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Chapter 4

G en o m ic Co n tro l fo r G en o ty pin g

E rro r in L in k ag e M appin g fo r

Co m plex T raits

Abstract

It has been suggested that genotyping error could dramatically affect the evidence

for link age, particularly in selective designs. U sing the regression-based approach

to link age, w e q uantify the effect of simple genotyping error models under specifi c

selection schemes for sib pairs. W e show for ex ample, that in ex tremely concordant

designs, genotyping error leads to over-pessimistic inference w hereas it leads to

increased type I error in ex tremely discordant designs. P erhaps surprisingly, the

effect of genotyping error on inference is most severe in designs w here selection

is least ex treme. W e suggest a modifi cation of the link age testing procedure that

accounts for genotyping errors based on a genomic estimate of the error rate.

This chapter has been submitted as: J. Lebrec, H. Putter, J.J. Houwing-Duistermaat and

H.C . v an Houwelingen. G enomic C ontrol for G enoty ping E rror in Link age M apping for C omplex

Traits.
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Chapter 4. Genomic Control for Genotyping Error in Linkage Mapping

4.1 Introduction

In the search for genetic d eterminants of complex traits, the u se of selectiv e d esigns

appears to b e the only w ay to gain su ffi cient pow er to d etect typically small gene

eff ects in linkage stu d ies. A few au thors hav e show n b y simu lation that the impact

of genotyping error on ev id ence for linkage cou ld b e particu larly sev ere in aff ected

sib -pair (A S P ) d esigns [D ou glas et al., 2 0 0 0 ; A b ecasis et al., 2 0 0 1 ], v irtu ally masking

most of the ev id ence for linkage. T he impact of error on q u antitativ e traits appears to

b e less d ramatic in rand om samples, how ev er it is u nclear w hether the same d ramatic

pow er losses hold in selected samples.

A method of choice is now emerging for the analysis of q u antitativ e traits arising

from selected sib pairs. It b oils d ow n to a regression throu gh the origin of ex cess

id entical b y d escent (IB D ) sharing on a fu nction of the trait v alu e, w hose slope is an

estimate of the linkage parameter. It w as fi rst proposed b y S ham and P u rcell [2 0 0 1 ]

and tu rns ou t to b e eq u iv alent to a score test [T ang and S iegmu nd , 2 0 0 1 ]. B y u se

of simple genotyping error mod els (population frequency error model and false h o-

mozygosity model ), w e show analytically w hat eff ects su ch error generating processes

(occu rring at rate ε per sib pair) ind u ce for an id ealized fu lly informativ e marker. It is

show n that it resu lts in a red u ction of the slope estimate (i.e. of the estimated linkage

parameter) b y a factor 1 − ε

2
regard less of w hether sib pairs are selected or not. S ince

the genotyping error rate ε is typically small, the prev iou s eff ect on the linkage test

is minimal. In ad d ition to this slope eff ect, the regression’s intercept is mod ifi ed and

this may hav e a mu ch more conseq u ent eff ect on the test for linkage d epend ing on the

sampling scheme u sed to select sib pairs. S u rprisingly, this simple resu lt allow s u s to

pred ict that in ex tremely concord ant (EC) sib pairs d esigns and in A S P d esigns, the

eff ect of genotyping error w ill b e mild er as the selection b ecomes more ex treme. In

ex treme d iscord ant (ED ) d esigns, the eff ect can in theory b e either ov er-optimistic

or pessimistic d epend ing on the d efi nition of d iscord ance, the genotyping error rate

and the tru e linkage eff ect; in practice how ev er, for small Q T L eff ect, the resu lt w ill

b e ov er-optimistic inference. It is argu ed that the b asic error generating mechanisms

assu med prov id e reasonab le approx imations of real-life situ ations. F u rthermore, re-

su lts ob tained u nd er the assu mption of complete IB D information can b e q u alitativ ely

5 0



Chapter 4. Genomic Control for Genotyping Error in Linkage Mapping

extended to settings where information is incomplete.

Finally, we suggest a simple genomic control for genotyping error which can easily

be incorporated into the usual linkage testing procedure. This article is organized

as follows: in Section 4.2, we introduce some notations and briefl y sketch the in-

verse regression approach to linkage, in Section 4.3 , we describe some common error-

generating processes, in Section 4.4, we show analytically what the effect of genotyping

error can be on the IBD sharing distribution and its consequence for linkage testing.

Section 4.4 is devoted to studying the impact of genotyping error in common selective

designs. In Section 4.5, we argue that under certain assumptions regarding the error

model, one can easily implement a linkage test that incorporates a genomic control

for genotyping error.

4.2 Test for linkage in selected sib pairs

W e assume that the sib pair phenotypic data x = (x1, x2)
′ have been adjusted for

any relevant covariates (e.g. sex, age, country, ...) and have been standardized so

that the (known) population mean, variance and sib-sib correlation are 0, 1 and ρ

respectively. In addition, let’s denote by π the proportion of alleles shared identical

by descent (IBD) at a certain locus by the two sibs and by π̂ its estimated value given

the marker information available [K ruglyak et al., 1996 ; Abecasis et al., 2002]. The

additive variance components model assumes that x given IBD information π follows

a normal distribution with zero mean and variance-covariance matrix given by





1 γ(π −

1

2
) + ρ

γ(π −

1

2
) + ρ 1



 ,

where γ denotes the proportion of total variance explained by the putative locus.

Sham and Purcell [2001] first proposed the following approach for testing linkage:

regression of the estimated excess IBD sharing π̂ −

1

2
through the origin of a function

of the squared difference and squared sum of sib-pair phenotype values C where

(4.1) C(x1, x2, ρ) =
(1 + ρ2)x1x2 − ρ(x2

1
+ x2

2
) + ρ(1 − ρ2)

(1 − ρ2)2
.
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Chapter 4. Genomic Control for Genotyping Error in Linkage Mapping

In a sample of n independent sib pairs with phenotypes (xi1, xi2)i= 1,...,n , the test is

based upon the following z statistic

z =

∑

i(π̂i −
1

2
) C(xi1, xi2, ρ)

√
∑

i var0(π̂i) C2(xi1, xi2, ρ)
,

it is one-sided, only positive values of z being regarded as evidence for linkage. In

other words, z2
+ defined as being equal to 0 if z ≤ 0 and to z2 if z > 0 is asymp-

totically distributed as 1

2
χ2

0 + 1

2
χ2

1. For normal data, this is nothing but a score

test [Tang and Siegmund, 2001] and therefore constitutes an asymptotically optimal

test for linkage with small locus effect γ (see Lebrec et al. [2004] for a generalization

of this score test in arbitrary pedigrees). This test is sometimes referred to as the op-

timal H aseman-Elston regression. In a numerical comparison of methods for selected

samples, Skatkiewicz et al. [2003] and Cuenco et al. [2003] showed that this method

had good properties in finite samples for extreme proband ascertained sib-pair and

discordant sib-pair designs. O ne important feature of this regression when applied

to selected samples (as far as power is concerned) is that it is constrained through

the origin and this plays an important role in how genotyping error affects linkage.

A different motivation for this regression through the origin was given in Putter

et al. [2003] using a first order Taylor’s approximation for the three IBD probabilities

P(π |x, γ, ρ):

(4.2)

P(π |x, γ, ρ) = ( P(π = 0 |x, γ, ρ) , P(π = 1

2
|x, γ, ρ) , P(π = 1 |x, γ, ρ) )

' ( 1

4
− γ

8
C(x, ρ) , 1

2
, 1

4
+ γ

8
C(x, ρ) )

,

with C(x, ρ) given by Formula (4.1) which implies E(π − 1

2
|x, γ, ρ) = γ

8
C(x, ρ)

when IBD information is known with certainty. This approximation is valid for small

quantitative trait locus (QTL) effect γ and will be used in Section 4.4.

4.3 Genotyping error models

We consider two mechanisms for the generation of errors in marker data, namely

the population frequency error model and the false homozygosity model . In those

two models, we consider a single marker with m alleles and further assume that

a maximum of one allelic error per sib pair can be made and that this happens
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Chapter 4. Genomic Control for Genotyping Error in Linkage Mapping

with probability ε. This restriction to one error per sib pair is just a first order

approximation, for small ε, of a process where all four alleles would be allowed to be

independently erroneous and does not restrict the generalizability of our results.

The population frequency error model re-assigns the erroneous allele (chosen at

random among the four forming the sib-pair genotype) to one of the possible m alleles

with probability equal to population allele frequency. One mathematical advantage of

this model is that the marginal distribution of alleles and genotypes is unaltered. The

false homozygosity model keeps homozygotes unchanged but re-assigns heterozygotes

to homozygotes with alleles equal to one of the two original alleles chosen according

to probabilities proportional to population allele frequencies.

To our knowledge, false homozygosity is a common type of error: fairly rare al-

leles go un-reported in samples. The population frequency error model provides an

approximation to a process whereby alleles are misread. Errors at the two alleles of

a marker’s genotype might be correlated, we do not consider this type of process in

details here although the effect on linkage will be qualitatively the same as in the

two other models. We refer the reader to Sobel et al. [2002] for a detailed exposé on

genotyping error mechanisms. N ote that the two models we have chosen have been

used successfully in the past in order to identify potential genotyping errors [Douglas

et al., 2000; Sobel et al., 2002].

4.4 Impact of genotyping error on linkage

Effect on IBD sharing

Tests for linkage are based on the IBD sharing distribution and although errors as

described in Section 4.3 are made at the genotype level (G is read as Gε), the effect of

errors on linkage will be entirely mediated via the distortion of the IBD distribution

(the true IBD status π of two siblings may be incorrectly inferred as πε). We are

therefore interested in deriving the probability distribution P(πε |π), this is done by

conditioning on both the true and observed genotypes as follows:

P(πε |π) =
∑

Gε

P(πε |Gε)
∑

G

P(Gε |G) P(G |π) .

Let us consider the case of complete information. This can be conceptualized
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Chapter 4. Genomic Control for Genotyping Error in Linkage Mapping

by means of an idealized marker whose number of alleles is infinite, in particular

identity by state (IBS) status is equivalent to identity by descent (IBD) status. The

unordered genotypes of a sib pair can be partitioned into seven exclusive classes

denoted ii/ii, ii/ij, ii/jj, ii/jk , ij/ij, ij/ik and ij/k l depending on the number

of homozygous sibs in the pair and the number of distinct alleles in the sib-pair

genotype. Sharing 0 alleles IBD corresponds to a sib-pair genotype of the ij/k l class,

should an error occur according to the population frequency error model then one

of the four alleles would be transformed into yet another type (since the number

of alleles is infinite, the probability that the new allele is read as one of i, j, k or l

tends to 0), therefore the sib pair genotype will remain in the ij/k l class and the

observed IBD status πε will still be 0. For the same starting genotype, an error

according to the false homozygosity model produces an ii/jk class and πε also equals 0

therefore P(πε = 0 |π = 0) = 1 whatever the genotyping error mechanism considered

in Section 4.3. The same line of reasoning leads to P(πε = 0.5 |π = 0.5) = 1 − ε
2
,

P(πε = 0 |π = 0.5) = ε
2
, P(πε = 1.0 |π = 1.0) = 1 − ε, P(πε = 0.5 |π = 1.0) = ε.

Those results can be summarized by the transition matrix below, where the (i, j)

element is equal to P(πε = (j − 1)/2 |π = (i − 1)/2)

P(πε |π) =











1 0 0

ε
2

1 − ε
2

0

0 ε 1 − ε











.

The overall effect of genotyping error is thus to reduce the observed IBD sharing. In

selected samples of extremely concordant sib pairs (EC) where linkage is evidenced

by excess IBD sharing, it therefore seems logical to expect a decrease in power. Con-

versely, in selected samples of extremely discordant sib pairs (ED) where linkage is

evidenced by reduction in IBD sharing, the test might lead to increased type I error.

In Section 4.4, we quantify this bias in selective samples schemes for quantitative

traits under the usual assumption of a normal variance components model.

Effect on link age

In this section, we concentrate on the case where IBD information is complete. As

exposed in Section 4.2, the test for linkage corresponds to a regression through the
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origin of excess IBD sharing π̂ − 1

2
on a function of phenotype values C = C(x, ρ)

with C as defined by Formula (4.1) i.e. it is based on the approximate relation

(4.3) E(π −
1

2
|x, γ, ε) =

γ

8
C(x, ρ) .

We show in the appendix that, in presence of genotyping error at rate ε, this relation

is changed into

(4.4) E(πε −
1

2
|x, γ, ε) = −

ε

4
+ (1 −

ε

2
)

γ

8
C(x, ρ) .

If we were to know ε, we could correct for it in the regression and the loss in efficiency

would only be due to the 1 − ε
2

term preceding γ and would therefore be minimal.

We may ignore genotyping error altogether. In the appendix, we derive a general

expression (Equation (4.9)) for the probability of rejecting the null hypothesis of no

linkage under this scenario. For small values of the error rate ε, the following first

order approximation obtains

(4.5) Φ
(

Φ−1(α) + γI1/2

)

− ε I1/2

(

γ

2
+ 2

C

C2

)

× φ
(

Φ−1(α) + γI1/2

)

,

where α is the nominal type I error rate for the linkage test with a true quanti-

tative trait locus effect γ, C is the average of the C(xi1, xi2, ρ) values (given by

Equation (4.1)) among a sample of n sib pairs, I = n
8

C2 is the sample’s Fisher’s

information for the linkage parameter γ, Φ is the cumulative density function of the

standard normal distribution and φ is the corresponding density function. The first

term Φ
(

Φ−1(α) + γI1/2
)

in this expression gives the value of this probability in ab-

sence of genotyping error while the second term is the deviation from this reference

value; in particular, when γ = 0, it expresses the actual type I error as a deviation

from the nominal type I error rate: α − 2ε C

C2
I1/2 × φ

(

Φ−1(α)
)

.

In extremely concordant (EC) designs, C is positive while it is negative in ex-

tremely discordant (ED) designs, inference will therefore be too conservative in EC

designs and too liberal in ED designs. In random samples and under the variance

components model, C is a score function hence E(C) = 0 therefore its sample esti-

mate C will be small and the effect of genotyping error will be minimal. The same

finding would hold for any ascertainment scheme where C = 0.

We now quantify the effect of genotyping error on power and type I error under

specific designs. The distortion of the linkage test in presence of genotyping error
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Figure 4.1: Three selective schemes: extremely concordant(EC), extremely discordant(ED) and

most informative (I) all for 1 0 % . Joint distribution of sib trait values in gray scale for ρ = 0 .5

(generated using the scatterplots function of Eilers and Goeman [2 0 0 4 ])

depends heavily on the design-specific quantity C/C2; given an ascertainment scheme

corresponding to a certain region of the possible trait values, it is simple to use Monte

Carlo methods to determine the expected C/C2 value in that region. In table 4.1,

we considered three different ascertainment schemes: extremely concordant (EC),

extremely discordant (ED) and most informative (I) as shown in Figure 4.1. For

example, in the EC10% scheme with sib-sib trait correlation ρ = 0.5, only sib pairs

whose trait values (x1, x2) fulfill x1 > t and x2 > t or x1 ≤ −t and x2 ≤ −t where

t = tEC(10% , ρ = 0.5) = 0.136 are retained (the value of t is such that on average

10% of the overall population is sampled). Analogously for ED, sib pairs whose trait

values belong to regions defined by x1 > t and x2 ≤ −t or x1 ≤ −t and x2 > t

are selected. The I scheme selects the most informative sib pairs determined using

the quantiles of Fisher’s information (I ∝ C2(x1, x2, ρ)) distribution for the linkage

parameter γ [Lebrec et al., 2004]. For example, if the percentage selected equals 10%

and ρ = 0.5 then sib pairs whose trait values fulfill C2(x1, x2, ρ = 0.5) > 4.36 would be

selected. This sampling scheme combines both EC and ED sib pairs and constitutes

a refinement of the so-called EDAC designs [Gu et al., 1996].

Table 4.1 allows us to draw three main conclusions relating to the main bias caused

by the intercept mis-specification in the usual linkage testing procedure:

1. It is negative in EC designs and positive in ED designs, positive but without

substantial influence for I designs,

56



Chapter 4. Genomic Control for Genotyping Error in Linkage Mapping

ρ sel. EC ED I sel. EC ED I sel. EC ED I

0 .1 1 % 0 .2 7 -0 .2 3 -0 .0 7 1 0 % 0 .4 7 -0 .4 0 -0 .0 6 3 0 % 0 .6 5 -0 .5 3 -0 .0 4

0 .2 0 .2 9 -0 .2 1 -0 .1 3 0 .5 0 -0 .3 6 -0 .1 1 0 .6 9 -0 .4 6 -0 .0 7

0 .3 0 .3 0 -0 .1 9 -0 .1 5 0 .5 2 -0 .3 2 -0 .1 4 0 .7 1 -0 .3 9 -0 .0 9

0 .4 0 .3 1 -0 .1 7 -0 .1 4 0 .5 3 -0 .2 8 -0 .1 6 0 .6 9 -0 .3 2 -0 .1 1

0 .5 0 .3 2 -0 .1 4 -0 .1 2 0 .5 2 -0 .2 4 -0 .1 7 0 .6 2 -0 .2 5 -0 .1 1

0 .6 0 .3 1 -0 .1 2 -0 .1 0 0 .4 7 -0 .1 9 -0 .1 5 0 .5 0 -0 .1 9 -0 .1 0

Table 4.1: Average values for the C/C2 term d eterm in in g b ias

2 . It is m o re p ro n o u n ced as th e d esig n s bec o m es less ex trem e fo r bo th E C an d E D ,

3 . It is fairly in d ep en d en t o f sib-sib trait c o rrelatio n ρ fo r E C d esig n s w h ile it

d ec reases w ith ρ fo r E D d esig n s.

O v erall, fo r sm all Q TL eff ec ts γ, g en o ty p in g erro r w ill lead to c o n serv ativ e in fer-

en ce in E C d esig n s an d to liberal in feren ce in E D d esig n s. In F ig u re 4.2 , w e sh o w th e

th eo retical ty p e I erro r rate an d p ro bability o f rejec tin g th e n u ll h y p o th esis (o btain ed

v ia F o rm u la (4.9 )) fo r d iff eren t sam p lin g sch em es u n d er p erfec t IB D in fo rm atio n . W e

h av e u sed a Q TL ex p lain in g 10 % o f th e to tal trait v arian ce, a trait sib-sib c o rrelatio n

eq u al to 0 .3 an d erro r rates eq u al to 0 .0 1, 0 .0 2 an d 0 .0 5 . A lth o u g h th e p o w er is n o t

to o bad ly aff ec ted at least fo r sm all erro r rates, g en o ty p in g erro r su bstan tially aff ec ts

th e ty p e I erro r rate, th is m ay lead to far to o liberal in feren ce in E D d esig n s, th is

d eterio ratio n o f th e size o f th e test bec o m es m o re ac u te as sam p le size in c reases.

Incomplete IBD information

W e saw in S ec tio n 4.4 th at g en o ty p in g erro r n o t o n ly d eterio rated th e slo p e o f th e

lin k ag e sig n al bu t also in tro d u ced an in tercep t in th e reg ressio n o f ex cess IB D sh arin g

o n th e o p tim al H asem an -E lsto n trait fu n c tio n C(x,ρ). In th e case o f c o m p lete in fo r-

m atio n an d at least fo r th e population frequency error model an d false h omozygosity

model , th e p ertu rbatio n cau sed by th e erro r p ro cesses o n ly d ep en d ed o n th e erro r

rate ε th ro u g h th e fu n c tio n s g iv en in E q u atio n (4.3 ). In real-life situ atio n s, IB D in fo r-

m atio n is in c o m p lete, bu t u n d er th e u su al v arian ce c o m p o n en ts ad d itiv e m o d el an d
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Figure 4.2: Effect of genotyping error on test for linkage in EC (top), ED (middle) and I (bottom)

designs
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in absence of genotyping errors, the excess IBD sharing is approximately related to

the QTL effect γ and the optimal Haseman-Elston trait function C(x, ρ) through the

regression (this is shown for an approximate additive model as given by Formula (4.2)

in the appendix of Lebrec et al. [2006 ])

E(π̂ −
1

2
|x, γ, ε) ' var0(π̂)γ C(x, ρ) ,

and the effect of genotyping error is to modify this regression into

(4.6 ) E(π̂ε −
1

2
|x, γ, ε) ' a(ε) + b(ε) var0(π̂)γ C(x, ρ) .

For simple cases, e.g. a single equi-frequent allele marker, explicit formulae can be

derived for a and b; in general though, those functions will depend in a complex

manner on the genotyping error mechanism but also on the markers’ map and no

explicit forms will be available. When multi-point marker data are used to infer IBD

sharing, errors tend to propagate around markers and one can expect a more severe

effect of genotyping error compared to single-point algorithms. As mentioned earlier,

for small QTL effects, most of the impact on linkage in selected samples will be due

to the intercept mis-specifi cation in the linkage regression, we therefore focus on this

issue.

In random samples or under the null hypothesis of no linkage, the sample mean

excess IBD π̂ε− 1

2
(averaged across families) provides an estimate of the intercept a(ε).

We simulated three different marker map confi gurations in 10000 sib pairs without

parents and quantifi ed by how much IBD sharing was reduced on average under the

population frequency error model and the false homozygosity model (error rates= 0.01

and 0.05). MapH and MapL had eleven equi-frequent allele markers located 10cM

apart, markers had 10 alleles in MapH and 2 alleles in MapL. MapM only had six

markers 20cM apart with 5,2,5,2,2 and 5 alleles on the six markers (from left to right).

The results are displayed in Figure 4.3 along with the corresponding map information

content as defi ned in K ruglyak and Lander [1995] (wiggly curves in bottom part

of each fi gure, scale on the right y-axis), for clarity and because results were very

similar, we have omitted the curves corresponding to the false homozygosity model

. One clear trend is that IBD is most affected by genotyping error in areas where

marker information is high. Furthermore, even for small error rates, the decrease in
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IBD sharing is substantial.

4.5 Genomic control for genotyping error

As we have seen in previous sections, the main effect of genotyping error is to modify

the intercept in the regression used to test for linkage. In order to obtain more robust

inference, it therefore seems natural to try and constrain the regression through its

correct origin a. In this section, we propose a completely data-driven strategy for

doing this.

At any position, the sample mean IBD sharing has variance var0(π̂)/ n where n is

the number of sib pairs available. If we knew that the position is unlinked or if the

sample of sib pairs was random then the deviation of this mean from 1

2
would provide

an estimate of the intercept a in the linkage regression. U nfortunately, detection of a

position-specific intercept corresponding to typical error rates would require a sample

size of order 104, a number that is almost never reached in linkage studies. In order

to obtain an intercept estimate â with suffi cient precision, it is therefore essential to

combine information across positions. The value of IBD sharing at positions outside

of the neighborhood of infl uencing loci (those positions are subsequently referred to

as unlinked) across the genome may serve as control in the test for linkage, this

concept of genomic control has been used to robustify the analysis of association

studies by Devlin and R oeder [1999].

Ad-hoc method

Let’s assume that the proportions of alleles shared IBD π̂ is inferred at a series of

approximately regular positions indexed by t across the whole genome. Let yt be the

sample mean (among families) excess IBD at position t i.e. yt ≡ π̂ε
t − 1

2
. U nder the

variance components model and for small QTL effect γ, equation (4.6) implies that

E(yt) '







a , if position t is unlinked ,

a + b

8
γC , if position t is linked .

In random samples or in any sample where C ' 0, taking the average of yt across

positions provides and estimate of a. In selected samples, we can use a trimmed

version of the mean of y, for example a 20%-trimmed mean of the (yt)t series (i.e.
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Figure 4.3: Effect of genotyping error on IBD sharing and corresponding map information content

in simulated data - Error rates ε = 0 .0 1 (top) and ε = 0 .0 5 (bottom)
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the mean of the yt values after removing the 20% lowest and and 20% highest values)

will provide a robust genomic estimate â of a. Because a ≤ 0 and C is positive and

negative in EC designs and ED designs respectively, â could be refined by trimming

off only the 20% highest and lowest yt values respectively before taking the mean. Of

course, how much we trim is arbitrary but 20% can safely be taken as a conservative

value for oligogenic traits.

An ad-hoc implementation of the concept of genomic control is then to plug in the

estimate of the intercept â into the linkage regression (4.6). Since most of the bias in

the inference is due to the intercept mis-specification, the precise estimate obtained

by pooling across the genome will eliminate it. The implicit assumption that we make

in this genomic control approach is that the regression intercept is the same at all

positions.

Empirical Bayes

The method in the previous section can be formalized using an empirical Bayes in-

ferential procedure in order to compute the posterior probability that a position is

linked. Having set a minimum level of evidence for deciding whether a position is

linked, the values of yt at unlinked positions could be pooled and the estimate thus

obtained plugged into the linkage regression as in the previous section. The approach

is borrowed from the microarrays literature [Efron and Tibshirani, 2002] and our

problem is analogous to the estimation of the proportion of true null hypotheses in

false discovery rates testing rules.

We assume that the prior density f of the average excess IBD sharing y = (yt)t is

given by a mixture distribution

f(y) = α0f0(y) + (1 − α0)f1(y) .

Here, α0 denotes the prior probability that a position is unlinked (a conservative value

would be α0 = 1) and f0(y) is the corresponding prior probability distribution of y,

while f1(y) denotes the prior probability distribution of y at a linked position. Using

Bayes’ theorem, the following posterior distribution obtains

P(position t linked | yt) = 1 −
α0f0(yt)

f(yt)
.
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N on-parametric density estimation techniques such as kernel density estimation

may be used to estimate f(y) from the data without having to specify f1(y). Unless

the positions where IBD is inferred are chosen far apart, the observations will not be

independent but this does not invalidate the method. It suffers one inherent limitation

though: the effective sample size is small in a human genome (choosing positions

every 50cM produces only approximately 70 almost independent observations) and

this limits our ability to estimate f(y) precisely. Since var(yt) = (8n)−1, the prior

f0(y) could be chosen as an N(a0, (8n)−1 + τ2) where a0 would reflect our prior

knowledge about the intercept a and τ2 the associated uncertainty.

Instead of applying this empirical Bayesian framework to the average excess IBD

sharing (yt)t, we can apply it directly to linkage statistics such as the QTL effect

estimates γ̂t =
∑

i
(πε

i
−

1

2
)Ci

1

8

∑
i
C2

i

whose expectation is calculated in the Appendix. Since

var(γ̂t) = ( 1
8

∑

i
C2

i
)−1, priors f0(y) of the form N(a0, (

1
8

∑

i
C2

i
)−1 + τ2) are possible

although asymmetric versions that favor negative values might be more appropriate.

P reliminary simulations give sensible results when the true number of linked positions

is not too low (≥ 5%) and the study is adequately powered, however the limited

number of independent dimensions in a linkage scan is a serious limitation of this

approach.

Alternatives

Alternatives to this genomic-control strategy are possible and they also boil down to

constraining the linkage regression through a new origin as in the ad-hoc method, the

estimation procedure can be adapted to suit particular circumstances.

Firstly, in random samples, the assumption regarding exchangeability of positions

might be relaxed. Indeed, the yt’s may be used as estimates of the position-specific

intercepts since a study sufficiently powered to detect linkage in random samples

should provide sufficient precision. It must be noted though that the advantage of

using a genomic control in random samples is limited because the impact of genotyping

error is small in such designs. Secondly, one could use previous lab data to estimate by

how much IBD sharing deviates from its expected value, this could also been done at

each position separately provided sufficient data are available. In practice, such data

might not be available or they might not trustfully reflect current error mechanisms.
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4.6 Discussion

Under two basic error models, we were able to predict quantitatively the consequences

of genotyping error on inference in linkage analysis. In the idealized situation of com-

plete IBD information, both error models have the same impact on linkage analysis.

As we have seen, the effect is due to a decrease in IBD sharing. A contrario, an error

process which would increase IBD sharing would produce opposite results. The true

error processes involved in practice are complicated mixtures of the models alluded

to here. In our experience however, it seems that processes which lower IBD sharing

are predominant. Because genotyping error tends to decrease the estimated number

of alleles shared IBD, the effect on evidence for linkage is opposite in EC (over-

pessimistic) and ED (over-optimistic) designs, it can be dramatic in typical designs

and paradoxically less severe for more extreme ascertainment schemes. By analogy,

for a dichotomous trait, this means that the effect of genotyping error is less severe

in ASP designs for rare diseases than for common diseases. Remarkably, in designs

combining both ED and EC pairs like the I (or EDAC designs), the competing ef-

fects of genotyping error tend to cancel each other out. We have considered here only

three types of basic selection schemes however the approach can straightforwardly be

applied to any arbitrary selection scheme, under a variance components model, the

important quantity being C/C2.

The genomic-control strategy that we have proposed offers a robust method for

carrying out linkage analysis but obviously relies on a convenient approximation of

a very complex situation. It is probably reasonable to assume that genotyping of

markers with a similar degree of polymorphism (number of alleles and frequencies)

within the same lab is subject to the same error process. On top of the true underlying

error mechanism, in a multi-point setting, not only the number of markers but also

the inter-marker distances could have an impact. Ideally, markers should have similar

numbers of alleles and respective frequencies and be rather evenly distributed across

the genome. Based on results from simulations presented in Section 4.4, it seems

appropriate to pool estimates of regression’s intercept a which correspond to areas

of the genome where marker information is roughly the same. The advent of SNP

chip therefore makes us confident of the applicability of our method, indeed this
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new technology for linkage data holds the promise of providing marker maps with

less variable information content than in classical microsatellites maps [Evans and

Cardon, 2004; Schaid et al., 2004].

Elston et al. [2005] have recently pointed out that the implicit assumption made

in ASP designs, that randomly sampled sib pairs share half of their alleles IBD, might

not hold in practice and have argued for including discordant pairs in such studies.

The approach presented here offers an alternative solution to this issue. Finally we

note that, although we have only considered designs involving sib pairs, the approach

naturally extends to other types of relative pairs.
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4.7 Appendix

Effect of genotyping error on linkage

We show how regression (4.3) is modified in presence of genotyping error. We con-

centrate on the case where IBD information is complete.

By definition E(πε − 1
2 |x, γ, ε) = 1

2 P(πε = 1
2 |x, γ, ε)+P(πε = 1 |x, γ, ε)− 1

2 . We

can then condition on the true IBD status π and use approximation (4.2) in order

to evaluate the probabilities involved in the previous expression: P(πε |x, γ, ε) =
∑

π
P(πε |π) P(π |x,γ) P(πε |π). In th e p re se n t c a se o f c o m p le te in fo rm a tio n , th is

y ie ld s

(4.7 ) E(πε −
1

2
|x,γ,ε) = −

ε

4
+ (1 −

ε

2
)

γ

8
C(x, ρ ) .

Pro b a b ility to re je c t H0

W e d e riv e a n a p p ro x im a te fo rm u la fo r th e p ro b a b ility o f re je c tin g th e n u ll h y p o th e sis

o f n o lin k a g e if w e ig n o re g e n o ty p in g e rro r.

A s w e h a v e se e n e a rlie r, te stin g fo r lin k a g e b o ils d o w n to re g re ssio n (4.3 ). L e t’s

d e n o te b y γ̂, th e e stim a te o f th e slo p e in th e re g re ssio n th ro u g h th e o rig in o f a sa m -
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ple
(

πi − 1
2

)

i= 1,...,n
on the corresponding Ci = (C(xi1, xi2, ρ))i= 1,...,n and by γ̂ε, the

estimate of the slope in the same regression but where the response is replaced by
(

πε
i − 1

2

)

i= 1,...,n
.

γ̂ =

∑

i(πi − 1
2 ) Ci

1
8

∑

i C2
i

and E(γ̂ |x, γ) ' γ

i.e. γ̂ is an approximately unbiased estimate of γ. H owever it appears that γ̂ε =
∑

i
(π̂ε

i
−

1

2
) Ci

1

8

∑
i
C2

i

is biased since

E(γ̂ε |x, γ, ε) =

∑

i E(πε
i − 1

2 |x, γ) Ci

1
8

∑

i C2
i

' (1 − ε

2
) γ − ε

4

C

C2
.

(4.8)

T he bias in γ̂ε depends on two factors: the genotyping error rate ε and the selection

procedure of sib pairs (which determines C = 1
n

∑

i Ci and C2 = 1
n

∑

i C2
i ). Whatever

the ascertainment scheme used (in particular in random samples), the estimate of γ

is systematically biased downwards by a factor 1− ε
2 ; then, depending on the sign and

value of C/ C2, γ̂ε can be further decreased or increased. F or complex traits and thus

small Q T L eff ects γ, the intercept mis-specifi cation will have a greater impact than

the bias in the slope. T he test for linkage is based on the standardized slope estimate

γ̂ε√
v a r0(γ̂ε)

= γ̂ε√
v a r0(πε)C2

, since var0(π) = 1
8 is practically unchanged by genotyping

error (var0(π
ε) = 1

8 − ε2

16 ), the probability of rejecting the null hypothesis is given by

(4.9 ) Φ

(

Φ−1(α) + (1 − ε

2
)γI1/2 − 8

ε

4

C

C2
I1/2

)

,

where I = var0(γ̂)−1 = n
8 C2 is the sample’s F isher’s information for the linkage

parameter γ, α is the nominal type I error rate for the linkage test with a true q uan-

titative trait locus eff ect γ and Φ is the cumulative density function of the standard

normal distribution. A fi rst order T aylor approximation of (4.9 ) yields F ormula (4.5).

66


