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Chapter 7

S c o re T est fo r L in k ag e in

G en eralized L in ear M o d els

Abstract

We derive a test for linkage in a Generalized Linear Mixed Model (GLMM) frame-

w ork w h ich p rovides a natu ral adju stment for marginal covariate eff ects. T h e

meth od b oils dow n to th e score test of a q u asi-likelih ood derived from th e GLMM,

it is comp u tationally inexp ensive and can b e ap p lied to arb itrary p edigrees. In

p artic u lar, for b inary traits, relative p airs of diff erent natu re (aff ected and discor-

dant) and individu als w ith diff erent covariate valu es can b e natu rally comb ined in

a single test. T h e model introdu ced cou ld exp lain a nu mb er of situ ations u su ally

describ ed as gene b y covariate interaction p h enomena, and off ers su b stantial gains

in effi c ienc y comp ared to meth ods c lassically u sed in th ose instances.

7.1 In tro d u c tio n

For binary traits, most linkage methods that allow for covariates focus on models

where the identity-by-descent (IB D ) p robabilities are allowed to dep end on those

covariates (e.g. , O lson [1 9 9 9 ]). T his is often the most straightforward way to go

because linkage studies for binary traits usually consist of families which have been

selected based on their p henotyp ic values such as aff ected sib p airs (A S P ) designs and

eff ect of covariates at the p op ulation level cannot be estimated based on such data.

This chapter has been accepted for publication in Human Heredity as: J .J .P . L ebrec and H .C . v an

H ouw eling en. S core Test for L ink ag e in G eneralized L inear M odels.
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Chapter 7. Score Test for Linkage in Generalized Linear Models

In many instances, however, some knowledge about the marginal effect of important

covariates can often be gathered from either population-based studies or a literature

review. N evertheless, ex isting methods fail to integrate such ex ternal knowledge. An

area where incorporation of covariates is a burning problem is late onset diseases, in

fact, incorporation of population estimates of onset for the disease is not just a way to

refi ne the analysis, it also allows inclusion of unaffected individuals. This can result

in substantial gains in power, especially when traits are fairly common. In the case of

continuous traits, the variance components model (and related regression methods) is

widely accepted as the model of choice for testing for linkage with a putative locus. In

this setting, the effect of important covariates is often modeled through a linear model

while the covariance structure is left untouched. In contrast, the variance-covariance

structure and the mean of binary and count data are intrinsically dependent and it is

unclear how incorporation of covariates in the marginal probabilities impact linkage

testing.

The Generalized Linear Mix ed Models (GLMM) framework offers a natural and

fl ex ible ex tension of the variance components setting to categorical endpoints such as

binary, count and survival data and accommodates covariate effects and arbitrary fam-

ily structures. In accordance with the biometrical view of trait architecture [Fisher,

1918 ], small covariate effects contribute additively to the formation of a trait. Coupled

with a variance components structure used to described the remaining correlation be-

tween relatives in a family, we obtain a parsimonious representation of the correlation

between relatives. This unobserved latent process is linked to the actual trait values

via a traditional Generalized Linear Model (see Section 7.2 ). In fact, this type of mod-

els have already been used for estimation of the heritability of binary traits [Burton

et al., 1999; H ouwing-Duistermaat et al., 2 000; N oh et al., 2 005 ] as well as for linkage

of longitudinal continuous [Palmer et al., 2 003 ] data and survival data [Scurrah et al.,

2 000]. Although appealing GLMMs are in general diffi cult to fi t with family data.

Besides we favor simple mathematically tractable ex pressions for a test, this is to

reduce computational burden, but even more importantly, because we would like to

get insight into the properties of this model when used in linkage studies. In stark

contrast with the above cited approaches, we do not make any attempt to directly

use the GLMM for inference but we resort to an approx imation of the corresponding
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Chapter 7. Score Test for Linkage in Generalized Linear Models

likelihood (a q uasi-likelihood). Indeed, our inference for linkage is based on a score

test for the variance component corresponding to linkage in this q uasi-likelihood (see

Section 7.3). W e assume that all segregation parameters in the GLMM have been

obtained from external data and are therefore treated as nuisance parameters when

testing for linkage. E stimation of such parameters in a GLMM is a notoriously difficult

problem (at least for binary responses), we therefore propose an ad-hoc estimation

procedure which appears to yield reasonable estimates in practice (see Section 7.4 ).

Although the procedure does not always yield a uniq ue set of parameters, we argue

that our linkage test only weakly depends upon the parameters’ choice and that its

size is always preserved. The test is in fact a weighted regression of the deviation

in IBD sharing on the trait values (in the same spirit as the pair-wise IBD scoring

functions introduced by W hittemore and Halpern [1994 ] for affected relative pairs),

which guarantees fast computations. Finally, in Section 7.5, we illustrate how the

test could be used in linkage studies for two diseases: migraine and breast cancer. In

those two examples we q uantify the potential gains obtained compared to approaches

that would either ignore covariates or estimate covariate effects from the linkage data

only. In the discussion, we identify situations where covariate adjustment is likely to

help improving the power of linkage studies.

7.2 Model

The generalized linear mixed model

Conditional on unobserved latent variables and observed covariate values, our model

is specified by a generalized linear model (GLM). All information about the genetic

relationship between individuals is incorporated in the latent variables just in the

same way as in the variance components model for continuous traits. Formally, we

consider the trait values y = (y1, . . . ,ym) of m relatives in a family whose values for

k covariates are gathered in an m × k matrix X. Conditional on a vector of random

effects b = (b1, . . . ,bm) and a vector of covariate effects β, the yi’s are independently

distributed according to a density function f from the canonical exponential family

(to simplify notations, we have omitted the dispersion parameter), more precisely f
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Chapter 7. Score Test for Linkage in Generalized Linear Models

has the following form

log f(yi |β, bi) = yi × (xiβ + bi) + a(yi) − ψ(xiβ + bi)

where the first two derivatives of ψ determine the first and second moments of the

GLM i.e. ψ′(xiβ + bi) = E(yi |β, bi) and ψ′′(xiβ + bi) = var(y |β, bi). This type

of models includes the logistic model for binary or binomial data, Poisson model for

count data, continuous data (provided the dispersion parameter is known) as well as

piecewise exponential hazards models for survival data [Agresti, 2002, pp.388-389].

The fixed effects β therefore model the effect of covariates while the dependence

structure between relatives is entirely induced through the covariance of the random

effects b which are assumed to follow a multivariate normal distribution with mean

0 and variance-covariance matrix R(θ) where θ is the set of variance components. In

the simple case of sibships the variance-covariance structure of b is described by a

compound symmetry structure

R = R(θ) = σ2
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The exact marginal density l(β, θ) of the observations y is obtained by integration

of the random effects l(β, θ) = Eb(
∏

i= 1,...,m

f(yi |β, bi)) which entails calculation of a

multivariate integral of potentially high dimension (for extended families).

G L M M for link age

Our primary interest is on testing for linkage and we will therefore assume that all

nuisance parameters i.e. the fixed covariate effects β and the marginal part of the co-

variance structure R(θ) are known. We delay resolution of this problem to Section 7.4.

We denote by γ the proportion of the random effects total variance σ2 explained by

the putative locus and focus our attention on this parameter by partitioning the set

of variance components as (θ, γ). In analogy with the variance components model for

continuous traits, we model linkage by specifying the conditional covariance structure

R = R(θ, γ) of the random effects b given IBD information π within each family.

112



Chapter 7. Score Test for Linkage in Generalized Linear Models

The m×m matrix π contains the identity-by-descent (IBD) information at a putative

chromosomal position, more precisely [π]jk = πjk is the proportion of alleles shared

IBD by pedigree members j and k and

[R]jk =







a2 + c2 = σ2 , if j = k ,

(πjk − Eπjk)γσ2 + (Eπjk)a2 + c2 , if j 6= k .

where a2 denotes the total additive genetic variance and c2, the common-environment

variance, on the underlying random effect scale.

7.3 Test for linkage

Q u asi-likelihood for v ariance comp onents

In an appendix, we show how the following quasi-likelihood for the data y can be

obtained

(7.1) y ∼ N
(

ψ′(Xβ) , Ψ′′(Xβ) + Ψ′′(Xβ).R(θ, γ).Ψ′′(Xβ)
)

,

where ψ′(Xβ) denotes the vector whose ith element is given by ψ′(xiβ) and Ψ′′(Xβ)

denotes the diagonal matrix whose ith diagonal element is given by ψ′′(xiβ). Note

that this is not a normal approximation of the marginal likelihood, the normal shape

is naturally obtained via a 2n d order Taylor approximation of an exponential family

likelihood in the canonical form. This quasi-likelihood can also be motivated by an

approximate marginal model of the GLMM as in [Breslow and Clayton, 1993] and

is the basis of the marginal quasi-likelihood (MQ L) fitting algorithm. Another less

crude approximation of the marginal likelihood could be based on a 1st order Laplace

approximation however this would render the approach mathematically intractable.

Q uasi-likelihood (7.1) is only accurate for small values of the random effects, hence

small values of their variance σ2; nonetheless, however accurate this approximation,

the approach that we propose in Section 7.3 provides an ’unbiased’ testing strategy.

S core test

For mathematical convenience, we use the quasi-likelihood for variance components

introduced in Section 7.3 but expressed in terms of the first-order maximum-likelihood

113



Chapter 7. Score Test for Linkage in Generalized Linear Models

estimates z = y−ψ′(Xβ)
ψ′′(Xβ) of the random effects b. Denoting Σ = R(θ, γ)+Ψ′′−1

(Xβ),

this quasi-likelihood writes

log q l(z, γ |π) = −
m

2
log(2π) −

1

2
log(|Σ|) −

1

2
z′Σ−1z .

We show in an appendix that the score function `γ for γ can then be written as

(7.2) `γ =
1

2
vec(C)′ . vec(π − Eπ)

with C = Σ−1z
(

Σ−1z
)′

− Σ−1 and Σ taken in γ = 0. Here vec(C) places the

n columns of the m × n matrix C into a vector of dimension mn × 1, it contains

weights for the pairwise IBD sharing vec(π −Eπ). Note that the π −Eπ matrix has

all diagonal elements equal to 0. Our test for linkage is a weighted average of the

different excess IBD sharing between all pairs of relatives in the pedigree. Linkage

studies often include families which have been selected on the basis of their phenotypic

values and it is sometimes unclear what the exact ascertainment scheme used is. A

valid analysis of the data therefore requires that inference be carried out conditional

on observed phenotypic values. Given the parametrization used above, accepting the

quasi-likelihood q l = q l(z |π, γ) as the model generating the ” phenotypic data” z and

relying on known nuisance parameters (β and θ), it turns out that the score function

∂ lo g P(π | z,γ)
∂γ

evaluated at γ = 0 of the corresponding inverse likelihood of IBD sharing

π conditional on transformed trait values z is simply equal to the same `γ function

(see [Lebrec et al., 2004] for a proof). This justifies the use of this score statistic in

selected samples. When the likelihood conditional on trait values is considered, the

corresponding Fisher’s information Iγ = E
(

− ∂2

∂γ2 log Pγ(π | z, γ = 0)
)

for γ is also

the variance of the score function var(`γ | z, γ = 0) and is thus given by

(7.3) Iγ =
1

4
vec(C)′ . var (vec(π) | γ = 0) . vec(C) .

For a set of independent p = 1, . . . , P families with corresponding standardized trait

values z1, . . . zP , we therefore test for linkage using the statistic

T 2
+ =







0 , if
∑P

p=1 `γ,p ≤ 0

(
∑ P

p= 1
`γ ,p)

2

∑
P
p= 1

Iγ ,p
, otherwise

,

which is is asymptotically distributed as 1
2χ2

0 + 1
2χ2

1 under the null hypothesis (H0) of

no linkage. Indeed, the score conditional on trait values is unbiased since E(`γ | z, γ =
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0) = 0 (the term involving π in `γ is centered) and the standardization used (i.e.

conditional on trait values z) ensures that the test has variance 1 under H0. Note that

this would not necessarily be the case conditional on IBD sharing π (i.e. E(`γ |π, γ =

0) 6= 0) because of model mis-specification.

Special case of relative pairs

Although the test derived previously applies to arbitrary pedigrees, the rest of the

paper is devoted to relative pairs. In this instance, the variance-covariance matrix of

random effects is

R = σ2





1 ρ

ρ 1



 ,

for example, in the case of sib pairs, σ2 = a2 + c2 and ρσ2 = 1
2a2 + c2. If we denote

ψ′
i = ψ′(xiβ), ψ′′

i = ψ′′(xiβ) and νi = (σ2ψ′′
i )−1, the score can be written in terms of

the unstandardized centered trait values (or raw residuals) yi − ψ′
i as

`γ = (π − Eπ)× ν1ν2

{

(1 + ν1)(1 + ν2) − ρ2
}−2

×
[ {

(1 + ν1)(1 + ν2) + ρ2
}

(y1 − ψ′
1)(y2 − ψ′

2)

−ρ(1 + ν2)(y1 − ψ′
1)

2 − ρ(1 + ν1)(y2 − ψ′
2)

2

+ρ(σ2ν1ν2)
−1

{

(1 + ν1)(1 + ν2) − ρ2
} ]

.

If we let both ν1 and ν2 tend to +∞, then the excess IBD sharing π − Eπ is simply

weighted by the product of the raw residuals (y1 − ψ′
1)(y2 − ψ′

2). This means that

in the context of rare diseases and affected pairs (thus y1 = y2 = 1), the effect

of covariates has to be very large for the weights to substantially differ from an

unweighted strategy. Letting both ν1 and ν2 tend to 0, the weight then becomes

(1 + ρ2)z1z2 − ρ(z2
1 + z2

2) + ρσ2(1 − ρ2), where the zi’s are the first-order maximum-

likelihood estimates of the random effects bi’s defined in Section 7.3. This expression

is closely related to a version of the so-called Haseman-Elston regressions that is

optimal with normally distributed data [Sham and Purcell, 2001], the main difference

lies in the use of the variances ψ′′
i in the standardization of the centered trait values

yi − ψ′
i instead of the usual ψ′′

i
1/2

as in Pearson residuals.

It is interesting to look at the special case of binary traits, where a ≡ 0 and

ψ(t) = log(1 + et). In this instance, the weights associated to excess IBD sharing
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π − Eπ are positive for ASP and unaffected sib pairs (U SP) while they are negative

for discordant sib pairs (DSP). Based on approximation (7.4) used in Section 7.4,

ν1 can be shown to be approximately related to the marginal correlation via ν1 ≈

ρ cor(y1, y2)
−1

ψ′′
2

1/2
ψ′′

1
−1/2

as long as σ2 is not too large. This provides us with an

order of magnitude for the νi parameters. For example, if the covariate values are the

same for both individuals, ν is simply proportional to the inverse of the trait marginal

correlation, which itself is an increasing function of both the prevalence and the re-

currence risk ratio λS = P(sib 1 is affected and sib 2 is affected)/P(sib 1 is affected)

P(sib 2 is affected). For rare diseases, the νi parameters will likely be very large and

weights given to the excess IBD sharing will be approximately equal to (y1−ψ′
1)(y2−

ψ′
2) ≈ (y1 − Ey1)(y2 − Ey2) as pointed out in the previous paragraph. In this rare

disease case, a direct application of the optimal Haseman-Elston regression for nor-

mally distributed data [Sham and Purcell, 2001] would lead to a weighting scheme

approximately equal to the product of the Pearson residuals (y1 − Ey1)/(Ey1(1 −

Ey1))
1/2 × (y2 − Ey2)/(Ey2(1 − Ey2))

1/2. Since the denominators (Eyi(1 − Eyi))
1/2

change rapidly as the trait becomes rare, the weight given to rare phenotypic values

will be too extreme compared to those given to common trait values.

7.4 Estimation of segregation parameters

Estimation in GLMM has been the subject of intense research in the past decade

and has proved notoriously difficult. Direct computation of the marginal likelihood

can in principle be carried out by quadrature methods but are computationally bur-

densome, for that reason, approximate methods such as penalized quasi-likelihood

(PQL) [Breslow and Clayton, 1993] have been proposed, unfortunately they are known

to yield severely biased estimates, especially with binary endpoints. Another route

is Bayesian fitting via Markov chain Monte Carlo algorithms. We refer the reader

to www.mlwin.com for a list and review of possible softwares. Practical solutions

appear to be problem -specifi c and a few auth ors h ave dealt with th is problem in

th e case of fam ily data [B urton et al., 1 9 9 9 ; H ouwing -D uisterm aat et al., 2 0 0 0 ; N oh

et al., 2 0 0 5 ]. B esides, in som e instances (e.g . , wh en sib-pair data only are avail-

able), th e G L M M m ay lack identifi ability . W e th erefore propose th e approx im ate
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method described in Section 7.4 . There is an extra diffi culty in the case of binary

data and we propose an ad-hoc solution which appears to yield sensible guesses of

the nuisance covariance parameters θ and fixed eff ects β as far as the interest lies

in testing for linkage: although the procedure of Section 7.4 does not give a uniq ue

choice of parameters, we argue that the actual linkage test is fairly insensitive to that

specification.

General case

We first consider the case of a homogeneous population (i.e. no covariates) where three

nuisance parameters need to be estimated, namely, the fixed eff ect β that refl ects the

overall level for the trait of interest, the variance σ2 of the underlying random eff ect

and the correlation ρ between the random eff ects in a pair of relatives. The marginal

covariance relates to ρσ2 through the following approximate relation

(7.4 ) cov(Y1, Y2) ≈ ψ′′

1
(β)ψ′′

2
(β)ρσ2 ,

and the marginal variance to β and σ2 via

(7.5) var(Y ) ≈ ψ′′(β) + ψ′′(β)
2
σ2 ,

while the marginal mean can be either approximated as

E(Y ) ≈ ψ′(β) +
σ2

2
ψ′′′(β) ,

or calculated exactly as E(ψ′(β + b)) by univariate integration. Together, these three

relations allow estimation of ρ, σ2 and β.

In the case of a heterogeneous population, the simplest approach is to define

relatively homogeneous strata and to apply the procedure described in the previous

paragraph in each stratum separately. The series of ρ and σ2 estimates are then

averaged using the freq uency of each stratum in the overall population as weight.

Given those final estimates of ρ and σ2, a second round of stratum-specific β values

can then be computed.

S p ecial case o f B inary d ata

R elation (7.5) refl ects over-dispersion in the marginal distribution i.e. the fact that

the relation var(Y ) = ψ′′(β) is violated, unfortunately, this does not apply to the
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binary case where var(Y ) ≡ E(Y )(1−E(Y )) and there can be no such thing as over-

dispersion. We can still use relation (7.4) to estimate σ2 for fixed values of ρ and

the corresponding β by univariate integration of ψ′(β + b) in each stratum. A s in the

general case, the values for σ2 are averaged across strata and the stratum-specific fixed

effects β are re-computed with the average σ2 as input. This estimation procedure is

therefore conditional on an arbitrarily chosen value for ρ.

F or common diseases such as migraine (see Section 7.5), we can carry out a more

formal procedure based on maximum likelihood. F or binary traits, the data consists

of stratum-specific 2 × 2 tables indexed by t. If we use the following notation for

the cell numbers in a given 2 × 2 table t: nt

11
for affected-affected pairs, nt

10
for

affected-unaffected , nt

0 1
for unaffected-affected and nt

0 0
for unaffected-unaffected and

if p̂t

..(σ
2, β̂(σ2)) denote the corresponding GLMM probabilities, then the log-likelihood

of the data is given by

∑

table t

nt

11
log p̂t

11
+ nt

10
log p̂t

10
+ nt

0 1
log p̂t

0 1
+ nt

0 0
log p̂t

0 0
.

If the trait is common, the GLMM probabilities p̂t

..(σ
2, β̂(σ2)) can be calculated rea-

sonably fast by Monte Carlo simulations and the maximization with respect to σ2 is

possible. A gain, this maximization is carried out for a chosen ρ so this strategy offers

a compromise between a full maximization of the marginal likelihood and the ad-hoc

method of the previous paragraph.

A lthough the estimation approach described above is not optimal (in the sense

that it is not guaranteed to yield maximum likelihood estimators), its merit is that

it quickly provides sensible estimates of the nuisance parameters. The information

available is often so sparse that the value of the likelihood depends very weakly (if

at all) on the chosen value for ρ. In fact, as the next series of examples illustrates,

the choice of ρ seems to have a limited impact on the test for linkage. In Table

1, we computed the relative weights of discordant pairs ” A U ” and unaffected pairs

” U U ” compared to affected pairs ” A A ” for three different values of the random effects’

correlation ρ in a wide range of 2×2 tables (i.e. choices of prevalence K and recurrence

risk ratios λS). In each scenario, we used approximation (7.4) to obtain estimates

of the random effect total variance σ2. A s long as ρ is chosen not too small and

that the recurrence ratio is not too large, the relative weights given to discordant
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σ2∗
A U U U

K λS ρ = 0 .2 ρ = 0 .5 ρ = 0 .8 ρ = 0 .2 ρ = 0 .5 ρ = 0 .8 ρ = 0 .2 ρ = 0 .5 ρ = 0 .8

0 .0 1 1 .1 0 .5 0 .2 0 .1 -0 .0 1 -0 .0 1 -0 .0 1 0 .0 0 0 .0 0 0 .0 0

0 .0 1 1 .2 1 .0 0 .4 0 . 3 -0 .0 1 -0 .0 1 -0 .0 1 0 .0 0 0 .0 0 0 .0 0

0 .0 1 1 .5 2. 6 1 .0 0 . 6 0 .0 0 -0 .0 1 -0 .0 1 0 .0 0 0 .0 0 0 .0 0

0 .0 1 2.0 5.1 2.0 1 .3 0 .0 0 -0 .0 1 -0 .0 1 0 .0 0 0 .0 0 0 .0 0

0 .0 1 3 .0 1 0 .2 4 .1 2.6 0 .0 0 0 .0 0 -0 .0 1 0 .0 0 0 .0 0 0 .0 0

0 .0 5 1 .1 0 . 6 0 .2 0 .1 -0 .0 5 -0 .0 5 -0 .0 5 0 .0 0 0 .0 0 0 .0 0

0 .0 5 1 .2 1 . 1 0 .4 0 .3 -0 .0 4 -0 .0 5 -0 .0 6 0 .0 0 0 .0 0 0 .0 0

0 .0 5 1 .5 2. 8 1 .1 0 . 7 -0 .0 3 -0 .0 5 -0 .0 6 0 .0 0 0 .0 0 0 .0 0

0 .0 5 2.0 5.5 2.2 1 . 4 -0 .0 2 -0 .0 5 -0 .0 6 0 .0 0 0 .0 0 0 .0 0

0 .0 5 3 .0 1 1 .1 4 .4 2.8 -0 .0 1 -0 .0 3 -0 .0 6 0 .0 0 0 .0 0 0 .0 0

0 .1 0 1 .1 0 .6 0 .2 0 . 2 -0 .1 0 -0 .1 1 -0 .1 2 0 .0 1 0 .0 1 0 .0 1

0 .1 0 1 .2 1 . 2 0 .5 0 .3 -0 .0 9 -0 .1 1 -0 .1 2 0 .0 1 0 .0 1 0 .0 1

0 .1 0 1 .5 3 .1 1 . 2 0 . 8 -0 .0 6 -0 .1 1 -0 .1 3 0 .0 0 0 .0 1 0 .0 1

0 .1 0 2.0 6 .2 2.5 1 . 5 -0 .0 4 -0 .1 1 -0 .1 4 0 .0 0 0 .0 1 0 .0 1

0 .1 0 3 .0 1 2.3 4 .9 3 .1 -0 .0 2 -0 . 0 9 -0 .1 5 0 .0 0 0 .0 0 0 .0 1

0 .20 1 .1 0 .8 0 .3 0 .2 -0 .23 -0 .26 -0 .27 0 .0 5 0 .0 6 0 .0 6

0 .20 1 .2 1 . 6 0 .6 0 .4 -0 .21 -0 .26 -0 .28 0 .0 4 0 .0 5 0 .0 6

0 .20 1 .5 3 . 9 1 . 6 1 .0 -0 .1 7 -0 .2 8 -0 .3 2 0 .0 2 0 .0 5 0 .0 6

0 .20 2.0 7 .8 3 .1 2.0 -0 .1 3 -0 .2 9 -0 .3 8 0 .0 1 0 .0 4 0 .0 6

0 .20 3 .0 1 5.6 6 .2 3 . 9 -0 . 0 9 -0 .2 8 -0 .4 5 0 .0 0 0 .0 3 0 .0 6

0 .3 0 1 .1 1 .0 0 .4 0 .3 -0 .4 0 -0 .4 5 -0 .4 7 0 .1 4 0 .1 7 0 .1 8

0 .3 0 1 .2 2.0 0 .8 0 .5 -0 .3 8 -0 .4 7 -0 .50 0 .1 2 0 .1 7 0 .1 8

0 .3 0 1 .5 5.1 2.0 1 . 3 -0 .3 3 -0 .51 -0 . 6 0 0 .0 9 0 .1 6 0 . 20

0 .3 0 2.0 1 0 .2 4 . 1 2. 6 -0 .27 -0 .54 -0 .7 2 0 .0 6 0 .1 6 0 .22

0 .3 0 3 .0 20 .4 8.2 5.1 -0 .2 2 -0 .5 6 -0 .9 0 0 .0 3 0 .1 5 0 .2 6

Table 7.1: Relative weights for Discordant (AU) and unaffected (UU) pairs (compared to affected

pairs) for a range of 2 × 2 tab les - ∗
σ

2 ob tained using approx imation (7 .4 )

pairs and to a lesser extent, to unaffected pairs depend only weakly upon the initial

choice for ρ, although the dependence becomes stronger as the prevalence of the

trait increases. When comparing the relative weights of affected pairs for different

prevalences/ recurrence risk ratios, the dependence is even less noticeable (data not

shown). Based on this study, we would advise the choice of a moderate to large value

for ρ (0.5 to 0.8) since we favor the corresponding small values for σ2 (indeed, the

quasi-likelihood is based on an approximation valid for small values of σ2 and so is

relation (7.4) used for estimating σ2).

7.5 Examples

Application to a common disease: Migraine

Migraine is known to be much more frequent in women than in men. In this sec-

tion, we describe how sex could be accounted for in a linkage study for migraine and

quantify the potential gains/ losses incurred under different strategies including the
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U m A m U f A f

U m 0.06 -0.60 0.11 -0.3 3

A m . 2.71 -1.12 1.57

U f . . 0.25 -0.63

A f . . . 1.00

Table 7.2: Relative weights Ci for all sex-sex (f:female and m:male) sib pair combinations (A:

Affected and U: Unaffected)

score test presented in Section 7.3 . Based on sex-specific prevalence and recurrence

risk estimates derived from published data in the Dutch population [Mulder et al.,

2003 ], we first obtain estimates of the segregation parameters ρ, σ2 and β using the

procedure described in Section 7.4. Using possible values of excess IBD sharing, we

then quantify the gain obtained by accounting for sex with the score test described

above. Mulder et al. [2003 ] fitted a liability threshold model (i.e. with sex-specific

thresholds and a common tetrachoric correlation) to the data. The sex of siblings in a

pair defines three possible strata or 2× 2 tables, we focused on the Dutch population

in the age group 3 6-68 years old and used the model parameters’ estimates to recon-

struct those three tables. For the Dutch population, the prevalence for migraine was

approximately 0.3 4 in women and 0.17 in men and the values for λS were 1.3 1, 1.45

and 1.65 in female-female, male-female and male-male sib pairs respectively. Assum-

ing that the three corresponding 2 × 2 tables were present in proportions 1

4
, 1

2
and

1

4
in the overall population, we estimated σ2 as σ̂2 = 3 .3 and β̂ = (−2.40,−1.03 ) for

ρ = 0.5 according to the formal maximum-likelihood based method described in Sec-

tion 7.4. Based on this set of nuisance parameter estimates we calculated the weights

for all possible types of sib pairs in the linkage test, these are displayed in table 7.2.

Note, first of all, that affected (and unaffected) sib pairs have positive weights

while discordant sib pairs have negative weights. Male-male affected pairs are given

much more weight than female-female affected pairs, while the trend is opposite for

discordant pairs. O ne interesting feature is that male-female affected-unaffected pairs

are given much more weight than female-male affected-unaffected pairs since the phe-
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notypic discordance is more likely to be due to genetic factors in the former than in

the latter.

We now compare four possible strategies when testing for linkage in presence of

covariates. We define homogeneous groups (indexed by g) of relative pairs (i.e. fami-

lies) depending on their phenotypic values (AA, AU or UU) and (categorical) covariate

values. The excess or reduction in IBD sharing in each group can be parameterized

as E(π − Eπ | group g) = θδg where δg can be positive or negative while θ ≥ 0. A

test for linkage corresponds to testing θ = 0 versus θ > 0. In all tests outlined below,

we assume that the sign of δg is known (+ for AA and UU and − for AU pairs),

depending on what we know or assume about the |δg|’s, four testing strategies can be

derived:

1. All |δg|’s are taken as being equal,

2. The ratios of the |δg|’s are known, this is an ideal situation that will serve as

reference in our comparison,

3. The |δg|’s are estimated from the data,

4. The ratios of the |δg|’s are assumed to be given by the score test of Section 7.3.

All four tests but 3. are asymptotically distributed as 1

2
χ2

0
+ 1

2
χ2

1
under the null

hypothesis of no linkage. For test 3., a penalty has to be paid for estimating the

weights and the corresponding null distribution is 1

2
χ2

0
+ 1

2
χ2

G where G is the total

number of homogeneous groups considered.

To keep things simple in our numerical comparison of the tests when applied to

migraine data, we focused on designs with only sib pairs and two groups (G = 2).

We compared the efficiency of tests 1., 3. and 4. relative to reference test 2. . To do

so, we computed the non-centrality parameters (NCP) for the equivalent χ2 linkage

tests. If Cg denotes the assumed values for the true relative excess IBD sharing δg,

then all tests but 3. are based upon the following statistic T

T =

∑
g

∑
i∈g Cg(πi −

1

2
)

(var(π) ×
∑

g NgC2
g )1/2

,

where Ng denotes the number of families in group g and N =
∑

g Ng. For complex

traits and thus small gene effect, the variance of π under the alternative hypothesis
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is close to its value under the null var(π | group g) ' var(π) so we have the following

approximation:

E(T 2) ' 1 + N ×

(

∑

g fgCg(E(πg) −
1

2
)
)2

var(π) ×
∑

g fgC2
g

, where fg =
Ng

N ,

and the sample size for the corresponding 1 d.f. test is inversely proportional to the

non-centrality parameter in the previous expression. Asymptotically, the estimates

for the weights in test 3. should be very close to their true values, the relative loss of

efficiency in test 3. relative to test 2. (where true weights are assumed to be known)

is therefore only due to the additional degrees of freedom (d.f.=2 here) of the test.

In the context of scan for linkage, using a conservative point-wise type I error rate of

10−4, this loss amounts to about 20% . In the sequel, relative efficiency is expressed

as the ratio of sample size in test 2. to sample size in the test of interest.

Using the GLMM described in Section 7.2 (with ρ = 0.5, σ2 = 3.3 and β̂ =

(−2.40,−1.03) as previously estimated), we mimicked a situation where 10% of the

total variance of the random effect is explained by the putative locus while the rest

of the variance is either explained by common environment or other unlinked loci 1.

Using Monte Carlo simulations, we closely approximated the average IBD sharing for

three types of sib pairs, namely AA male-male, AA female-female and discordant sib

pairs AU female-male. In figure 7.1, we display the relative efficiency of the previously

defined tests 1., 3. and 4. relative to 2. for two types of study designs: one mixing

AA male-male and AA female-female (left-hand side, scenario 1) and one mixing AA

male-male and AU female-male (right-hand side, scenario 2). In scenario 1, the 2

degrees of freedom test (test 3.) always fails in improving efficiency compared to a 1

d.f. test with no weight (test 1.) while the score test based on the quasi-likelihood

of the GLMM (test 4.) almost always yields improved efficiency with gains close to

an ideal strategy (test 2.). In scenario 2, the 2 degrees of freedom test does yield

gains in efficiency compared to test 1. that ignores covariates (note that this test can

incur efficiency loss up to almost 40% in this situation) when the mixing proportions

of AmAm and AfUm are not too extreme, however our test 4. does uniformly better

than any of these two tests with losses in efficiency no larger than approximately 10% .

1Note that for other values of the proportion of total random effect variance γ explained by the

putative locus, the same relative effi ciency results hold approximately as long as γ is not too large
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Figure 7.1: Relative efficiency in migraine example - Left: E(π1 −
1

2
) = 0.003 3 in AmAm and

E(π2 −
1

2
) = 0.001 9 in AfAf and Right: E(π1 −

1

2
) = 0.003 3 in AmAm and E(π2 −

1

2
) = −0.0008 in

AfUm.

Application to breast cancer

We put ourselves in a situation where ASP’s for breast cancer status have been gath-

ered among sib pairs of all ages classified in eight classes (see Table 7.3). The disease

status is positive if a woman currently has or has had breast cancer during her life

time. For simplicity, we assume that both siblings belong to the same age class. The

question is how to weight the excess IBD sharing in each age class effectively.

The genetics of breast cancer is often described using Claus model [Claus et al.,

1991] which we will use as the basis for estimation of segregation parameters. Claus

model is based on a one-locus model with a rare autosomal dominant allele (q=0.0033)

leading to an increased risk of breast cancer. The cumulative probability of a woman

to be affected is a function of a woman’s age (see Table 2 in [Claus et al., 1991]),

based on this model, we derived the prevalence and the recurrence risk ratio (λS) for

each age class, thereby closely reproducing observed values. Following the informal

approach described in Section 7.4, we estimated the variance of the random effects σ2

in each age-specific 2 × 2 table based on a correlation equal to ρ = 0.5 and used the

average value across tables σ̂2 = 1.96 (and corresponding age-specific fixed effects).
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Age (Y ears) Based on Claus model Based on fitted GLMM

K (%) λS λS Test relative weights

20-29 0.03 10.34 8. 1.70

30-39 0.36 5.97 2.32 1.38

40-49 1.62 2.64 2.26 1.21

50-59 3.09 1.93 2.04 1.11

60-69 5.38 1.44 1.83 1.05

70-79 8.55 1.34 1.70 1.01

80+ 13.12 1.15 1.56 1.00

Table 7.3: Prevalence, λS in C laus and G LM models, stratum-specifi c G LM M weights

The series of λS ’s that this GLMM yields is displayed in Table 7.3, it is flatter than

the observed ones because the GLMM is stretched to its maximum capacity in order

to cover such a wide λS-range.

The relative weights for ASP of each age category are given in the last column

of Table 7.3, they are fairly mild compared to the large differences observed in λS .

An approach that would use time of onset rather than current status data is likely

to be more efficient, however it is conceptually more complicated. As for migraine,

we limited our quantitative comparison to ASP designs with data consisting of two

groups: we chose the two most extreme age categories with a relative weight of 1.70.

We closely approximated excess IBD sharing in the two age categories in the same

way as for the previous example i.e. by mimicking a model where the putative locus

explained 10% of the total variance of the random effect while the rest of the variance

can be conceived as arising either from a common environment or other unlinked loci 2

under the fitted GLMM. Under this model, our approximate score test 4. is the one

closest to the ideal test 2. ; test 3. sometimes performs better than test 1. however

this advantage would disappear if data consisted (more realistically) of sib pairs in

all age categories (see Fig. 7.2).

2but note that the same remark regarding relative efficiency holds as for the migraine example
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Figure 7.2: Relative efficiency in breast cancer - E(π1 −
1

2
) = 0.017 and E(π2 −

1

2
) = 0.005 in

” 20-29” and ” 80+ ” , resp.
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7.6 Discussion

Based on the GLMM, we have derived a test for linkage which makes adjustment for

known marginal covariate eff ects. O ur ap p roach is motivated b y the fact that the eff ect

of imp ortant covariates on the marginal distrib ution of a trait is often known via data

ex ternal to the linkage study itself, and these should b e incorp orated in the linkage

analy sis. W e elude the diffi cult and comp utationally intensive p rob lem of making

ex act inference b ased on the likelihood of the GLMM b y using a q uasi-likelihood, our

test is then b ased up on a score test for the linkage p arameter in this q uasi-likelihood

and turns out to b e a tractab le statistic, in fact, a simp le weighted average of the

ex cess IBD sharing b etween all p airs of relatives in a family . In that resp ect, it

is reminiscent of ap p rox imate likelihoods b ased on p airwise joint distrib utions used,

for ex amp le, with correlated b inary data [le C essie and van H ouwelingen, 1 9 9 4 ]. A s

noted b y C ox and R eid [2 0 0 4 ], the use of such p seudo-likelihoods does not only

alleviate the comp utational b urden, it also enhances the rob ustness of the method to

model sp ecifi cation. It must b e recognized, however, that in ab sence of covariates,

b etter family -sp ecifi c tests that take the full IBD distrib ution into account can b e

derived [T eng and S iegmund, 1 9 9 7 ]. If the GLMM correctly describ es the data, we

can draw two general conclusions ab out the eff ect of covariate adjustment in linkage

studies for b inary traits. F or rare traits where only aff ected p airs of individuals

are informative, the eff ect of covariates needs to b e huge in order for any covariate-

adjustment to y ield sub stantial p ower gains. Indeed, the ex cess IBD sharing diff ers

only a little b etween covariate-sp ecifi c ty p es of aff ected p airs. F or common traits,

the gains are more easily achieved. F irstly , b ecause discordant p airs can b e more

confi dently included in the analy sis if relevant covariates (e.g. age and sex ) are taken

into account, and those p airs do b ecome informative in common traits. S econdly ,

b ecause the ratios of deviations in IBD sharing b etween p henoty p ic-covariate sp ecifi c

strata are more likely to b e large for such traits.

T he test is ap p licab le in arb itrary p edigrees, and in the case of b inary traits, it

allows incorp oration of b oth aff ected and unaff ected individuals. T his way of han-

dling the issue of covariates in b inary traits, contrasts with ex isting methods that

only use the linkage data availab le and model the p rob ab ility of IBD sharing as a

1 2 6
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function of covariates. The most general representative of this type of models (i.e.

which in principle can handle arbitrary pedigrees and both affected and unaffected

individuals) is undoubtedly the conditional logistic model [Olson, 1999; Greenwood

and Bull, 1999]. It is implemented in the LODPAL program of the S.A.G.E. soft-

ware but as far as we are aware (true for version 5 .1), the current implementation

suffers from a few important limitations: the program assumes that all pairs of rela-

tives are independent, the covariates have to be pair-specific, when both affected and

discordant pairs are analyzed together, the program cannot handle covariates. These

issues do not arise in our approach. The strength of methods that let IBD sharing

depend upon covariate values invariably turns into a weakness (unless differences be-

tween covariate-specific groups are very large) as the number of covariates increases

because the d.f. of the corresponding test for linkage increases too. We overcome

this problem by incorporating external data and by specifying a model where differ-

ences in IBD sharing naturally arise. The way we handle covariates by feeding some

covariate-adjusted residuals into the linkage analysis is conceptually similar to the

method advocated for sibships by Alcais [2001]. For general pedigrees however, as

far as we are aware, our test actually appears to be the only available practical way

to simultaneously adjust for covariates and to include both affected and unaffected

individuals. In late onset diseases, the suspicion that younger unaffected individuals

might become affected at a later age can explicitly be incorporated using age as a

covariate. We have treated all segregation parameters required by the GLMM as

known parameters and although unbiased estimates could be difficult to obtain, we

propose an estimation procedure that circumvents this problem. As long as interest

lies in testing for linkage and not in actually estimating segregation parameters, this

procedure appears to be acceptable in that: 1) it does not affect the size of our test

2) the test itself is fairly insensitive to the non-unique choices of nuisance parameter

values. By illustrating the use of our method in both common and relatively rare

diseases, we have shown the order of magnitude for the gains that could be expected

in some specific scenarios. We note that the GLMM model does not explicitly in-

corporate potential gene by covariate interaction in its structure, this is not to say

that it forbids this phenomenon, indeed, the recurrence risk ratios and IBD sharing

induced by the model clearly vary depending on covariate values. However, purely
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for mathematical convenience, we have assumed that on the latent scale, there was

no interaction between the gene at the putative location and the covariate. Actually,

recent developments published by P eng et al. [2005] explicitly account for such inter-

actions and these authors have derived the corresponding score test for linkage. The

gene by covariate interaction could be explicitly incorporated into the GLMM model

in a similar way (via the R matrix of variance-covariance of random effects) and the

corresponding test would obtain analogously. We note that in practice the IBD status

is not known exactly but has to be estimated from marker data, the consequence for

the score test is that π has to be replaced by its estimated version π̂ in equation (7.2)

and that the corresponding var(π̂) has to be used in the standardization of the test.

This last term depends on the family structure, the marker allele frequencies, their

position and the possible genotype missingness pattern, and in practice we approxi-

mate its true value using Monte Carlo simulations as implemented in an executable

C program calling upon the MERLIN [Abecasis et al., 2002] software and available at

http://www.msbi.nl/Genetics/. Currently, the GLMM test prescribed in this

manuscript is only available as R code from the authors. Finally, we remark that

although we have focused on the use of our test with binary traits, the approach can

directly be applied to other traits whose distribution is in the canonical exponential

family, in particular to count data with a P oisson distribution as well as survival data.

7.7 Appendix

Deriv a tion of th e q ua si-lik elih ood

We use a 2nd order Taylor approximation of the conditional log-likelihood log f(y | β , b)

introduced in Section 7.2 around b = 0 to obtain a quasi-likelihood for the data y in
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a family:

log f(y |β,b) =

m
∑

i=1

log f(yi |β, bi)

'
m

∑

i=1

log f(yi |β, bi = 0) + bi(yi − ψ′(xiβ)) −
1

2
b2
i ψ′′(xiβ)

'

m
∑

i=1

log f(yi |β, bi = 0) −
1

2
ψ′′(xiβ)

(

bi −
yi − ψ′(xiβ)

ψ′′(xiβ)

)2

+
1

2
ψ′′(xiβ)

(

yi − ψ′(xiβ)

ψ′′(xiβ)

)2

.

In the previous expression, only the second term involves b which shows that when

β is regarded as constant, log f(y |β,b) behaves as if

y − ψ′(Xβ)

ψ′′(Xβ)
|b ∼ N(b,Ψ′′(Xβ)−1)

where Ψ′′(Xβ) denotes the diagonal matrix whose ith diagonal element is given by

ψ′′(xiβ). We can now easily integrate the random effects b ∼ N(0,R(θ, γ )) out

and log f(y |β) as a function of θ can be regarded as the value of the density for

multivariate normal N(0,R(θ, γ ) + ψ′′(Xβ)−1) in the data points y−ψ′(Xβ)
ψ′′(Xβ) :

y − ψ′(Xβ)

ψ′′(Xβ)
∼ N(0,R(θ, γ ) + Ψ′′(Xβ)−1) .

Score test

In analogy with the case of normally distributed phenotypes [Lebrec et al., 2004],

standard results on matrix algebra (see, e.g. [Searle et al., 1992, Appendix M.7]) lead

to

`zγ =
∂ log q l

∂γ
=

1

2

{

z′Σ−1(π − Eπ)Σ−1z − tr(Σ−1(π − Eπ))
}

Because of the relation a′b = tr(ba′), the previous equation can be rewritten

∂ log q l

∂γ
=

1

2
tr

(

Σ−1(π − Eπ)(Σ−1zz′ − I)
)

.

Here tr(A) stands for the trace (sum of the diagonal elements) of matrix A. U sing ele-

mentary matrix theory, in particular tr(AB) = tr(BA) and tr(AB) = vec(A′)′vec(B)

(here vec(A) places the n columns of the m × n matrix A into a vector of dimension
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mn × 1), this score function can be rewritten as

`zγ =
1

2
vec(C)′ . vec(π − Eπ)

with C = Σ−1z
(

Σ−1z
)′

− Σ−1.

Approximation used in segregation parameters estimation

The marginal covariance can be partitioned as

cov(Y1, Y2) = E (cov(Y1, Y2 |β1, β2, b1, b2)) + cov (E(Y1 |β1, b1),E(Y2 |β2, b2))

≈ 0 + cov (ψ′(β1) + b1ψ
′′(β1), ψ′(β2) + b2ψ

′′(β2)) ,

using a 1s t order Taylor expansion of ψ′(βi + bi). It follows that cov(Y1, Y2) ≈

ψ′′(β1) ψ′′(β2) ρσ2. The approximation var(Y ) ≈ ψ′′(β) + ψ′′(β)
2
σ2 obtains in

the same manner by setting ρ = 1 and taking a 1s t order Taylor approximation of

var(Y |β, b) = ψ′′(β + b) ≈ ψ′′(β) + b ψ′′′(β).

For the marginal mean, we have

E(Y ) = E (E(Y |β, b))

≈ E

(

ψ′(β) + bψ′′(β) +
b2

2
ψ′′′(β)

)

≈ ψ′(β) +
σ2

2
ψ′′′(β) .
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