . , znz

integer valued, and d1, . . . , dndnominal disrete variables. The so-alled strategy-variables σ1, . . . , σnσ
are stan-dard deviations used in the mutation of the real valued variables, ς1, . . . , ςnς
denotemean step sizes in the mutation of the integer parameters. Finally, p1, . . . , pnp

de-note mutation probabilities (or rates) for the nominal disrete objet parameters.All these parameters are subjet to inheritane, reombination, and mutationwithin Algorithm 3. Objet variables are initialized uniformly within their do-main.



Chapter 3 31ReombinationThe reombination operator an be subdivided into two steps, seletion of theparents and reombination of the seleted parents. Here we will fous on loalreombination whih works with two reombination partners. In this work we willapply loal reombination whih works with two reombination partners. Thetwo reombination partners c1 ∈ I and c2 ∈ I are hosen randomly aordingto a uniformly distribution from the parental generation for eah of the o�springindividuals. The information ontained in these individuals is ombined in orderto generate an o�spring individual. In Evolution Strategies two reombinationtypes are ommonly used: dominant and intermediate reombination [107℄. In adominant (or) disrete reombination the operator hooses randomly one of theorresponding parental parameters for eah o�spring vetor position. Intermediatereombination omputes the arithmeti mean of both parents and thus, in general,an only be applied for ontinuous objet variables and strategy variables. InMixed-Integer ES, dominant reombination is used for the solution parameterswhile intermediate reombination is used for the strategy parameters.MutationFor the parameter mutation, standard mutations with maximal entropy for real,integer and disrete parameter types are ombined, as desribed in [3, 101, 105,107℄. The hoie of mutation operators was guided by the following requirementsfor a mutation in general searh spaes (e.g. [30, 101, 11℄):
• Aessibility: Every point of the individual searh spae should be aes-sible from any other point by means of a �nite number of appliations ofthe mutation operator.
• Feasibility: The mutation should produe feasible individuals. This guide-line an be ruial in searh spaes with a high number of infeasible solutions.
• Symmetry: No additional bias should be introdued by the mutation op-erator.
• Similarity: Evolution strategies are based on the assumption that a solu-tion an be gradually improved. This means it must be possible to generatesimilar solutions by means of mutation.
• Salability: There should be an e�ient proedure, by whih the strengthof the impat of the mutation operator on the �tness values an be on-trolled.
• Maximal Entropy: If there is no additional knowledge about the obje-tive funtion available the mutation distribution should have maximal en-tropy [101℄. By this measure a more general appliability an be expeted.



32 Mixed-Integer Evolution StrategiesRespeting these guidelines, the following operators have been seleted in [38℄:The mutation of ontinuous variables is desribed in Algorithm 4. The new indi-vidual is obtained by adding a normal distributed random perturbation, to theold values of the vetor. The orresponding standard deviations are also subjetto the evolution proess and are thus multiplied in eah step by a logarithmidistributed random number. Shwefel [107℄ termed the resulting proess as self-adaptive, beause the adaptation of the mutation parameters is governed by anevolutionary proess itself. The general idea behind self-adaptation is that, if aset of di�erent individuals is generated, eah with a di�erent probability distribu-tion, the individual with the best objet variables is also likely to be the one withthe best probability distribution that lead to the generation of these objet vari-ables. Thus the parameters of this probability distribution are also inherited bythe o�spring individual. We will now spend some remarks on the properties of theAlgorithm 4 Mutation of real valued parameters1: input: r1, . . . , rnr
, σ1, . . . , σnr2: output: r′1, . . . , r′nr
, σ′

1, . . . , σ
′
nσ3: ontrol parameters: nσ ∈ {1, nr}4: Nc ← N(0, 1) {Generate and store a normally distributed random number}5: τ ← 1√

2nr
; τ ′ ← 1√

2
√
nr

{Initialize global and loal learning rate}6: if nσ = 17: {Single step-size mode} then8: σ′
1 = σ1 exp(τNc)9: for all i ∈ {1, . . . , nr} do10: r′i ← ri + σ′

1N(0, 1))11: end for12: else13: {Multiple step-size mode}14: for all i ∈ {1, . . . , nr} do15: σ′
i ← σi exp(τNc + τ ′N(0, 1))16: r′i ← ri + σ′

iN(0, 1))17: end for18: end if19: {Interval boundary treatment}20: for all i ∈ {1, . . . , nr} do21: r′i ← T[rmin
i

,rmax
i

](r
′
i)22: end fornormal distributions, as they are responsible for the hoie of this type of distribu-tion for mutating ontinuous variables. Among all ontinuous distributions with�nite variane on R, the normal distribution possesses the maximum entropy [67℄.The multidimensional normal distribution is symmetrial to its mean value andunimodal. The step-sizes represent standard deviations of the multi-dimensionalnormal distribution for eah real-valued variable. By variation of these standard



Chapter 3 33deviations the impat of the mutation on the variable vetor in terms of similarityan be saled.As opposed to ontinuous variables, integer variables are less ommonly usedin evolution strategies. The mutation proedure for integer variables is borrowedfrom [101℄, where the replaement of the normal distributed random variables bythe di�erene between two geometrial distributed variables has been suggested.Among distributions de�ned on integer spaes the multidimensional geometridistribution is one of the distributions of maximum entropy and �nite variane, asthe original geometri distribution is single-tailed, Rudolph [101℄ suggested to useinstead the di�erene Z1−Z2 of two geometrially distributed random variables.The resulting distribution is depited for the 1-D ase in Figure 3.2 and 2-D asein Figure 3.3. It is l1-symmetrial3 entered around its mean value, unimodal andit has an in�nite support, thereby symmetry and aessibility of the mutation isobtained. Aessibility is given in a strit sense: eah possible on�guration anbe reahed with a �nite probability in a single step. The strength of the mutationfor the integer parameters is ontrolled by a set of step-size parameters whihrepresent the mean value of the absolute variation of the integer objet variables.The details of this mutation operator are found in Algorithm 5. Note that ageometrially distributed random value with mean step size parameter ς an begenerated by transforming a uniformly distributed random value u, using:
z =

⌊
ln(1 − u)
ln(1− ψ)

⌋

, ψ = 1− ς
(

1 +
√

1 + ς2
)−1 (3.7)The width of the distribution an be ontrolled by the parameter ς, the meanvalue of the exponential distribution (f. 3.2, for a derivation, see [101℄). Exeptingthe di�erent distribution types used, it is very similar to the real valued mutationoperator in Algorithm 4. Self-adaptation is used to ontrol the width parameter(s).The mutation of the width parameter is done as in [101℄ using a global learningrate τ and loal learning rate τ ′. Sine a mean step-size below 1 is not usefulfor integer problems the mutated mean step-size is set bak to 1, whenever itsmutation results in a value less then 1.Sine we have to keep integer and ontinuous parameters within their feasibleinterval, the mutation operators need to be extended. Therefore a transformationfuntion T[a,b] is applied to the mutation operators, that brings parameters be-yond boundaries bak into the feasible domain. For the ontinuous and integerparameters this is ahieved by (an illustration of how the transformation funtionworks an be found in Figure 3.4.):

T[a,b] = a+ (b − a) 2

π
sin−1(| sin

(
π(x− a)
2(b− a)

)

|) (3.8)The transformation funtion an be viewed as a re�etion at the interval bound-aries. Given a step-size of the mutation, we may onsider this to be the length3The l1-norm of a vetor z ∈ Zn is de�ned as ∑n
i=1

|zi|.
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Figure 3.2: 2-D representation of the dis-tribution obtained as the di�erene oftwo geometrial distributions for di�er-ent values of ς. Figure 3.3: 3-D representation of thedistribution obtained as the di�ereneof two geometrial distributions. Figureourtesy of Günter Rudolph.a partile has to travel within the interval. Starting in the diretion of the orig-inal unbounded mutation, whenever it meets with an interval boundary the di-retion is inverted until the total length of the unbounded mutation has beenovered. The method an be e�iently implemented as seen in algorithm 6.Unlike other mappings, the limiting distribution of the random walk Xt+1 =
T[a,b](Xt + σN(0, 1)), t = 1, 2, . . . is the uniform distribution. This means thatthere are no preferred regions of the searh spae in the long term in ase ofneutral seletion and thus bias is avoided. In order to prevent a loss of ausality,the step-size should be kept smaller than the interval width. We reommend amaximal stepsize of 0.2(b− a).
y = (x− a)/(b− a)if ⌊y⌋ mod 2 = 0 then
y′ = |y − ⌊y⌋|else
y′ = 1− |y − ⌊y⌋|end if

x′ = a+ (b− a)y′return x′Algorithm 6: Computation T[a,b](x), forinterval boundaries a and b.  0
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xFigure 3.4: An illustration to show work-ing mehanism of the transformationfuntion (a=4, b=6).



Chapter 3 35Algorithm 5 Mutation of integer parameters1: input: z1, . . . , znz
, ς1, . . . , ςnς2: output: z′1, . . . , z
′
nz
, ς ′1, . . . , ς

′
nς3: ontrol parameters: nς ∈ {1, nz}4: Nc ← N(0, 1)5: τ ← 1√

2nz
; τ ′ ← 1√

2
√
nz6: if nς = 1 then7: {Single step-size mode}8: ς ′1 ← max(1, ς1 exp(τNc))9: for all i ∈ {1, . . . , nz} do10: u1 ← U(0, 1);u2 ← U(0, 1);ψ ← 1− (ς ′1/nz)

(

1 +
√

1 + (
ς′1
nz

)2
)−111: G1 ←

⌊
ln(1−u1)
ln(1−ψ)

⌋

;G2 ←
⌊

ln(1−u2)
ln(1−ψ)

⌋12: z′i ← zi +G1 −G213: end for14: else15: {Multiple step-size mode}16: for all i ∈ {1, . . . , nz} do17: ς ′i ← max(1, ςi exp(τNc + τ ′N(0, 1)))18: u1 ← U(0, 1);u2 ← U(0, 1);ψ ← 1− (ς ′i/nz)

(

1 +
√

1 + (
ς′
i

nz
)2

)−119: G1 ←
⌊

ln(1−u1)
ln(1−ψ)

⌋

;G2 ←
⌊

ln(1−u2)
ln(1−ψ)

⌋20: z′i ← zi +G1 −G221: end for22: end if23: {Interval boundary treatment}24: for all i ∈ {1, . . . , nz} do25: z′i ← T[zmin
i

,zmax
i

](z
′
i)26: end forFinally, a mutation of the disrete parameters is arried out with a mutationprobability as desribed in Algorithm 7. The probability is a strategy param-eter for eah disrete variable. Eah new value is hosen randomly (uniformlydistributed) out of the �nite domain of values. The appliation of a uniform dis-tribution is due to the priniple of maximal entropy, sine the assumption wasmade that there is no reasonable order de�ned between the disrete values.To reason about requirements like symmetry and salability we need to de�nea distane measure on the disrete sub-spae. The assumption that there is noorder, whih an be de�ned on the �nite domains of disrete values, leads to theappliation of the overlap distane4 measure: ∆((d1, . . . , dnd

), (d′1, . . . , d
′
nd

)) =4For the binary ase this orresponds to the Hamming distane.
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∑nd

i=1H(di = d′i) with H(true) = 1;H(false) = 0 as a similarity measure forguiding the design of the mutation operator.A self-adaptation of the mutation probability for the disrete parameters isahieved by a logisti mutation of these parameters, generating new probabilitiesin the feasible domain. The logisti transformation funtion is reommended anddisussed by Shütz [105℄. The basi idea of this transformation is to keep thevariables within the range [0, 1]. Given an original mutation probability p ∈ [0, 1],it an be mutated using the following proedure:
p′ =

1

1 + 1−p
p ∗ exp(−τ ′N(0, 1))

(3.9)Here N(0, 1) denotes a funtion that returns a normally distributed random num-ber. We reommend to employ a seond transformation funtion (Tpmin,pmax
)that keeps the value of p in the interval [1/(3nd), 0.5]. The upper bound of 0.5for the mutation probability is motivated by the observation that the mutationloses its ausality one the probability exeeds the value of about 0.5. The lowerbound is used to prevent the mutation probability from being too lose to 0, inwhih ase the MIES beomes insensitive to hanges of that parameters. In aseof p = 1/(3nd) a disrete mutation an be expeted in every third appliation ofthe mutation operator.Depending on the disrete subspae, it an be advantageous to use a single mu-tation probability instead of many individual mutation probabilities p1, . . . , pnd
.In ase of a single mutation probability, for eah position of the disrete subvetorit is deided independently, but with the same probability, whether to mutate thisposition or not. By adapting the mutation rate, the average number of mutationson the disrete values is adjusted to the mean step-size if the Hamming distaneis onsidered as metri.3.3.3 Step-size Adaptation StudyPrevious work already showed that self adaptive ES are able to onverge to optimaof simple funtions in arbitrary preision by using step size adaptation. However,it is an open question whether the self adaptation indeed is apable of helping thestep size lose to a optimal value that optimizes the progress rate. A theoretialanalysis of the step-size adaptation is very di�ult, even for simple models suh asthe sphere models. In this hapter we used a semi-empirial approah by approxi-mating the loal progress rate at a given distane to the optimum statistially fordi�erent step-sizes, in order to �nd the optimal step-size s∗ that maximizes theloal progress of the MIES. This omputation is repeated for di�erent stages of theevolution and eah time the empirially found optimal step-size ŝ∗ is omparedto the urrent step-size of the MIES.Though we use the approah in this artile only for the analysis on the on-tinuous, integer, and disrete sphere model, it is appliable also for analysis on



Chapter 3 37Algorithm 7 Mutation of nominal disrete parameters1: input: d1, . . . , dnd
, p1, . . . , pnp2: output: d′1, . . . , d′nd
, p′1, . . . , p

′
np3: ontrol parameters: np ∈ {1, nd}4: Nc ← N(0, 1)5: τ ← 1√

2nd
; τ ′ ← 1√

2
√
nd6: if np = 1 then then7: {Single step-size mode}8: p′ ← 1

1+ 1−p

p
∗exp(−τ∗Nc)9: p′ = T[0.01,0.5](p

′)10: for all i ∈ {1, . . . , np} do11: if U(0, 1) < p′ then12: hoose a new element uniform distributed out of Di \ {di}13: end if14: end for15: else16: {Multiple step-size mode}17: for all i ∈ {1, . . . , np} do18: p′i ← 1

1+
1−pi

pi
∗exp(−τ∗Nc−τ ′∗N(0,1))19: p′i = T[1/(3nd),0.5](p

′
i)20: if U(0, 1) < p′i then21: hoose a new element uniform distributed out of Di \ {di}22: end if23: end for24: end ifany other test problem for whih the optimum is known and the evaluation of theobjetive funtion is fast.In orrespondene with [11, 12℄, the loal progress rate φ(s,x) for a step-size sis the expetation of the distane overed towards the optimum in one mutationstep [13℄ starting from position x. Consider a mutation operator muts parame-terized by the step-size, an objetive funtion f : I → R with single optimumx∗ ∈ X , and a position x in the metri searh spae (X, d). Then

φ(s,x) = E
(max{0, R(x)−R(muts(x))}

R(x)

)
, R(x) = d(x,x∗) (3.10)In order to ompute φ(s,x) we ompute the sample mean forM = 50000 samples:

φ̂(s,x) =
1

M

M∑

i=1

max{0, R(x)−R(mutis(x))}
R(x)

. (3.11)Depending on the parameter type, a di�erent distane measurement is used toompute d(x,x∗) (f. Equation 3.12). For instane, the Eulidean distane is ap-



38 Mixed-Integer Evolution Strategiesplied to ontinuous parameters, Manhattan distane is applied to integer param-eters, and for disrete parameters we hoose the Overlap distane funtion.
d(x,x∗) =







√∑n
i (xi − x∗i )2 if xi ∈ R (Eulidean Distane)

∑n
i |xi − x∗i | if xi ∈ Z (Manhattan Distane)

∑n
i I(xi, x

∗
i ) =

{

0 if (xi = x∗i )

1 if (xi 6= x∗i )
if xi ∈ D (Overlap Distane)(3.12)The optimal step-size s∗ is approximated by means of a graphial plot. The valueof φ̂(s,x) is omputed for an equidistant set of L = 40 points s1, s2, . . . , sL in theinterval [0, smax(x)]. The upper interval boundary smax is hosen as smax(x) =

2|x − x∗| and as smax = 1 whenever smax(x) represents a mutation rate. It isplausible that an optimal step-size exists, as �rst of all the value of φ is alwayspositive and for s = 0 it should take the value of 0. Whenever the step-size sgets too large the progress rate also approahes zero, sine the probability tostep beyond the region of improvement gets very high. The upper bound of 1 inases where s represents a probability seems to be a natural hoie. However, inase of a high searh spae dimensionality the optimal value of s might be verylose to zero and a redution of the upper bound an be onsidered. The researhquestion is whether the MIES an �nd and keep the step-size that maximizes theloal progress rate.The experimental setup is as follows: We ompute the optimal step-size atdi�erent stages of the evolution. Let x(t) denote the parent individual in the t-thgeneration. We then ompute φ̂(si,x(1)) for si ∈ [0, smax(x(t))], i = 1, . . . , L, andgraphially ompare the peak of the graph of φ̂(si,x(t)) with the step-size s(t) usedby the MIESES at di�erent stages of the evolution. The searh spae dimensionis 15 and the variable range is [−1000, 1000] for the integer and disrete variables,and {0, . . . , 9} for the disrete variables. As a test problem the minimization of thesum of squares of the variables is used. Continuous, integer and disrete spaeswere studied separately.Results for di�erent parameter types are shown in Figure 3.5 (ontinuous), 3.6(integer) and 3.7 (disrete). For all three ases the optimum of the step-size isfound and traked. This proves that, at least for relatively simple � but never-theless high-dimensional � problems, the self-adaptation of the step-sizes works.Note, that the sale of the plots in Figures hanges during the run by orders ofmagnitude. In order to ahieve the results we used a learning rate of 0.5. It isalso possible to use the reommended values for τ (f. 3.3.2). For this setting weahieved worse results, although the right order of magnitude for the step-sizewas still obtained. In summary, this study shows that all distributions used formutation an be ontrolled in their width by means of saling parameters, allow-ing self-adaptation to be implemented. In the following part, we will present someresult of theoretial study of MIES on onvergene reliability.
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Step sizeFigure 3.5: Comparison between the peak of the graph of φ̂(si, x
(t)) with thestepsize s(t) (vertial line) of ontinuous variables used by the MIES at that stageof the evolution. The step-size s(t) is found by the self-adaptation within the

(4, 28)-MIES (i.e. without knowledge of φ̂).3.3.4 Global Convergene PropertiesIf ertain regularity requirements are met, it is possible to prove strong probabilis-ti onvergene of the MIES for t→∞ towards the global optimum. The theoremgeneralizes a theorem on the ES for ontinuous spaes by Born [15℄. Both the plusand the omma strategy are onsidered, and for the onvergene analysis the bestsolution found so far, i.e. xtbest, will be onsidered.De�nition 1A funtion f : C → R is alled regular, if:(A) f is ontinuous,(B) C ⊆ Rn is a losed set,(C) ∀x′ ∈ C : ∀ǫ > 0 : the set {x ∈ C|x 6= x′ ∧ f(x) ≤ f(x′) + ǫ} is non-empty.De�nition 2Let A′ ⊆ A and let g : A→ B a funtion. By g|A′ we denote the restrition of thefuntion g de�ned by g|A′(a′) := g(a′) where a′ ∈ A′.Given these tehnial preliminaries we an state the following theorem:
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Step sizeFigure 3.6: Comparison between the peak of the graph of φ̂(si, x
(t)) with thestepsize s(t) (vertial line) of integer variables used by the MIES at that stageof the evolution. The step-size s(t) is found by the self-adaptation within the

(4, 28)-MIES (i.e. without knowledge of φ̂).Theorem 3Let f : R
n × A → R denote a mixed-integer funtion, and f |Rn×{a} is a regularfuntion for at least one a∗ ∈ A whih is optimal. Then for a (µ+ λ) MIES withlower limit σmin > 0 for the stepsizes and mutation rates, the series f(xtbest)t=1,2,...onverges with probability one to the global minimum of f , i.e.Pr{ lim

t→∞
∆t = 0} = 1,with ∆t = f(xtbest)− f∗ ≥ 0 (3.13)Here t represents the number of iterations, and f∗ denotes the global optimum.Proof (Proof)From the onstrution of the algorithm it follows:

∀t ≥ 0 : ∆t+1 ≤ ∆t (3.14)and from the de�nition of a global optimum we get
∀t ≥ 0 : ∆t ≥ 0 (3.15)With proposition 3.14 and 3.15 it follows that ∆t(t = 1, 2, . . .) has a limit value
lim
t→∞

∆t = ∆∞ (3.16)
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Step sizeFigure 3.7: Comparison between the peak of the graph of φ̂(si, x
(t)) with thestepsize s(t) (vertial line) of disrete variables used by the MIES at that stageof the evolution. The step-size s(t) is found by the self-adaptation within the

(4, 28)-MIES (i.e. without knowledge of φ̂). The results were also omputed forprobabilities that leave the feasible interval [1/(3nd), 0.5] and for whih the inter-val transformation T[a,b] was applied.Below we show that ∆∞ > 0 leads to a ontradition with proposition 3.15 andthus ∆∞ = 0 is true. Let f∞
best denote the funtion value f tbest for t → ∞, theexistene of whih we have shown above. Then let

ǫ = (f∞
best − f∗)/2 (3.17)Given the assumption ∆∞ > 0 and hene ǫ > 0, it follows that

X∗
ǫ = {(r, a∗) ∈ R

n × A | | f |Rn×{a∗}(r)− f∗| ≤ ǫ} (3.18)is a nonempty set, where a∗ denotes an optimal setting for a ∈ A. Then X∗
ǫ isnon-empty beause of the assumption of regularity of f |Rn×{a} for any optimal

a ∈ A.Thus there exists a losed n-dimensional ball K = {r ∈ Rn| |r0 − r| ≤ ρ} with
ρ > 0 and enter r0 ∈ Rn that Ka∗ = {(r, a∗)|r ∈ K} ⊆ X∗

ǫ .Now, let us ompute the probability of the event that the mutation of the disreteand ontinuous variables yield a point in Ka∗ , given some arbitrary parent (r′, a′),where a′ denotes the disrete part of a solution. This an be omputed as the jointprobability for the following two independent events:



42 Summary(E1) the mutation of real vetor generates r ∈ K(E2) the mutation of disrete part of the solution generates a∗This joint probability is lower bounded by:
pǫ = min

a′∈A

pa′→a∗ min
r0∈Rn

(
1√

2πσ2
min

)n

·
∫

r∈K
exp

(
1

2σ2
min

(r− r0)
T · (r− r0)

)

dr > 0(3.19)for a step-size σmin > 0. Here pa′→a∗ is the probability to obtain a∗ by onemutation of disrete parameters, whih is larger than 0. Now we an derive alower bound for the probability that Ka∗ is hit at least one after q generationsas (where (q − 1)λ ≤ t < qλ):Pr( q
∨

i=1

(xibest ∈ Ka∗)) = 1− (1− (pǫ)
λ)q (3.20)where λ denotes the number of o�spring per generation. Hene,

lim
q→∞

Pr( q
∨

i=1

(xibext ∈ X∗
ǫ )) = 1 (3.21)With expression 3.15 and expression 3.17 we get an ontradition to our assump-tion that ∆∞ > 0. In other words, any vetor with a distane ∆t > 0 will beimproved as t→∞ with probability one.3.4 SummaryTargeting at solving hallenging mixed-integer parameter optimization problemsin the real world, we proposed a promising algorithm - the so-alled Mixed-IntegerEvolution Strategies (MIES) - in this hapter. MIES are derived from the anonialEvolution Strategies (ES), whih are often applied to optimization problems inontinuous searh spae. MIES, by ontrast, use spei� variation operators todeal with di�erent parameter types (ontinuous, integer and disrete) of deisionvariables. In partiular, MIES are apable of takling blak-box mixed-integeroptimization problems in pratie.Inspired by the previous works [7, 38℄ on mixed-integer parameter optimizationand their appliations to some representative real-world appliations, we explainedthe design philosophy of the framework of MIES expliitly. Furthermore, in thishapter we made some theoretial studies on MIES regarding, for instane, theglobal onvergeny property and self-adaptation of stepsize. In the rest of thisthesis, we will do more experimental studies on MIES to learn more about suhan algorithm. For instane, MIES will be applied to feature detetion in medialimages, and several advaned tehniques will be studied for further improving thealgorithm performane.



Chapter 4Syntheti Mixed-IntegerLandsapesIn the previous hapter 3, we introdued Mixed-Integer Evolution Strategies(MIES) and related theoretial study results. In this hapter we will presentsome arti�ial test problems (�tness landsapes), whih are speially designedfor mixed-integer parameters searh spaes. Through these proposed test prob-lems, we an gain deep insights about MIES algorithm. Some seleted empirialresults will be presented whih demonstrate the algorithm performane, suh asits onvergene behavior. These syntheti mixed-integer landsapes also providereaders with the opportunity to ompare results of this kind of evolutionary al-gorithm with that of other optimization algorithms, for instane with traditionalEvolution Strategies (ES).The whole hapter is organized as follows: First, in setion 4.1, �tness land-sapes, whih have been proved to be one of the most important onepts inevolutionary theory, will be reviewed brie�y espeially in the omputer sieneresearh domain. In setion 4.2, we introdue the Barrier funtion and show someexperimental results about it. Next, Mixed-Integer NK Landsapes (MINKL) areexplained in detail in setion 4.3, as well as some important theorems on the ex-istene and position of loal/global optima and some implementation details ofthe model.4.1 Fitness LandsapesFitness landsapes are very often enountered in the ommunity of people, whoare working on evolutionary omputation. It is a powerful tool that researhers anuse to develop omprehensive insights about the working mehanism of a omplexsearhing proess, for instane, a searhing proess when evolution strategies areapplied to some real-world appliation. Beause of their importane, we would



44 Fitness Landsapeslike to give a brief review of �tness landsapes and several important de�nitionsin this part.4.1.1 MotivationFitness landsapes were originally introdued by Sewall Wright in his 1932 pa-per [124℄, in whih �tness landsapes were used as a way to visualize sophistiateddynamis of population genetis. Aording to Wright's desription, eah individ-ual gene ombination orresponded to a point on a �tness landsape and therewas one axis whih represented every possible gene ombination. Under ertainmathematial onditions, a potential funtion F an be employed to desribe thedeterministi dynamis of suh kind of evolutionary proess. The orrespondingde�nition of a potential funtion F is de�ned as follows:
F : S → R, s 7→ F(s) (4.1)where F is a potential funtion from the state spae S with its neighbourhoodstruture into the real numbers R [115℄. Eah possible state s ∈ S an be asso-iated to one number, suh that the value of this number re�ets the degree towhih a ertain state is preferable to another state.Sine Wright introdued �tness landsape in his work, this metaphor has beenwidely adopted by sientists from di�erent researh areas, suh as biology, hem-istry, physis and omputer siene. The interpretation of �tness an be di�erentwhen referring to di�erent appliation areas. In biology, inreasing �tness meansthat a population moves uphill on a �tness landsape. On the ontrary, lowerpoints represent low energy states and thus are more desirable in physis. In om-puter siene, as Jones has learly stated in his PhD thesis [57℄, a �tness landsapeis an artifat of the neighbourhood struture, whih is indued by the operators(e.g. mutation operators in evolutionary algorithms) the algorithm employs. Inpratie, the di�erene between maximization and minimization is trivial andthey are equivalent apart from an inversion of sign of F .4.1.2 Loal OptimaGiven a �tness landsape and its potential funtion F , in the ase of minimization,loal optima are de�ned as follows:De�nition 1A point s in the state spae S is a loal optima of the F if there exists a neigh-bourhood N of s suh that ∀s′ ∈ N ,F(s)−F(s′) ≤ 0.The number of loal optima is one important harateristi of a �tness landsape,and it gives an impression of how rugged a landsape is. In general, a landsapewith fewer loal optima result in a larger orrelation and thus is easier to betakled by optimization algorithms. By ontrast, more loal optima means thatthe orresponding landsape is more rugged and therefore more hallenging for



Chapter 4 45algorithms to deal with. Figure 4.1 shows an example �tness landsape in 2D.Aording to the de�nition of loal optima, the �tness values of points A,B,Cand D are better (smaller) than all their neighbours and are loal optima in thease of minimization.
D

C

B

AFigure 4.1: Illustration of loal optima in a 2D �tness landsape.4.1.3 Unimodality vs. MultimodalityA landsape is said to be unimodal if it only has one global optimum, that is,has one peak (maximum) or valley (minimum) in a given interval. Otherwise, it isalled multimodal landsape if it has several loal optima, suh as the landsapein Figure 4.1. From mathematial perspetive, unimodal funtions an be de�nedas follows [93℄:De�nition 2A funtion F is unimodal if (1) x1 < x2 < x∗ implies that F(x1) < F(x2), and(2) x2 > x1 > x∗ implies that F(x2) > F(x1), where x∗ is the minimum point.Generally speaking, a multimodal landsape is more di�ult ompared with aunimodal landsape. However, in some extreme ases, a unimodal landsape analso present di�ulties for searhing algorithms.4.2 Barrier FuntionBarrier funtion1 is a multi-modal problem generator that produes integer opti-mization problems with a salable degree of ruggedness (determined by parameter
C) by generating an integer array A using Algorithm 8.For C = 0 the ordering of the variable y ∈ [0, 19] values orresponds to theordering of values of A(y). If the value of C is slightly inreased, still part of the1In Duth, it is alled �Drempels� funtion



46 Barrier FuntionAlgorithm 8 Barrier Funtion.1: A[i] = i, i = 0, . . . , 192: for k ∈ {1, . . . , C} do3: j ← uniform random number out of {0, . . . , 18}4: swap values of A[j] and A[j + 1]5: end fororder will be preserved under the mapping A, and thus similarity information anbe exploited. Then a barrier funtion is omputed:
fbarrier(r, z,d) =

nr∑

i=1

A[⌊ri⌋]2 +

nz∑

i=1

A[zi]
2 +

nd∑

i=1

Bi[di]
2 → min

nr = nz = nd = 5, r ∈ [0, 19]nr ⊂ Rnr ,

z ∈ [0, 19]nz ⊂ Znz ,d ∈ {0, . . . , 19}nd ⊂ Dnd .Here, Bi(i = 1, . . . , nd) denotes a set of i permutations of the sequene 0, . . . , 19,eah of whih is a random permutation �xed before the run. This onstrutionprevents that the value of the nominal value di is quantitatively (anti-)orrelatedwith the value of the objetive funtion f . Suh a orrelation would ontraditwith the assumption that di are nominal values. Whenever a orrelation betweenneighboring values an be assumed it is wiser to assign them to the ordinal typeand treat them aordingly.The parameter C ontrols the ruggedness of the resulting funtion with regardto the integer spae. Higher values of C result in more rugged landsapes withmany barriers. To get an intuition about the in�uene of C on the geometry of thefuntion we inluded plots for a two-variable instantiation of the barrier funtionin Figure 4.2 for C = 20, 100, 500, and 1000. Intuitively, barrier funtions with ahigher ontrol parameter C may have many loal optima and a searh proedurean easily get trapped by them. As we an see from these plots, when the ontrolparameter C inreases the landsape beomes more rugged. For instane, thelandsape of C = 1000 shows muh more barriers ompared to C = 20. We alsonotied that above ertain C value (threshold), the landsape di�ulty will nothange too muh as C inreases.4.2.1 Experimental ResultsSuggested by our former studies [38, 75, 77℄, the following MIES and ES settingsare hosen for the experiments on the barrier problems: (µ = 4, λ = 28) for thepopulation and o�spring sizes, and (nσ = nς = np = 1) for the step-size mode2.Sine Evolution Strategies are stohasti algorithms, in the empirial experiments2In ontrast, (nσ = nr, nς = nz, np = nd) represents n step-size mode.
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Figure 4.2: Surfae plots of the barrier test funtions for two integer variables Z1and Z2, the ontrol parameter C = 20, 100, 500 and 1000. All other variableswere kept onstant at a value of zero, Z1 and Z2 values were varied in the rangefrom 0 to 19.we reate 10 instantiations3 for eah ontrol parameter C, and for eah of themwe let the algorithm perform 20 repeated runs (there are in total 20 × 10 = 200runs for eah value of C).Figure 4.3 shows average best �tness values found by one step-size (4, 28)MIESand one step-size (4, 28) ES4 on barrier funtions with di�erent ontrol parameters
C. As we an see that it is more di�ult for both MIES and ES to �nd the globaloptimum on barrier funtions with a higher C value. This observation supportsour �nding from Figure 4.2: the landsape with a larger C value is more ruggedand it is more hallenging to takle.Based on our algorithm design in hapter 3, MIES is supposed to be moree�ient for exploring the mixed integer landsapes ompared to a standard ES. Tohek this assumption, we plot average best �tness values found by both MIES andES with C = 20, 100, 300, 500, and 1000 in Figure 4.4. The orresponding box plotfor best �tness values found by both MIES and ES in the last generation(= 100)is shown in Figure 4.5. When C = 20 or 100 ES performs a little bit betterthan MIES. This an be explained that onstruted landsapes with C = 20 or
100 are still simple, and this gives the hane to standard ES algorithms to fullyexplore the searhing spae. However in the ase of higher C values, MIES show3By using di�erent random seeds.4Here, all parameters are evolved as ontinuous variables.
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Figure 4.4: Comparison between average best �tness values found by (4, 28) MIESand (4, 28) ES for C = 20, 100, 300, 500, and 1000.the advantage over standard ES. For C = 300 or 500 the overall performaneMIES are already ompetitive to standard ES. For C = 1000 average best �tnessvalues obtained by MIES are muh lower than standard ES.4.3 Mixed-Integer NK LandsapesNK landsapes (NKL, also referred to as NK �tness landsapes), introdued byStuart Kau�man [61℄, were devised to explore the way that epistasis ontrols the�ruggedness" of an adaptive landsape.Frequently, NKL are used as test problem generators for Geneti Algorithms.NKL have two advantages. First, the ruggedness and the degree of interationbetween variables of NKL an be easily ontrolled by two tunable parameters: thenumber of genes N and the number of epistati links of eah gene to other genes
K. Seond, for given values of N and K, a large number of NK landsapes an bereated at random. A disadvantage is that the optimum of a NKL instane angenerally not be omputed, exept through omplete enumeration.As NKL have not yet been generalized for ontinuous, nominal disrete, andmixed-integer deision spaes, they annot be employed as test funtions for alarge number of pratially important problem domains.To overome this shortoming, we introdue an extension of the NKL model,
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Figure 4.6: Example Genes and their interations4.3.1 NK LandsapesKau�man's NK Landsapes model de�nes a family of pseudo-boolean �tness fun-tions F : {0, 1}N → R+ that are generated by a stohasti algorithm.It has two basi omponents: A struture for gene interation (using an epis-



Chapter 4 51tasis matrix E), and a way this struture is used to generate a �tness funtion forall the possible genotypes [1℄.The gene interation struture is reated as follows: The genotype's �tnessis the average of N �tness omponents Fi, i = 1, . . . , N . Eah gene's �tnessomponent Fi is determined by its own allele xi, and also by K alleles at K
(0 ≤ K ≤ N − 1) epistati genes distint from i. The �tness funtion reads:

F (x) =
1

N

N∑

i=1

Fi(xi;xi1 , . . . , xik), x ∈ {0, 1}N (4.2)where {i1, . . . , ik} ⊂ {1, . . . , N} − {i}. There are two ways for hoosing K othergenes: `adjaent neighborhoods ', where the K genes nearest to position i on thevetor are hosen; and `random neighborhoods ', where these positions are ho-sen randomly on the vetor. In this paper we fous on the latter ase, `randomneighborhoods '. However, a translation to the �rst ase is straightforward.The omputation of Fi : {0, 1}K → [0, 1), i = 1, . . . , N is based on a �tnessmatrix F . For any i and for eah of the 2K+1 bit ombinations a random numberis drawn independently from a uniform distribution over [0, 1). Aordingly, forthe generation of one (binary) NK landsape the setup algorithm has to generate
2K+1N independent random numbers. The setup algorithm also reates an epis-tasis matrix E whih for eah gene i ontains referenes to its K epistati genes.Table 4.1 illustrates the �tness matrix and epistasis matrix of a NKL. A moredetailed desription of its implementation an be found in [34℄.

E1[1] E1[2] · · · · · · · · · E1[K]

E2[1] E2[2] · · · · · · · · · E1[K]

· · · · · · · · ·Ei[j]· · · · · ·

EN [1]EN [2]· · · · · · · · ·EN [K]

F1[0] F1[1] · · · · · · · · · F1[2
K+1

− 1]

F2[0] F2[1] · · · · · · · · · F2[2
K+1

− 1]

· · · · · · · · · Fi[j]· · · · · ·

FN [0]FN [1]· · · · · · · · ·FN [2K+1
− 1]Table 4.1: Epistasis matrix E (left) and �tness matrix F (right)After having generated the epistasis and �tness matries, for any input vetor

x ∈ {0, 1}N we an ompute the �tness in O(KN) omputational omplexity via:
F (x) =

1

N

N∑

i=1

Fi[2
0xi + 21xEi[1] + · · ·+ 2KxEi[K]] (4.3)Note, that the generation of F has an exponential omputational omplexity andspae omplexity in K, while being linear in N . The omputational omplexityfor omputing funtion values is linear in K and N for this implementation.Properties of NK LandsapesKau�man's model makes two prinipal assumptions: �rst, that the �tness of agenotype is the sum of the ontributions from eah gene, and seond, that the



52 Mixed-Integer NK Landsapese�ets of polygeny and pleiotropy make these interations e�etively random.Besides Kaufmann, some other researhers, e. g. Weinberger et al. [121, 113℄, didan extensive study on NKL. Some well-known properties are:1. K = 0 (no epistasis): The problem is separable and there exists a uniqueglobal optimum. Assuming a Hamming neighborhood-struture, the prob-lem gets unimodal.2. 1 ≤ K < N − 1: For K = 1, a global optimum an still be found in poly-nomial time [121℄. For K ≥ 2, global optimization is NP-omplete for therandom assignment of neighbors and onstantK. However, the problem analways be solved in a omputational omplexity of 2N funtion evaluationsand hene an pratially be solved for problems of moderate dimension(N around 30). For adjaent neighbors, the problem an be solved in time
O(2KN) (f. Weinberger [121℄).3. K = N − 1: This orresponds to the maximum number of interationsbetween genes. Pratially speaking, to eah bitstring of F : {0, 1}N → [0, 1)we assign a sum of N values, eah of whih is drawn independently from auniform distribution in [0, 1). If we hoose the Hamming neighborhood on
{0, 1}N the following results apply:
• The probability that a random bit string is a loal optimum is 1

N+1

• The expeted number of loal optima is 2N

N+14.3.2 Generalized NK LandsapesAs mentioned in the previous setion, Kau�man's NKL model is a stohastimethod for generating �tness funtions on binary strings. In order to use it as atest model for mixed-integer evolution strategies, we extend it to a more generalase suh that the �tness value an be omputed for di�erent parameter types.Here we onsider ontinuous variables in R, integer variables in [zmin, zmax] ⊂
Z, and nominal disrete values from a �nite set of L values. In ontrast to theordinal domain (ontinuous and integer variables), for the nominal domain nonatural order is given. Mixed-integer optimization problems arise frequently inpratie, e.g. when optimizing optial �lter designs [7℄ and the parameters ofalgorithms [75℄.The idea about how to extend NKL to the mixed-integer situation will bedesribed in three steps. First we propose a model for ontinuous variables, thenfor those with integer variables and nominal disrete variables. Finally, we willdisuss the ase of NKL that onsists of all these di�erent variable types at thesame time and allow for interation among variables of di�erent types. This de�nesthe full mixed-integer NKL model.



Chapter 4 53Continuous NK LandsapesIn order to de�ne ontinuous landsapes, we hoose an extension of binary NKLto an N -dimensional hyperube [0, 1]N . Therefore, all ontinuous variables arenormalized between [0, 1]. In the following we desribe the onstrution of theobjetive funtion F : [0, 1]N → [0, 1):Whenever the ontinuous variable takes values at the orners of the hyperube,the value of the orresponding binary NKL is returned. For values loated inthe interior of the hyperube or its delimiting hyperplanes, we employ a multi-linear interpolation tehnique that ahieves a ontinuous interpolation between thefuntion values at the orner. Note that a higher order approah is also possiblebut we hose a multi-linear approah for simpliity and ease of programming.Moreover, the theory of multi-linear models as used in the design and analysisof experiments, introdues intuitive notions for the e�et of single variables andinteration between multiple variables of potentially di�erent types [19℄. For eahof the N �tness omponents Fi : [0, 1]K+1 → [0, 1), we reate a multi-linearfuntion
Fi(x) =

2K+1−1∑

j=0

aijx
[1 AND j]
i

K∏

k=1

x
[2k AND j]/2k

ik
, (4.4)where AND is the bitwise and operator and xik is the k-th epistati gene of xi.For instane, in the ase K = 2 the formula for Fi(x) beomes5:

ai000 +ai001xi+a
i
010xi1 +ai100xi2 +ai011xixi1 +ai101xixi2 +ai110xi1xi2 +ai111xixi1xi2 .One uniformly distributed random values have been attahed to the ornersof the K-dimensional hyperube (f. Figure 4.7), we an identify the oe�ients

ai0, . . . , a
i
2K+1−1 by solving a linear equation system (LES). However, even for mod-erate K the omputational omplexity for applying general LES solvers would beprohibitively high. An advantage of the multi-linear form (as ompared to otherinterpolation shemes like radial basis funtions or splines) is that it allows foran e�ient omputation of the oe�ients by exploiting the diagonal struture ofthe equation system. Aordingly, aij an be obtained by means of the followingformula:

ai0 = Fi[0], aij = Fi[j]−
j−1
∑

ℓ=0

[
aiℓI(ℓ = (ℓ AND j))

]
, j = 1, . . . , 2K+1 − 1 (4.5)In order to ompute the values, we have to start with j = 0 and inrease thevalue of j. Hene, the number of additions we need for omputing all oe�ientsis proportional to (2K+1 − 1)(2K+1)/2 = 22(K+1)−1 − 2K .One we have the aij values, we an use Equation 4.2 to ompute the model. Ofourse the domain of the x values has to be replaed by [0, 1]N in that equation.For the omputation of the global optimal value of the ontinuous NK landsapesthe following lemma is useful:5Note that we use binary instead of deimal numbers for the index to make the onstrutionmore lear.
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110Figure 4.7: Example HyperCube with K = 2 and the omputation of aijLemma 3At least one global optimum of the funtion F will always be loated in one ofthe orners of the N dimensional hyperube, suh that the omputation of theoptimal funtion value upper bounds the omputational omplexity for the binarymodel.ProofThe idea of the proof is that there is an algorithm that for any given input

x∗ ∈ [0, 1]N determines a orner of the hyperube, the funtion value of whihis not higher than the funtion value at F , given that F has a multilinear form.Basially, the proposed algorithm an be desribed as a path oriented algorithmthat searhes parallel to the oordinate axis: First we �x all variables exept one,say x1, in F . It is now ruial to see that the remaining form F (x1, x
∗
2, . . . , x

∗
N ) isa linear funtion of x1. Now, beause the form is linear, it is obvious to see thateither (1, x∗2, . . . , x

∗
N )T or (0, x∗2, . . . x

∗
N )T has a funtion value that is better orequal than the funtion value at (x∗1, . . . , x

∗
N )T . We �x x1 to a value for whih thisis the ase, i. e. we move either to (1, x∗2, . . . , x

∗
N )T or to (0, x∗2, . . . x

∗
N )T withoutinreasing the funtion value. For the new position x1∗ we again �x all variablesexept one. This time x2 is the free variable. Again we an move the value of x2either to zero or to one, suh that the funtion value does not inrease. Now, thenew vetor x12∗ will either be (x1∗

1 , 0, x
∗
3, . . . , x

∗
N )T or (x1∗

1 , 1, x
∗
3, . . . , x

∗
N )T . Afterontinuing this proess for all remaining variables x3 to xN we �nally obtain avetor x12···N∗, all values of whih are either zero or one, and the funtion valueis not worse than that of x∗.Theorem 4The problem of �nding the global optimal value for a ontinuous NKL is NP-omplete for K ≥ 2.



Chapter 4 55ProofFinding the optimum in the orner is equivalent to the NP-omplete binary ase.By applying Lemma 1, we an redue the ontinuous ase to the binary ase. Onthe other hand, whenever we �nd the global optimal solution for the ontinuousase, in polynomial time we an onstrut a good solution that is just as goodwhere all optima are loated at the orners in linear time. Thus, there exists apolynomial redution of the binary ase to the ontinuous ase.Integer NK LandsapesBased on our design, NKL on integer variables an be onsidered to be a speialase of ontinuous NKL. The integer variables an be normalized as follows: Let
zmin ∈ Z denote the lower bound for an integer variable, and zmax ∈ Z denoteits upper bound. Then, for any z ∈ [zmin, zmax] ⊂ Z we an ompute the valueof x = (z − zmin)/(zmax − zmin) in order to get the orresponding ontinuousparameter in [0, 1], whih an then be used in the ontinuous version of F toompute the NKL. Note that the properties disussed in 4.3.2 and 4.3.2 also holdfor integer NKL.Nominal NK LandsapesTo introdue nominal disrete variables in an appropriate manner a more radialhange to the NKL model is needed. In this ase it is not feasible to use inter-polation, as this would imply some inherent neighborhood de�ned on a singlevariable's domain xi ∈ {di1, . . . , diL}, i = 1, . . . , N , whih, by de�nition, is notgiven for the nominal disrete ase. We will now propose an extension of NKLthat takes into aount the speial harateristis of nominal disrete variables.Let the domain of eah nominal disrete variable xi, i = 1, . . . , N be de�nedas a �nite set of maximal size L ≥ 2. Then for the de�nition of a funtion ona tuple of K + 1 suh values we would need a table with LK+1 entries. Again,we an assign all �tness values randomly by independently drawing values froma uniform distribution. The size of the sample is upper-bounded by LK+1. For
L = 2 this orresponds to the binary ase. After de�ning N �tness omponents Fi,we an then sum up the values of these omponents for the NKL model (Eq. 4.2).The optimum an be found by enumerating all input values, the omputationalomplexity of whih is now LN . The implementation of the funtion table andthe evaluation proedures are similar to that of the binary ase. Note that fora onstant value of L and K the spae needed for storing the funtion values isgiven by NLK+1, so is the omputational omplexity for generating the matrix.The time for the funtion evaluations is proportional to N(K + 1).Equipping the disrete searh spae with a Hamming neighborhood, in ase
K = 0 the problem remains unimodal. For K > 0, we remark that for the generalproblem with L > 2, the detetion of the optimum is more di�ult than in thebinary ase. Hene, the binary ase an be redued to the ase L > 2, but notvie versa. For the ase of full interation (K=N-1) we show:



56 Mixed-Integer NK LandsapesLemma 5For the nominal disrete NKL with K = N − 1, L ≡ constant , and Hammingneighborhood de�ned on the disrete searh spae, the probability that an arbi-trary solution x gets a loal optimum is 1
N(L−1)+1 . Moreover the expeted numberof loal optima is LN

N(L−1)+1 .ProofGiven the preliminaries, N(L − 1) is the number of Hamming neighbors for anysolution x ∈ {1, . . . , L}N . Sine we assign a di�erent �tness value from the interval
[0, 1) independently to eah neighbor, the probability that the entral solution, i.e.
x itself beomes the best solution, is 1/(N(L− 1)+1). Sine LN is the number ofsearh points in {1, . . . , L}N we an ompute the expeted number of loal optimaas LN

N(L−1)+1 .Mixed Integer NK LandsapesIt is straightforward to ombine these three types of variables into a single NKLwith epistati links between variables of di�erent types (f. Figure 4.6). For mixedvariables of the integer and ontinuous types there is no problem, sine integers,after normalization, are treated like ontinuous variables in the formula of F . Ifthere are D nominal disrete variables that interat with a ontinuous variable,then the values of these disrete variables determine the values at the edges ofthe K −D dimensional hyperube that is used for the interpolation aording tothe remaining ontinuous and integer variables. Note that for di�erent nominaldisrete values the values at the orners of the K−D dimensional hyperube willhange in almost every ase.Instead of desribing the mixed variable ase in a formal manner we give anillustrating example (f. �gure 4.8). This example shows one individual with threeparameters (one ontinuous, one integer and one disrete), and eah gene inter-ats with both other genes. For eah gene, a hyperube is reated. We assumethere are three levels for the disrete gene Xd (L = 3), so the hyperube is re-dued to three parallel planes, and the value of the disrete gene deides whihplane is hosen. More onretely, assuming the individual has the following values:
Xd = 0, Xi = 0.4, Xr = 0.8, the value of the disrete parameter Xd determineswhih square is hosen (Xd = 0). The value for eah orner is based on the �tnessmatrix in Table 4.2 (bold displayed). As mentioned in the previous hapter, wealulate the �tness value of this individual as follows:

Fr(a,x) = a0 + a1Xr + a2Xi + a3XiXr

a0 = Fr(0, 0) = 0.8, a1 = Fr(0, 1)− a0 = −0.1
a2 = Fr(1, 0)− a0 = −0.1, a3 = Fr(1, 1)− a0 − a1 − a2 = −0.1

Fr(0.4, 0.8) = 0.648
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Figure 4.8: Example for the omputation of a MI-NK landsape.
Er[1] = Xi Er[2] = Xd

Ei[1] = Xr Ei[2] = Xd

Ed[1] = Xr Ed[2] = Xi

0.80.7 0.70.5 0.30.70.20.9 0.50.60.30.5
Fr 0.5 0.8 0.4 0.7 Fi 0.20.30.70.9 Fd 0.90.80.20.70.2 0.1 0.8 0.4 0.20.50.40.6 0.80.70.30.3Table 4.2: Example epistasis matrix (left)and �tness matrix (right).4.3.3 Experimental ResultsIn order to test our mixed-integer NKL problem generator, we hoose a popula-tion size µ of 4, o�spring size λ of 28 and omma strategy for our experiments.The maximum number of generations is set to 100. Similar to experiments forbarrier funtions, to evaluate the algorithm performane, we generated 10 prob-lem instantiations for eahK ∈ {1, 3, 5, 10, 14} so that it is still feasible to �nd theglobal optimum by evaluating all bit strings of length N = 15. Eah generatedproblem onsists of 5 ontinuous (Nr = 5), 5 integer (Nz = 5) and 5 nominaldisrete (Nd = 5) variables. The ontinuous variables are in the range [-10,10℄,the integer-valued variables are also in the range [-10,10℄ and we used {0, 1} forthe nominal disrete variables (Booleans). We ran both MIES and ES 20 timeson eah problem instane. To ompare the results of the di�erent experiments wede�ne the following error-measure:error = best found �tness - best possible �tnessThe results are displayed in Figure 4.9. The x-axis shows the number of genera-tions while the y-axis shows the average error (over all experiments). As an beseen, for both algorithms an inrease in K results in an inrease in error whihindiates the problem di�ulty inreases with K.Like we did in experiments on barrier funtions, we plot average errors ofdi�erent K for both MIES and ES in Figure 4.10. In addition, we reate a boxplot for the last generation's errors of both MIES and ES in Figure 4.11.There we an ompare overall performane between standard ES and MIESalgorithms. As an be seen, in the ase of K = 1, 3, 5, 10 the MIES show betterresults than the standard ES. For K = 14 the average errors for MIES and
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60 SummaryES are similar. As K = 14 means that eah variable is onneted to all othervariables, the searh spae beomes extremely omplex and it beomes too hardfor both algorithms. Under suh irumstanes, MIES and ES show almost thesame performane.4.4 SummaryWe presented two arti�ial landsapes in this hapter: Barrier funtion and Mixed-Integer NK Landsapes (MINKL) and they are intensively used as test ases inthis work. By design, these arti�ial landsapes are very good for helping usto learn more about performane behavior of MIES algorithm, suh as onver-gene property. In return, we an further improve the MIES and apply it to moreomplex real-world appliations. Moreover, we ompared MIES to the standard(ontinuous) ES using simple trunation of ontinuous variables. It turns out thatthe MIES approah has a muh higher onvergene reliability.About MINKL, we make some remarks here: MINKL extends NK landsapemodel from disrete problem (binary ase in general) domain to the mixed-integerproblem domain. It turns out that a multi-linear interpolation approah for theontinuous and integer variables provides a straightforward generalization of thismodel and an be easily implemented. Using Equation 4.4, funtion values an beomputed in linear time. However, the detetion of the global optimum turns outto be a NP-omplete problem for K > 2 and an be redued to the problem ofdeteting the global optimum for the binary ase. However, an alleged drawbakof the interpolation approah is that its optima are always loated in the ornersof the searh spae. There are possible some ways to address this problem. Oneway would be to transform the input variables by means of a periodi funtion andthen map them bak to [0, 1], e.g. by substituting xi by s(xi) = 1
2 + 1

2 cos(πxi+π)and restriting xi to the interval [−0.5, 1.5] for i = 1, . . . , N . It is easy to showthat the optima for this transformed funtion are in the same position as for theoriginal model. For the nominal disrete variables the binary NK landsape wasextended to a L-ary representation. In this ase, the amount of random numbersinreases exponentially with L. Also, for N = K − 1 it has been shown that thenumber of loal optima inreases exponentially with L.



Part IIAppliation to Medial ImageAnalysis





Do the di�ult things while they are easyand do the great things while they aresmall. The journey of a thousand milesbegins beneath one's feet. Lao-tzu
Chapter 5
Parameter Optimization forMedial Image Analysis
In the previous hapters, we introdued mixed-integer parameter optimizationwith two representative real-world appliations in industry - optimization of mul-tilayer optial oatings and optimization of hemial engineering plants. We alsopresented some theoretial and experimental studies on our proposed Mixed-Integer Evolution Strategies (MIES), whih show that MIES is a promising methodto takle mixed-integer parameter optimization espeially in blak-box senarios.In this hapter, we will show another hallenging optimization task whih omesfrom the medial �eld and explain why and how MIES an be applied to theoptimization of ontrol parameters of a semi-automati image analysis system forIntravasular Ultrasound (IVUS) images.IVUS is a tehnique used to get real-time high resolution tomographi imagesfrom the inside of oronary vessels and other arteries. The IVUS image featuredetetors used in the analysis system are expert-designed and the default pa-rameters are alibrated manually so-far. The new approah, based on MIES, anautomatially �nd good parameterizations for sets of images whih ahieve betterresult than with manually tuned parameters. From the algorithmi point of viewthe di�ulty is to design a blak-box optimization strategy that an deal withnonlinear funtions and di�erent types of parameters, inluding integer, nominaldisrete and ontinuous variables. Compared with anonial Evolution Strate-gies (ES), whih are often applied to optimization problems in ontinuous searhspaes, the MIES turns out to be well suited for this task. The results presentedin this hapter will summarize and extend reent studies on benhmark funtionsand on the IVUS image analysis optimization problem.63



64 Introdution5.1 IntrodutionFeature detetion in medial images is a key task in the medial �eld. Oftenomplex and variable strutures, suh as ali�ed plaque in arteries, are to bedeteted and modelled in images or sequenes of images. The development offeature detetion systems has reeived muh attention in medial and omputersiene researh. However, the performane of most systems depend on a largenumber of ontrol parameters, and the setting of these ontrol parameters isusually done by means of an eduated guess or manual tuning using trial anderror.In this work we argue that manual tuning is often not su�ient to exploit thefull potential of image detetion systems, i.e. it leads to suboptimal parametersettings. We propose a versatile and robust proedure for automated parametertuning based on evolutionary algorithms (EAs) suh as MIES. Compared to themanual trial and error approah, with MIES the systems developer an searhfor optimized parameter settings automatially and will likely obtain parametersettings that lead to signi�antly higher auray of the feature detetors.Among other image aquisition tehniques, IVUS reeived major attention foranalyzing the struture of oronary blood vessels. Due to noise, pullbak move-ments of the atheter, and the variability of strutures even for human experts itan be di�ult to interpret IVUS image sequenes. Therefore, the development oftailored omputer assisted image analysis has reeived major attention in reentyears [16, 89, 103℄.However, today's methods, direted at the automated reognition of ertainstrutures in images, are appliable only over a limited range of standard sit-uations. To overome this problem an image interpretation system, based onthe paradigm of multi-agents [16, 17℄, using the ognitive arhiteture Soar [87℄,was suessfully developed over the past years. Agents in this system dynami-ally adapt their segmentation algorithms. This adaptation is based on knowl-edge about global onstraints, ontextual knowledge, loal image information andpersonal beliefs like on�dene in their own image proessing results.Although in pratie the multi-agent system has been shown to o�er lumen andvessel detetion with preision omparable to human experts [16℄, it is designed forsymboli reasoning, not numerial optimization. Besides, it is almost impossiblefor a human expert to ompletely speify how an agent should adjust its featuredetetion parameters in eah and every possible interpretation ontext. As a resultan agent has only ontrol knowledge for a limited number of ontexts and a limitedset of feature detetor parameters. This knowledge has to be updated wheneversomething hanges in the image aquisition pipeline. Therefore, it would be muhbetter if suh knowledge ould be aquired by learning the optimal parametersfor di�erent interpretation ontexts automatially.This hapter addresses the problem of learning these optimal parameter set-tings from a set of example segmentations. It is an optimization problem that isdi�ult to solve in pratie with standard numerial methods (like gradient-based



Chapter 5 65strategies), as it inorporates di�erent types of parameters, and onfronts the al-gorithms with a omplex geometry (rugged surfaes, disontinuities). Moreover,the high dimensionality of this problem makes it almost impossible to �nd optimalsettings through manual experimentation.Enouraged by previous work [8, 38, 24℄ on optimization of image segmentationalgorithms in the medial domain and other appliation �elds we onsider MIESas a solution method. Unlike these previous approahes, MIES are more suitablefor dealing with ontinuous parameters and an handle di�ult mixed-integerparameter optimization problems as enountered in the image proessing domain.5.2 Intravasular Ultrasound Image AnalysisCardiovasular disease is the leading ause of death in the USA and oronaryartery disease has the highest perentage (53%) of death among the heart dis-eases aording to the Amerian Heart Assoiation Heart Disease and StrokeStatistis [98℄. Atheroslerosis is a disease haraterized by a deposit of plaque inan arterial wall over time. The disruption of an atherosleroti plaque is onsideredto be the most frequent ause of heart attak and sudden ardia death. Studyingvulnerable plaques onstitutes a major researh area in the �eld of linial andmedial imaging.IVUS is a tehnique used to get real-time high resolution tomographi imagesfrom the inside of the oronary vessels wall and other arteries. It is able to showthe presene or absene of ompensatory artery enlargement. IVUS allows preisetomographi measurement of the lumen area and plaque size, distribution and, tosome extent, omposition of the plaque. An example of an IVUS image is shownin Figure 5.1.To obtain insight into the status of an arterial segment, a so-alled atheterpullbak is arried out: an ultrasound probe (Figure 5.2) is positioned distally(downstream) of the segment of interest and then mehanially pulled bak (to-day typially at a speed of 0.5mm/s) during ontinuous image aquisition to theproximal (upstream) part of the segment of interest. Experiened users may thenoneptualize the omplex 3D struture of the morphology and pathology of thearterial segment from this stak of images by reviewing suh a sequene repeat-edly. Typially, one suh pullbak sequene onsists of 500-1000 images, whihrepresents about 50 mm of vessel length.As we an see from Figure 5.1, IVUS images ontain image artifats, drop-out regions and di�erent kinds of tissue. Furthermore, manual segmentation ofIVUS images is very time onsuming and highly sensitive to intra- and inter-observer variability [16℄, while the data sets are very large. This makes IVUSimage analysis a non-trivial medial appliation domain where a sophistiatedimage interpretation approah is warranted.



66 Intravasular Ultrasound Image Analysis

Figure 5.1: An Intravasular Ultrasound (IVUS) image with deteted features.The blak irle in the middle is where the ultrasound imaging devie (atheter)was loated. The dark area surrounding the atheter is alled the lumen, whih isthe part of the artery where the blood �ows. Above the atheter a ali�ed plaqueis deteted whih bloks the ultrasound signal ausing a dark shadow. Between theinside border of the vessel and the lumen there are some soft plaques, whih donot blok the ultrasound signal. The dark area left of the atheter is a sidebranh(another vessel).

Figure 5.2: A atheter (∅ ± 1mm) with a miniaturized ultrasound transduer atthe tip.



Chapter 5 675.2.1 Multi-Agent Segmentation of IVUS ImagesIn [16, 17℄ a state-of-the-art multi-agent system is used to detet lumen, vessel,shadows, sidebranhes and ali�ed plaques. The system, as shown in Figure 5.3,is based on the ognitive arhiteture Soar (S	tates, o	perators a	nd r	esults). Soar isan arhiteture for onstruting general intelligent systems whih has been testedsuessfully on many standard AI problems over the past 20 years and has beenused in many real-world appliations [87, 99℄. It is a very good arhiteture foran image interpretation system as it satis�es the following robustness systemrequirements [16℄:
• Its subgoaling arhitetural mehanism allows it to take appropriate ationsin unknown situations,
• Its non-monotoni reasoning allows it to reover from faulty knowledge,
• An agent always takes into aount all available knowledge.
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Figure 5.3: Global view of the multi-agent system arhiteture as applied to In-travasular Ultrasound (IVUS).With regard to IVUS features detetion, image proessing agents in Figure 5.3interat with other agents through ommuniation, at on the world by ontrol-ling and adapting image proessing operations and pereive that same world byaessing image proessing results. Agents thereby dynamially adapt the param-eters of low-level image segmentation algorithms based on knowledge of global



68 Appliation to IVUS Lumen Detetiononstraints, ontextual knowledge, loal image information and personal beliefs.The lumen-agent, for example, enodes and ontrols an image proessing pipelinewhih inludes binary morphologial operations, an ellipse-�tter and a dynamiprogramming module, and it determines all relevant parameters. Generally, agentontrol allows the underlying segmentation algorithms to be simpler and to beapplied to a wider range of problems with higher reliability.5.3 Appliation to IVUS Lumen DetetionAfter testing di�erent strategies of MIES on several arti�ial problems in hapter 4whih are more or less equivalent to the present problem, but an be evaluatedmuh faster than image proessing pipeline, we used MIES to �nd optimal param-eter settings for the segmentation of the lumen in IVUS images instead of manualtrial and error. Figure 5.4 shows how the MIES optimizer is integrated into thelumen detetion system. The omplete image proessing pipeline is shown in Fig-ure 5.5. We foused on the lumen detetor, beause it an produe good results inisolation about additional information about sidebranhes, shadows, plaques andvessels.
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Figure 5.4: Optimizing parameter settings for lumen feature detetor with MIESoptimizer.5.3.1 Fitness FuntionsThe �tness evaluation determines whih o�spring will serve as new parents in thenext generation step. So the de�nition of the �tness funtion is ruially importantfor a suessful appliation of MIES and should represent the suess of the imagesegmentation very well. We �rst experimented with a similarity measure S(c1, c2)between the ontour c2 found by the lumen feature detetor and the desiredlumen ontour c1 drawn by a human expert. The similarity measure is de�ned
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Figure 5.5: Simpli�ed Intravasular Ultrasound (IVUS) lumen detetion repre-sented as a asade of basi image segmentation algorithms linked together bythe lumen agent.as perentage of points of ontour c1 that are less than a τ distane away fromontour c2:
S(c1, c2) =

∑nrofpoints
i=1 θ(i)nrofpoints ,with θ(i) =

{
1 iff d(c1(i), c2) < τ
0, otherwise (5.1)where d(c1(i), c2) is the Eulidian distane between a point i on ontour c1 andontour c2, nrofpoints is the number of points on ontour c1, and τ is a presetthreshold value. This threshold τ determines that two ontours are to be on-sidered similar when the distane between all points on ontour c1 are withina distane τ of c2. The reason to allow for a small di�erene between the twoontours is that even an expert will not draw the exat same ontour twie in asingle IVUS image. The �tness funtion itself is the alulated average similarityover all images in a training set.Although this measure seemed to give good results while looking at the �tnessvalues, visual inspetion showed unexpeted behavior as shown in Figure 5.6. Thereason for this behavior is that there was no penalty on the amount of distane ofontour points from the target ontour. As a result ontours with relatively few ofthese error points ould still have a high similarity S(c1, c2) value although visualinspetion showed otherwise. To take suh e�ets into aount we hanged fromusing a similarity measure S(c1, c2) to a dissimilarity measure D(c1, c2) whih is
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D(c1, c2) =

nrofpoints
∑

i=1

θ(i), with θ(i) =

{
d(c1(i), c2) iff d(c1(i), c2) > τ
0 , otherwise (5.2)

Figure 5.6: Expert-drawn lumen ontours (green) ompared with a MIES param-eter solution (yellow) using the similarity measure S(c1, c2) (Eq.5.1). The imagesshow that large errors may our even though the �tness of the solution is verygood.This measure penalizes eah ontour point whih is more than a distane τaway from c2 and is proportional to the distane. It leads to muh better results,whih stresses the importane of hoosing an appropriate �tness funtion in thisproblem domain.5.3.2 Optimizer Set-upThe settings used for the MIES algorithm were (µ = 4, λ = 28) with ommastrategy. The evaluation of a �tness funtion is a very time-onsuming task. Togive an example: the evaluation of one setting of the MIES algorithm on 40 IVUSimages for 100 iterations with 4 parents and 28 o�spring took about 16 hourson a Pentium 4 (3.4GHz) omputer. Evaluating these same settings on a fast toevaluate arti�ial problem with the same number of evaluations took 1 hour. Ta-ble 5.1 ontains the parameters for the IVUS lumen image proessing pipeline (f.Figure 5.5) together with their type, range, dependenies and the default settingsdetermined by an expert. As an be seen the parameters are a mix of ontinuous,ordinal disrete (integer) and nominal disrete(inluding boolean) variables.5.3.3 ResultsFor the experiments we used �ve disjoint sets of 40 images. The images wereaquired with a 20 Mhz Endosonis Five64 atheter using motorized pullbak(1 mm/s). Image size is 384 × 384 pixels (8 bit graysale) with a pixel-size of1For MIES, the similarity measure means maximization while the dissimilarity measuremeans minimization.
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0.02602 mm2. For the �tness funtion we took the average dissimilarity over all40 images with τ set to 2.24 pixels and nrofpoints = 128 (see Eq. 5.2). For eahof the 5 datasets we used the (4, 28) MIES algorithm and limited the number ofiterations to 25 whih resulted in 704 �tness evaluations for eah dataset. Thetraining results are displayed in Table 5.2, where MIES solution 1 was trained ondataset 1 by the MIES algorithm, MIES solution 2 was trained on dataset 2, et. . . .Table 5.2 shows that for most ases the MIES-generated parameter solutionsresult in lower average ontour di�erenes when applied to both test- and trainingdata than the default parameters. Only parameter solution 3 applied to dataset5 has a higher average ontour di�erene (444.2 vs 446.4). To determine if thebest results obtained by the MIES algorithm are also signi�antly better than thedefault parameter results, a paired two-tailed t-test was performed on the (40)di�erene measurements for eah image dataset and eah solution using a 95%on�dene interval (p = 0.05). The t-test shows that all di�erenes are signi�antexept for the di�erene between MIES solution 3 applied to dataset 5 and thedefault parameters and the di�erene between MIES solution 5 applied to dataset3 and the default parameters. Therefore we onlude that the MIES solutions aresigni�antly better than the default parameter solution in 92% of the ases (23out of 25) and equal in the other two ases.When we look at the results of the ES parameter solutions ompared to the de-fault parameter solution we see that all the di�erenes are statistially signi�antmeaning that the ES solutions are signi�antly better than the default parametersolution in 23 out of 25 ases but worse in the other 2 ases (ES solutions 3 and4 applied to dataset 5).If we look at the performane of the MIES and ES algorithms when trainedon a dataset we see that on Dataset 1 the ES solution is a little better, but thedi�erene is not statistially signi�ant. On all other datasets the MIES solutiontrained on that dataset is signi�antly better than the ES solution trained on thesame dataset. On Dataset 5 MIES solution 4 has a slightly lower �tness than MIESsolution 5 that was trained on the dataset but the di�erene is not statistiallysigni�ant. On Dataset 3, ES solution 4 has a lower �tness than ES solution 3 butagain the di�erene is not signi�ant.In order to learn from the results about advantageous parameter settings, weompared the variable settings of optimized solutions to solutions with an average�tness value (obtained at the beginning of the evolution). The results are displayedin the parallel oordinates diagram (Figure 5.7). It is apparent that the setting ofsome parameters seems to be learly advantageous in a ertain small range whilefor others the setting is either indi�erent or it may depend on other parametersettings. One an observe that a santype of 2, a medium value for the maxgrayparameter and sideost (around 70) and a high sigma value (lose to 10.0) seemsto be bene�ial. Of ourse these results hold only for one image set and futureresearh needs to larify whether generalizations are feasible. Visual inspetionof the results of the appliation of MIES parameter solution 4 to all 200 images
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Figure 5.7: The parallel oordinate diagrams shows a omparison of optimizedsolutions (red polygons) to solutions with a relative bad �tness value (light greenpolygons). The �rst oordinate is the �tness value and the subsequent oordinatesare the values of the variables (Lumen detetor parameters) represented in thesame order as in table 5.1.shows that this solution is a good approximator of the lumen ontours as an beseen in Figure 5.8 (bottom row). When we ompare the ontours generated withMIES solution 4 to the expert drawn ontours we see that they are very similarand in some ases the MIES ontours atually seem to follow the lumen boundarymore preisely. Besides being loser to the expert drawn ontours, another majordi�erene between the MIES found ontours and the ontours deteted with thedefault parameter settings is that the MIES solutions are smoother (see Figure 5.8,top and bottom row). Apart from looking at the average ontour di�erene (or�tness) of the di�erent parameter solutions we an also ompare the performanebetween the MIES and ES algorithms by looking at their ability to �learn� thedependenies between the variables as displayed in Table 5.1. In Figure 5.9 thetotal number of illegal solutions evolved by both the MIES and ES algorithms aredisplayed. As an be seen the MIES algorithmmanages to �learn� the dependeniesmuh faster than the ES algorithm. In Figures 5.10 and 5.11 we have plotted the�tness and best �tness for both the MIES and ES algorithms on Dataset 2. Invalidsolutions were given a very high �tness penalty and are omitted from the plots toimprove readability. In the ase of the MIES algorithm the spread of the entirepopulation dereases as the population reahes the best solution, whih indiatesthat the step-size adaptation works properly.
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Figure 5.8: Expert-drawn lumen ontours (green) ompared with expert-set pa-rameter solution (yellow, top row) and MIES parameter solution (bottom row,yellow).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200  1400

T
o
ta

l 
n
u
m

b
e
r 

o
f 

ill
e
g
a
l 
s
o
lu

ti
o
n
s

Evaluations

Dataset 1

MI-ES
ES

Figure 5.9: The aumulated number of illegal solutions on Dataset 2 evolvedby both the MIES and ES (dotted line) algorithms. As an be seen the MIESalgorithm manages to �learn� the dependenies quite fast while the ES algorithmkeeps evolving invalid solutions even after 1400 �tness evaluations.
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Chapter 5 775.4 SummaryIn this hapter we desribed how we applied MIES to a problem in medial imageanalysis, in partiular the optimization of ontrol parameters of a lumen detetorin IVUS imaging. In partiular, MIES use spei� variation operators for di�er-ent types (ontinuous, integer, and nominal disrete) of deision parameters whihontrol the features detetor of IVUS images. All three types of mutation oper-ators support automati adaptation of the mutation strength and avoid biasedsampling. Besides this, they ful�ll guidelines suh as aessibility, uniformity, andmaximal entropy, whih makes them very amenable as searh operators in settingswith little or no a-priori knowledge about the searh landsape.Like the experimental results whih we showed in hapter 4, a similar result isobtained for the medial image analysis. Here the MIES always produed better orequal results than the default parameter settings hosen by an expert. Moreover,on all �ve data sets the results of the MIES were signi�antly better (three times)or equal (one time) than those obtained with the standard ES, trained on thesame data set.In summary, the results show that the MIES is a valuable tehnique for improv-ing the parameter settings of the lumen detetor. The results enourage furtherstudies on extended image sets and on other feature detetors. The results of thisstudy suggest also its use in other problems where parameters of image-analysismodules need to be tuned based on training data, and more generally - in large-sale mixed-integer optimization problems that annot be solved with standardmathematial programming tehniques.





Chapter 6Dynami Fitness BasedPartitioning
In the previous hapters 3, 4 and 5, Mixed-Integer Evolution Strategies (MIES)have been introdued and studied intensively from both theoretial and exper-imental viewpoints. Being a promising tehnique, MIES have been suessfullyused to takle hallenging parameter optimization of a multi-agent image inter-pretation system for Intravasular Ultrasound (IVUS) images lumen detetion.However, with regard to the image analysis problem, beause of the omplexityof interpretation ontexts, it is impossible to �nd one �super optimal � solution foreah feature detetor to work in all possible ontexts and for all possible patients.Therefore, it would be wise to �nd spei� optimal parameter settings for di�er-ent groups of images instead of one global solution for all images, that is, let aset of MIES algorithms �nd a set of optimal solutions for sets of optimal imageswhereby the solutions and sets of images are evolved automatially.In this hapter, we will investigate this issue and propose one tehnique, whatwe alled Fitness Based Partitioning. By using Fitness Based Partitioning, wewould like to �nd groups of images that require a similar parameter setting forthe segmentation algorithm while, at the same time, evolving optimal parame-ter settings for these groups. More spei�ally, we will apply this methodologyto both a hallenging arti�ial test problem and feature detetion of ComputerTomographi Angiography (CTA) images analysis. Experimental results not onlydemonstrate the feasibility of Fitness Based Partitioning, but also show that MIESan also be used for di�erent types of medial images other than IVUS images,for instane, feature detetion of Computer Tomographi Angiography (CTA) im-ages analysis. It is rather trivial to see that the appliability of the optimizationalgorithm does not depend on the images but on the image analysis tools whihare applied to the images - to the spei� parameter enoding.



80 Introdution6.1 IntrodutionMedial images often represent omplex and variable strutures that an not beeasily modeled. Moreover, they an su�er from a range of imperfetions due tothe image aquisition modalities. Today's methods, direted at the automatedreognition of ertain strutures in images, are appliable only over a limitedrange of standard situations and in some ases only reah suboptimal results.In hapter 5 we have ompared Mixed-Integer Evolution Strategies (MIES) andstandard Evolution Strategies (ES) for �nding optimal parameter settings forthe segmentation of Intravasular Ultrasound images. The results show that theparameter solutions evolved by the MIES and ES algorithms are better than theoriginal parameter settings. However, the results also indiate that di�erent setsof images require di�erent parameter settings for an optimal image segmentation.The ideal solution would be to luster images aording to their image seg-mentation ontext and optimize parameters for eah individual ontext separately.Unfortunately the number of image segmentation ontexts is not known a priorinor do their harateristis. There is usually also no natural distane measure [54℄to luster images into groups that need similar parameter settings for an optimalsegmentation result. Only their degree of belonging to a group, haraterized bya partiular set of parameters, an be measured by means of a training error forthat image, after the parameters have been optimized for that group.A possible approah for this kind of multi-level optimization problem ouldbe ooperative oevolution (e.g., see [120, 97℄) in whih one evolves both a set ofparameter solutions and sets of images at the same time. However, this approahrequires a large number of �tness evaluations whih is very omputationally (andthus time) intensive, sine one has to do a lot of image proessing, and thereforenot attrative for our problem.To solve the aforementioned problems we propose a multi-level optimizationtehnique - the so-alled Fitness Based Partitioning. Given a set of parametersolutions, we an partition the images aording to whih solution gives the bestsegmentation result. The �tness measure is then used as a �distane metri� todetermine whih partition (and orresponding MIES solution) is the best mathfor an IVUS image. By alternating partitioning and parameter optimization foreah partition, images are dynamially repartitioned and parameter solutions areoptimized.This hapter is strutured as follows: Fitness based partitioning will be in-trodued in Setion 6.2. This approah will then be tested on an arti�ial testproblem in Setion 6.3 where the goal is to �nd multi-dimensional lusters byevolving ombinations of uniform and normal distributions based on given datapoints in a multi-dimensional spae. Next, in Setion 6.4, Computed TomographiAngiography (CTA) lumen detetion will be introdued. Fitness Based Partition-ing will then be applied to CTA lumen segmentation. The goal is to dynamiallypartition the CTA image training set during the MIES parameter optimizationproess into groups of images whih require similar parameter settings for optimal



Chapter 6 81lumen segmentation. Eah group of images would orrespond to a similar imagesegmentation ontext (for the image segmentation algorithm) and have an opti-mal parameter solution. Some important experimental results will be presentedas well in this setion. The short onlusions and outlook for the future work willbe given eventually.6.2 Dynami Fitness Based PartitioningIn general the multi-level optimization task is to �nd a proper �t of partitioningomprising NP partitions; for eah of the partitions Pk (k ∈ [1, NP ]) we searhfor parameter settings whih will result in an optimal solution for all probleminstanes in Pk. More onretely, in the ase of lumen segmentation, we try topartition all angiographi images, and for eah image partition we look for aparameter solution whih results in the best possible lumen segmentation forthose images. In order to solve this multi-level optimization problem we designeda 2-level algorithm with an inner and an outer loop.In the outer loop the goal is to redistribute problem instanes in order toahieve an improved global quality and to balane the size of the partitions. Aim-ing for this, a deterministi approah will be employed to determine how probleminstanes should be (re-)partitioned and when to split or merge partitions.In the inner loop the aim is to optimize parameter solutions for the probleminstanes in eah of theNP partitions. This task will be performed by evolutionaryalgorithms, in our ase Mixed-Integer Evolution Strategies, sine they an handledi�erent parameter types simultaneously.Let I = {I1, . . . , IN} denote a set of images (or training instanes), a ∈ A =
{1, . . . ,K}N an assignment of the images to one of K partitions, and S denote aset of ontrol parameters for the segmentation algorithm. Then the optimizationproblem of �nding an optimal partitioning is stated as follows:

a∗ = arg mina∈A

K∑

k=1

MMEa(k) (6.1)Here MMEa(k) stands for 'minimized mean error' and denotes the averageerror on instanes of a partition k over all training instanes in that partition,provided the segmentation software uses an optimized set of ontrol parametersfor solutions on that partition, in symbols:MMEa(k) = min
s∈S

1

N

N∑

j=1

Indiator(aj = k)errors(Ij) (6.2)Here Indiator : {true, false} → {0, 1} denotes the indiator funtion withIndiator(false) = 0 and Indiator(true) = 1. We are also interested in the



82 Dynami Fitness Based Partitioningoptimal parameter sets (or solution vetors) of the partitions k = 1, . . . ,K, i.e.
s∗(a, k) = arg mins∈S

1

N

N∑

j=1

Indiator(aj = k)errors(Ij), (6.3)in partiular in those for the optimized partitioning a∗.More onretely, in the ase of lumen segmentation we want to automatially�nd groups of medial images while at the same time evolving a set of optimalparameters for deteting the lumen in the images in eah of these groups.In order to solve this multi-level optimization problem we use Fitness BasedPartitioning. The top level goal is to optimize the (re-)assignment of probleminstanes, in our ase medial images, to partitions so that the optimal solutionfor eah partition is also the optimal solution for eah partiular problem instanein that partition.The seond level optimization task is to �nd an optimal solution for all probleminstanes within a partition. For this we use Mixed-Integer Evolution Strategies(MIES), introdued in [38℄. Mixed-Integer Evolution Strategies are a speial typeof evolution strategy that an handle mixed-integer parameters (ontinuous, ordi-nal disrete, and nominal disrete) by ombining mutation operators of EvolutionStrategies in the ontinuous domain [107℄, for integer programming [101℄, and forbinary searh spaes [3℄.6.2.1 AlgorithmThe detailed proedure for this 2-level optimization method is desribed in Algo-rithm 9. During the initialization phase all the problem instanes (e.g., images)are distributed over the K partitions. Next a MIES algorithm MIESk is assignedto eah partition Pk.The main loop of the Fitness Based Partitioning algorithm onsists of foursteps. The �rst step is to run eah MIESk algorithm on the problem instanesin its orresponding partition Pk for G iterations. This step performs the seondlevel optimization task.The seond step is to selet the best evolved parameter solution sk evolved byeah MIESk algorithm and to test it on all problem instanes.Step 3 is then to reassign all problem instanes so that eah problem instane
I is assigned to the partition whose orresponding MIES algorithm o�ers the bestparameter solution. This step performs the top level optimization task.After all the problem instanes have been reassigned to their �new� partitionsthe fourth step is to hek for �empty� partitions (partitions with no probleminstanes). Empty partitions are not useful, sine their orresponding MIES algo-rithms annot optimize anything. The solution we have hosen is to move half theproblem instanes of the largest partition to the empty partition. Additionally, wereplae the population of the MIES algorithm assoiated with the empty partitionwith a opy of the population of the MIES algorithm assoiated with the largest



Chapter 6 83partition. This e�etively removes a non-useful empty partition and splits a largepartition into two. Another hoie whih might be more e�etive sometimes ouldbe to split the partition in whih results of MIESs have the largest variane.Algorithm 9 Fitness Based Partitioning1: /* Initialization */2: Divide the set of problem instanes I randomly over the partitions.3: Initialize the populations of the K MIES algorithms.4: for T main loop iterations do5: /* step 1 */6: for eah partition Pk do7: run MIESk on Pk for G iterations.8: end for9: /* step 2 */10: for eah MIESk do11: selet best individual/solution sk12: apply best individual/solution sk to all problem instanes in I13: end for14: /* step 3 */15: for eah problem instane I ∈ I do16: redistribute I to the partition Pk for whih sk o�ered the best solution.17: end for18: /* step 4 */19: while the smallest partition PS is empty do20: opy the population of MIESL of the largest partition PL to MIESS21: divide the problem instanes of PL over PL and PS .22: end while23: end for6.3 Arti�ial Test Problems and ResultsIn this setion we test the feasibility of ��tness based partitioning" on arti�ialproblems as a �rst step toward its appliation to the real CTA lumen featuredetetor system. This is done beause testing out various algorithm settings andlearning about their behavior using medial images is omputationally too de-manding to be pratial. However, our test problems are designed in suh a waythat suess may be expeted on real problems, for instane, the data used in thetest problems are representative for real ases.The basi idea of our test setup, as visualized in Figure 6.1, is the task of�nding a set of multidimensional distributions based on given data points. Twoparts of the test problem need to be distinguished: (1) initialization/setup phase,(2) evaluation of a solution. Next, we give a brief desription of both phases,followed by the detailed desription of experiments and results.
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Figure 6.1: Fitness based partitioning for randomly generated data samples6.3.1 Initialization/SetupIn the initialization/setup phase, the problem generator reates sample points in
D-dimensional spae using a random number generator whih an generate valuesusing either a uniform or normal distribution. Using the problem generator wereated NP �lusters" of sample points.In more detail, the initialization proedure samples a set of NI points I =
{x(1), . . . ,x(NI)} ∈ (RD)NI . The points are realizations of NP di�erent D -dimensional random variables X1, . . . , XNP

. For eah random variable NI/NPpoints are generated independently. For any k ∈ [1, NP ], the distribution of therandom variable Xk is determined by the parameters µ(k)
d , σ(k)

d . The distributionof eah random variable is an independent joint distribution omposed of uniformand normal distributions. The values at the odd vetor positions are sampled from1-D normal distributions with mean value µ(k)
d and standard deviation σ(k)

d . Thevalues at the even vetor positions are sampled from 1-D uniform distributionswith interval width 4σ
(k)
d and mean value µ(k)

d .6.3.2 EvaluationThe test problem is to estimate the parameters and distribution types of the NPmultivariate distributions based on the initialized data points. We work with thefollowing representation of solutions, enoded in the individuals of the EA. Foreah dimension d ∈ [1, D] an individual has three parameters: an estimated meanvalue µ̂d ∈ R, an estimated standard deviation or, in ase of uniform distribution,interval width σ̂d ∈ R and an estimated distribution type τ̂d (0: uniform, 1: nor-mal). In ase of a uniform distribution the minimum and maximum possible valueare now de�ned as µ̂(k)
d −2σ̂

(k)
d and µ̂(k)

d +2σ̂
(k)
d respetively. Thus eah individual
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D ). where k denotesthe partition the individual represents.For the �tness funtion we use a maximum log-likelihood approah, wherebyfor eah individual the �tness is alulated as:�tness =
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d = 1(normal)with d = 1, . . . , D, i = 1, . . . , |Pk|, k = 1, . . . , NP , and I : {true, false} → {0, 1}being the indiator funtion: I(true) = 1, I(false) = 0.6.3.3 Experimental ResultsIn this experiment, the MIES algorithms were programmed using the EvolvingObjets library (EOlib) [62℄. EOlib is an Open Soure C++ library for all formsof evolutionary omputation and is available from http://eodev.soureforge.net. The test-data generator was reated using the random number generatorfrom EOlib. For eah ombination of dimensionality and number of lusters wereated 10 problem instantiations and on eah problem instantiation we ran the�tness-based partitioning system 20 times using di�erent random seeds for theMIES algorithms. Eah generated luster onsists of 100 sample points.For the MIES algorithms we used a plus-strategy with a population size of 40and an o�spring size of 280. After eah redistribution yle MIES algorithms wererun for T iterations, with T dependent on the dimension D of the sample points.

T was set to 50 for D = 2, to 75 for D = 4, and to 100 for D = 6.The results in Table 6.1 show that, in most ases, the �tness-based partitioningsystem manages to evolve a ombination of uniform and normal distributions todesribe eah luster. However, for D = 4 and NP = 20, the system fails in twoases. In the �rst ase a partition of 101 and a partition of 99 sample points result(vs. 100 eah). In the seond ase, one partition is split into 2 smaller partitionsontaining 50 sample points eah, while 2 other partitions are merged into onelarger partition with 200 sample points. For the 6 dimensional problem with 10lusters the only failure was a single sample point that was mispartitioned as well.



86 Computed Tomographi Angiography and Experimental ResultsDimensions T Partitions Suesful/Total Iterations Outer LoopD NP runs Average S.D. Minimum Maximum2 50 3 200/200 7.375 3.57 1 184 75 10 200/200 16.07 3.44 9 314 100 20 198/200 23.21 3.44 16 366 100 10 199/200 12.35 4.45 5 436 100 20 197/200 14.87 3.66 9 34Table 6.1: The results of the di�erent experiments. Iterations outer loop (suessfulruns) means that all the N-dimensional data points that were originally reated ina luster end up in the same partition. Sine the MIES algorithms have to �nd theoptimal distribution parameters for eah dimension, the number of variables tooptimize is three times the dimension of the data points to be partitioned. For thesuessful runs we have measured the average, minimum and maximum numberof iterations as well as standard deviation (S.D.), until a stable partitioning wasreahed.6.4 Computed Tomographi Angiography and Ex-perimental ResultsSine the introdution and inreasing propagation of modern multi-slie omputedtomography sanners, omputed tomographi angiography has beome a populardiagnosti modality in the visualization and evaluation of arteries and the de-tetion of narrowings (stenoses). Computed Tomography is an imaging tehniquewhih results in a 3D image of the internals of an objet using a series of 2D X-rayimages.In Leiden University Medial Center (LUMC), a system has been developedfor the quantitative analysis of oronary Computed Tomographi Angiography(CTA) [84℄ whih onsists of 5 steps. In the �rst step the vessels are segmentedin the 3D image, followed in step 2 by the extration of the vessel enterline. Thethird step is to onstrut a urved multiplanar reformatted (CMPR) image usingthe deteted enterline (see Figure 6.2). The resulting 3D image stak ontains2D images perpendiular to the enterline, and allows for the visualization ofthe the entire length of the vessel in a single 3D image. The fourth step is thesegmentation of the lumen boundary (the part of the vessel where the blood�ows) using a ombination of longitudinal and transversal ontour detetion. It isthis step that we will optimize using Mixed-Integer Evolution Strategies (MIES)and Fitness Based Partitioning. The �fth step is the quanti�ation of the vesselmorphologial parameters.6.4.1 Experiments and ResultsThe Fitness Based Partitioning approah as desribed above is tested on 9 CMPRimage staks of oronary arteries. Eah CTA image stak onsists of 59 to 82images and eah image onsists of 32 × 32 pixels (16 bit signed graysale with a
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Figure 6.2: A stak of CMPR images on the left with the enterline going throughthe enter of eah image and the orresponding lumen ontours with a singleCMPR slie on the right.spaing of 0.5mm).To test the e�et of the number of partitions, we experimented with up to 6partitions. In ase 1 partition is used the algorithm behaves like a normal sin-gle MIES algorithm sine there is no need to redistribute the images to otherpartitions. For eah data set and number of partitions we run the Fitness BasedPartitioning algorithm 10 times using di�erent random seeds to initialize theMIES algorithms. To initialize the K partitions with images we simply divided adata set sequentially into K (almost) equally sized parts. We also experimentedwith other initialization tehniques (e.g., random), but they gave slightly worseresults. This is probably aused by the fat that two onseutive images in a stakorrespond to two onseutive piees of artery and therefore, in general, requirea similar parameter solution.For the MIES algorithms in step 1 of Algorithm 9 we use a plus-strategy (µ+λ)with µ = 4 parents and λ = 28 o�spring individuals. All variables have theirown stepsize or mutation probability parameter whih undergo self-adaptation asdesribed in [38℄. The parameters for the CTA lumen segmentation onsists of 13integer and 2 nominal disrete (Boolean) parameters.6.4.2 EvaluationIn order to evaluate the �tness of a parameter solution evolved by a MIES algo-rithm, the lumen ontour resulting from a partiular parameter setting is om-pared to the expert ontour drawn by a physiian. The �tness funtion omputes



88 Computed Tomographi Angiography and Experimental Resultsthe average error Fk(I) for eah image I in partition Pk as:
Fk(I) =

|points|
∑

p=1

d(Cp, Ep)

|points| , (6.5)where d(Cp, Ep) is the Eulidean distane between the p-th point of the �evolved�ontour C and the expert drawn ontour E. Note that Fk orresponds to thefuntion error in the general problem de�nition given in Eq. 6.1 to 6.3. Bothontours have the same number of points sine we resample all ontours from theenter of the image every 2 degrees resulting in 180 points for eah ontour.The �tness of an individual parameter solution is then omputed as the averageminimized error of all images I in partition Pk:�tness =
∑

I∈Pk

Fk(I)

|Pk|
(6.6)To determine the overall �tness result of our Fitness Based Partitioning algorithmwe ompute the average �tness of all images I ∈ I as:overall �tness =

K∑

k=1

∑

I∈Pk

Fk(I)

|I| (6.7)6.4.3 ResultsThe results in Tables 6.2 and 6.3 show that generally more partitions results inbetter average �tness values and thus better ontours. The only exeption is dataset 6 where the �tness results for 6 partitions are worse than for 5 partitions,but this di�erene is not statistially signi�ant (using an independent samplest-test with a 95% on�dene level(p=0.05)). If we look at the di�erenes in �tnessvalues between 1 and 2 partitions we see that only for data set 9 the di�erene in�tness values is not statistially signi�ant. This indiates that for our problem weshould use at least 2 partitions. For data set 2 all di�erenes between onseutivenumber of partitions (1 and 2, 2 and 3, . . . ) are statistially signi�ant. For datasets 4 and 5 the di�erene between 3 and 4 partitions is statistially signi�antwhih ould mean that for these data sets we should use at least 4 partitions. Wesee the same for data sets 7 and 8 where the di�erene in average �tness valuebetween partitions 4 and 5 is statistially signi�ant.When we look at the �nal image partitioning after the algorithm has endedwe see that di�erent random seeds (and thus MIES population initializations)do not always lead to exatly the same partitions. However, an analysis of thefound partitions shows that we an learly see groups of images whih repeatedlyend up in the same partitions. There are several reasons why we do not see allimages end up in similar partitions every single run. The main reason seems tobe that the partitioning proess does not always stabilize for some random seeds.
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NumberofPartitions

Data
4
5
6

Setavgs.d.minmaxavgs.d.minmaxavgs.d.minmax

10.1840.0070.1770.2030.1750.0060.1660.1840.1710.0050.1590.178

20.1180.0030.1130.1240.1130.0020.1100.1160.1080.0030.1040.113

30.1510.0040.1440.1600.1490.0050.1410.1560.1440.0040.1400.152

40.1530.0040.1490.1630.1520.0050.1440.1610.1510.0050.1440.159

50.2330.0090.2150.2490.2290.0120.2130.2530.2230.0120.2090.249

60.2070.0250.1850.2760.1880.0080.1800.1990.1920.0110.1780.213

70.2280.0100.2150.2500.2100.0100.1940.2340.1970.0100.1840.218

80.1430.0050.1370.1560.1360.0030.1320.1420.1350.0030.1290.138

90.1460.0100.1340.1700.1400.0060.1350.1560.1350.0060.1300.150

Table6.3:Theaverage(plusstandarddeviation),minimumandmaximumoverall�tnessvaluesfor4to6partitions.Lower

valuesorrespondtobetterontours.



Chapter 6 91Other possible reasons for �nding di�erent image partitionings are that there aremore image segmentation ontexts than partitions or maybe there are no realdistint groups of images with respet to the image segmentation parameters.Naturally, the number of image segmentation ontexts also depends on our imagesegmentation algorithm and how robust or sensitive it is.In Figures 6.3 and 6.4 results are shown for 2 images from data set 2 af-ter �tness based partitioning using 2 partitions. The light gray ontours in theleft images are found using parameter settings evolved for a partition inludingthe image in Figure 6.3. The light ontours in the right images are found usingparameter settings evolved for the other partition, whih inluded the image inFigure 6.4. As an be see both parameter settings result in ontours similar tothe dark gray expert drawn ontours for the image for whih they were optimizedbut fail to �nd satisfatory ontours in the other images.

Figure 6.3: Found lumen ontours segmented using two di�erent parameters set-tings. The light gray ontour in the left image was found using parameter settingsevolved for the partition to whih this image was assigned. The light gray on-tour on the right was found using the parameter settings evolved for the otherpartition. The dark ontour in both images indiates the expert-drawn ontour.6.5 SummaryIn this hapter we investigate the use of Fitness Based Partitioning in order to�nd sets of optimal parameters for the segmentation of the lumen in ComputedTomographi Angiography images. The purpose of Fitness Based Partitioning isto group images into partitions whih require similar parameters settings whileat the same time evolving optimal parameter settings for eah group. Groupingimages into di�erent partitions is done, beause one optimal parameter settingfor eah and every image is not to be expeted.The results in Tables 6.2 and 6.3 show that Fitness Based Partitioning doesindeed produe sets of parameter settings whih lead to better lumen segmenta-tions when ompared to one global optimal solution for all images.



92 Summary

Figure 6.4: Found lumen ontours segmented using two di�erent parameters set-tings. The light gray ontour in the right image was found using parameter settingsevolved for the partition to whih this image was assigned. The light gray ontouron the left was found using the parameter settings evolved for the other partition.The dark ontour in both images indiates the expert-drawn ontour.Analysis of the �nal image partitioning results, obtained by running the al-gorithm with di�erent random seeds, shows that groups of images (but not all)usually end up on the same island. However, there remains some sensitivity tothe random seed used.In the future we want to redue this sensitivity by using larger populationswhih over the searh spae more ompletely. This does, however, have a negativeimpat on omputation time. Another option is to make the image re-assignmentmethod more �exible and less "greedy". We intend to extend the Fitness BasedPartitioning algorithm with merge and split heuristis to automatially �nd anoptimal number of partitions.One the partitions found by the Fitness Based Partition algorithm beomemore stable we are interested in extrating ommon features from these imagesthat an at as a kind of image �ngerprint, so we an automatially determinewhih parameter solution to use for a new image.
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There is never an end to learning. Thedye extrated from the indigo is bluerthan the plant; so is the ie older thanthe water. Xunzi
Chapter 7Metamodel Assisted MixedInteger Evolution StrategiesSo far we have introdued Mixed-Integer Evolution Strategies (MIES) and theirappliations to parameter optimization for feature detetion of a multi-agent med-ial image analysis system. One of the big hallenges is that the evaluation of the�tness funtion is omputationally expensive. This hapter disusses MIES as-sisted by metamodels, whih is based on radial basis funtion networks (RBFN).The goal is to make MIES more suitable for optimization with time onsumingevaluation funtions.A RBFN is an arti�ial neural network that uses radial basis funtions asativation funtions. They are quite often used in funtion approximation, timeseries predition, and ontrol. A novelty of our presented researh here is thatRBFN are studied for metamodeling in heterogeneous (mixed-integer) parameterspaes. A heterogeneous metri (HEOM) is adopted that is in onformity with thedesign philosophy of the MIES. In addition, ross-validation based optimizationtehniques are suggested for adjusting hyper-parameters of the model and avoidsingularities. Empirial studies on predition of random sets indiate good pre-dition apabilities of the proposed RBFN for funtional landsapes of moderatedimension/smoothness. The in�uene of the training set size as well as of the di-mension on omputational omplexity and auray of the RBFN is investigated.In the metamodel-assisted MIES, a RBFN metamodel is built and updatedafter eah generation. The metamodel is used for seleting a small subset of o�-spring individuals from a bigger set of variations and thereby inrease the numberof promising solutions in the o�spring population. The algorithm is designed insuh a way that, in ase of failure of the metamodel (e.g. �random" preditions),the metamodel-assisted MIES behaves like a standard MIES. Experimental re-sults, both on arti�ial test problems and on a real world appliation, namelythe optimization of feature detetors in ultrasound images, indiate that a learaeleration an be ahieved by using heterogeneous RBFN.95



96 Introdution7.1 IntrodutionAs we learned already, MIES are a speial instantiation of evolution strategiesthat an deal with di�erent parameter types (ontinuous, integer and nominaldisrete) simultaneously. In the previous hapters, we already demonstrated thatbeing a promising method, MIES have been suessfully applied in optial �lterdesign, the optimization of ontrol parameters of hemial engineering plants andthe optimization of multi-agent image interpretation systems for medial image(e.g., Intravasular Ultrasound (IVUS) and Computer Tomographi Angiography(CTA) image ) analysis.However, as it is the ase for other evolutionary algorithms, one main hallengein applying MIES to real-world appliations is that it needs a large number of�tness evaluations before an aeptable result an be obtained. For instane, forIVUS image lumen detetion, one andidate parameter solution must be tested bythe hundreds of IVUS images. This is very time onsuming and the omputationtime for one evaluation on a single-proessor mahine ranges from several minutesup to hours depending on the amount of training data used.A promising approah for reduing omputation time in suh ases is to as-sist the evolutionary algorithms with fast-omputable predition models. Meta-models are data-driven funtion approximations that are learned from the setof evaluations of a deterministi objetive funtion (or a subset of it). Meta-models are now widely used for funtion approximation in ontinuous searhspaes [37, 35, 45, 44, 22, 56, 118℄. However, their appliation in disrete searhspaes remains sporadi [126℄, and to our knowledge there are not yet metamodel-assisted evolutionary algorithms for mixed-integer searh spaes. This hapterproposes a promising algorithm for the latter problem domain.In this work we fous on radial-basis funtion networks [21, 45℄ and, by us-ing a heterogeneous distane measure, we use these tehniques for predition inmixed-integer searh spaes. Radial basis funtion networks are distane-basedpreditors, i.e. they ompute the predition based on a weighted approah, wherethe in�uene of neighboring points is measured by means of a non-linear distane-based kernel (or ativation funtion). The fat that RBFN are based on relativedistanes to neighbors rather than on absolute position in Eulidean spae makesthem suitable to appliation in metri spaes whih are not vetor spaes, suhas mixed-integer searh spaes. A ruial point, however, is still the hoie of ametri. In this hapter we hoose a heterogeneous metri that takes into aountthe inherent properties of the parameter types involved (ontinuous, integer, anddisrete).In literature many ways of how to integrate metamodels in an EvolutionaryAlgorithm (EA) have been proposed [55℄. In this hapter we hoose a straightfor-ward approah using metamodels as a �lter. The basi idea is to generate a large�pre-population" of o�spring individuals and then - based on the preditions ofthe metamodel - selet a small subset of them for preise evaluation. Only thesubset of preisely evaluated individuals is onsidered for replaement. The hoie



Chapter 7 97of population sizes is governed by the idea that, in ase of random preditions, thebehavior of the metamodel-assisted MIES resembles that of an anonial MIES.However, we assume that in most ases the preditions with the metamodel arebetter than pure random preditions and therefore the metamodel an help to im-prove the quality of the sample generated with the randomized searh operators.This hapter is organized as follows. In setion 7.2 some lassial funtionalapproximation models, suh as Polynomial and Kriging models, will be reviewedbrie�y. Partiularly, radial basis funtion networks will be disussed thoroughly insetion 7.3. Next, in setion 7.4, the metamodel-assisted mixed-integer evolutionstrategies are desribed. The proposed metamodel assisted mixed integer evolutionstrategies are applied to evaluation on arti�ial test problems in setion 7.5. Thenthey are applied to the parameter optimization of an IVUS feature detetor insetion 7.6. Finally, a short summary and future work are presented in the lastsetion.7.2 Funtional Approximation ModelsTraditionally, there are two basi approahes whih an be applied to approx-imation in optimization: funtional approximation and problem approximation.Here we will disuss funtional approximation in detail. About other types ofapproximation methods, we reommend [56℄. In funtional approximation, an al-ternate and expliit expression is onstruted for the �tness funtion. Taking theintravasular ultrasound image analysis as an example, instead of evaluating itsperformane using a multi-agent feature detetion system, an expliit mathemat-ial model an be onstruted and used to predit outputs aording to giveninputs.7.2.1 Polynomial ModelsPolynomial approximation model is widely used and its form an be given asfollows:
ŷ = β0 +

∑

1≤i≤n
βixi +

∑

1≤i≤j≤n
βn−1+i+jxixj (7.1)where β0 and βi are the oe�ients to be estimated, and the number of terms inthe quadrati model is nt = (n + 1)(n+ 2)/2 in total, where n is the number ofinput variables. Least square method (LSM) and gradient method an be used toestimate the unknown oe�ients of the polynomial model.7.2.2 Kriging ModelThe Kriging model is another popular approximation model. Kriging was origi-nated by the mining engineer Krige, who used this method to estimate ore on-entrations in gold mines. In reent years it has been suessfully used in meta-modelling and optimization [35, 94℄. It an be seen as a ombination of a global



98 Radial Basis Funtion Networksmodel plus a loalized �deviation":
y(x) = g(x) + Z(x) (7.2)where g(x) is a known funtion of x as a global model of the original funtion,and Z(x) is a Gaussian random funtion with zero mean and non-zero ovarianethat represents a loalized deviation from the global model. Usually, g(x) is apolynomial and is redued to a onstant β in many ases.7.2.3 Neural NetworksAn Arti�ial Neural Network (ANN) is de�ned as a data proessing system on-sisting of a large number of simple, interonneted proessing units. The arhi-teture of ANN has been inspired by information proessing strutures found inthe multilayered erebral ortex of brains. Neural networks have also shown tobe e�etive tools for funtion approximation. Feedforward multilayer pereptrons(MLP) [50℄ and radial basis funtion networks (RBFN) are two well studied mod-els among others. In the next setion, we will disuss RBFN in detail.Feedforward multilayer pereptronsA feedforward multilayer pereptrons with one input layer, two hidden layers andone output neuron an be desribed by the following equation:

y =

L∑

l=1

vlf(

K∑

k=1

w
(2)
kl f(

n∑

i=1

w
(1)
ik xi)) (7.3)where n is the input number, K and L are the number of hidden nodes, and f(·)is alled ativation funtion, whih usually is the logisti funtion

f(z) =
1

1 + e−az
(7.4)7.3 Radial Basis Funtion NetworksRadial basis funtion networks (RBFN) were proposed as arti�ial neural networksfor funtion interpolation in [21℄. They were proposed to assist evolutionary algo-rithms in [45℄, and were ombined with evolution strategies in [44℄. Formally, theyare similar to Kriging interpolation tehniques [36℄, though Kriging methods aremotivated in a di�erent way. As distane based interpolation funtion RBFN aresuitable for funtions, interpolation in metri spaes that not neessarily need tobe ontinuous vetor spaes. Also, di�erentiability of funtions is not expliitly re-quired. However, we do assume that the di�erene in funtion values is positivelyorrelated with the distane to a given point, and hoose the metri aordingly.Radial basis funtion networks [21, 45℄ are three-layer fully onneted feedfor-ward networks (f. Figure 7.1). They perform a nonlinear mapping (Rd → Rm)
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Figure 7.1: Possible strutures of Radial Basis Funtion Network.from the d inputs to the m hidden units followed by a linear mapping (Rm → Rl)from the hidden units to the l outputs. In this hapter only the ase of l = 1 willbe �rst onsidered (Figure 7.1).In our ase we will deviate from the standard de�nition and de�ne radial basisfuntion networks for metri spaes. Let M denote a metri spae with distanemeasure ∆ : M×M→ R
+
0 , then M→ Rm denotes a radial basis funtion networkfor a general metri spae.When applied for funtion approximation, the neural network is trained duringa training phase, with data from known funtion evaluations. The weights of thelinear funtion from the hidden layer to the output are adapted in a way thatthe deviations between the known output values to the predited output valuesare minimized. Then, in the predition phase, a point x ∈ M is presented to theneural network and the neural network predits the response.Giannakoglou et al. [45℄ introdued a straightforward approah on how toemploy RBF networks for funtion interpolation in the sense that results forpoints in the training set shall be reprodued exatly. Its arhiteture is desribedas follows: Let again x(1), . . . ,x(m) denote the evaluated points of the database,and y(1) = y(x(1)), . . . , y(m) = y(x(m)). Then de�ne for eah evaluated point x(i)a RBF enter:

b(i) := x(i), i = 1, . . . ,m (7.5)Let r : R
+
0 → R

+
0 a positive de�nite funtion on R

+
0 , then we de�ne the ativationfuntion of the hidden layer via:

h(x,b(i)) = r(∆(x,b(i))), i = 1, . . . ,m (7.6)



100 Radial Basis Funtion NetworksThe ativation funtion based on r is alled a radial basis funtion beauseits value depends on the distane of x to the RBF enter. For r : R
+
0 → R

+
0Giannakoglou suggests the funtion

rθ(∆(x,x′)) = exp(−θ∆(x− x′)q), with q = 2 (7.7)with a value for θ that, as a default, was set to 1.The predition funtion ŷ from the input values to the output value of theRBFN is de�ned as a linear funtion with a-priori unknown weights:
ŷ(h(1), . . . , h(m)) =

m∑

i=1

ψ(i)h(x,b(i)) (7.8)The values of ψ(i) need to be adapted in the training phase. The output valuesof the training points have to be reprodued by the neural network, whenever wedemand for exat interpolation of the results. This is expressed by the system ofequations:
m∑

i=1

ψ(i)h(x(j),x(i))
!
= y(j), j = 1, . . . , n (7.9)Rewritten in matrix form this reads:






h(x(1),b(1)) · · · h(x(1),b(m))... . . . ...
h(x(m),b(1)) · · · h(x(m),b(m))






︸ ︷︷ ︸

H






ψ(1)...
ψ(n)






︸ ︷︷ ︸

ψ

!
=






y(1)...
y(m)






︸ ︷︷ ︸

y

(7.10)
Note that H is a symmetri m×m matrix. The symmetry of the matrix H fol-lows immediately from the equivalene of the RBF enters b(i), i = 1, . . . ,m withthe input patterns x(i), i = 1, . . . ,m and the symmetry of the distane measure.Assuming that there are no equal points in the database and that the RBF ispositive de�nite, the weights ψ(i), i = 1, . . . ,m are given by the solution of thissystem, i.e.

ψ = H−1y (7.11)After omputing the values of the vetor ψ (training phase) we an now usethem for prediting output values for any x ∈M by using equation 7.9.



Chapter 7 1017.3.1 Heterogeneous MetriA ruial step in adapting the RBFN method for mixed-integer spaes is thehoie of an appropriate distane measure. For ontinuous spaes the Eulideanmetri seems to be a straightforward hoie, while for nominal disrete spaes anoverlap metri seems suitable, as it does not assume any ontinuity of the objetivefuntion w.r.t. to a partiular ordering of the domain. For two integer parametervetors the distane an be measured by means of the Manhattan distane ina straightforward way. This is the aumulated distane when omputing thedi�erene of single parameter values of the variables. In ombination with theMIES the hoie of the Manhattan distane is also in onformity with the mutationoperator, who generates samples with a ℓ1 symmetri distribution. To ombinedi�erent metris we adopt the HEOM approah by Wilson and Martinez [122℄,whih suggests to take the square root of the sum of distanes of the partialparameter vetors. Let ∆r(r, r
′) =

∑nr

i=1(ri − ri′)2, ∆z(z) =
∑nz

i=1 |zi − z′i|, and
∆d(d,d

′) =
∑nd

i=1 I(di 6= d′i) with I(true) = 1, I(false) = 0. Then the ombinedheterogeneous metri ∆x for x = (r ◦ z ◦ d) reads:
∆x(x,x

′) =
√

∆r(r, r′) + ∆z(z, z′) + ∆d(d,d′). (7.12)In order to improve predition auray, we adapted the parameter θ during thetraining phase. This was done by means of a global minimization of the ross-validated error using a grid sampling method. The e�et of this proedure is sig-ni�ant as our preliminary experiments revealed. In order to adapt the parameterwe take ompute
θ∗ = arg min θ∈{10Θmin ,...,10Θmax}LCVE(θ) (7.13)with LVCE being the quadrati error of leave one-out-ross-validation for anequidistant set of values T = {Θmin, ...,Θmax}, in the experiments we hoosethe set T = {−4, . . . , 1}. The motivation of using a logarithmi grid based op-timization of θ is that we need (1) a fast and (2) a reliable optimization routinefor θ. It is due to our experiene muh more important to hit the right order ofmagnitude with θ than to �ne-tune its value. For muh too high values of θ thematrix H will be lose to a unit matrix, and in ase of too low θ values it will bea matrix �lled with ones. In the latter ase the matrix is almost singular (ausingproblems with matrix inversion). We omit a �ne tuning of θ, as, due to the highost for matrix inversion, this would be very time onsuming and the added valueis questionable.The omputational omplexity of the training step is governed rather by thenumber of samples than by the dimension of the searh spae. The time omplex-ity of omputing the matrix H sales as O(dm2), where d is the number of inputvariables, whereas the inversion of the matrix sales with O(n3) if we use, forexample, Gaussian elimination. There are more e�ient inversion routines avail-able, suh as Strassen's algorithm, but to our knowledge the dereased omplexityleads to an e�etive derease in omputation time only with very high problem



102 Metamodel Assisted MIESdimensions. Given this the overall omplexity Ttraining(m, d, T ) of the trainingphase reads:
Ttraining(m, d, T ) = |T |(m2d+m3) (7.14)In ontrast, the time for prediting the output value, given a set of weights ψ isonly linear. More preisely it sales with O(dm)As a onlusion, these onsiderations show that we should onsider the trainingphase as the main omputational e�ort and the number of samples being the maindeterminant of the e�ort in that phase. This observation will govern the deisionon how to build the RBFN-MIES in the following hapter.7.4 Metamodel Assisted MIESAlthough MIES were already suessfully applied to some real-world appliation,they usually need a large number of �tness evaluations before an aeptable resultan be obtained. To aelerate the MIES it ould be interesting to estimate the �t-ness funtion by onstruting an approximate model. Here we propose metamodel-assisted MIES whih use radial basis funtion networks (RBFN) to predit �tnessvalues. The main loop of the RBFN-MIES is displayed in algorithm 10. Somefeatures distinguish RBFN-MIES from standard MIES:1. All exatly evaluated individuals are reorded.2. The metamodel is updated in eah generation based on theK+ latest reordsfrom database.3. The λ+(≫ λ) o�spring are reated in eah generation and evaluated by themetamodel.4. The best λ individuals are taken for the preise evaluation.The proposed sheme widely orresponds to the metamodel-assisted evolutionstrategy (MAES) as proposed by Emmerih et al. [37℄. However, there is an im-portant di�erene: While in the MAES a metamodel is trained for eah individual,the RBFN-MIES trains one single metamodel for a whole generation of individu-als. This allows to use a larger size of the training population, whih, due to ourinitial studies is of ruial importane to ahieve a good predition quality.7.5 Study on Arti�ial Test Problem7.5.1 Predition Auray StudyWe �rst study the predition auray of the radial basis funtion networks onthe mixed integer domain depending on the dimension of the searh spae andsample size. As we desribed in setion 7.3, the heterogeneous metri is used to



Chapter 7 103Algorithm 10 Main loop of RBFN-Assisted MIES1: t← 02: Initialize population Pt of K+, inluding µ, individuals randomly generatedwithin the individual spae I3: Evaluate the Pt and insert results to database D4: while Termination riteria not ful�lled do5: Train RBFN based on K+ latest evaluations6: Generate the λ+ o�spring7: Predit �tness of λ+ o�spring8: Selet the best λ individuals out of λ+ o�spring9: Evaluate λ seleted individuals by using original �tness funtion, and insertresults to database D10: Selet the µ best individuals for Pt+1 from λ o�spring11: t← t+ 112: end whileompute distane for di�erent parameter types. The mixed-integer sphere funtion(Eq. 7.15) will be used as our test problem.
fsphere(r, z,d) =

nr∑

i=1

r2i +

nz∑

i=1

z2
i +

nd∑

i=1

d2
i → min (7.15)Note that the disrete values are treated as nominal disrete values by the evolu-tion strategy. Therefore it is not possible to exploit the ordering on the integersas it does for the integer variables.The experiment was set up as follows: Firstly, we generate a ertain number oftraining samples. Eah sample onsists of three parameter types. The boundaryfor eah parameter type is de�ned as ri ∈ [0, 10], zi ∈ [0, 10], di ∈ {0, . . . , 9}.These training samples, as well as their preise �tness values, will be used totrain a RBFN. Seondly, we use this trained RBFN to make predition on otherrandomly generated 1000 test samples. Di�erenes between predited and preise�tness value on test samples will indiate how good the approximation abilityof RBFN is. Figure 7.2 displays results of the RBFN for a mixed-integer sphereproblem in di�erent dimensions and for di�erent numbers of training samples.The results indiate that the number of training points is ruial for ahieving ametamodel of good quality (from top to down). The dimension (from left to right)of the searh spae has slightly less impat. However, the results indiate that theauray of the predition dereases learly when inreasing the dimension. Withmoderate dimensions, however, the approximations are muh better than randomguesses. These results prove that RBFN an be appliable not only in ontinuousbut also in mixed-integer spaes, if the distane measure is hosen appropriately.
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Figure 7.2: Satter plots for exat �tness value (X-Coordinate) and predited �t-ness value (Y-Coordinate) of 1000 test samples by using di�erent training sampleson generalized sphere funtion.7.5.2 Applying RBFN-MIES to Test ProblemsBefore we apply RBFN-MIES to a medial image analysis problem, we study itsbehavior on two arti�ial test problems. For both ases we use (µ = 4, λ = 28)strategy. We �rst test RBFN-MIES on the generalized unimodal sphere funtion,with nr = nz = nd = 5 and the same boundary ondition as desribed above.The test result on the sphere funtion is shown in Figure 7.3. It shows that MIESassisted by RBFN an aelerate the onvergene speed ompared to the strandardMIES.Another test problem is the more omplex and multimodal barrier problem(f. Chapter 4). Barrier funtions produe mixed-integer optimization problemswith a salable degree of ruggedness (determined by ontrol parameter C) bygenerating an integer array A using Algorithm 8 in hapter 4.Fig. 7.4 shows experimental results on the 15-D drempels funtion with ontrolparameter C=20. For the test in Fig. 7.4, we set K+ of RBFN-MIES to 64. Itturns out that, when optimization problems beome more di�ult, that is morerugged, the training number of the training samples must be inreased to ensure agood quality of RBFN preditions. Moreover, on this rugged landsape the MIESwithout RBFN-assistane detets the global optimum more reliably in the long
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Number of GenerationsFigure 7.3: Average onvergene histories of 20 runs of the 15-D sphere optimiza-tion problem with the MIES and RBFN-MIES (K+ = 64). The upper �gure showsthe average results for both strategies. In the lower �gure additional informationon outliers and on�dene margins are displayed using box error plots for the runswith the MIES (left) and RBFN-assisted MIES (right).
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Chapter 7 107run. This indiates an inreased tendeny of onvergene towards sub-optimalsolutions in ase of multimodal optimization. A possible explanation an be thatusing a predition makes it more di�ult to leave the attrator of a loal optimum.Counterating this problem will be a topi of future researh. However, on average,the results obtained with the RBFN-assisted MIES are better and good resultsare obtained faster.7.6 Apply RBFN-MIES to IVUS Image LumenDetetionMIES were already used to �nd optimal parameter settings for the segmentationof the lumen in IVUS images. In this work, we optimize a new image proessingpipeline with 23 optimization variables (as ompared to 16 parameters in theprevious hapter).Evaluating an image proessing pipeline on given parameter settings is verytime onsuming. The evaluations of one setting of the MIES algorithm on 100IVUS images took about 1 minute, i.e. for 10 generations with 4 parents and28 o�spring took about 5 hours on a Pentium 4 (3.4GHz) omputer. Thereforea metamodel-assisted approah seems promising as we an make use of existingevaluation results, whih ould help MIES to aelerate onvergene speed anddoes not onsiderably inrease the total omputational time, in partiular in aseswhen training data for the metamodel is already available.Like we did for the arti�ial test problems, we use (µ = 4, λ = 28) MIESstrategy. We set K+ = 32, that is, the latest 32 preisely evaluated individualsare used to update the RBFN in eah generation. We run both standard MIESand RBFN-MIES on 100 IVUS images. The �rst preliminary experimental resultis shown in Fig. 7.5. As we an see from the result, RBFN-MIES slightly ael-erate the onvergene speed ompared to the standard MIES without metamodelassistane. Of ourse, we an inrease the K+ to make RBFN predition morepreisely. However, as we mentioned during the disussion of the runs of test ases,by doing this we will also need some extra omputation time to train RBFN ineah generation.7.7 SummaryIn this hapter we propose radial basis funtion networks assisted mixed integerevolution strategies. To study the behavior of RBFN-MIES, we �rst applied itto di�erent arti�ial test problems, and then to parameter optimization of theIVUS image lumen feature detetor. The experimental results indiate that byonstruting/updating suh an approximate model in eah generation, aelera-tion on onvergene speed an be ahieved, provided training data for the RBFNis available (e.g. from previous runs). Moreover, we showed by satter plots that
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Chapter 7 109the preditions of the RBFN on the mixed-integer data are highly orrelated tothe true funtion values. When the optimization task di�ulty inreases, it willbe more di�ult for the metamodel to make good preditions and the size of thetraining set needs to be inreased. Aording to our design, in ase of failure ofthe metamodel the RBFN-MIES regresses to a standard MIES.As mentioned in the previous part, this is the �rst study on using RBFN-assisted MIES. The results are promising, but still there remain hallenges. Firstly,in this hapter we need initial training data for the RBFN in order to ahieve asigni�ant aeleration. This data an be taken (�reyled�) from previous runsor otherwise needs to be omputed ausing an inreased omputational e�ort.A possible way to generate training data e�iently would be to generate them�on the �y�, that is to apply the RBFN in the �rst generations until enoughtraining data are available. The performane of this 'old start' strategy needs tobe assessed in future work.Another question that arises is how we an deide whether one preisely eval-uated individual should be reorded or not. By disarding points that are verysimilar to existing points the diversity of the training samples an be inreased,whih an lead to enhaned quality and numerial stability. In this ontext, it isalso interesting to study problems like over�tting and prevention of deeptive pre-dition. A promising approah to avoid suh e�ets ould be an online monitoringof the model quality. To ounterat over�tting also regularization tehniques anbe onsidered in future work as well as unsupervised methods like self-organizingmaps.In addition to parameter studies the performane of the RBFN-MIES needsto be tested on a larger number of problems, inluding further, more hallenging,problems from medial image analysis. From a theoretial point of view it willbe interesting to aess how ontinuity assumptions, suh as Lipshitz ontinuity,an be generalized for mixed-integer domains and how the quality of the mixed-integer RBFN is related to suh properties. A goal of suh onsiderations wouldbe a theory that allows to mark the boundary between funtions that an beapproximated and those where approximation fails.





Chapter 8Mixed-Integer EvolutionStrategies with DynamiNihingMixed-Integer Evolution Strategies (MIES) are a natural extension of standardEvolution Strategies (ES) for addressing optimization of various types of variables� ontinuous, ordinal integer, and nominal disrete � at the same time. Like mostEvolutionary Algorithms (EAs), they experiene problems in obtaining the globaloptimum in highly multimodal searh landsapes. Nihing methods, the extensionof EAs to multimodal domains, are designed to treat this issue. In this studywe present a dynami nihing tehnique for Mixed-Integer Evolution Strategies,based upon an existing ES nihing approah, whih was developed reently andsuessfully applied to ontinuous landsapes. The new approah is based on theheterogeneous distane measure that addresses searh spae similarity in a wayonsistent with the mutation operators of the MIES. We apply the proposedDynami Nihing MIES framework to a test-bed of arti�ial landsapes and showthe improvement on the global onvergene in omparison to the standard MIESalgorithm.8.1 IntrodutionEvolutionary Algorithms (EAs) have the tendeny to onverge to a single solu-tion [3, 83℄, even if the searh landsape has multiple globally optimal solutions.This is due to e�ets suh as geneti drift [104℄ , fast takeover [3℄, and disruptivereombination [92℄. Population diversity loss in EAs does not only make it di�-ult to obtain multiple global optima, but may also prevent the algorithm fromloating the global optimum.Nihing tehniques have been proposed to ounterat population diversity loss



112 Nihing with Evolution Strategiesin EAs. They support parallel onvergene into multiple attration basins in amultimodal landsape within a single run. Nihing tehniques have been mainlydeveloped within the framework of Geneti Algorithms (GAs) in the past deades(see, e.g. [112℄ and [83℄), and have reently also reeived inreasing attention fromthe Evolution Strategies (ES) ommunity [92, 111, 116, 117℄.The appliation of nihing in ES proved to be very suessful in improving on-vergene reliability and solution diversity in multimodal ontinuous optimization.However, it remains an open question, whether nihing an also be inorporatedinto mixed-integer searh spaes, whih are of great pratial relevane [7℄. In thishapter we investigate whether nihing is also bene�ial in this problem domainby ombining the nihing approah by Shir et al. [111℄ with the Mixed-IntegerEvolution Strategy (MIES) [38, 77℄.A ruial step will be the de�nition of an appropriate metri that is ompatiblewith the neighborhood strutures used by the searh operators of the Mixed-Integer Evolution Strategies. Thereby we aim for a oherent algorithm designwhih will make a theoretial analysis of the algorithm more aessible. It isa known drawbak that the MIES has di�ulties to onverge to global optimaof highly multimodal landsapes [78℄. Based on seleted test problems, suh asMixed-Integer NK Landsapes [78℄ and Barrier Funtions [77℄, we study whetherthe introdution of nihing improves the MIES performane on suh landsapes.8.2 Nihing with Evolution StrategiesNihing methods are tehniques that originally promote the formation and main-tenane of interim subsolutions in the geneti algorithms (GA) on the way to sin-gle, �nal solution [83℄. Not only are they neessary if one is interested in �ndingmultiple solutions to a problem of multimodal funtion optimization and multi-objetive funtion optimization lassi�ation, but also they are useful for �ndingbetter single solutions to very hard problems. In this setion, we will give a briefoverview of ES nihing tehniques with respet to Mahfoud's nihing methods.8.2.1 MotivationAs we addressed in the former setion, the anonial ES su�ered from severale�ets - selet pressure, operator disruption and random geneti drift, whih in-terrupt the formation and maintenane of multiple solutions [110℄. As a result ofthese e�ets, the evolution proess are pushed towards a rapid onvergene intoa single solution, even when multiple solutions are required by a given problem.Seletive PressureTraditional deterministi seletion strategies of the standard ES intuitively implieshigh seletive pressure. A quantitative analysis of seletive pressure was given byGoldberg and Deb by introduing the takeover time [46℄ onept, whih is de�ned



Chapter 8 113as the minimal number of generations until repeated appliation of the seletionoperator yields a uniform population �lled with opies of the best individual. Bäkanalyzed the ES seletion mehanisms and showed that both (µ, λ) and (µ + λ)seletion strategies have very short takeover times (or high seletive pressure).Operator DisruptionIn the standard ES, the mutation operator an be regarded as an operator withnegligible disruption e�et, while the reombination operator, by ontrast, hasa disruptive nature and modi�es a oordinate of the deision parameters to beoptimized.Geneti DriftGeneti drift is a stohasti proess in whih the diversity is lost in �nite popula-tions [64℄. Due to the �nite number of o�spring, a distribution of geneti propertiesis transferred to the next generation in a very limited manner and onsequentlythe distribution will approah an equilibrium distribution. Sine small populationsizes are used in the standard ES, the geneti drift ours and auses the loss ofdiversity within the population. Espeially in multimodal funtions, suh an e�etauses a onvergene to an equilibrium distribution around a single attrator [104℄.8.2.2 Dynami ES NihingIn the following part, we will desribe the framework for applying nihing teh-niques in the standard ES, whih was originally proposed by Shir in [110, 111℄. Inpartiular, distane metri dxi,xj
and nihe radius ρ will be disussed.Distane MetriOriginally, the anonial ES was developed for takling problems in real-valuedsearhing spae. The metri for measuring the distane between individuals isde�ned as follows: given two individuals in the searh spae with dimension n, ~xi =

[x1,i, x2,i, . . . , xn,i] and ~xj = [x1,j , x2,j , . . . , xn,j ], the distane dxi,xj
is alulatedusing a eulidean distane norm given in Equation 8.1 below.

dxi,xj
=

√
√
√
√

n∑

k=1

(xk,i − xk,j)2 (8.1)The Nihe RadiusThe original formula for alulating nihe radius ρ in GA was derived by Deb andGoldberg in [29℄. It is straightforward to adopt the formula but using the distanemetri whih was de�ned by equation 8.1.



114 Nihing with Evolution StrategiesGiven the number of peaks q in the solution spae, every nihe is onsideredto be surrounded by a n-dimensional hypersphere with radius ρ whih oupies
1
q of the entire volume V of the spae. The volume V an be omputed throughformula below:

V = crnwhere c is a onstant and given expliitly by:
c =

π
n
2

Γ(n2 + 1)
, Γ(n) =

∫ ∞

0

xn−1 exp(−x)dxGiven the lower and upper boundary values xk,min, xk,max in the deision param-eter spae, r is de�ned as follows:
r =

1

2

√
√
√
√

n∑

k=1

(xk,max − xk,min)2If we divide the volume into q parts, we an get following formula:
cρn =

1

q
crnwhih yields

ρ =
r

n
√
q

(8.2)Dynami Nihing ES AlgorithmNext, we outline and disuss the Dynami Nihing ES Algorithm [109℄ in detail.The algorithm starts with the initialization of q nihes with µ individuals and theirevaluation. Then, the following loop is repeated until a termination riterion ismet: Firstly, for eah nihe the algorithm generates λ o�spring based on the µparents. Depending on the instantiation of the algorithmi ES kernel, mutationand reombination operators are employed for this purpose.By restriting reombination to the dynamially updated nihes, the algorithmenfores a mating restrition sheme whih allows ompetitive mating only withinthe nihes. This is done to prevent disruptive e�ets of the reombination oper-ator [92℄. The onept of �xed mating resoures is stritly enfored: For everynihe the same number of o�spring is generated, also referred to as the nihehosting apaity. This measure is taken in order to prevent geneti drift e�ets,as desribed e.g. in [104℄.Upon �tness evaluation of the new individuals, o�spring and parent individ-uals are merged into one population omprising now q × (µ + λ) individuals.The algorithm then employs a sub-routine for dynamially identifying the vari-ous �tness-peaks of every generation (whih uniquely de�ne the nihes) and thenassigns eah individual to a nihe. The lassi�ation into nihes is arried out in



Chapter 8 115a greedy manner, by means of the so-alled Dynami Peak Identi�ation (DPI)algorithm [85℄. The latter is outlined as Algorithm 11.Besides the global seletion phase taking plae in the nihe forming proess,whih will be desribed later, a loal environmental seletion takes plae withineah nihe, that enables step-size adaptation to the loal topography of the nihes.If the number of individuals in a peak set is less than µ, the algorithm reatesnew samples in the searh spae and adds them to the nihe until it ontains µindividuals. A summary of the algorithm is given in Algorithm 12.Algorithm 11 Dynami Peak Identi�ation (DPI)in: Population Pop, # nihes q, nihe radius ρout: Peak sets DPS1: Sort Pop in dereasing �tness order2: i := 13: NumPeaks := 04: DPS := ∅ {Set of peak elements in population}5: while NumPeaks 6= q and i ≤ popSize do6: if Pop[i] is not within sphere of radius ρ around peak in DPS then7: DPS := DPS ∪ {Pop[i]}8: NumPeaks := NumPeaks+ 19: end if10: i := i+ 111: end whileThe number of expeted nihes, q, is given as input to the algorithm. Thedistane alulation is implemented with the Eulidean metri (Equation 8.1) inthe deision parameter spae sine all parameters are ontinuous. The nihe radius
ρ itself is approximated a-priori with Equation 8.2 and remains �xed during therun.8.3 Dynami Nihing for Mixed-Integer ESTo inorporate MIES into the Dynami Nihing ES framework we must de�nea proper distane metri for the mixed-integer spae. For ontinuous spaes theEulidean metri seems to be a straightforward hoie, while for nominal disretespaes an overlap metri seems suitable, as it does not assume any ontinuity ofthe objetive funtion w.r.t. a partiular ordering of the domain. For two integerparameter vetors the distane an be measured by means of the Manhattan dis-tane in a straightforward way. This is the aumulated distane when omputingthe di�erene of single parameter values of the variables. In ombination with theMIES the hoie of the Manhattan distane is also in onformity with the sym-metry assumptions used in the design of the mutation operator, whih generatessamples from an ℓ1 symmetri distribution. We ombine the di�erent metris using



116 Dynami Nihing for Mixed-Integer ESAlgorithm 12 Nihing-ES.in: Number of nihes q, Nihe radius ρout: Optimized solution(s)1: Initialize q equally-sized nihes of size µ randomly2: Evaluate all new individuals in all nihes3: while Termination riteria not full �lled do4: for every nihe i = 1 . . . q do5: generate λ o�spring from µ parents6: Evaluate �tness of λ o�spring individuals7: Update best found solution(s)8: end for9: Combine all µ+ λ individuals from nihes into one population10: Compute the Dynami Peak Set with DPI (Algo. 11)11: Selet µ best individuals per nihe12: for every nihe i = 1 . . . q do13: if µi = number of individuals in nihe i < µ then14: Generate and Evaluate µ− µi new individuals15: end if16: end for17: end whilethe Heterogeneous Eulidean-Manhattan-Overlap Metri (HEMOM) approah byWilson and Martinez [122℄. Aording to the parameter type (f. the searh spaede�nition in setion 3.3.1), the spei� distane metri an be used to ompute dis-tane. More spei�ally, we summed these di�erent distane metris up aordingto Equation 8.3 below:
∆(xi, x

′
i) =







∆r(xi, x
′
i) = (xi − x′i)2 if xi, x′i ∈ R;

∆z(xi, x
′
i) = |xi − x′i| if xi, x′i ∈ Z;

∆d(xi, x
′
i) = I(xi, x

′
i) =

{

1 if xi 6= x′i
0 if xi = x′i

if xi, x′i ∈ D. (8.3)Then the ombined heterogeneous distane metri ∆mixed for h = (r◦z◦d) reads:
∆mixed(h,h′) =

√

∆r(r, r′) + ∆z(z, z′) + ∆d(d,d′). (8.4)By using the aforementioned heterogeneous distane metri, the nihe radius
ρmixed in the mixed-integer searh spae now an be approximated as follows:

ρmixed =
r

n
√
q

with r =
1

2

√
√
√
√

n∑

i=1

(max∆xi) (8.5)



Chapter 8 117Here max ∆xi denotes the maximum distane value of parameter xi within itspossible boundary. For xi ∈ D, the maximum distane is always 1 aording tothe de�nition of overlap metri. In pratie, one parameter an overpower theother parameter beause of di�erent range. To avoid this, distanes are oftennormalized relative to their aeptable range values. For di�erent normalizationtehniques, please refer to [122℄. q denotes the number of peaks in the solutionspae. We assumed that every nihe with radius ρmixed oupies 1
q -th of the entirevolume of the spae.8.4 Test Funtions and Experimental ResultsTo investigate the behavior of our algorithm, we applied it to two arefully de-signed mixed-integer multimodal funtions in various dimensions. Spei�ally, weare interested in the global onvergene. Performane omparison between Dy-nami Nihing MIES with standard MIES is also presented.8.4.1 Barrier FuntionBarrier funtions, introdued in hapter 4, reate mixed-integer optimizationproblems with a salable degree of ruggedness (determined by parameter C).To test the Dynami Nihing MIES and standard MIES algorithm we generatedbarrier funtions for C = 20, C = 200, C = 2000 and C = 5000 and ran both theDynami Nihing MIES and a standard MIES algorithms 20 times with di�erentrandom seeds. For the Dynami Nihing MIES we used 5 nihes with µ = 15 and

λ = 75 for eah nihe. For the MIES algorithm we used a (75 + 500) strategythereby making sure that the number of parents, o�spring and �tness evaluationsper generation is the same for both algorithms.The results of the experiments are displayed in Figure 8.1. Although the Dy-nami Nihing MIES onverges a little slower than the standard MIES algorithmit does reah the same performane in the end. In the ase of C=2000 DynamiNihing MIES performs slightly better than the standard MIES on average. Thepossible explanation is that the barrier funtion landsape with C=2000 is harderthan others. The standard MIES onverges faster but Dynami Nihing MIES hasa better hane of getting rid of loal traps at last.8.4.2 Mixed-Integer NK LandsapesNK landsapes (NKL, also referred to as NK �tness landsapes), introdued byKau�man [61℄, were devised to explore the way that epistasis ontrols the `rugged-ness' of an adaptive landsape. They are partiularly used as test problem gener-ators for Geneti Algorithms (GAs) to understand the dynamis of evolutionarysearh. The ruggedness and the degree of interation between variables of NKLan be easily ontrolled by two tunable parameters: the number of genes N andthe number of epistati links of eah gene to other genes K. Moreover, for given
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Figure 8.1: Average best �tness results over 20 experiments for barrier funtionswith C = 20, C = 200, C = 2000 and C = 5000 for both the Dynami NihingMIES and standard MIES algorithms.values of N and K, a large number of NK landsapes an be reated at random.Mixed-Integer NK-Landsapes (MI-NKL) were introdued in hapter 4 and arean extension of NKL from the traditional binary ase to a mixed variable asewith ontinuous, nominal disrete, and integer variables. The resulting test fun-tion generator is a suitable test model for our dynami nihing Mixed-IntegerEvolution Strategy.In order to test our Dynami Nihing MIES algorithm we tested it on di�erentMixed-Integer NK landsapes with 15 variables (5 ontinuous (range [−10, 10]), 5integer variables (also range [−10, 10]) and 5 nominal disrete variables (Boolean({0, 1})). We generated 10 random MI-NKL for di�erent levels of K (2, 5, 10, and
14) to simulate di�erent problem di�ulties and both the Dynami Nihing MIESand standard MIES algorithms were run 20 times on eah MI-NKL using di�erentrandom seeds. We used a total population size of 75 for both the standard MIESand Dynami Nihing MIES algorithm (15 individuals per nihe) and an o�springsize of 500 (100 per nihe). To ompare (and average) the results of the di�erentexperiments we used the following error-measure:error = best found �tness - best possible �tnessThe results of the experiments are displayed in Figure 8.2. For K = 2 and
K = 5 we see, similar to the results of the barrier funtions, that the standard
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Figure 8.2: The error average of both Dynami Nihing MIES and standard MIESon di�erent mixed-integer NK landsape problems with N = 15.MIES algorithm onverges faster. However, on the MI-NKL the Dynami NihingMIES algorithm manages to ahieve a better result on average. If we look at theresults for more rugged (and harder) MI-NKL with K = 10 and K = 14 we seethat the Dynami Nihing MIES outperforms the standard MIES algorithm bothin onvergene speed and �nal solution quality.We also ompared the number of experiments the Dynami Nihing MIESand MIES algorithms �nd the global optimum, and the results are presented inTable 8.1. For K = 2 the Dynami Nihing MIES algorithm �nds the optimum
174 times out of 200 (10 di�erent MI-NKL times 20 runs) while MIES �nds it
143 times. As K inreases both algorithms �nd the optimum less often, whih isexpeted sine the di�ulty inreases. For K = 5, 10 and 14 the Dynami NihingMIES �nds the optimum 92, 19 and 8 times respetively. MIES only manages to�nds the optimum 67, 6 and 3 times for K = 5, 10 and 14. Thus, the DynamiNihing MIES algorithm does not only result in a lower average error but alsomanages to �nd the global optimum more often.8.5 SummaryStudies on arti�ial landsapes reveal that the proposed heterogeneous nihingan be a useful ingredient in highly rugged landsapes. On MI-NK Landsapes it



120 SummaryK Dynami Nihing MIES MIES2 174 1435 92 6710 19 614 8 3Table 8.1: The number of times the Dynami Nihing MIES and MIES algorithmsfound the global optimum out of a total of 200 experiments (10 di�erent MI-NKLtimes 20 runs).learly improves the hanes to obtain the global optimum. In more simple land-sapes it only slightly slows down the onvergene speed ompared with standardMIES. In onlusion, it an be said that in ase of simple problems the usage ofthe new strategy will not be harmful and in the ase of highly rugged problemsit an lead to solutions of better quality than standard MIES.In the future the Dynami Nihing MIES should be tested on additional prob-lems, inluding real-world appliations. Moreover, a deepened understanding ofnihe formation proess in mixed-integer landsapes and the in�uene of strategyparameters may help to further improve its performane.



Chapter 9Mixed-Integer EvolutionStrategies with BayesianNetworksAs we learned from the previous setions of this thesis, mixed-integer optimizationproblems arise in various appliation �elds, suh as hemial engineering and themedial image proessing. Stohasti optimization algorithms, suh as evolutionstrategies and estimation of distribution algorithms, an be used as solution meth-ods for solving these problems approximately. Espeially for real-world problemsthey often prove to be powerful methods due to their �exibility and robustness.However, a shortoming of existing mixed-integer evolutionary algorithms,suh as Mixed-Integer Evolution Strategies (MIES), is that their variation pro-edures mutate eah deision variable independently. Therefore, dependenies be-tween variables, even if they are known a-priori, annot be taken into aount.This hapter aims at designing and testing a mixed integer evolutionary algorithmthat an utilize knowledge about suh dependenies. The development of the newapproah is motivated by problems in medial image analysis where the param-eters of a medial image proessing pipeline are to be optimized (f. hapter 5).Though the optimization of these systems is essentially a blak-box optimizationproblem, dependene information an be extrated heuristially from the knownstruture of the proessing pipeline (Figure 5.5 in hapter 5).Inspired by existing works, we propose a Mixed-Integer Bayesian OptimizationAlgorithm (MIBOA), that is a variant of Estimation of Distribution Algorithms(EDAs) and extends the Bayesian Optimization Algorithm (BOA1), from binaryoptimization problems to mixed-integer optimization problems using speial typesof Bayesian Networks dealing with random variables of mixed-type. EDAs do nei-ther have a rossover nor a mutation operator. Instead, a new population is gen-1With �xed network struture.



122 Learning with Bayesian Networkserated by sampling the probability distribution, whih is estimated and updatedbased on the distribution of reently obtained �suessful � individuals. Di�erentinstantiations of EDAs di�er by the distribution types and update rules theyuse. For instane, the lassial Population-Based Inremental Learning (PBIL)algorithm samples from an independent joint distribution of Bernoulli type [9℄,while the Univariate Marginal Distribution Algorithm (UMDA) [69, 108℄ featuresindependent joint distributions of Gaussian type.We show that a-priori knowledge on dependenies between deision variablesan be exploited by this algorithm in order to improve onvergene speed and relia-bility. In disussing the properties of heterogeneous Bayesian Networks, represent-ing multivariate distributions of mixed-variable type, we point out whih kind ofdependene information an be utilized. Moreover, a speial type of mixed-integerNK-landsape (f. hapter 4) that is well suited for testing the new approah, theso-alled Ayli Direted Graphi Models (ADG) based NK-landsape, will beintrodued.The hapter is strutured as follows: Setion 9.1 introdues the basi knowl-edge of graph theory and Bayesian Networks. In Setion 9.3 we disuss brie�yestimation of distribution algorithms with independent sampling distributions inontrast to anonial evolution strategies (ES). Setion 9.4 introdues Bayesianoptimization and generalizes it to the mixed-integer ase. After introduing testproblems based on NK-landsapes in Setion 9.5, we present results of mixed-integer BOA on these landsapes. Finally, the main results of the hapter aresummarized and diretions of future researh are disussed.9.1 Learning with Bayesian NetworksIn this setion, we will provide a short introdution to Bayesian Networks, espe-ially parameter learning with Bayesian Networks.9.1.1 Graphial Models�Graphial models are a marriage between probability theory and graph theory.They provide a natural tool for dealing with two problems that our throughoutapplied mathematis and engineering � unertainty and omplexity � and in par-tiular they are playing an inreasingly important role in the design and analysisof mahine learning algorithms� [59℄.In general, there are two main kinds of graphial models (see Figure 9.1 below):Undireted graphial models and Direted graphial models. In this work, we fousour attention on ayli direted graphial models, whih are very popular withinthe Arti�ial Intelligene (AI) and statistis ommunities .
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Undirected Graph Directed GraphFigure 9.1: A sample undireted graphial model (left) and a sample diretedgraphial model (right).9.1.2 Bayesian NetworksIn a nutshell, a Bayesian Network is an ayli direted graphial model thatenodes probabilisti relationships among variables of interest, in whih nodesrepresent random variables and the ars denote onditional independeny assump-tions. That is, for a given ADG, an ar from node A to B an be interpreted as A�auses� B. Related to our ase, nodes represent ontrol parameters in the givenimage proessing pipeline. Combined with statistial tehniques, Bayesian Net-works (BNs) have several advantages for data analysis in ontrast to other datarepresentations, suh as deision trees and rule bases [51℄:(1) BNs an handle inomplete data sets, beause the model enodes dependen-ies among all variables.(2) BNs allow us to learn about ausal relationships, and hene is very usefulfor us to gain understanding about a problem domain.(3) In onjuntion with Bayesian statistial tehniques, BNs failitate the om-bination of domain knowledge and data.(4) BNs are a promising approah to avoid the over�tting of data.Beause of these aforementioned advantages, Bayesian Networks are applied tomany real-world appliations from di�erent researh domains. For instane, bioin-formatis, doument lassi�ation and deision support systems. In this work,Bayesian Networks will be used to model knowledge in medial domain. Spei�-ally, we will use Bayesian Networks to enode probabilisti relationships amongdeision variables of a medial image feature detetor (f. �image proessing pipelinefor lumen feature detetion� in hapter 5). For more detailed information aboutgraph theory and Bayesian Networks, readers are suggested to hek literaturesuh as [51℄ and [59℄.



124 Problem De�nition of Mixed-Integer Optimization9.1.3 Bayesian Parameter LearningThrough BNs, we an learn the struture (topology) of the model, or the parame-ters, or learn both of them. The table 9.1 gives a lear view about how to lassifylearning methods in di�erent situations. Referred to the optimization of the imageObservabilityStruture Full PartialKnown Closed form Expetation Maximization (EM)Unknown Loal searh Struture expetation maximizationTable 9.1: Contigeny table for lassifying learning methodsproessing pipeline (Figure 5.5 in hapter 5), it is lear that the struture of thepipeline is known to us in advane and all nodes are observable. The learning inthis ase is to �nd the maximum likelihood estimates (MLEs) of the parametersof eah onditional probability distribution (CPD), whih ontains M ases andare assumed to be independent. The normalized log-likelihood of the training set
D = {D1, . . . , DM} is a sum of terms, one for eah node:

L =
1

M
log

M∏

m=1

Pr(Dm|G) =
1

M

n∑

i=1

M∑

m=1

logP (Xi|Pa(Xi), Dm)where Pa(Xi) are the parents of Xi. The log-likelihood soring funtion deom-poses aording to the struture of the ADG; hene we an maximize the ontri-bution to the log-likelihood of eah node independently.9.2 Problem De�nition of Mixed-Integer Optimiza-tionNow, let's review the de�nition of mixed-integer optimization. In this ontributionwe de�ne the mixed-integer optimization as follows:minimize f(r, z,d), r ∈ R
l, z ∈ Z

m,d ∈ D1 × . . . Dn (9.1)Here, r denotes a vetor of real numbers, z is de�ned from a �nite set of integervalues (or ordinal disrete values), whereas d de�nes a n-tuple of nominal disretevariables with �nite domains Di, i = 1, . . . , n. The funtion f is onsidered to bea blak-box funtion, or, more preisely, a funtion the mathematial struture ofwhih is mainly unknown to the user. The only a-priori knowledge that we anexploit about f are assumptions about parameter dependenies (interation ofvariables). A ommon feature of funtions in whih interations our is that theyannot be deomposed into a sum of funtions depending only on single variables



Chapter 9 125(separable funtion). For example, if r1 interats with z1 and all other parametersare independent from eah other, we an write the funtion as:
f(r, z,d) ≡ f1,l+1(r1, z1) + f2(r2) + · · ·+ fl(rl) + fl+2(z2) + . . .

+fl+m(zm) + fl+m+1(d1) + · · ·+ fl+m+n(dn)where f1,l+1(r1, z1) annot be written as a sum of funtions of r1 and z1. Non-separability makes it potentially di�ult to optimize these funtions by optimiza-tion routines that exploit suh an assumption, suh as oordinate searh but alsoevolutionary algorithms that mutate variables independently from eah other. InSetion 9.5, with the ADG-based NK-landsapes, an example for a funtion lassin whih various variable interations an be introdued will be disussed.9.3 Algorithms with independent sampling distri-butionsNext, let us introdue the evolution strategy (ES) and the estimation of distri-bution algorithm (EDA) as two basi evolutionary algorithms for parameter op-timization2: The anonial (µ + λ) evolution strategy has the following iterationsheme:Step 1 : Create initial population P ← {(a1, ς1), . . . , (aµ.ςµ)}, where ςi denotes avetor of dispersion parameters of the mutation distribution, e.g. standarddeviations or mutation probabilities.Step 2 : Create o�spring population Q of size λ by hoosing randomly elementsfrom P and mutating �rst the distribution parameters ςi to ς ′i and then theobjet variables ai using distribution parameters ς ′i.Step 3 : Set P to the µ best points (with respet to f) oupled with their mutateddistribution parameters ς ′ out of P ∪Q.Step 4 : If termination riterion is reahed, return best found solution, otherwisego to Step 2.In ontrast to this, estimation of distribution algorithms apply the following mainloop:Step 1 : Initialize distribution parameters of distribution Dθ.Step 2 : Create o�spring populationQ of size λ by sampling from the distribution
Dθ.Step 3 : Set P to the µ best points in Q with respet to f .2The ES is introdued, as it is a state-of-the-art tehnique in mixed integer optimization wewill ompare to later.



126 Algorithms with independent sampling distributionsStep 4 : Update parameters θ of the distribution Dθ as a weighted average ofthe estimation of θ based on P and the urrent parameter set θ.Step 5 : If termination riterion is reahed, then return best found solution,otherwise go to Step 2.While in ES the basi variation operator is mutation, the variation operator inEDA is sampling from a multivariate distribution the parameters of whih aredynamially updated based on positive examples.Next, let us desribe the mutation and sampling proedure for the mixed-integer ase (without parameter dependenies).The mutation of mixed-integer evolution strategies an be desribed as a pro-edure:Continuous mutation: Set ri = ri + Normal(0, sr), i = 1, . . . , l.Integer mutation: Set zi = zi+Geometri(0, sz)−Geometri(0, sz), i = 1, . . . , l.Nominal disrete mutation: If Uniform(0, 1) < pd set di to a random valuefrom Di − {di}.Here Normal(0, sr) omputes a normally distributed random number with stan-dard deviation parameter sr, Geometri(0, sz) generates geometrially distributedrandom variables with mean sz [77℄, while Uniform(0, 1) generates a uniformly dis-tributed random number between 0 and 1. Before the mutation of the distributionparameter sr we employ the log-normal distribution as proposed by Shwefel [107℄et al. sr ← sr exp(τrNormal(0, 1)) with τr = 1/
√
l being the learning rate. Aord-ingly, sz ← sz exp(τzNormal(0, 1)), with τz = 1/
√
m is used to adapt the step-sizefor integer mutations. The probability parameter pd is mutated based on a logistimutation (see e.g., [105℄ et al.) that ensures that the value of pd stays in ]0, 1[. Allthree mutations of strategy parameters have the property that inrements of thevalue are as likely as derements. The ES disussed here is termed mixed-integerevolution strategy and was disussed in several publiations [38, 77℄.For the sampling in the mixed-integer estimation of distribution algorithmsimilar distribution types are used. We employ the joint distribution Dθ omposedof

• a vetor of l independent multivariate normal distributions, with mean val-ues µ1, . . . , µl and standard deviations σ1, . . . , σl.
• a vetor of m random variables of type ξi+Z1(sz)−Z2(sz), whereas Z1(sz)and Z2(sz) denote indentially independent geometrially distributed ran-dom variables with mean value sz.
• a vetor of n Bernoulli distributed binary random variables with probabilityparameters p1, . . . , pn.



Chapter 9 127The desribed estimation of distribution algorithm is new for the mixed-integersearh spae. However, for binary nominal disrete parameters the algorithm is thelassial population based inremental learning (PBIL) algorithm [9℄ and, reduedto its ontinuous part, it equals the so-alled Univariate Marginal DistributionAlgorithm (UMDA) [108, 69℄. In the sequel, we will refer to the EDA algorithmfor mixed-integer searh spae as MIPBIL.The aforementioned two algorithms are used as referene algorithms to �ndout whether the introdution of dependeny information improves the algorithmsbehavior or not. Next, we will look at an extension of MIPBIL that allows tointegrate dependeny information.9.4 Mixed-Integer Bayesian Optimization AlgorithmIn order to design a new mixed-integer estimation of distribution algorithm thatan take into aount dependenies between variables of the objetive funtions wewill replae the independent joint distribution Dθ used in the MIPBIL approahby an heterogeneous Bayesian Network with �xed struture. This approah is alsoused in the Bayesian optimization algorithm (BOA) by Pelikan et al. [91℄. TheirBOA method is applied for binary searh spaes and also learns the strutureof the network, while our approah is de�ned for mixed-integer searh spaesand requires a-priori knowlege on the dependeny struture of variables in theobjetive funtion. To emphasize the similarity to the BOA algorithm, we willterm the new approah Mixed-Integer BOA (MIBOA).Bayesian Networks yield very powerful probabilisti graphial representations.The key to their popularity is their ease of representation of independeny rela-tions, and their support for reasoning with unertainty.A Bayesian Network is a graphial representation of a probabilisti problem,formally de�ned as a pair B = (G,P ), where P is the joint probability distributionon the set of random variables and G is an ADG representing the dependeny andindependeny relations among this set of random variables, where eah graphiallyrepresented marginal and onditional independeny also has to be valid in the jointprobability distribution [90℄. Clearly, the de�nition of Bayesian Networks impliesas well that a dependene in the graph does not have to de�ne a dependene inthe joint probability distribution P .Let {X1, . . . , Xd} be a set of random variables. Then, based on the inde-pendeny relations in the graph G, the joint probability distribution P an befatorised as follows:
P (X1, . . . , Xd) =

d∏

v=1

P (Xv | π(Xv)), (9.2)where π(Xv) denotes the graphially represented set of parents of random variable
Xv. This implies that a joint probability distribution an be de�ned in terms ofloal distributions resulting in signi�ant omputational savings.



128 ADG-based NK-landsapesFor reasoning in Bayesian Networks there are several exat methods proposedthat make use of loal omputations [26℄. Here, loal omputations are based onthe onstrution of join trees.Hybrid Bayesian Networks onsist of both disrete and ontinuous randomvariables [25℄. In these networks, loal omputations are possible, however, theorretness of the inferene method depends on whether parents of a variable aredisrete, ontinuous, a mixture of disrete and ontinuous, and on the hoie ofthe loal probability distribution.The �rst method, introdued by Lauritzen [70℄ using exat inferene, is basedon onditional Gaussian distributions. The restrition of this inferene is thatdisrete random variables are not allowed to have ontinuous parents when hybridBayesian Networks are onerned. To overome this problem, Koller proposed amethod whih de�nes the distribution of these disrete nodes by a mixture ofexponentials. However, for the inferene, Monte Carlo methods are used [65℄.As another solution to this problem, we may disretise ontinuous variables, butdisretisation introdues errors beause we use approximation methods. However,in the experiment performed in this ontribution we did not yet study the aseof disrete nodes having ontinuous parents. For the Bayesian Networks relatedexperiments the BNT tool developed by Murphy was used [86℄. The same basialgorithm as for PBIL was used, exept that the distribution type and the updateproedure was hanged. A detailed desription of the update algorithm wouldexeed the sope of this work, and we refer to [86℄.9.5 ADG-based NK-landsapesADG-based NK-landsapes (ADG-NKL), that we will introdue next, are attra-tive as models for optimization as their interation struture orresponds to thedependene struture of Bayesian Networks. Let x1, . . . , xd denote a set of dei-sion variables (the type of whih an be ontinuous or disrete) and assume theinteration struture of the funtion is desribed by some ADGs. Eah ADGs isbasially de�ned by a funtion π(·) that assigns the set of parent nodes to eahnode, where the nodes represent parameters to be optimized. Then the ADG-based NK-landsape an be written as a funtion of omponent funtions fi:
f(x1, . . . , xd) =

d∑

i=1

fi(xi, π(xi)) (9.3)Note that this expression has the same struture as the expression logP (X1, . . . , Xd)(see Equation (9.2)). Note also that the x1, . . . , xd denote variables of the obje-tive funtion in ontrast to X1, . . . , Xd whih denote random variables.The onstrution of the ADG-based NK-landsapes orresponds to that oflassial mixed-integer NK-landsapes [78℄ with one exeption. As for lassialNK-landsapes for eah deision variable (or gene) xi we hoose K epistati genes
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r1 z1Figure 9.2: Example for an ADG-based NK-landsape. The funtion values atthe edge of the searh spae [0, 1]d are set randomly between 0 and 1. Valuesinbetween are interpolated [78℄.that interat with xi, in ADG-based NK-landsapes we hose exatly the par-ent nodes as epistati genes. Note that the number of them an vary with theindex of the deision variable in question. That is why the K in the expression'NK-landsape' is not referring to the number of epistati genes anymore - wekept it, however in the term, as it makes it easier to math the orrespondingwell known NK-landsapes with the ADG-based NK-landsapes. As with las-sial NK-landsapes, the de�nition of the omponent funtions in ADG-basedNK-landsapes is based on randomly generated funtion tables [78℄, as visualizedin Figure 9.2. In the mixed-integer ase multilinear funtions are used to interpo-late between the randomly hosen funtion values at the edges of a hyperube asdesribed in [78℄.9.6 Experimental ResultsIn order to hek whether a-priori knowledge on the interation struture inte-grated in the struture of the Bayesian Network helps to speed up searh we haveonduted experiments on various ADG types that are visualized in Figure 9.3.These ADGs were used to onstrut NK-landsapes that indiate that the repre-sented independeny and dependeny relations respetively in an ADG are alsoinluded in the NK-landsape onstruted from this ADG. The same ADG is usedas a struture for the Bayesian Network as a-priori knowledge. For the probabilitytables, however, no a-priori knowledge is used. They are initialized based on the�rst population of seleted individuals.
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Figure 9.3: Various types of ADGs used to de�ne ADG-based NK-landsapes andorresponding Bayesian Networks. From left to right, ADGs are termed 'hain','strut2', 'strut3', 'bitree', 'tritree', and 'invtree'. Node types are de�ned as fol-lows: disrete nodes(1-5), ontinuous nodes(6-10), integer nodes(11-15).We applied three types of algorithms on ADG-based NK-landsapes. 15 vari-ables are onsidered, 5 for eah type (l=m=n=5). As the population size turnedout to be a ruial parameter, two di�erent population sizes, 28 and 100, are tried.A number of 20 runs were statistially evaluated for eah strategy.Figures 9.4 to 9.6 show onvergene dynamis for di�erent sample landsapesde�ned by their ADG, eah of whih has a di�erent struture. Averaged objetivefuntion values (di�erene to the global optimum) and standard deviations areplotted versus the number of evaluations performed.On the landsape 'hain' (Figure 9.4), the MIBOA performs best, when thepopulation size is set to 100. For a population size of 28 the MIBOA performsalmost equally to the MIES. In both ases the MIPBIL algorithm was learlyoutperformed.On the landsape 'bitree' (Figure 9.5), a binary tree, the MIBOA performsbest, when the population size is set to 100. For a population size of 28 theMIBOA is faster but in the long run MIPBIL results in (almost) the same goodvalue. MIES seems to have a problem with this landsape, whih may be due to
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Figure 9.4: Convergene dynamis of MIES, MIPBIL, and MIBOA on a 'hain'-type ADG-NKL.
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134 Summarystep-size redution whih an be harmful in multimodal landsapes. The largestandard deviation supports this onjeture.On the landsape 'invtree' (Figure 9.6), again the MIBOA has a big advantagein the beginning. Here this aeleration is more visible than for the previouslandsape types. Again the MIES algorithm seems to have problems to onvergeto the global optimum, while the MIPBIL is more reliable, but su�ers from a lowonvergene speed.Comparing a population size of 100 with a population size of 28, it was ob-served that the MIBOA algorithm performs better with the larger population size.The standard deviation of results in that ase is remarkably lower, indiating agood reliability of the good results. In Table 9.2 we summarize more results, in-luding the ADG types 'tritree', 'strut2', and 'strut3'. The ranking after 2000,5000, 10000, and 20000 iterations is reported. This table provides further evidenefor the hypothesis that the introdution of the dependene information in the MI-BOA is bene�ial. In addition, it an be observed that a small population sizehelps to speed up onvergene of the algorithm in the short term, while a largepopulation size improves its long term behaviour. For further details and resultsof this study we refer to [125℄.9.7 SummaryIn this hapter we studied how knowledge on ayli dependeny strutures anbe integrated into stohasti optimization for mixed-variable searh spaes. TheMixed-integer Bayesian Optimizaton Algorithm (MIBOA), an estimation of dis-tribution algorithm working with heterogeneous Bayesian Networks with a-prioriset struture, was designed and studied. As a test environment mixed-integer NK-landsapes have been modi�ed to ADG-based mixed-integer NK-landsapes. Thedependene struture of their variables is de�ned as an ADG and, as a proof ofonept, it had to be studied whether the MIBOA an exploit a-priori knowledgeon this dependeny struture or not. The test shows that the MIBOA algorithman indeed take advantage of this a-priori information on dependenies. In allases of ADGs disussed ('hain', 'strut2', 'strut3', 'bitree', 'tritree', and 'in-vtree') we observed a performane gain as ompared to mixed-integer evolutionstrategies and estimation of distribution algorithms, both working with an inde-pendent joint distribution, namely MIES and MIPBIL. The population size ofMIBOA turned out to be an important parameter to ontrol the trade-o� be-tween fast onvergene speed in the beginning and reliable onvergene to theglobal optimum towards the end of the searh. Future work will have to fouson studies on further syntheti and real-world problems, inluding ases wheredisrete parameters depend on ontinuous parameters, whih turned out to bedi�ult to handle. In partiular we are interested in applying the new algorithmin the ontext of optimization of image proessing pipelines, the ayli strutureof whih makes the MIBOA a partiularly promising tehnique.
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ConlusionTargeting spei�ally at hallenging mixed-integer blak-box optimization prob-lems, in this dissertation, we proposed so-alled Mixed-Integer Evolution Strate-gies (MIES) and did a thoroughly researh on it from both theoretial and prati-al point of view. As a speial variant of anonial Evolution Strategies (ESs), notonly do MIES share some ommon harateristis with ESs � they both belong tothe lass of randomized searh heuristis and use priniples of organi evolution,suh as seletion, reombination, and mutation � MIES also expand ESs fromtraditional ontinuous optimization domain to more ompliated mixed-integerparameter optimization �eld, in whih simultaneous optimization of ontinuous,integer, and nominal disrete parameters is often required. In addition to sys-temati experiments on our arefully designed syntheti funtions (e.g., barrierfuntions and mixed-integer NK-landsapes), MIES have been suessfully appliedto various real world problems, for instane, optimization of ontrol parametersof a semi-automati image analysis system for medial images.In this thesis, our presented work is divided into three parts: (1) Mixed-Integerevolution strategies; (2) Appliation to medial image analysis; (3) Advaned top-is. In the rest of this hapter, we summarize our onlusions hapter by hapterand furthermore disuss some issues for future work.Part I: Mixed-Integer Evolution StrategiesChapter 2We presented di�erent types of mixed-integer nonlinear programming problemsand talked brie�y about some lassial methods whih ome from traditionalmathematial programming researh �eld. In omparison with these what wealled �white-box � optimization problems, �blak-box � optimization problems nor-mally with unlearly objetive funtion struture and high dimensionality aremore di�ult to deal with. Some heuristi methods, suh as Geneti Algorithms(GAs) and Simulated annealing (SA), ome into play under suh irumstanes.



138 SummaryChapter 3In this hapter, the design philosophy of the MIES, whih are derived from stan-dard ESs, were explained expliitly. Furthermore, we made some theoretial stud-ies on MIES, suh as self-adaptation of stepsize and the global onvergeny prop-erty.Chapter 4Two arti�ial landsapes � Barrier funtions and Mixed-Integer NK Landsapes(MINLP) � were introdued in this hapter. Experimental results showed thatthese funtions an be used as ideal test ases for helping us to learn more aboutMIES. Besides, they give readers a good hane to make omparison betweenMIES and standard ESs.Future Work for Part IIn part I, mixed-integer optimization, espeially blak-box mixed-integer param-eter optimization, was disussed at �rst. Next, mixed-integer evolution strategieswere introdued and studied through several arefully designed arti�ial test fun-tions. By analyzing (e.g., statistial study) some important experimental results,we gained deep insights about MIES algorithm, suh as onvergene behavior.As we always emphasized, by design, MIES are apable to takle the �blak-box � mixed-integer parameter optimization problems. However, as an alternative,MIES an also be used to solve some lassial mixed integer nonlinear program-ming problems. In the future, we would like to do some further investigation onhow to apply MIES to these lassial optimization problems from mathemati-al programming �eld, for instane, study on how to onstrut proper penaltyfuntions based on omplex onstraints.Part II: Appliation to Medial Image AnalysisChapter 5In this hapter, we presented the omplete framework of how to apply MIES to anoptimization problem in medial image analysis. The experimental results showedthat the MIES always produed better or equal results than the default parametersettings hosen by an expert. This observation underpinned our laim that MIESis a valuable tehnique for improve the parameter settings of the lumen detetor.Chapter 6We investigated the use of �tness based partitioning in order to �nd sets of op-timal parameters for the segmentation of the lumen in Computer TomographiAngiography (CTA) images. The results showed that �tness based partitioning



Chapter 9 139does indeed produe sets of parameter settings whih lead to better lumen seg-mentations when ompared to one �super� solution for all images.Future Work for Part IIIn this part, our proposed MIES were applied to a spei� appliation whihomes from medial researh �eld: the optimization of ontrol parameters of asemi-automati image analysis system for medial images, suh as Intravasu-lar Ultrasound (IVUS) and Computer Tomographi Angiography (CTA) images.Spei�ally, dynami �tness based partitioning was proposed to help system to�nd spei� optimal parameter settings for di�erent groups of images instead ofoptimal solution for all images.For the future work, it would be worth trying MIES on larger image sets aswell as on other feature detetors exept for lumen, suh as ali�ed plaque, vesselborder, shadow and sidebranh. About dynami �tness based partitioning, weintend to extend this algorithm with merge and split heuristis to automatially�nd an optimal number of partitions.Part III: Advaned TopisChapter 7This hapter talked about the metamodel-assisted MIES, whih is based on radialbasis funtion networks (RBFN). The reason for this is that the evaluation of oneparameter settings for feature detetion of a multi-agent medial image analysissystem is omputationally expensive. By introduing a metamodel, suh as RBFN,aeleration on onvergene speed of MIES an be ahieved.Chapter 8In this hapter, we presented a dynami nihing tehnique for MIES. In ompari-son with an existing ES nihing approah, our approah is based on the heteroge-neous distane measure that addresses searh spae similarity in a way onsistentwith the design philosophy of the MIES. The experimental results showed thatMIES with dynami nihing perform well in obtaining the global optimum inhighly multimodal searh landsapes, suh as mixed-integer NK landsapes.Chapter 9We proposed a Mixed-Integer Bayesian Optimization Algorithm (MIBOA) in thishapter to overome a known shortoming of existing mixed-integer evolutionaryalgorithms � their variation proedures mutate eah deision variable indepen-dently, and as a result of it, a-priori dependenies knowledge between variables



140 Summaryannot be taken into aount. The test results showed that the MIBOA algorithman indeed take advantage of suh kind of a-priori information on dependenies.Future Work for Part IIIIn the �nal part, we studied several advaned tehniques � radial basis funtionnetworks (RBFN), dynami nihing and Bayesian networks � whih an be usedtogether with MIES to further improve the performane of algorithm. In the fu-ture, we would like to ontinue with our studies on these topis from the followingperspetives: (1) RBFN-MIES needs to be tested on more hallenging problems,suh as problems from medial image analysis. A theoretial study on how onti-nuity assumptions an be generalized for mixed-integer domains would also be aninteresting topi for our future work; (2) MIES with dynami nihing should betested on real-world appliations, and we an gain a deepened understanding ofnihe information proess; (3) For MIBOA, the future work ould be foused onmore di�ult ases where disrete parameters depend on ontinuous parameters.



Appendix ASeleted Syntheti FuntionsBesides the two arti�ial test problems Barrier funtion (setion 4.2) and MINKL(setion 4.3), we will now present four other mixed-integer test problems: Gen-eralized sphere funtion, weighted sphere funtion, modi�ed step funtion, andgeneral quadrati funtion.A.1 Generalized Sphere FuntionThe generalized sphere model (Funtion f1) is an extension of a standard prob-lem [38℄, This problem is relatively simple, as it is deomposable and unimodal.We an use it to gain some insights of how an algorithm behaves on rather simpleproblems and thus to estimate the best ase behavior of the algorithm.
f1(r, z,d) =
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i (A.1)A.2 Weighted Sphere FuntionThe weighted sphere model (Funtion f2) represents a funtion with an elliptialgeometry. Experiments on this funtion an detet if a speed up an be ahievedby the learning of individual strategy parameters for eah parameter. Furthermoreit is an example for a funtion with a simple quadrati and onvex geometry.
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142 Modi�ed Step FuntionA.3 Modi�ed Step FuntionThe step funtion (Funtion f3) has been hosen to show that MIES is apableto takle large plateaus in the �tness landsape. The plateau is used for linkedareas of neighboured solutions in the searh spae, that lead to the same �tnessvalue. Suh plateaus happen in pratial appliations for example when searhingfor feasible points, using penalty funtions that are proportional to the numberof violated onstraints or simulation errors.
f3(r, z,d) =
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(di mod 2)2 (A.3)A.4 General Quadrati FuntionThe general quadrati funtion (Funtion f4) represents a strong interation be-tween all parameters. The ontour lines of this funtion have approximately theshape of ellipsoids.
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SamenvattingIn natuurlijke systemen is het nastreven van een optimale toestand een heel be-langrijk vershijnsel. Atomen, bijvoorbeeld, proberen optimale bindingen aan tegaan waardoor ze in een toestand van laagste energie geraken, levende mierenzijn in staat zih aan de veranderende omgeving aan te passen en de kortste wegte vinden van nest naar voedselbron, en de gezamenlijke beweging van een vo-gelzwerm doet de kans toenemen dat hun waakzaamheid tot sues leidt. Dezeverbazingwekkende oplossingen van de hand van de natuur zijn voor wetenshap-pers en tehnii altijd al een bron van inspiratie geweest bij het aangaan vanallerlei toepassingsuitdagingen in onze leefwereld. Natural omputing is een on-derzoeksgebied waarin gebruik wordt gemaakt van op de natuur geïnspireerdeberekeningstehnieken en waarin algoritmen worden ontwikkeld voor het oplossenvan problemen uit de reële wereld. Wij rihten onze aandaht op evolutionary om-putation, op dit moment een van de gebieden in de informatia waarin de meesteonderzoeksaktiviteit gaande is, met een enorm aantal suesvolle toepassingenop problemen uit de reële wereld en met, voor sommige tehnieken, heel ver on-twikkelde theoretishe onderbouwingen. In plaats van kenmerkende eigenshappenvan afzonderlijke biologishe organismen preies na te maken, ontleent evolutio-nary omputing zijn inspiratie aan de dynamiek van hele populaties van organis-men. Daarbij wordt gebruik gemaakt van begrippen als mutatie, reombinatie enseletie, om het organishe evolutieproes na te bootsen, waarin survival of the�ttest, van de meest geshikte, en fenotypishe variatieprinipes een belangrijkerol spelen en leiden tot een een betere aanpassing van een populatie van indi-viduen aan een gegeven evolutioniare omgeving. Dit betekent dat individuen meteen grotere geshiktheid, �tness, dan ook betere kansen hebben op overleven enop nakomelingen. Het is in de litteratuur gebruikelijk om de hele verzameling vanalgoritmen die van dit organishe evolutieproes zijn afgeleid, aan te duiden metevolutionaire algoritmen (EAs).Het oorspronkelijke idee ahter ons werk is, de anonieke EvolutieStrategieën(ESsen) uit het traditionele domein van optimalisering met reële parameters, uitte breiden naar het optimaliseringsdomein met mixed-integer parameters. Dit isnodig, omdat in het bedrijfsleven zih talrijke op de praktijk gerihte optimali-seringsproblemen voordoen waarbij de verzameling van beslissingsvariabelen on-tinue, integerwaardige en anderszins disrete variabelen omvat. Bovendien zouden



156 Samenvattingdoelfunties voor dit type probleem gebaseerd kunnen worden op grootshaligesimulatiemodellen, of ook zou de strutuur van de doelfunties te ingewikkeldkunnen zijn om in zo'n model op te nemen. Vanwege deze mogelijke ompli-aties wordt dit type optimaliseringsproblemen geatalogiseerd als de ategorievan blak-box -optimaliseringen. Hierop kunnen de klassieke optimaliseringsteh-nieken, afkomstig uit het onderzoeksgebied van de Mathematishe Programmering(MP), niet zo maar worden toegepast, omdat deze gebaseerd zijn op de eigenshap,dat met een verdeel-en-heers-aanpak de zoekruimte altijd e�iënt doorlopen kanworden. Daarentegen is het nieuwe algoritme dat wij voorstellen, de zogenoemdeMixed-Integer Evolution Strategies (MIES), heel wel in staat tot goede oplossin-gen te komen voor deze uitdagende blak-box -optimaliseringsproblemen, namelijkdoor gebruikmaking van daartoe ontwikkelde variatie-operatoren toegespitst opklassen van mixed-integer parameters.Binnen onze onderzoeksaktiviteiten hebben we niet alleen MIES geïtrodueerden vanuit theoretish standpunt diepgaand bestudeerd, maar we hebben ook eenraamwerk ontwikkeld voor het toepassen van MIES op de optimaliseringsproble-matiek uit de reële wereld van het medish onderzoek. Meer in het bijzonderpassen we MIES daar toe op de optimalisering van besturingsparameters van eensemi-automatish beeldanalysesysteem voor IntraVasulaire UltraSoundbeelden(IVUS). Dit zijn real-time, hoge-resolutie-tomogra�ebeelden die de binnenkantvan een kransslagader laten zien of van andere slagaders. IVUS-beelden zijn lastigte interpreteren, wat er weer toe leidt dat handmatige segmentering in hoge mategevoelig is voor geringe veranderingen door toedoen van een enkele waarnemerof door toedoen van het samenspel der waarnemers. Aldus heeft de ontwikkelingvan een systeem voor het opsporen van karakteristieken in IVUS-beelden veelaandaht gekregen in het medish onderzoek en in het informatia-onderzoek.De performane van de meeste systemen hangt ehter af van een groot aantalbesturingsparameters, die met de hand lastig te optimaliseren zijn, en die medeafhankelijk kunnen zijn van vershil in interpretatieontext. Deze parameters zijnbovendien onderhevig aan verandering, als er in het registratieproess van debeelden iets wijzigt. Vergeleken met andere aanpakken kan er met MIES door desysteemontwikkelaar geautomatiseerd worden gezoht naar optimale parameter-instellingen, waarbij de kans groot is op het vinden van een parameterinstellingdie resulteert in een signi�ant hogere nauwkeurigheid bij het opsporen van dekarakteristieken.De inhoud van dit proefshrif bestaat uit drie delen: (1) de inleiding, en hettheoretish onderzoek aan het nieuwvoorgestelde optimaliseringsalgoritme; (2)het gebruik ervan bij toepassingen uit de reële wereld, en wel bij parameteropti-malisering in medishe beeldanalyse; (3) geavaneerde onderwerpen zoals Nihe-tehnieken. Meer in het bijzonder worden in het theoriedeel de state-of-the-artMIES-algoritmen geïntrodueerd en vervolgens worden ze getest op vershillende,zorgvuldig ontworpen arti�ial landsapes, bijvoorbeeld op gegeneraliseerde NKlandsapes. Het deel van de toepassingen uit de reële wereld gaat voornamelijkin op parameteroptimaliseringsproblemen uit het medish onderzoeksgebied. De



Samenvatting 157door ons voorgestelde MIES-algoritmen worden toegepast, om een multi-agent-systeem te optimaliseren dat ontwikkeld was voor het opsporen van karakter-istieken in medishe beelden. Tevens worden enkele belangrijke waarnemingen uitde experimenten vermeld. Ten einde de performane van onze algoritmen nog meerte verbeteren, worden in het derde deel enkele geavaneerde tehnieken onderzohtdie in ombinatie met MIES kunnen worden gebruikt, bijvoorbeeld de tehniekenMetamodel-Assisted Optimalisatie, Nihe-Tehnieken and Bayesian Learning.In meer detail kan het proefshrift als volgt worden samengevat.Hoofdstuk 2 geeft eerst een kort overziht van de essentiële terminologie voorglobale optimalisering en in het bijzonder introdueert het het mixed-integerparameteroptimalisatieprobleem. Vershillende klassieke algoritmen uit de tradi-tionele Mathematishe Programmering (MP) worden er besproken, zoals Branh-en-Bound-methoden (BB) and Outer-Approximation-methoden (OA). Tegeno-vergesteld aan deze white-box optimaliseringsaanpak wordt het raamwerk voormixed-integer parameteroptimalisering binnen het blak-box senario besproken,en wel heel gedetailleerd. Ook worden twee representatieve toepassingen uit dereële wereld � ontwerpen van optishe �lters en optimalisering van hemishefabrieken � gegeven, als voorbeelden ter motivatie.In Hoofdstuk 3 introdueren we eerst het algemene raamwerk van EAs. Daarnageven we een expliiete uitleg van de grondslagen van de anonieke ESsen, welkeop hun beurt de kernen vormen van de algoritmen van de door ons voorgesteldeaanpak MIES, geriht op mixed-integer-parameteroptimalisering. Vervolgens wor-den in detail de �loso�e ahter het ontwerp van MIES en vershillende belangrijkeeigenshappen ervan besproken.In Hoofdstuk 4 stellen we twee innovatieve, geonstrueerde testproblemenvoor, Barrier Funties en Mixed-Integer NK landsapes (MINKLs). De barrierfunties worden aangemaakt door een multimodale probleemgenerator die inte-geroptimaliseringsproblemen produeert met een shaalbare onregelmatigheids-graad maar zonder interatie tussen de variabelen. MINKLs zijn uitbreidingenvan standaard NK landsapes (NKLs), die zelf weer stohastish gegenereerdepseudo-boolean funties zijn van N bits (de genen) en met K interaties tussende genen. Deze twee kunstmatige testproblemen worden zorgvuldig ontworpenen de experimentele resultaten laten zien dat zij bijzonder nuttig zijn voor hetbegrijpen van de dynamiek van evolutionair zoeken binnen de mixed-integer toe-standsruimte.MIES toegepast op parameteroptimalisering van IVUS-beeldanalyse, wordt inHoofdstuk 5 besproken. Er wordt een geavaneerd multi-agent-systeem geïntro-dueerd dat bestemd is voor het opsporen van karakteristieken van IVUS-beelden,van lumen-karakteristieken in het bijzonder, en het raamwerk voor het optimali-seren ervan met behulp van MIES wordt uitgelegd samen met enkele veelbelovendeexperimentele resultaten.In Hoofdstuk 6 onderzoeken we het gebruik van indelingen naar �tness, omgroepen van Computed-Tomographi-Angiography-beelden (CTA) te kunnen vin-den waarvoor een vergelijkbare parameterinstelling vereist is ten behoeve van



158 Samenvattinghet segmenteringsalgoritme, terwijl deze parameterinstellingen voor de groepentegelijkertijd blijven evolueren.Hoofdstuk 7 bespreekt hoe metamodellen moeten worden gebruikt, radial-basis-funtion-netwerken (RBFN) met name, om MIES te ondersteunen bij hetuitvoeren van optimaliseringstaken met tijdrovend gebruik van evaluatiefunties,zoals analyse van IVUS-beelden.Hoofdstuk 8 bespreekt een dynamishe nihe-tehniek voor MIES die is geba-seerd op een bestaande ES nihe-aanpak en die kort geleden ontwikkeld is ensuesvol is toegepast op ontinuous landsapes. De nieuwe tehniek is gebaseerdop de heterogene afstandsmaat die rekening houdt met overeenkomsten tussentoestandsruimten, en die in zekere zin onsistent is met de mutatie-operatorenvan MIES.Hoofdstuk 9 introdueert een nieuw algoritme voor het shatten van verdelin-gen, dat een uitbreiding is van de toepasbaarheid van het Baysiaanse optimali-seringsalgoritme (met een vaste netwerkstrutuur) en wel van binaire naar mixed-integer-optimaliseringsproblemen. Experimentele resultaten laten zien, dat doorhet hier voorgestelde algoritme a-priori-kennis van afhankelijkheden tussen be-slissingsvariabelen ingezet kan worden ter verbetering van onvergentiesnelheiden betrouwbaarheid. Het is binnen dit algoritme dat MIES als subalgoritme zijnwerk doet in het zelf-organiserende lustering-proes.
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