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Chapter 3

Selection Strategies for Linkage

Studies using Twins

Abstract

Genetic linkage analysis for complex diseases offer a major challenge to geneticists.
In these complex diseases multiple genetic loci are responsible for the disease and
they may vary in the size of their contribution; the effect of any single one of them is
likely to be small. In many situations, like in extensive twin registries, trait values
have been recorded for a large number of individuals, and preliminary studies have
revealed summary measures for those traits, like mean, variance and components
of variance, including heritability.

Given the small effect size, a random sample of twins will require a prohibitively
large sample size. It is well known that selective sampling is far more efficient in
terms of genotyping effort.

In this paper we derive easy expressions for the information contributed by sib pairs
for the detection of linkage to a quantitative trait locus (QTL). We consider random
samples as well as samples of sib pairs selected on the basis of their trait values.
These expressions can be rapidly computed and do not involve simulation. We
extend our results for quantitative traits to dichotomous traits using the concept
of a liability threshold model.

We present tables with required sample sizes for height, insulin levels and migraine,

three of the traits studied in the GenomEUtwin project.

This chapter has been published as: H. Putter, J. Lebrec and J.C. van Houwelingen (2003).
Selection Strategies for Linkage Studies using Twins. Twin Research 6 (5), 377-382.
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Chapter 3. Selection Strategies for Linkage Studies using Twins

3.1 Introduction

Genetic linkage analysis (gene mapping) has proved to be a powerful tool for the
identification of genes responsible for monogenic inherited diseases such as Huntington
disease and cystic fibrosis. The diseases for which the genetic basis has not yet been
unravelled do not display a one-to-one correspondence between a single gene and
disease status. In these complex diseases, multiple genetic loci are responsible for the
disease and these genetic loci may vary in the size of their contribution, they may
interact with each other and with external, environmental factors. The effect of any
single one of these genes is likely to be small [Risch, 2000].

The GenomEUtwin project comprises a very large source of twins, through the
union of a number of large twin registries in different countries in Europe. For the
majority of these twins, data on a number of traits of interest have already been
recorded. Examples include quantitative traits like height, BMI, risk factors for car-
diovascular disease and qualitative traits like migraine, diabetes. Some of these traits
are recorded repeatedly over time and require methods for longitudinal data, others
can be thought of as having an age of onset and can be treated like survival data.

The first step in unravelling the genetic basis of a disease is to undertake a her-
itability study. Twin studies are ideally equipped for this purpose, because of the
inherent matching for age and other environmental factors, and because of the dif-
ferential degree of shared genetic variance between monozygotic (MZ) and dizygotic
(DZ) twins [Boomsma et al., 2002]. For many quantitative traits of interest, twin
studies (or similar studies) have given information on the distribution of the trait in
the target population, in particular their mean and variance, and on the heritability.

In the planning phase of a linkage study, one of the important issues is the choice
of sib pairs to be included in a scan. The good news is that for large twin registries,
the number of phenotypes is in principle adequate even to detect very small genetic
effects. Unfortunately, given the anticipated small genetic effect at any one disease
locus, a random sample to achieve 80% power is most probably prohibitively large
in terms of genotyping effort, even with the current high throughput genotyping
technologies. Eaves and Meyer [1994] and Risch and Zhang [1995] showed that similar

power to large random samples can be obtained by selecting only a small subset of
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extreme discordant pairs. Many studies have later refined these recommendations,
giving, under an assumed model, optimal selection strategies for linkage studies. The
drawback of these studies is that they typically require simulation and fail to give
quick, easy and insightful assessments of the amount of information that a given sib
pair is expected to contribute.

In this paper, it is our aim to outline easily computable information content num-
bers for twins in the context of linkage twin studies for complex diseases. We start in
Section 3.2 by considering quantitative traits, with given heritability, mean and vari-
ance, assuming that the effect of the quantitative trait locus is small. We replace much
of the simulation employed in the above papers by explicit calculation, resulting in
particularly easy expressions for the information content for DZ sib pairs. The result
is an easy expression closely related to optimal Haseman-Elston regression [Sham and
Purcell, 2001] and the score function for the QTL variance in a variance components
model [Putter et al., 2002]. We then show in Section 3.3 how the concept of a la-
tent underlying quantitative trait can be used to extend these results to dichotomous

traits. Section 3.4 discusses issues like extended pedigrees and dominance variance.

3.2 Selection strategies for quantitative traits

Random sampling

Starting point of our selection procedure for quantitative traits is the variance com-
ponents model [Schork, 1993; Amos, 1994]. We assume that the traits have been
standardised so as to have zero mean and unit variance. For a DZ twin sharing ¢
alleles identical by descent (IBD) at a particular marker locus, the distribution of
their phenotypes x = (x1,x2) is assumed to follow a bivariate normal distribution

with mean vector 0 and covariance matrix

5 1 p+ighy
p+ Sty 1

Here p and ~ represent the proportion of this variance that can be attributed to

shared components and the quantitative trait locus respectively. The parameter p is

half of the heritability (h?) plus the proportion of common environment variance, c2.

In what follows we consider DZ twins, since MZ twins are not informative for linkage.
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We shall refer to DZ twins as sib pairs in the sequel; for our purposes there is no
distinction between sib pairs and DZ twins.

The amount of information I at v = 0 contributed by one sib pair is given by

1 14 p?
3.1 I=—-——+——.
( ) 8(1*[72)2

This formula has been derived by Williams and Blangero [1999] and is a special case
of our equation (3.5). The factor 1/8 represents the variance of & for sib pairs for
a fully informative marker [Rijsdijk et al., 2001]. This implies that an estimate of
based on a random sample of n sib pairs will have a standard error of se(%) = \/%, in
the absence of nuisance parameters. This fact can be used to determine the number
of sib pairs required to achieve power 1 — 3 to detect linkage with a QTL effect size
v, using a significance level «,

(20 + 28 )?
Here z, denotes the 1 — « percentile of the standard normal distribution. For a power
of 80% and a significance level of 0.0001, corresponding to a lod-score of 3, this leads

208 Graphs for different values of p are shown in Figure 3.1.

ton = Ty

For a quantitative trait like height, with an estimated heritability of 0.80 and an
estimated common environment variance ¢? = 0.1, and hence a value or p = 0.5, we
need to genotype approximately 7500 sib pairs or 15000 individuals to detect linkage
with a moderate QTL effect of v = 0.1. Clearly, this is not feasible, even with the

current high-throughput genotyping technology.

Selective sampling

Risch and Zhang [1995] suggested selecting sib pairs for genotyping on the basis of
their trait values and showed that considerably higher efficiency can be obtained by
selecting extreme discordant sib pairs. Later, these recommendations have been re-
fined, most of the papers employing simulation to calculate the information content
of a sib pair [Dolan and Boomsma, 1998b; Cherny et al., 1999]. A noteworthy excep-
tion is the paper by Purcell et al. [2001], where the information content is obtained
through an exact calculation that considers all possible genotypes at the quantitative

trait locus. We show below a simple approach that can also be used to obtain explicit
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Figure 3.1: Number of sib pairs needed in a random sample to detect linkage to a
quantitative trait for different values of p and . Power is 80%; significance level =
0.0001, corresponding to a lod-score of 3. For 50%, 60% and 70% power respectively,

required sample sizes decrease by a factor of 1.50, 1.32 and 1.16 respectively.
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expressions for the information content for a number of common designs without the
need to do simulations.

The variance components model specifies the conditional distribution of the phe-
notypes, given the genotypes (IBD-sharing). When dealing with selected samples, it
is more natural to invert the reasoning and to think of the phenotypes as given [Sham
et al., 2000]. This approach is common for the analysis of dichotomous traits. Let z
denote the number of alleles shared IBD by the twins at the marker locus, and 7 the
proportion of alleles shared IBD. Since it is anticipated that the effect of any single
gene is small, we use a linear expansion in v along with Bayes’ theorem to obtain,

neglecting terms of smaller order than +,

Pl =0bx7p) = 7-2CGp).

Pe=1px70) = 3.

PE=2x7p) = §+2Ck0),
(33 B0 = 5+200x0)

Clo.p) = =gz (1 p2Ja = plad + a3)+ (1 = 17)

is the ”optimal Haseman-Elston ” function [Sham and Purcell, 2001], which was shown
to be the score function for the parameter v in the variance components model [Put-
ter et al., 2002]. Values of C(x, p) range from negative to positive. Details of the
derivation and extension to general pedigrees can be found in Lebrec et al. [2004].

This observation suggests using a regression method like the Haseman-Elston re-
gression method, as already proposed by Sham et al. [2002], for the analysis of selected
samples. The regression for sib pairs amounts to the inverse of the optimal Haseman-
Elston regression, namely regressing 7 on C(x,p). A test for linkage in this setting
is a one-sided test for a positive slope in this regression. Indeed, for the case of sib
pairs, our results coincide with those found in Sham et al. [2002].

In the context of regression, simple rules are available for selecting samples on the
basis of the explanatory variables: since the square of the standard error of the slope

of a regression of y on z is inversely proportional to Y (x; — Z)?, values of & should be
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chosen as widely spaced as possible. This means that sib pairs with extreme values
of C(x, p) should be selected for genotyping.
More formally, the optimal Haseman-Elston function C(x, p) determines the in-

formation of a sib pair with trait values 1 and zs. It is given by
L
(34) I(Xa ,0) = §C (X7 p) )

and was obtained by Sham and Purcell [2001].

This information number is exact (at v = 0), in contrast to the approximations
used in the conditional distribution of IBD-sharing above. Figure 3.2 shows the
distribution of information in a hypothetical population of standardised bivariate
normal trait values with p = 0.5. Pairs are classified according to whether their
information content is ranked in the top 5%, between 5% and 10% or in the remainder
(i.e., not belonging to the 10% most informative). It clearly shows that both the
extreme discordant and the extreme concordant pairs are most informative. The
majority of the most informative pairs is discordant; in the top 5%, only about 15%
is concordant, in the 5% to 10% category, about 35% is concordant.

For sib pairs chosen such that their trait values lie within a sampling region R,
the average information can be computed by integrating over that region, weighted

by the probability of the trait values:

(3.5) 17.p) = [ 1)t p)ix/ [ . plx

Here ¢o(x, p) denotes the bivariate normal density with mean 0, variance 1 and covari-

ance p. Random sampling is a special case of this formula, since it is straightforward

1_1+4p°

S In order

to show that when R is the full two-dimensional space, I(R, p) =

to select e.g. the 5% most informative sib pairs, R is the region of (z1,x2)-pairs with
C(z1, 2, p) > Cp, where Cy is chosen in such a way that this probability equals 5%
under the null hypothesis.

Sampling over a region of sib pair trait values R, the number of sib pairs required
to achieve power 1 — (3 to detect linkage with a QTL effect size ~, using a significance

level «, then equals
Za t 2 2
(3.6) n(avﬂ)/uﬂm-
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Trait-value sib 2

o Most informative 5%
o 5% to 10% o - 0
a Remainder R

Trait-value sib 1

Figure 3.2: Scatterplot of trait values. Pairs are classified according to whether their

information content is ranked in the top 5%, between 5% and 10% or in the remainder

(not belonging to the 10% most informative).
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Height (p = 0.5) Insulin levels (p = 0.35)
h2 = 0.80,c2 = 0.10 h2 = 0.40,c2 = 0.15

QTL variance Selection % Selection %
proportion (y)  Random 10 5 2.5 1 Random 10 5 2.5 1
0.01 748180 105903 66537 43899 27648 1141429 165448 105502 71831 45494
0.02 187045 26476 16634 10975 6912 285357 41362 26375 17958 11373
0.05 29927 4236 2661 1756 1106 45657 6618 4220 2873 1820
0.10 7482 1059 665 439 276 11414 1654 1055 718 455

Table 3.1: The number of sib pairs needed to achieve 80% power to detect linkage
to a quantitative trait with a significance level a = 0.0001, for different values of ~
(proportion of the variance explained by the quantitative trait locus). Height and

insulin levels, two traits studied in the GenomEUtwin project are considered.

Table 3.1 shows the impact of these results on the number of sib pairs required for
height and insulin levels, two quantitative traits studied in the GenomEUtwin project.
For instance, for height, with a QTL variance proportion v = 0.10, with a selection
percentage of 1%, only 276 sib pairs need to be genotyped, but the trait values of
27,600 sib pairs need to be available, more than 3.5 times the amount needed for
random selection. This is one reason not to go for a too restrictive selection percent-
age. Another, more compelling reason, is that with extreme selection percentages,

the normality of the population trait values will become a crucial issue.

3.3 Selection strategies for dichotomous traits

For dichotomous traits it is convenient to think of the disease as being determined by
an underlying latent quantitative trait (liability). When the value of this quantitative
trait exceeds a threshold ¢, the individual is affected, otherwise unaffected. The
threshold t is determined by the prevalence of disease K in the population of interest,
through ¢t = ®71(1 — K), where ® is the the distribution function of a standard
normal variable. In a heritability study using twins, the heritability is estimated from
the affection states of the the twins using the tetrachoric correlation of an underlying
bivariate normal variable with zero mean and unit variance. The normal liability
model is primarily a statistical convenience; if in reality there is no underlying normal
liability in risk for an ordinal or dichotomous trait, then the model will be wrong.
The tools of Section 3.2 can be used to determine the information contributed

by a twin with two affected (AA), one affected, one unaffected (AU), and two un-
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Trait 1 Trait 1T
latent QTL variance K=5%,p=05 K =20%,p=0.5
proportion (vy) AA AU Uuu AA AU Uuu
0.01 270122 otk Rk 962936 otk otk
0.02 67531 649982 *** 240734 403089 Hoxk
0.05 10805 103997 *F* 38517 64494 277326
0.10 2701 25999  *** 9629 16124 69331

Table 3.2: The number of sib pairs needed to achieve 80% power to detect linkage
to a dichotomous trait with a significance level o = 0.0001, for different values of
v (proportion of the variance explained by the latent quantitative trait locus). The
prevalence K and heritability approximately match that of migraine in men and
women respectively. AA, AU and UU denote sib pairs with two affected, one affected
and one unaffected, and two unaffected sibs respectively. *** denotes more than one

million sib pairs needed.

affected (UU), given prevalence K, and tetrachoric correlation p (determined by the

heritability). This information is

(3.7 [ ctmetnpist [ oo i)

where R is the region of (x1,x2)-pairs with 1 > t,x0 >t (AA), z1 > t,20 < t (AU)
or x1 < t,z3 <t (UU). From equation (3.3) it can be seen that the expected value of
7, conditionally given that x € R equals % + 3E(C(x,p) |x € R); the expression in
brackets in the above expression is precisely this conditional expectation of C(x, p)
given x € R. Power calculations for dichotomous traits are very similar to (but not
entirely the same as) quantitative traits using the liability threshold approach; the
sampling region is now determined by affection status rather than observed trait values
and does not have optimal form as in Figure 3.2. Table 3.2 shows that for dichotomous
traits with low prevalence, AA sib pairs are most powerful, for traits with moderate

to high prevalence, AU sib pairs however may also be quite informative.
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3.4 Discussion

In this paper we have shown a simple approach to obtain explicit expressions for
the information that a twin is expected to contribute towards detecting linkage to a
quantitative trait. This information is based on the trait values and known values for
the variance components of the trait. To achieve a given power to detect linkage to a
quantitative trait with a given significance level and an anticipated proportion of the
variance explained by the quantitative trait locus, the required number of sib pairs is
straightforward to calculate. The expression extends to dichotomous traits through
the concept of a liability, a latent underlying quantitative trait.

Earlier work uses simulation to calculate the information content of a sib pair and
the number of sib pairs needed to achieve a given power [Dolan and Boomsma, 1998b;
Cherny et al., 1999; Purcell et al., 2001]. For sib pairs, simulation can be replaced by
calculation, as outlined below. These calculations are well known for random samples
[Williams and Blangero, 1999; Rijsdijk and Sham, 2000; Rijsdijk et al., 2001] and have
been pioneered for selected samples for the case of sib pairs [Sham and Purcell, 2001]
and more implicitly for general pedigrees in Sham et al. [2002]. They have been imple-
mented in MERLIN [Abecasis et al., 2002] through the command MERLIN-regress.
The way they have been derived, by considering the conditional distribution of the
IBD-sharing, given the phenotypes [Sham et al., 2000, 2002], also suggests methods
for analysing selected samples. This is the subject of ongoing research in our group.

All expressions in Sections 3.2 and 3.3 are valid for DZ twins (sib pairs) only. It
is well known however that for random samples sibships of larger sizes can achieve
considerably more power than sib pairs [Dolan et al., 1999]. In a sense, a larger sibship
constitutes a collection of sib pairs, and indeed the amount of information is roughly
proportional to the number of sib pairs [Dolan et al., 1999; Williams and Blangero,
1999] in the sibship. Also for selective sampling, sib pairs could still be collected,
even though they belong to a larger sibship. The direction taken in Section 3.2 does
not readily extend to larger sibships or general pedigrees. However, the resulting
expressions can be generalised more formally using efficient score functions. This
approach is followed in Lebrec et al. [2004].

The score approach will also yield information content numbers for general pedi-
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grees. These information content numbers can be computed in principle, but in
practice the size of the pedigree may limit the calculations. Including parental in-
formation may result in a modest increase in power [Williams and Blangero, 1999];
arguably more important is the use of parental genotypes in other stages; it will in-
crease precision of IBD-information, it can be used in quality control, and it may
increase power in association studies.

The presence of dominance variance in the variance components model adds a
parameter § specifying the proportion of variance due to dominance variance of the
QTL. The standardised traits of a sib pair sharing ¢ alleles IBD will have covariance
matrix
1 p+ 5y + L=y — 1)0

3= .
p+ 5y + (Lgimay — 1) 1

For complex diseases, both v and § will be small, and similar calculations as in
Sections 3.2 and 3.3 can be made in this case as well. The number of sib pairs
needed to achieve a given power to detect linkage to a quantitative trait with a given
significance level & now depends on both v and ¢ through the functions C(x, p). In
the case of a rare recessive allele, selection based on C(x, p) may no longer be fully
informative Purcell et al. [2001]. Otherwise, dominance variance will not have a strong
influence on selection, but it can influence the power.

The approach to power calculations that we took in this paper (calculating the
Fisher information in an inverted variance components model, where the distribution
of IBD sharing given the trait values is considered) is intimately tied to the method of
analysis to be used later. As mentioned earlier, this is the subject of ongoing research
in our group, but restricting the discussion to sib pairs, we note the following. It
is assumed that trait values are normally distributed and have been standardised to
have zero mean and unit variance. This standardisation entails subtracting the mean
and dividing by the standard deviation, in the absence of covariates. Covariates
can also be incorporated into both the power calculations and the analysis. Then
in the standardisation the covariate values and the estimated regression coefficients
(in the population!) are used instead of a common mean. Covariates can also be
incorporated into the analysis of dichotomous traits; in this case not all affected sib

pairs for instance will have the same C'4 4 value, but this value will now depend on the
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covariate values of the sib pair. When data are not initially normally distributed, a
transformation can be used in the population data to obtain approximate normality.
Even in populations where the trait values are reasonably normally distributed, we
think it is wise to robustify the analysis anyway, by giving sib pairs with extremely

high C(x, p) values a lower weight in the inverse regression.
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