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Chapter 3

S electio n S trateg ies fo r L in k ag e

S tu d ies u sin g T w in s

Abstract

Genetic linkage analysis for complex diseases offer a major challenge to geneticists.

In these complex diseases mu ltiple genetic loci are responsib le for the disease and

they may vary in the size of their contrib u tion; the effect of any single one of them is

likely to b e small. In many situ ations, like in extensiv e tw in registries, trait v alu es

hav e b een recorded for a large nu mb er of indiv idu als, and preliminary stu dies hav e

rev ealed su mmary measu res for those traits, like mean, v ariance and components

of v ariance, inclu ding heritab ility.

Giv en the small effect size, a random sample of tw ins w ill req u ire a prohib itiv ely

large sample size. It is w ell know n that selectiv e sampling is far more effi cient in

terms of genotyping effort.

In this paper w e deriv e easy expressions for the information contrib u ted b y sib pairs

for the detection of linkage to a q u antitativ e trait locu s (Q T L ). W e consider random

samples as w ell as samples of sib pairs selected on the b asis of their trait v alu es.

T hese expressions can b e rapidly compu ted and do not inv olv e simu lation. W e

extend ou r resu lts for q u antitativ e traits to dichotomou s traits u sing the concept

of a liab ility threshold model.

W e present tab les w ith req u ired sample sizes for height, insu lin lev els and migraine,

three of the traits stu died in the GenomE U tw in project.

This chapter has been published as: H. Putter, J. Lebrec and J.C. van Houwelingen (2003).

S election S trategies for Link age S tudies using Twins. Twin Research 6 (5 ), 37 7 – 38 2.
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Chapter 3. Selection Strategies for Linkage Studies using Twins

3.1 Introduction

G enetic linkage analy sis (gene m apping) has prov ed to b e a powerful tool for the

identifi cation of genes responsib le for m onogenic inherited diseases such as H untington

disease and cy stic fi b rosis. The diseases for which the genetic b asis has not y et b een

unrav elled do not display a one-to-one correspondence b etween a single gene and

disease status. In these com plex diseases, m ultiple genetic loci are responsib le for the

disease and these genetic loci m ay v ary in the size of their contrib ution, they m ay

interact with each other and with ex ternal, env ironm ental factors. The eff ect of any

single one of these genes is likely to b e sm all [R isch, 2 0 0 0 ].

The G enom E U twin project com prises a v ery large source of twins, through the

union of a num b er of large twin registries in diff erent countries in E urope. F or the

m ajority of these twins, data on a num b er of traits of interest hav e already b een

recorded. E x am ples include q uantitativ e traits like height, B M I, risk factors for car-

diov ascular disease and q ualitativ e traits like m igraine, diab etes. Som e of these traits

are recorded repeatedly ov er tim e and req uire m ethods for longitudinal data, others

can b e thought of as hav ing an age of onset and can b e treated like surv iv al data.

The fi rst step in unrav elling the genetic b asis of a disease is to undertake a her-

itab ility study . Twin studies are ideally eq uipped for this purpose, b ecause of the

inherent m atching for age and other env ironm ental factors, and b ecause of the dif-

ferential degree of shared genetic v ariance b etween m onozy gotic (M Z ) and diz y gotic

(D Z ) twins [B oom sm a et al., 2 0 0 2 ]. F or m any q uantitativ e traits of interest, twin

studies (or sim ilar studies) hav e giv en inform ation on the distrib ution of the trait in

the target population, in particular their m ean and variance, and on the heritab ility .

In the planning phase of a linkage study, one of the im portant issues is the choice

of sib pairs to b e included in a scan. The good news is that for large twin registries,

the num b er of phenoty pes is in principle adeq uate ev en to detect v ery sm all genetic

eff ects. U nfortunately , giv en the anticipated sm all genetic eff ect at any one disease

locus, a random sam ple to achiev e 8 0 % power is m ost prob ab ly prohib itiv ely large

in term s of genoty ping eff ort, ev en with the current high throughput genoty ping

technologies. E av es and M ey er [1 9 9 4 ] and R isch and Z hang [1 9 9 5] showed that sim ilar

power to large random sam ples can b e ob tained b y selecting only a sm all sub set of
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Chapter 3. Selection Strategies for Linkage Studies using Twins

extreme discordant pairs. Many studies have later refined these recommendations,

giving, under an assumed model, optimal selection strategies for linkage studies. The

drawback of these studies is that they typically require simulation and fail to give

quick, easy and insightful assessments of the amount of information that a given sib

pair is expected to contribute.

In this paper, it is our aim to outline easily computable information content num-

bers for twins in the context of linkage twin studies for complex diseases. W e start in

Section 3.2 by considering quantitative traits, with given heritability, mean and vari-

ance, assuming that the effect of the quantitative trait locus is small. W e replace much

of the simulation employed in the above papers by explicit calculation, resulting in

particularly easy expressions for the information content for DZ sib pairs. The result

is an easy expression closely related to optimal Haseman-Elston regression [Sham and

P urcell, 2001] and the score function for the Q TL variance in a variance components

model [P utter et al., 2002]. W e then show in Section 3.3 how the concept of a la-

tent underlying quantitative trait can be used to extend these results to dichotomous

traits. Section 3.4 discusses issues like extended pedigrees and dominance variance.

3.2 Selection strategies for quantitative traits

Random sampling

Starting point of our selection procedure for quantitative traits is the variance com-

ponents model [Schork, 1993; A mos, 1994]. W e assume that the traits have been

standardised so as to have zero mean and unit variance. For a DZ twin sharing i

alleles identical by descent (IBD) at a particular marker locus, the distribution of

their phenotypes x = (x1,x2) is assumed to follow a bivariate normal distribution

with mean vector 0 and covariance matrix

Σi =





1 ρ + i−1

2
γ

ρ + i−1

2
γ 1



 .

Here ρ and γ represent the proportion of this variance that can be attributed to

shared components and the quantitative trait locus respectively. The parameter ρ is

half of the heritability (h2) plus the proportion of common environment variance, c2.

In what follows we consider DZ twins, since MZ twins are not informative for linkage.
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Chapter 3. Selection Strategies for Linkage Studies using Twins

We shall refer to DZ twins as sib pairs in the sequel; for our purposes there is no

distinction between sib pairs and DZ twins.

The amount of information I at γ = 0 contributed by one sib pair is given by

(3.1) I =
1

8

1 + ρ2

(1 − ρ2)2
.

This formula has been derived by Williams and Blangero [1999] and is a special case

of our equation (3.5). The factor 1/ 8 represents the variance of π̂ for sib pairs for

a fully informative marker [Rijsdijk et al., 2001]. This implies that an estimate of γ

based on a random sample of n sib pairs will have a standard error of se(γ̂) = 1
√

nI
, in

the absence of nuisance parameters. This fact can be used to determine the number

of sib pairs required to achieve power 1 − β to detect linkage with a QTL effect size

γ, using a significance level α,

(3.2) n =
(zα + zβ)2

Iγ2
.

Here zα denotes the 1−α percentile of the standard normal distribution. For a power

of 80% and a significance level of 0.0001, corresponding to a lod-score of 3, this leads

to n = 20 .8
Iγ 2 . Graphs for different values of ρ are shown in Figure 3.1.

For a quantitative trait like height, with an estimated heritability of 0.80 and an

estimated common environment variance c2 = 0.1, and hence a value or ρ = 0.5, we

need to genotype approximately 7500 sib pairs or 15000 individuals to detect linkage

with a moderate QTL effect of γ = 0.1. Clearly, this is not feasible, even with the

current high-throughput genotyping technology.

Selective sampling

Risch and Zhang [1995] suggested selecting sib pairs for genotyping on the basis of

their trait values and showed that considerably higher effi ciency can be obtained by

selecting extreme discordant sib pairs. Later, these recommendations have been re-

fined, most of the papers employing simulation to calculate the information content

of a sib pair [Dolan and Boomsma, 1998b; Cherny et al., 1999]. A noteworthy excep-

tion is the paper by Purcell et al. [2001], where the information content is obtained

through an exact calculation that considers all possible genotypes at the quantitative

trait locus. We show below a simple approach that can also be used to obtain explicit
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Figure 3.1: N umber of sib pairs needed in a random sample to detect linkage to a

quantitative trait for different values of ρ and γ. Power is 80%; significance level =

0.0001, corresponding to a lod-score of 3. For 50%, 60% and 70% power respectively,

required sample sizes decrease by a factor of 1.50, 1.32 and 1.16 respectively.
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expressions for the information content for a number of common designs without the

need to do simulations.

The variance components model specifies the conditional distribution of the phe-

notypes, given the genotypes (IBD-sharing). When dealing with selected samples, it

is more natural to invert the reasoning and to think of the phenotypes as given [Sham

et al., 2000]. This approach is common for the analysis of dichotomous traits. Let z

denote the number of alleles shared IBD by the twins at the marker locus, and π̂ the

proportion of alleles shared IBD. Since it is anticipated that the effect of any single

gene is small, we use a linear expansion in γ along with Bayes’ theorem to obtain,

neglecting terms of smaller order than γ,

P (z = 0|x, γ, ρ) =
1

4
−

γ

8
C(x, ρ) ,

P (z = 1|x, γ, ρ) =
1

2
,

P (z = 2|x, γ, ρ) =
1

4
+

γ

8
C(x, ρ) ,

E(π̂|x, γ, ρ) =
1

2
+

γ

8
C(x, ρ) .(3.3)

Here,

C(x, ρ) =
1

(1 − ρ2)2
(

(1 + ρ2)x1x2 − ρ(x2

1
+ x2

2
) + ρ(1 − ρ2)

)

is the ” optimal Haseman-Elston ” function [Sham and Purcell, 2001], which was shown

to be the score function for the parameter γ in the variance components model [Put-

ter et al., 2002]. V alues of C(x, ρ) range from negative to positive. Details of the

derivation and extension to general pedigrees can be found in Lebrec et al. [2004].

This observation suggests using a regression method like the Haseman-Elston re-

gression method, as already proposed by Sham et al. [2002], for the analysis of selected

samples. The regression for sib pairs amounts to the inverse of the optimal Haseman-

Elston regression, namely regressing π̂ on C(x, ρ). A test for linkage in this setting

is a one-sided test for a positive slope in this regression. Indeed, for the case of sib

pairs, our results coincide with those found in Sham et al. [2002].

In the context of regression, simple rules are available for selecting samples on the

basis of the explanatory variables: since the square of the standard error of the slope

of a regression of y on x is inversely proportional to
∑

(xi − x̄)2, values of x should be
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chosen as widely spaced as possible. This means that sib pairs with extreme values

of C(x, ρ) should be selected for genotyping.

More formally, the optimal Haseman-Elston function C(x, ρ) determines the in-

formation of a sib pair with trait values x1 and x2. It is given by

(3.4) I(x, ρ) =
1

8
C2(x, ρ) ,

and was obtained by Sham and Purcell [2001].

This information number is exact (at γ = 0), in contrast to the approximations

used in the conditional distribution of IBD-sharing above. Figure 3.2 shows the

distribution of information in a hypothetical population of standardised bivariate

normal trait values with ρ = 0.5. Pairs are classified according to whether their

information content is ranked in the top 5%, between 5% and 10% or in the remainder

(i.e., not belonging to the 10% most informative). It clearly shows that both the

extreme discordant and the extreme concordant pairs are most informative. The

majority of the most informative pairs is discordant; in the top 5%, only about 15%

is concordant, in the 5% to 10% category, about 35% is concordant.

For sib pairs chosen such that their trait values lie within a sampling region R,

the average information can be computed by integrating over that region, weighted

by the probability of the trait values:

(3.5) I(R, ρ) =

∫

R

I(x, ρ)ϕ0(x, ρ)dx/

∫

R

ϕ0(x, ρ)dx .

Here ϕ0(x, ρ) denotes the bivariate normal density with mean 0, variance 1 and covari-

ance ρ. Random sampling is a special case of this formula, since it is straightforward

to show that when R is the full two-dimensional space, I(R, ρ) = 1
8

1+ ρ2

(1−ρ2)2 . In order

to select e.g. the 5% most informative sib pairs, R is the region of (x1, x2)-pairs with

C(x1, x2, ρ) ≥ C0, where C0 is chosen in such a way that this probability equals 5%

under the null hypothesis.

Sampling over a region of sib pair trait values R, the number of sib pairs required

to achieve power 1−β to detect linkage with a QTL effect size γ, using a significance

level α, then equals

(3.6) n =

(

zα + zβ

γ

)2

/I(R, ρ) .
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Figure 3.2: Scatterplot of trait values. Pairs are classified according to whether their

information content is ranked in the top 5%, between 5% and 10% or in the remainder

(not belonging to the 10% most informative).
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Height (ρ = 0 .5 ) In su lin lev els (ρ = 0 .3 5 )

h2 = 0 .8 0 , c 2 = 0 .1 0 h2 = 0 .4 0 , c 2 = 0 .1 5

Q T L v a ria n ce S electio n % S electio n %

p ro p o rtio n (γ) R a n d o m 1 0 5 2.5 1 R a n d o m 1 0 5 2.5 1

0 .0 1 7 4 8 1 8 0 1 0 5 9 0 3 6 6 5 3 7 4 3 8 9 9 27 6 4 8 1 1 4 1 4 29 1 6 5 4 4 8 1 0 5 5 0 2 7 1 8 3 1 4 5 4 9 4

0 .0 2 1 8 7 0 4 5 26 4 7 6 1 6 6 3 4 1 0 9 7 5 6 9 1 2 28 5 3 5 7 4 1 3 6 2 26 3 7 5 1 7 9 5 8 1 1 3 7 3

0 .0 5 29 9 27 4 23 6 26 6 1 1 7 5 6 1 1 0 6 4 5 6 5 7 6 6 1 8 4 220 28 7 3 1 8 20

0 .1 0 7 4 8 2 1 0 5 9 6 6 5 4 3 9 27 6 1 1 4 1 4 1 6 5 4 1 0 5 5 7 1 8 4 5 5

Table 3.1: The number of sib pairs needed to achieve 80% power to detect linkage

to a quantitative trait with a significance level α = 0.0001, for different values of γ

(proportion of the variance explained by the quantitative trait locus). Height and

insulin levels, two traits studied in the GenomEUtwin project are considered.

Table 3.1 shows the impact of these results on the number of sib pairs required for

height and insulin levels, two quantitative traits studied in the GenomEUtwin project.

For instance, for height, with a QTL variance proportion γ = 0.10, with a selection

percentage of 1%, only 276 sib pairs need to be genotyped, but the trait values of

27,600 sib pairs need to be available, more than 3.5 times the amount needed for

random selection. This is one reason not to go for a too restrictive selection percent-

age. Another, more compelling reason, is that with extreme selection percentages,

the normality of the population trait values will become a crucial issue.

3.3 Selection strategies for dichotomous traits

For dichotomous traits it is convenient to think of the disease as being determined by

an underlying latent quantitative trait (liability). When the value of this quantitative

trait exceeds a threshold t, the individual is affected, otherwise unaffected. The

threshold t is determined by the prevalence of disease K in the population of interest,

through t = Φ −1(1 − K), where Φ is the the distribution function of a standard

normal variable. In a heritability study using twins, the heritability is estimated from

the affection states of the the twins using the tetrachoric correlation of an underlying

bivariate normal variable with zero mean and unit variance. The normal liability

model is primarily a statistical convenience; if in reality there is no underlying normal

liability in risk for an ordinal or dichotomous trait, then the model will be wrong.

The tools of Section 3.2 can be used to determine the information contributed

by a twin with two affected (AA), one affected, one unaffected (AU), and two un-
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Trait I Trait II

latent QTL variance K = 5%, ρ = 0.5 K = 20%, ρ = 0.5

proportion (γ) AA AU UU AA AU UU

0.01 270122 * * * * * * 962936 * * * * * *

0.02 67531 649982 * * * 240734 403089 * * *

0.05 10805 103997 * * * 38517 64494 277326

0.10 2701 25999 * * * 9629 16124 69331

Table 3.2: The number of sib pairs needed to achieve 80% power to detect linkage

to a dichotomous trait with a significance level α = 0.0001, for different values of

γ (proportion of the variance explained by the latent quantitative trait locus). The

prevalence K and heritability approximately match that of migraine in men and

women respectively. AA, AU and UU denote sib pairs with two affected, one affected

and one unaffected, and two unaffected sibs respectively. * * * denotes more than one

million sib pairs needed.

affected (UU), given prevalence K, and tetrachoric correlation ρ (determined by the

heritability). This information is

(3.7)
1

8

{∫

R

C(x, ρ)ϕ0(x, ρ)dx/

∫

R

ϕ0(x, ρ)dx

}2

,

where R is the region of (x1, x2)-pairs with x1 ≥ t, x2 ≥ t (AA), x1 ≥ t, x2 < t (AU)

or x1 < t, x2 < t (UU). From equation (3.3) it can be seen that the expected value of

π̂, conditionally given that x ∈ R equals 1
2 + γ

8E(C(x, ρ) |x ∈ R); the expression in

brackets in the above expression is precisely this conditional expectation of C(x, ρ)

given x ∈ R. Power calculations for dichotomous traits are very similar to (but not

entirely the same as) quantitative traits using the liability threshold approach; the

sampling region is now determined by affection status rather than observed trait values

and does not have optimal form as in Figure 3.2. Table 3.2 shows that for dichotomous

traits with low prevalence, AA sib pairs are most powerful, for traits with moderate

to high prevalence, AU sib pairs however may also be quite informative.
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3.4 Discussion

In this paper we have shown a simple approach to obtain explicit expressions for

the information that a twin is expected to contribute towards detecting linkage to a

quantitative trait. This information is based on the trait values and known values for

the variance components of the trait. To achieve a given power to detect linkage to a

quantitative trait with a given significance level and an anticipated proportion of the

variance explained by the quantitative trait locus, the required number of sib pairs is

straightforward to calculate. The expression extends to dichotomous traits through

the concept of a liability, a latent underlying quantitative trait.

Earlier work uses simulation to calculate the information content of a sib pair and

the number of sib pairs needed to achieve a given power [Dolan and Boomsma, 1998b;

Cherny et al., 1999; Purcell et al., 2001]. For sib pairs, simulation can be replaced by

calculation, as outlined below. These calculations are well known for random samples

[Williams and Blangero, 1999; Rijsdijk and Sham, 2000; Rijsdijk et al., 2001] and have

been pioneered for selected samples for the case of sib pairs [Sham and Purcell, 2001]

and more implicitly for general pedigrees in Sham et al. [2002]. They have been imple-

mented in MERLIN [Abecasis et al., 2002] through the command MERLIN-regress.

The way they have been derived, by considering the conditional distribution of the

IBD-sharing, given the phenotypes [Sham et al., 2000, 2002], also suggests methods

for analysing selected samples. This is the subject of ongoing research in our group.

All expressions in Sections 3.2 and 3.3 are valid for DZ twins (sib pairs) only. It

is well known however that for random samples sibships of larger sizes can achieve

considerably more power than sib pairs [Dolan et al., 1999]. In a sense, a larger sibship

constitutes a collection of sib pairs, and indeed the amount of information is roughly

proportional to the number of sib pairs [Dolan et al., 1999; Williams and Blangero,

1999] in the sibship. Also for selective sampling, sib pairs could still be collected,

even though they belong to a larger sibship. The direction taken in Section 3.2 does

not readily extend to larger sibships or general pedigrees. However, the resulting

expressions can be generalised more formally using efficient score functions. This

approach is followed in Lebrec et al. [2004].

The score approach will also yield information content numbers for general pedi-
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grees. These information content numbers can be computed in principle, but in

practice the size of the pedigree may limit the calculations. Including parental in-

formation may result in a modest increase in power [Williams and Blangero, 1999];

arguably more important is the use of parental genotypes in other stages; it will in-

crease precision of IBD-information, it can be used in quality control, and it may

increase power in association studies.

The presence of dominance variance in the variance components model adds a

parameter δ specifying the proportion of variance due to dominance variance of the

QTL. The standardised traits of a sib pair sharing i alleles IBD will have covariance

matrix

Σi =





1 ρ + i−1
2 γ + (1{i= 2} −

1
4 )δ

ρ + i−1
2 γ + (1{i= 2} −

1
4 )δ 1



 .

For complex diseases, both γ and δ will be small, and similar calculations as in

Sections 3.2 and 3.3 can be made in this case as well. The number of sib pairs

needed to achieve a given power to detect linkage to a quantitative trait with a given

significance level α now depends on both γ and δ through the functions C(x, ρ). In

the case of a rare recessive allele, selection based on C(x, ρ) may no longer be fully

informative Purcell et al. [2001]. O therwise, dominance variance will not have a strong

infl uence on selection, but it can infl uence the power.

The approach to power calculations that we took in this paper (calculating the

Fisher information in an inverted variance components model, where the distribution

of IBD sharing given the trait values is considered) is intimately tied to the method of

analysis to be used later. As mentioned earlier, this is the subject of ongoing research

in our group, but restricting the discussion to sib pairs, we note the following. It

is assumed that trait values are normally distributed and have been standardised to

have zero mean and unit variance. This standardisation entails subtracting the mean

and dividing by the standard deviation, in the absence of covariates. Covariates

can also be incorporated into both the power calculations and the analysis. Then

in the standardisation the covariate values and the estimated regression coefficients

(in the population!) are used instead of a common mean. Covariates can also be

incorporated into the analysis of dichotomous traits; in this case not all affected sib

pairs for instance will have the same CA A value, but this value will now depend on the
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covariate values of the sib pair. When data are not initially normally distributed, a

transformation can be used in the population data to obtain approximate normality.

Even in populations where the trait values are reasonably normally distributed, we

think it is wise to robustify the analysis anyway, by giving sib pairs with extremely

high C(x, ρ) values a lower weight in the inverse regression.
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