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Chapter 2

S c o re T est fo r D etectin g L in k ag e to

Co m plex T raits in S elected S am ples

Abstract

We present a unified approach to selection and linkage analysis of selected samples,

for b oth q uantitativ e and dichotomous complex traits. It is b ased on the score test

for the v ariance attrib utab le to the trait locus and applies to general pedigrees. T he

method is eq uiv alent to regressing ex cess IB D sharing on a function of the traits. It

is show n that, w hen population parameters for the trait are know n, such inv ersion

does not entail any loss of information. F or dichotomous traits, pairs of pedigree

memb ers of diff erent phenotypic nature (e.g. aff ected sib pairs and discordant sib

pairs) can easily b e comb ined as w ell as populations w ith diff erent trait prev alences.

This chapter has been published as: J. Lebrec, H. Putter and J.C. van Houwelingen (2004).

S core Test for D etecting Link age to Com plex Traits in S elected S am ples. Genetic Epidemiology 6

(2), 9 7 – 1 08 .
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.1 Introduction

In complex traits w here the eff ect of each contrib u ting locu s is v ery small, the sample

sizes needed to carry ou t linkage analy sis u su ally resu lt in costs far b ey ond research

b u dgets, ev en w hen u sing new high throu ghpu t genoty ping technologies [R isch, 20 0 0 ].

G eneticists hav e b een aw are of this fact for a w hile and many designs and selection

strategies hav e b een proposed [R isch and Z hang, 19 9 5 ; Dolan and B oomsma, 19 9 8 a;

P u rcell et al., 20 0 1]. In the search for genes, prior to any linkage stu dy , researchers

u su ally gather ev idence of heritab ility for the trait of interest. This is often done

in tw in stu dies inclu ding b oth monozy gotic and diz y gotic tw ins from the general

popu lation. In addition to heritab ility of the trait, these stu dies prov ide precise

popu lation marginal means, v ariab ility and tw in-tw in correlation estimates for the

trait of interest.

Complex traits hav e small locu s eff ect and this is prob ab ly w hy the search for the

corresponding su sceptib ility loci has prov ed so disappointing. H ow ev er this is also

the reason w hy a score test constitu tes a promising testing strategy in this context

since it has local optimality properties [Cox and H inkley , 19 7 4 ]. In this article, u sing

the v ariance components framew ork w e giv e a general formu lation for a score test to

detect linkage to a pu tativ e q u antitativ e trait locu s u nder selectiv e sampling b ased

on the trait v alu es of the pedigree memb ers. W e giv e simple formu lae for the test in

a nu mb er of commonly u sed designs (sib ships and nu clear families of arb itrary size).

U sing a liab ility threshold model, w e extend ou r resu lts to dichotomou s traits. In

particu lar, they apply to sib pair designs w here diff erent ty pes of pairs (e.g. aff ected

and discordant sib pairs) can b e comb ined in an optimal w ay , and su b popu lations w ith

diff erent disease prev alences can b e incorporated in a straightforw ard manner. O u r

approach prov ides a u nifi ed framew ork in w hich b oth optimal selection and su b seq u ent

analy sis are comb ined in a natu ral w ay , b oth for q u antitativ e and dichotomou s traits.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.2 Score test for quantitative traits in selected samples

Model

Our starting point is the variance components model, where we assume that x =

(x1, . . . , xm)′, the vector of phenotypes of the pedigree members, has been standard-

ized so that it has mean vector 0 and variances equal to 1. The m × m matrix

π contains the identity-by-descent (IBD) information at a marker, more precisely

[π]j k = πj k is the proportion of alleles shared IBD by pedigree members j and k.

F or now, we assume that the marker map is fully informative, the consequences of

relaxing this assumption will be examined in Section 2.6 . The variance components

model specifies that the conditional distribution of the standardized x given IBD in-

formation π follows a normal distribution with zero mean and variance-covariance

matrix Σ given by

[Σ]j k =







a2 + c2 + e2 = 1 , if j = k ,

(πj k − Eπj k )q2 + (Eπj k )a2 + c2 , if j 6= k .

where a2 denotes the total additive genetic variance, c2, the common-environment

variance and e2, the residual variance. This parameterization of the problem was

initially introduced by Tang and Siegmund [2001] and is crucial to the obtention

of simple results. F or the time being we will assume absence of any dominance

component of variance. We show an extension incorporating dominance variance in

section 2.4. Since the trait values are standardized to unit variance, these variance

components can also be interpreted as proportions of variance explained by the ap-

propriate components. The total additive genetic variance a2 includes both additive

polygenic variance and the (additive) variance q2 attributable to the putative quanti-

tative trait locus (Q TL). The factor Eπj k denotes the expected proportion of alleles

shared identical by descent between pedigree members j and k; it is determined solely

by the family relationship between j and k and equals twice the kinship coeffi cient

between j and k.

The key parameter in this model is the variance component q2 determining the

presence of linkage (no linkage is equivalent to q2 = 0). It is the only unknown

parameter in the model and we shall denote it by γ in the sequel. Two important
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

properties of the variance components model are: that x and π are independent under

the hypothesis of no linkage (γ = 0) and that the marginal distribution of π does not

depend on γ.

S core test for q u an titativ e traits

A score test for detecting linkage to quantitative traits in random samples for general

pedigrees was given by Putter et al. [2002] and by Wang [2002]. Here we extend those

results to a sampling scheme where data are selected based on phenotypic values.

We generalize results obtained by Tang and Siegmund [2001] for sibships to arbitrary

pedigrees and use the continuous case as a building block to the dichotomous case as

exposed in Section 2.5.

The following expression for the score function `xγ in the variance components

model is obtained in the appendix:

`xγ =
1

2
tr

(

Σ−1(π − Eπ)(Σ−1xx′ − I)
)

.

Here tr(A) stands for the trace (sum of the diagonal elements) of matrix A. Using ele-

mentary matrix theory, in particular tr(AB) = tr(BA) and tr(AB) = vec(A′)′vec(B)

(here vec(A) places the n columns of the m × n matrix A into a vector of dimension

mn × 1), this score function can be rewritten as

(2.1) `xγ =
1

2
vec(C)′vec(π − Eπ)

with C = Σ−1x
(

Σ−1x
)′

− Σ−1. N ote that the π − Eπ matrix has all diagonal

elements equal to 0.

For selected samples, the conditional distribution of IBD sharing π given the trait

values x gives a natural framework for testing linkage [Sham et al., 2000; Dudoit and

Speed, 2000] and we shall refer to this setting as the selection model. It turns out that

the score function for this selection model, and for the joint model of x and π remains

the same. A s we show below, this is true for any joint model of x and π under the

following general conditions, which are satisfied for the variance components model:

1. x and π are independent at γ = 0 and

2. the marginal distribution of π does not depend on γ.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

We now turn to the proof of our previous statement regarding the equality of the scores

for the selection model and the joint model. We denote the conditional distribution of

x |π and π |x by fγ(x |π) and fγ(π |x) respectively, and the joint distribution of x

and π by fγ(x, π). The subscript γ expresses the dependence of those distributions on

γ. The marginal distributions of x and π are denoted by fγ(x) and f(π) respectively.

With this notation, the score function for γ in the x |π model is denoted by `xγ , so

`xγ = ∂
∂γ

log fγ(x |π); and in the selection model by `π

γ , so `π

γ = ∂
∂γ

log fγ(π |x). By

Bayes’ rule, we have

(2.2) fγ(π |x) =
fγ(x, π)

fγ(x)
=

fγ(x |π) f(π)
∫

fγ(x |π) f(π) dπ

.

As a result,

`π

γ =
∂

∂γ
log fγ(x |π) −

∂

∂γ
log

(
∫

fγ(x |π)f(π) dπ

)

= `xγ −
∂

∂γ
log

(
∫

fγ(x |π)f(π) dπ

)

.

(2.3)

For the score test for linkage in selected samples, we need this score function evaluated

at γ = 0. Since score functions have mean 0, the second term ∂
∂γ

log
(∫

fγ(x |π)f(π) dπ

)

equals the expectation of `xγ under π |x evaluated at γ = 0. Since x and π are inde-

pendent at γ = 0, this is just the distribution π (independent of γ). As a result we

obtain,

`π

γ = `xγ − Eπ`xγ .

Hence, in our case `π

γ = `xγ , since `xγ is already, due to the parameterization used,

centered with respect to the distribution of π. The score `xγ is also centered with

respect to the distribution of x. Looking back at equation (2.2), we see that the

score function for γ in the joint model of x and π also equals `xγ = `π

γ . This has the

important consequence that there is no loss of information by basing inference only on

the conditional distribution of x |π for random samples, or only on the distribution

of π |x, the selection model for selected samples.

Fisher’s information Iπ

γ = E
(

− ∂2

∂γ2 log fγ(π |x)
)

for γ in the selection model is

also the variance of the score function varπ(`π

γ ) and is thus given by

(2.4) Iπ

γ =
1

4
vec(C)′ varπ (vec(π)) vec(C) .
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

The exact calculation of varπ (vec(π)) involves enumeration of all joint probabilities

P(πij , πkl) for each possible inheritance vector in a pedigree. In practice, this is ef-

ficiently achieved through the use of the --ibd and --matrices options in the

MERLIN software [Abecasis et al., 2002] with a pedigree file describing the appropri-

ate pedigree structure and one marker with all values as missing. Note that under

the assumption of complete IBD information, Fisher’s information as given in For-

mula (2.4) can be directly used as a criterion for selection of the most informative

individuals based on trait values.

The score test statistic z is formed by adding the scores from independent pedigrees

and dividing by the square root of its variance under the null hypothesis:

(2.5) z =

∑

i `π

γ,i
√

∑

i I
π

γ,i

.

Under the null hypothesis of no linkage, z has asymptotically a standard normal

distribution. The test is one-sided, only positive values of z being regarded as evidence

for linkage. In other words, z2
+ defined as being equal to 0 if z ≤ 0 and to z2 if z > 0

is asymptotically distributed as 1
2χ2

0 + 1
2χ2

1.

Formulae (2.1) and (2.4) provide an interpretation of this score test in terms of

regression. Similar to Sham et al. [2002], the numerator of the score test statistic z

can be interpreted as an estimate of the slope of the regression through the origin

of excess IBD sharing on a function of the trait values. The dependent variables are

the observed excess IBD sharing between all m(m−1)
2 pairs of members in pedigree

of size m while corresponding observations of the explanatory variable are quadratic

functions of the original trait values as defined above. Those results are applicable

to general pedigrees but take a very simple and appealing form in sib pairs and some

other specialized cases as shown below. The slope estimate of the score test statistic

is standardized by the square root of Fisher’s information, but this standardization

can also be interpreted as the standard error of the slope estimate of the numerator

under the null hypothesis.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.3 Special designs

In this section we give explicit formulae for the score test in general sibships and

nuclear families. The interpretation of the test in terms of regression for sib pairs pro-

vides interesting insight into the relation of our method with the so called Haseman-

E lston regressions and helps us understand why these optimal methods for random

samples turn out to be sub-optimal when data are subject to selection unless modi-

fied as in Sham and Purcell [2001]. We refer the reader to Skatkiewicz et al. [2003];

Cuenco et al. [2003] for a comprehensive review and numerical comparison of methods

for selected sib pairs.

Sibships

In a sibship of size m consisting of m siblings, Σ is given by

(2.6) [Σ]jk =







1 if j = k

(πjk − 1
2 )γ + 1

2a2 + c2 if j 6= k .

Hence, for γ = 0, with ρ = 1
2a2 + c2,

(2.7) Σ = (1 − ρ)I + ρJ so Σ−1 =
1

1 − ρ
(I − ωmJ) ,

with ωm = ρ
1+(m−1)ρ where I is the m×m identity matrix and J is the m×m matrix

whose elements are all equal to 1. It can be shown mathematically that the elements

of the matrix C = Σ−1x
(

Σ−1x
)′
− Σ−1 are given by

(2.8) Cij =
1

(1 − ρ)2
(

xixj − mωmx̄(xi + xj) + (mωmx̄)2
)

+
1

1 − ρ
ωm .

Under the assumption of perfect marker information, the IBD distributions are un-

correlated for sib pairs within a sibship and have mean 1
2 , the score function is thus

given by

`π

γ =
∑

1≤i< j≤m

Cij

(

πij −
1

2

)

and Fisher’s information by

Iπ

γ =
1

8

∑

1≤i< j≤m

C2
ij .
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

In sib pair designs, the two by two covariance matrix Σ is given by




1 γ(π − 1
2 ) + ρ

γ(π − 1
2 ) + ρ 1



 .

The score function and information in γ = 0 are

`π
γ (x1, x2; ρ) = (π −

1

2
) C(x1, x2; ρ)

Iπ
γ (x1, x2; ρ) =

1

8
C2(x1, x2; ρ)

where

C(x1, x2; ρ) =
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1 − ρ2)

(1 − ρ2)2
.

The score test in a sample of n independent sib pairs with phenotypes (xi1, xi2)i= 1,...,n

is given by
∑n

i= 1

(

πi −
1
2

)

C(xi1, xi2; ρ)
√

1
8

∑n
i= 1 C2(xi1, xi2; ρ)

and its robust version by
∑n

i= 1(πi −
1
2 ) C(xi1, xi2; ρ)

√

∑n
i= 1

(

πi −
1
2

)2
C2(xi1, xi2; ρ)

.

The score test in that instance simply is the regression of the excess IBD sharing

π − 1
2 on a function of the trait values C(x; ρ) through the origin. This method was

already proposed by Tang and Siegmund [2001] and Sham and Purcell [2001]. In

a recent numerical comparison of methods for selected samples, Skatkiewicz et al.

[2003] and Cuenco et al. [2003] showed that it has good properties in finite samples

for extreme proband ascertained sib pairs and discordant sib pairs designs. The same

test was also motivated heuristically using an approximation for excess IBD sharing

in Putter et al. [2003].

In selected samples, one crucial feature of this regression as far as power is con-

cerned, is that it is constrained through the origin. Indeed, the variance of the

slope estimate in an unconstrained regression, which is inversely proportional to
∑

i(Ci − C̄)2 =
∑

i C2
i − nC̄2, will always be greater than its constrained version,

whose variance is inversely proportional to
∑

i C2
i . The contour plot of C is displayed

in Figure 2.1 for ρ = 0.2 and ρ = 0.5, with the corresponding trait values density in-

dicated in gray scale (the density plots were generated using the scatterplots function
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

of Eilers and Goeman [2004]). It clearly shows that extreme concordant sib pairs have

moderately large positive C values whereas extremely discordant sib pairs have large

negative C values. A s long as sib pairs are selected so that C̄ is close to 0 , whether

the regression is constrained through the origin or not is irrelevant. H owever, should

one consider only extremely discordant pairs, then C̄ is negative and the power can

increase dramatically, when using methods for selected samples.
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F igure 2 .1 : Joint distribution of sib trait values x (g ray scale) and contour p lot of C(x, ρ) (ρ = 0 .2 ,

left p anel and ρ = 0 .5 , rig h t p anel)

Nuclear families

W e now consider a general n uclear family with m sibs with trait value vector xs

and two parents with trait value vector xp, then the variance-covariance matrix Σ

can be partitioned as

Σ =





Σss Σsp

Σps Σpp



 .

T he sib-sib submatrix Σss is the only submatrix to contain the link age parameter γ.

A t γ = 0 , Σss is the same as (2 .6 ) and (2 .7 ) with ρ replaced by ρss = 1

2
a2 + c2. T he

other submatrices are given by Σsp = Σ′

ps = ρspJm2 and Σpp = (1 − ρpp)I2 + ρppJ22.

H ere, Im is the identity matrix of dimension m and Jml is the matrix of dimension

m × l with all elements eq ual to 1 . T he parameter ρsp denotes the parent-sib trait

2 1



Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

correlation and ρpp the father-mother trait correlation, both of which are assumed to

be known. The correlations ρss, ρsp and ρpp are given by 0.5 , 0.5 and 0 times the

additive genetic variance respectively, plus a scalar times the common environment

variance. For ρss, this multiplication factor will be 1 but we allow for smaller and

mutually diff erent factors for ρsp and ρpp. M atrices Σsp and Σpp do not involve the

linkage parameter γ because there is no variation in IB D sharing between sibs and

parents, nor between the two parents assuming they do not share alleles identical by

descent. In practice however, parents are often genotyped because they are helpful

in determining the IB D sharing of the siblings. With those conventions and using

a similar reasoning as in (2.2) and (2.3 ), one can show that the score function for

γ in the π |xp,xs model equals the score function for γ in the xs |π,xp model; in

other words, the parents’ phenotypes can simply be considered as ’covariates’ in the

analysis. N ow, using standard results on conditional normal distributions, it turns

out that

xs |π,xp ∼ N (βx̄p, Σss − ρspβJmm) with β =
2ρsp

1 + ρpp
,

thus

(xs − βx̄p) / (1 − ρspβ)
1/2

|π,xp ∼ N (0,ΣC) ,

where ΣC has diagonal elements equal to 1 and off -diagonal elements equal to

(

(πj k −
1

2
)γ + ρss − ρspβ

)

/ (1 − ρspβ) .

Finally, the score obtains as

`π

γ = (1 − ρspβ)
−1

∑

1≤i< j≤m

Cij

(

πij −
1

2

)

and the information as

Iπ

γ = (1 − ρspβ)
−2 1

8

∑

1≤i< j≤m

C2

ij ,

with Cij given by formula (2.8) with x = (xs − βx̄p) / (1 − ρspβ)
1/2

and ρ =

(ρss − ρspβ) / (1 − ρspβ). In most realistic situations ρ will be smaller than ρss.

The eff ect of including the parents on values of C is shown graphically in Figure 2.2.

When the parent-sib trait correlation ρsp is small, whether parents are included or not
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

affects C mainly through the distortion of ρ. However when ρsp is substantial (e.g.

high heritability or high household effect) and the parents’ average trait values is high

(or low), the effect is to shift the contour of C towards the north east quadrant (or

south west quadrant) i.e. concordant siblings with non extreme values become valu-

able, whereas concordant siblings with extreme values become less attractive. For

discordant pairs, the contour lines of C for average and extreme parents trait values

cross, indicating that the inclusion of the extreme parents can affect C either way.
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Figure 2.2: Joint distribution of sib trait values x (gray scale) and contour plot of C(x, ρ) (left

panel: ρss = ρsp = 0.2 and ρpp = 0.1 , and right panel: ρss = ρsp = 0.5 and ρpp = 0.1 ) for x̄p = 0

(continuous lines, C values along vertical ax is) and x̄p = 2 (dotted lines, C values along horizontal

ax is)

Sibships and nuclear families of different sizes can easily be combined by weighting

each family score according to its associated variance as suggested in Section 2.2.

2.4 Dominance

So far in our discussion we have neglected the effect of dominance. We show below

what changes it involves in the score test compared to a fully additive model. We only

consider here the most common design which allows evaluation of dominance variance

component in non-inbred pedigrees: sibships consisting only of dizygotic twins or full
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siblings. In presence of dominance, the conditional covariance Σ given the IBD status

π becomes

[Σ]jk =



















a2 + d2 + c2 + e2 = 1 , if j = k ,

(πjk − 1

2
)q2 + (1{πjk= 1.0} − 1

4
)t2 if j 6= k .

+ 1

2
a2 + 1

4
d2 + c2 ,

where d2 denotes total dominance variance and t2 represents the proportion of total

variance attributable to the dominance component at the locus of interest.

We re-parameterize the model as in Tang and Siegmund [2001] so as to make the

terms involving πjk uncorrelated, with mean 0 and same variance: let γ = q2 + t2 and

δ = t2√
2
. The covariance matrix Σ then writes

[Σ]jk =



















1 , if j = k ,

(πjk − 1

2
)γ − 1√

2
(1{πjk= 0.5} − 1

2
)δ if j 6= k .

+ 1

2
a2 + 1

4
d2 + c2 ,

The score for γ is as in formula (2.1) (however γ is now the sum of the additive and

the dominant Q TL variances) and the score with respect to δ is given by

`π

δ = − 1

2
√

2
vec(C)′vec(1{π= 0.5} −

1

2
) .

Due to the new parameterization, `π

γ and `π

δ are orthogonal under complete infor-

mation (this is because πjk and 1{πjk= 0.5} are uncorrelated in sib pairs [Amos et al.,

19 89 ]), and Fisher’s information in (γ, δ) = (0, 0) is given by

Iπ

γ,δ =





Iπ

γ 0

0 Iπ

δ





where Iπ

δ = 1

8
vec(C)′ varπ

(

vec(1{π= 0.5})
)

vec(C) and Iπ

γ is given by formula (2.4 ).

U nder the assumption of a fully informative marker map Iπ

γ = Iπ

δ = 1

8

∑

1≤i<j≤m C2

ij ,

`π

γ =
∑

1≤i<j≤m Cij

(

πij − 1

2

)

and

`π

γ = − 1√
2

∑

1≤i<j≤m Cij

(

1{πi j= 0.5} − 1

2

)

with Cij as in formula (2.8), and the one-

sided score test of the joint null hypothesis (γ, δ) = (0, 0) under the constraint 0 ≤
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√
2 δ ≤ γ is then given by

z2
+ =































`π

γ
2

Iπ

γ
+

`π

δ
2

Iπ

δ

, if 0 ≤
√

2 `π

δ ≤ `π

γ ,

`π

γ
2

Iπ

γ
, if 0 < `π

γ and 0 < `π

δ ,

1

3

(√
2 `π

γ + `π

δ

)2
, if − 1√

2
`π

δ < `π

γ <
√

2 `π

δ and `π

δ > 0 ,

0 , otherwise .

The local optimality properties of the univariate score test are preserved by this

statistic since it is asymptotically equivalent to the likelihood ratio test [V erbeke and

Molenberghs, 2003]. Under the null hypothesis of no locus effect, z2
+ is distributed

as (1 − κ)χ2
0 + 1

2
χ2

1 + κχ2
2 with κ = 0.098 [Shapiro, 1988]. Note that this test is the

same as the one proposed by Wang and Huang [2002b] (see Section 2.6 for a closer

comparison).

2.5 Dichotomous traits

Z eegers et al. [2003] have developed a modifi ed Haseman-E lston regression for binary

traits and have shown that it is approximately equivalent in power to the liability-

threshold variance components model. In order to apply similar ideas to those devel-

oped in previous sections to dichotomous traits we use this so-called liability threshold

model. Under such setting, a continuous variable arbitrarily scaled to have mean 0

and variance 1 underlies the trait of interest. In pedigrees involving only one type of

family members relationship like sibships, the model is fully characterized by two pa-

rameters: the overall prevalence of the trait K (or equivalently the liability threshold

t where K = 1 − Φ (t), Φ denotes here the cumulative density function of a standard

normal) and the correlation ρ between the scaled liabilities of two sibs, also known as

the tetrachoric correlation for the trait of interest. Different types of family members

relationship may correspond to different tetrachoric correlations. P rovided population

data are available, the maximum likelihood method can be used to obtain estimates

of the tetrachoric correlation between different relative pairs. Approximate formulae

due to P earson [1901] appear in Sham [1998, Section 5.5.5].

The probability pγ(y |π) of the affection states of the pedigree members being y,

given π, where y is one of the possible phenotypes, is obtained by integration of the

density fγ(x |π) for the underlying liability as expressed in the variance components
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setting of Section 2.2 over Ry, the region corresponding to phenotype y on the liability

scale

pγ(y |π) =

∫

x∈Ry

fγ(x |π)dx .

T h e sc o re `yγ fo r pγ(y |π) a t γ = 0 eq u a ls

`yγ =
∂

∂γ
lo g pγ(y |π) =

∫

Ry

∂
∂γ

fγ(x |π)dx
∫

Ry

fγ(x |π)dx
=

∫

Ry

`xγfγ(x |π)dx
∫

Ry

fγ(x |π)dx
= Ex

(

`xγ |x ∈ Ry

)

.

A s fo r th e c o n tin u o u s c a se , th e sc o re `π

γ fo r γ o f th e se le c tio n m o d e l π |y is e q u a l to th e

sc o re `yγ fo r th e y |π m o d e l. U sin g fo rm u la (2.1) a n d b y lin e a rity o f th e e x p e c ta tio n

E,

`π

γ = `yγ =
1

2
v e c(Cy)′v e c (π − Eπ) ,

a n d

Iπ

γ =
1

4
v e c(Cy)′ v a rπ (v e c (π)) v e c (Cy)

w ith Cy = Ex(C(x, ρ) |x ∈ Ry).

In th e c a se o f sib p a ir d e sig n s, th e re a re o n ly th re e p o ssib le u n o rd e re d p h e n o ty p e s:

A ff e c te d / A ff e c te d (A A ), A ff e c te d / U n a ff e c te d (A U ) a n d U n a ff e c te d / U n a ff e c te d (U U ).

T h is im p lie s th a t th e re a re o n ly th re e p o ssib le v a lu e s o f Cy: CA A , CA U , CU U , e a ch

c o rre sp o n d in g to th e c o n d itio n a l e x p e c ta tio n o f C(x, ρ), g iv e n x in th e a p p ro p ria te

re g io n o n th e lia b ility sc a le . F o r a d a ta se t c o n sistin g o f nA A a ff e c te d sib p a irs, nA U

d isc o rd a n t sib p a irs a n d nU U u n a ff e c te d sib p a irs, th e sc o re te st th e n e q u a ls

z =
CA A

∑

i∈A A

(

πi −
1

2

)

+ CA U

∑

i∈A U

(

πi −
1

2

)

+ CU U

∑

i∈U U

(

πi −
1

2

)

√

1

8
(nA A C2

A A + nA U C2

A U + nU U C2

U U )
,

a n d a ro b u st sc o re te st is g iv e n b y

z∗ =
CA A

∑

i∈A A

(

πi −
1

2

)

+ CA U

∑

i∈A U

(

πi −
1

2

)

+ CU U

∑

i∈U U

(

πi −
1

2

)

√

C2

A A

∑

i∈A A

(

πi −
1

2

)2

+ C2

A U

∑

i∈A U

(

πi −
1

2

)2

+ C2

U U

∑

i∈U U

(

πi −
1

2

)2

.

N o w a d a y s, th e Cy q u a n titie s c a n b e a p p ro x im a te d to a su ffi c ie n t d e g re e o f p re c isio n

u sin g M o n te C a rlo sim u la tio n te ch n iq u e s.

V a lu e s o f CA A , CA U a n d CU U a re p ro v id e d in T a b le 2.1 fo r ty p ic a l v a lu e s o f

th e te tra ch o ric c o rre la tio n ρ a n d tra it p re v a le n c e K. U n d e r th is lia b ility th re sh o ld

m o d e l, th e m a in ch a ra c te ristic s o f th e sib p a ir d e sig n s a re th a t U U sib p a irs p ro v id e
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AA AU UU AA AU UU

K ρ P ro b . C̄ P ro b . C̄ P ro b . C̄ K ρ P ro b . C̄ P ro b . C̄ P ro b . C̄

0 .0 0 1 0 .1 0 .0 0 0 0 9 .6 3 0 .0 0 2 0 -0 .0 4 0 .9 9 8 0 0 .0 0 0 .0 5 0 .1 0 .0 0 3 7 3 .6 8 0 .0 9 2 6 -0 .2 9 0 .9 0 3 7 0 .0 2

0 .2 0 .0 0 0 0 8 .2 6 0 .0 0 2 0 -0 .0 6 0 .9 9 8 0 0 .0 0 0 .2 0 .0 0 5 3 3 .2 5 0 .0 8 9 5 -0 .3 8 0 .9 0 5 3 0 .0 2

0 .3 0 .0 0 0 0 7 .2 4 0 .0 0 2 0 -0 .1 0 0 .9 9 8 0 0 .0 0 0 .3 0 .0 0 7 1 2 .9 2 0 .0 8 5 7 -0 .4 9 0 .9 0 7 1 0 .0 2

0 .4 0 .0 0 0 0 6 .4 3 0 .0 0 1 9 -0 .2 0 0 .9 9 8 0 0 .0 0 0 .4 0 .0 0 9 4 2 .6 7 0 .0 8 1 2 -0 .6 2 0 .9 0 9 4 0 .0 3

0 .5 0 .0 0 0 1 5 .8 2 0 .0 0 1 9 -0 .3 4 0 .9 9 8 1 0 .0 0 0 .5 0 .0 1 2 2 2 .4 8 0 .0 7 5 6 -0 .8 0 0 .9 1 2 2 0 .0 3

0 .6 0 .0 0 0 1 5 .3 7 0 .0 0 1 8 -0 .5 5 0 .9 9 8 1 0 .0 0 0 .6 0 .0 1 5 5 2 .3 6 0 .0 6 9 0 -1 .0 6 0 .9 1 5 5 0 .0 4

0 .0 1 0 .1 0 .0 0 0 2 6 .0 6 0 .0 1 9 6 -0 .1 2 0 .9 8 0 2 0 .0 0 0 .1 0 .1 0 .0 1 3 3 2 .6 9 0 .1 7 3 3 -0 .4 1 0 .8 1 3 3 0 .0 4

0 .2 0 .0 0 0 3 5 .2 7 0 .0 1 9 3 -0 .1 8 0 .9 8 0 3 0 .0 0 0 .2 0 .0 1 7 2 2 .4 0 0 .1 6 5 6 -0 .5 0 0 .8 1 7 2 0 .0 5

0 .3 0 .0 0 0 6 4 .6 6 0 .0 1 8 9 -0 .2 7 0 .9 8 0 6 0 .0 0 0 .3 0 .0 2 1 6 2 .1 8 0 .1 5 6 7 -0 .6 0 0 .8 2 1 6 0 .0 6

0 .4 0 .0 0 0 9 4 .2 0 0 .0 1 8 3 -0 .4 0 0 .9 8 0 9 0 .0 0 0 .4 0 .0 2 6 7 2 .0 2 0 .1 4 6 8 -0 .7 3 0 .8 2 6 6 0 .0 6

0 .5 0 .0 0 1 3 3 .8 5 0 .0 1 7 4 -0 .5 7 0 .9 8 1 3 0 .0 1 0 .5 0 .0 3 2 4 1 .9 0 0 .1 3 5 2 -0 .9 1 0 .8 3 2 4 0 .0 7

0 .6 0 .0 0 1 9 3 .6 0 0 .0 1 6 3 -0 .8 3 0 .9 8 1 9 0 .0 1 0 .6 0 .0 3 9 0 1 .8 3 0 .1 2 2 0 -1 .1 7 0 .8 3 9 0 0 .0 8

0 .0 2 0 .1 0 .0 0 0 7 5 .0 2 0 .0 3 8 6 -0 .1 8 0 .9 6 0 7 0 .0 0 0 .2 0 .1 0 .0 4 8 1 1 .7 5 0 .3 0 3 8 -0 .5 5 0 .6 4 8 1 0 .1 3

0 .2 0 .0 0 1 1 4 .3 9 0 .0 3 7 8 -0 .2 6 0 .9 6 1 1 0 .0 1 0 .2 0 .0 5 6 8 1 .5 8 0 .2 8 6 4 -0 .6 3 0 .6 5 6 8 0 .1 4

0 .3 0 .0 0 1 7 3 .9 1 0 .0 3 6 6 -0 .3 5 0 .9 6 1 7 0 .0 1 0 .3 0 .0 6 6 2 1 .4 6 0 .2 6 7 6 -0 .7 2 0 .6 6 6 1 0 .1 5

0 .4 0 .0 0 2 4 3 .5 4 0 .0 3 5 2 -0 .4 9 0 .9 6 2 4 0 .0 1 0 .4 0 .0 7 6 2 1 .3 7 0 .2 4 7 6 -0 .8 5 0 .6 7 6 2 0 .1 5

0 .5 0 .0 0 3 4 3 .2 6 0 .0 3 3 2 -0 .6 7 0 .9 6 3 4 0 .0 1 0 .5 0 .0 8 7 1 1 .3 1 0 .2 2 5 6 -1 .0 2 0 .6 8 7 2 0 .1 7

0 .6 0 .0 0 4 6 3 .0 7 0 .0 3 0 7 -0 .9 3 0 .9 6 4 6 0 .0 1 0 .6 0 .0 9 9 2 1 .2 9 0 .2 0 1 5 -1 .2 7 0 .6 9 9 2 0 .1 8

Table 2.1: Probabilities of affection states and average C valu es for sib p airs
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very little information whereas AA sib pairs provide the most information especially

as the trait becomes rare. H owever, it must be stressed that as the prevalence of the

trait increases, AU sib pairs become more informative. If only one type of phenotype

is used (say only affected sib pairs) the score test is equivalent to z =
(π̄− 1

2
)√

1/(8n)
and the

robust score test equal z∗ =
(π̄− 1

2
)

ŝe(π̄)
which are two standardized versions of the mean

IB D sharing test. These tests are well established [B lackwelder and E lston, 19 8 5 ] and

have been in popular use for decades. As for the continuous case the test can be

seen as a regression through the origin of the excess IB D sharing on a function C of

the trait, however the function C only takes a limited number of distinct values. To

illustrate this regression, we generated the affection states for 10000 sib pairs using

the liability threshold model with K = 0.05 , ρ = 0.4 and γ = 0.15 . The 15 0 most

informative pairs were selected using the corresponding C̄2 obtained from table 2.1;

this resulted in all 9 7 affected pairs and 5 3 random discordant pairs being selected.

Figure 2.3 illustrates the regression for this simulated data set.

O ne attractive feature of our approach is that it naturally allows combination of

sib pairs of different nature (more generally, pedigree pairs of different nature and

familial relationships). E ach type of pairs contributes to the deviation from average

IB D sharing with a weight proportional to the average value of the C function in the

corresponding region. Note that in practice, table I can also be used with pedigrees

consisting of other types of relative pairs. For example, if nc
AA pedigrees consisting

of affected cousins also are available then their contribution to the numerator of the

previous z will simply be CAA

∑nc
A A

i= 1 (πc
i − 1

8 ) where CAA is drawn from table I

with K as the population prevalence of the trait and ρ equal to the trait tetrachoric

correlation between cousins. O ur approach also offers an elegant solution to the

problem of prevalence heterogeneity in the population: if a data set consists of groups

with different disease prevalence, the contribution of each group to the overall test is

weighted accordingly (see Table I).

2.6 Discussion

In the context of the variance components model, we have given an expression of

the score test for linkage under sample selection based on phenotype values. It is
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Figure 2.3: Regression of π −

1

2
on C(x, ρ) for 1 5 0 selected sib pairs (K = 0 .0 5 , ρ = 0 .4 and

γ = 0 .1 5 )

a general expression for arbitrary pedigrees which takes a very simple form in some

widely used designs. Commenges [1994] fi rst introduced score tests in the context of

linkage, however his approach is not conditional on trait values and therefore leads

to reduced power in selected samples. In a recent article, Tritchler et al. [2003]

give a general score test in nuclear families conditional on the trait values under the

assumption that the trait distribution depends on different genetic models through

the exponential family. Our results give a very similar expression to theirs. In their

software implementation, they allow the population mean to be specifi ed by the user

but not the population sib-sib correlation and our understanding is that the authors

attempt to estimate this correlation from the selected data, which potentially results

in power loss (unless the ascertainment mechanism is known). Our approach is to fully

acknowledge the fact that selected samples do not provide unbiased estimates of the

population trait distribution characteristics and to assume that unbiased estimates
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of the first and second moments of the population trait are available a priori. In the

context of the G enomEUtwin project, where twin registries provide us with precise

population mean and twin-twin correlation, this seems a realistic assumption.

The score test that we derive also has a simple interpretation in terms of regression

of IBD sharing on a function of the phenotypes. Sham et al. [2002] have recently

proposed a general method of analysis for quantitative linkage data which explicitly

regresses IBD sharing on all possible squared sums and differences of trait values

within a family. As shown in Section 2.2, the score test essentially is a regression

of the excess IBD sharing on a quadratic function of the trait values whose shape

depends on the normality assumption. W hen the data truly are normal, it seems

reasonable to expect that the score test results in similar regressor as in the method

of Sham et al. [2002]. W e have compared the information content provided by the

two methods in sibships and nuclear families of different sizes and they happen to

exactly coincide. In fact, as demonstrated in a recently published paper [Chen et al.,

2004], the two methods are the same for quantitative traits under an additive model

(with trait correlations assumed to be the same over all pairs of relatives). The IBD

covariance matrix is determined solely by family relations; no marker information is

needed to compute it, which is a prerequisite to make it useful for selection prior to

genotyping. Note that calculation of the information index in [Sham et al., 2002] does

not require marker information either.

One possible criticism of the variance components model is that departure from the

normality assumption might invalidate its results. However, the analogy of the test

with regression methods, very much as the score test in unselected data coincides with

the optimally weighted Haseman-Elston regression [P utter et al., 2002], pleads in favor

of its robustness. In fact, as the regression interpretation of the score reveals, the test

depends on the distribution of the trait values only through its second order moments.

So as long as the shape of the distribution does not show any great departure from

normality for those moments (e.g. heavy tail) then the test should remain valid.

W hen the model clearly is wrong, the robust version of the test should preclude

over-optimistic inference.

W e showed in Section 2.2 that in the current variance components setting under

which population marginal characteristics are known and the only unknown parameter
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is the linkage parameter γ, there is no loss of information when conditioning on trait

values. This is a direct consequence of the fact that scores for the selection model π |x,

the x |π model and the joint (x, π) model are identical. The situation becomes more

complicated when population parameters are unknown and need to be conjunctly

estimated.

As announced in Section 2.2, we now turn to the case of imperfect IBD information.

In practice, π is not known with certainty. In fact, the only available data are

marker information which we denote M and the phenotypes x. Strictly speaking, the

likelihood to be considered should be expressed in terms of those data, i.e. we should

write fγ(M,x) for the joint distribution of M and x and fγ(M |x) for the conditional

distribution of M |x . It turns out that the score `M
γ for the M |x distribution simply

becomes the weighted average of the score `π

γ for the idealized fully informative model

`M
γ =

∑

π
P (π |M) `π

γ and thus, with π̂ = E(π |M),

`M
γ =

1

2
vec(C)′vec(π̂ − Eπ̂) .

Since Eπ̂ = Eπ, this result means that Formula (2.1) still holds true with imperfect

data but π values have to be replaced by estimates given marker data available π̂.

Values of P (π |M) and π̂ are calculated using for example the Lander-Green or

Elston-Stewart algorithms [Lander and Botstein, 1989] as implemented in publicly

available softwares like GENEHUNTER [K ruglyak et al., 1996] or MERLIN [Abecasis

et al., 2002]. Note that this result theoretically justifies (as mentioned by Commenges

[1994] and Tang and Siegmund [2001]) the use of the so-called π̂ approach in variance

components linkage modelling for arbitrary pedigrees. The corresponding Fisher’s

information is given by

IM
γ =

1

4
vec(C)′ varM (vec(π̂)) vec(C) .

Given a marker map and a certain pedigree structure, Monte Carlo simulations can

be used to approximate varM (vec(π̂)). A conservative alternative is to use Iπ

γ as

given by Formula (2.4) instead of IM
γ in the standardization of `M

γ . One consequence

of imperfect information in the case of sibships for example is that negative terms

appear on the off-diagonal components of the varM (vec(π̂)) matrix. When consider-

ing both additive and dominance variance components, the scores `π

γ and `π

δ derived
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in Section 2.4 are no longer orthogonal and the use of the test as defined in that

section is not optimal. It is possible to obtain the expression of a multivariate score

test that is asymptotically optimal [Verbeke and Molenberghs, 2003] and whose null

distribution ((1 − κ)χ2

0
+ 1

2
χ2

1
+ κχ2

2
, w h e re κ d e p e n d s o n in fo rm a tiv e n e ss) c a n b e

o b ta in e d u sin g re su lts in S h a p iro [1 9 8 8 ]. T h e d e ta ils a re b e y o n d th e sc o p e o f th is

a rtic le , h o w e v e r th e re su lts a p p e a r in W a n g a n d H u a n g [2 0 0 2 b ] w h o c o n sid e r o n ly

ra n d o m sa m p le s a n d th e re fo re su g g e st to e stim a te th e sib -sib c o rre la tio n a s w e ll a s

P(π = 0 .5 |M), E(π̂) a n d v a r(π̂) fro m th e d a ta . In te re stin g ly , o u r d e riv a tio n sh o w s

th a t th e ir a p p ro a ch is p e rfe c tly v a lid in se le c te d sa m p le s to o , p ro v id e d th e p o p u la tio n

sib -sib c o rre la tio n is k n o w n a n d u n b ia se d v a lu e s fo r P(π = 0 .5 |M), E(π̂) a n d v a r(π̂)

a re c a lc u la te d (e .g . u sin g M o n te C a rlo sim u la tio n te ch n iq u e d e sc rib e d a b o v e ). N o te

th a t in se le c te d sa m p le s, th e u se o f p o p u la tio n e stim a te s fo r th o se ’n u isa n c e ’ p a ra m e -

te rs a m o u n ts to c o n stra in in g th e re g re ssio n th ro u g h th e o rig in a n d is c ritic a l in o rd e r

to m a in ta in m a x im u m p o w e r. In p ra c tic e , th e a sy m p to tic re su lts m ig h t fa il to h o ld

in fi n ite sa m p le s a n d it se e m s w ise to u se re -sa m p lin g m e th o d s (b o o tstra p ) in o rd e r

to o b ta in a ro b u st a sse ssm e n t o f sig n ifi c a n c e .

B y u se o f th e lia b ility th re sh o ld m o d e l, th e c o n tin u o u s c a se e x te n d s to th e c a se

o f d ich o to m o u s tra its. B e c a u se o f th e w e ll-k n o w n o p tim a lity p ro p e rtie s o f th e sc o re

te st (w h ich is a sy m p to tic a lly e q u iv a le n t to th e lik e lih o o d -ra tio te st), it p ro v id e s a n

e ffi c ie n t m e a n s to te st fo r lin k a g e in a ff e c te d sib p a irs a n d in d isc o rd a n t sib p a irs a s

w e ll a s a w a y to c o m b in e th e tw o ty p e s o f d a ta w h e n n e e d s a rise . M o re c o m p lic a te d

p e d ig re e s c a n a lso b e h a n d le d in a v e ry fl e x ib le m a n n e r. In th is se le c tio n fra m e w o rk

w h e re IB D sh a rin g π is c o n sid e re d c o n d itio n a l o n th e tra it v a lu e s x, th e e x te n sio n to

m u ltip le tra its, in a n a lo g y w ith m u ltip le re g re ssio n , sh o u ld b e fa irly stra ig h tfo rw a rd .

T h is sc o re te st a p p ro a ch h a s b e e n im p le m e n te d in to a C p ro g ra m c a llin g u p o n

th e p u b lic ly a v a ila b le so ftw a re MERLIN [A b e c a sis e t a l., 2 0 0 2 ] a n d is a v a ila b le a t

http://www.msbi.nl/Genetics .
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2.7 Appendix

Score test

The score function for γ in the x |π model is denoted by `xγ and by definition equals

`xγ = ∂
∂γ

log fγ(x |π) with

log fγ(x |π) = −
m

2
log(2π) −

1

2
log(|Σ|) −

1

2
x
′
Σ

−1
x

Standard results on matrix algebra (see, e.g. [Searle et al., 1992, Appendix M.7 ]) show

that

`xγ =
1

2

{

x
′
Σ

−1(π − Eπ)Σ−1
x − tr(Σ−1(π − Eπ))

}

Because of the relation a′b = tr(ba′), the previous equation can be rewritten

`xγ =
1

2
tr

(

Σ
−1(π − Eπ)(Σ−1

xx
′ − I)

)

.
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