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Chapter 2

Score Test for Detecting Linkage to
Complex Traits in Selected Samples

Abstract

We present a unified approach to selection and linkage analysis of selected samples,
for both quantitative and dichotomous complex traits. It is based on the score test
for the variance attributable to the trait locus and applies to general pedigrees. The
method is equivalent to regressing excess IBD sharing on a function of the traits. It
is shown that, when population parameters for the trait are known, such inversion
does not entail any loss of information. For dichotomous traits, pairs of pedigree
members of different phenotypic nature (e.g. affected sib pairs and discordant sib

pairs) can easily be combined as well as populations with different trait prevalences.

This chapter has been published as: J. Lebrec, H. Putter and J.C. van Houwelingen (2004).
Score Test for Detecting Linkage to Complex Traits in Selected Samples. Genetic Epidemiology 6
(2), 97-108.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.1 Introduction

In complex traits where the effect of each contributing locus is very small, the sample
sizes needed to carry out linkage analysis usually result in costs far beyond research
budgets, even when using new high throughput genotyping technologies [Risch, 2000].
Geneticists have been aware of this fact for a while and many designs and selection
strategies have been proposed [Risch and Zhang, 1995; Dolan and Boomsma, 1998a;
Purcell et al., 2001]. In the search for genes, prior to any linkage study, researchers
usually gather evidence of heritability for the trait of interest. This is often done
in twin studies including both monozygotic and dizygotic twins from the general
population. In addition to heritability of the trait, these studies provide precise
population marginal means, variability and twin-twin correlation estimates for the

trait of interest.

Complex traits have small locus effect and this is probably why the search for the
corresponding susceptibility loci has proved so disappointing. However this is also
the reason why a score test constitutes a promising testing strategy in this context
since it has local optimality properties [Cox and Hinkley, 1974]. In this article, using
the variance components framework we give a general formulation for a score test to
detect linkage to a putative quantitative trait locus under selective sampling based
on the trait values of the pedigree members. We give simple formulae for the test in
a number of commonly used designs (sibships and nuclear families of arbitrary size).
Using a liability threshold model, we extend our results to dichotomous traits. In
particular, they apply to sib pair designs where different types of pairs (e.g. affected
and discordant sib pairs) can be combined in an optimal way, and subpopulations with
different disease prevalences can be incorporated in a straightforward manner. Our
approach provides a unified framework in which both optimal selection and subsequent

analysis are combined in a natural way, both for quantitative and dichotomous traits.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.2 Score test for quantitative traits in selected samples

Model

Our starting point is the variance components model, where we assume that x =
(21,...,2m) , the vector of phenotypes of the pedigree members, has been standard-
ized so that it has mean vector 0 and variances equal to 1. The m x m matrix
7 contains the identity-by-descent (IBD) information at a marker, more precisely
[7]jx = 7k is the proportion of alleles shared IBD by pedigree members j and k.
For now, we assume that the marker map is fully informative, the consequences of
relaxing this assumption will be examined in Section 2.6. The variance components
model specifies that the conditional distribution of the standardized x given IBD in-
formation 7 follows a normal distribution with zero mean and variance-covariance

matrix ¥ given by

a?+ct+e? =1, ifj=k,

[2]jk: 5 5 5 o
(mjx —Emjrp)q® + (Emjp)a® + ¢, if j#k.

where a? denotes the total additive genetic variance, ¢Z, the common-environment
variance and e?, the residual variance. This parameterization of the problem was
initially introduced by Tang and Siegmund [2001] and is crucial to the obtention
of simple results. For the time being we will assume absence of any dominance
component of variance. We show an extension incorporating dominance variance in
section 2.4. Since the trait values are standardized to unit variance, these variance
components can also be interpreted as proportions of variance explained by the ap-
propriate components. The total additive genetic variance a? includes both additive
polygenic variance and the (additive) variance ¢? attributable to the putative quanti-
tative trait locus (QTL). The factor Em;; denotes the expected proportion of alleles
shared identical by descent between pedigree members j and k; it is determined solely
by the family relationship between j and k and equals twice the kinship coefficient
between j and k.

The key parameter in this model is the variance component ¢? determining the
presence of linkage (no linkage is equivalent to ¢ = 0). It is the only unknown

parameter in the model and we shall denote it by + in the sequel. Two important
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

properties of the variance components model are: that x and 7 are independent under
the hypothesis of no linkage (v = 0) and that the marginal distribution of 7 does not
depend on 7.

Score test for quantitative traits

A score test for detecting linkage to quantitative traits in random samples for general
pedigrees was given by Putter et al. [2002] and by Wang [2002]. Here we extend those
results to a sampling scheme where data are selected based on phenotypic values.
We generalize results obtained by Tang and Siegmund [2001] for sibships to arbitrary
pedigrees and use the continuous case as a building block to the dichotomous case as
exposed in Section 2.5.

The following expression for the score function ¢} in the variance components

model is obtained in the appendix:

X 1 - -
b= 3 (EHm —Em) (T 'xx' - 1)) .
Here tr(A) stands for the trace (sum of the diagonal elements) of matrix A. Using ele-
mentary matrix theory, in particular tr(AB) = tr(BA) and tr(AB) = vec(A’) vec(B)
(here vec(A) places the n columns of the m x n matrix A into a vector of dimension

mn X 1), this score function can be rewritten as

(2.1) o= % vec(C)'vec(m — Emr)

with C = 7'x (2_1x)l — X', Note that the # — Emr matrix has all diagonal
elements equal to 0.

For selected samples, the conditional distribution of IBD sharing 7 given the trait
values x gives a natural framework for testing linkage [Sham et al., 2000; Dudoit and
Speed, 2000] and we shall refer to this setting as the selection model. It turns out that
the score function for this selection model, and for the joint model of x and 7 remains
the same. As we show below, this is true for any joint model of x and 7 under the

following general conditions, which are satisfied for the variance components model:
1. x and 7 are independent at v = 0 and

2. the marginal distribution of 7 does not depend on -.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

We now turn to the proof of our previous statement regarding the equality of the scores
for the selection model and the joint model. We denote the conditional distribution of
x|m and 7 |x by f,(x|m) and f, (7 |x) respectively, and the joint distribution of x
and 7 by fy(x, 7). The subscript v expresses the dependence of those distributions on
~. The marginal distributions of x and 7 are denoted by f,(x) and f(7) respectively.

With this notation, the score function for v in the x |7 model is denoted by 2%, so

0y

o = % log f,(x|m); and in the selection model by £7,

so (T = %logfy(ﬂﬂx). By
Bayes’ rule, we have

LGem) _ flx|m) S
f’y(x) ff'y(x|7r) f(ﬂ-) dm

(2.2) Jy(m|x)

As a result,
o 0
o= st (xlm) — -tog ([ £l m) ) )

. 5 - o tox ([ xim(m) )

For the score test for linkage in selected samples, we need this score function evaluated

(2.3)

at v = 0. Since score functions have mean 0, the second term % log (f fy(x|m)f(m) dTr)
equals the expectation of £ under | x evaluated at v = 0. Since x and = are inde-
pendent at v = 0, this is just the distribution 7 (independent of ). As a result we
obtain,

(% =X —En % .

Hence, in our case (7 = (¥, since £ is already, due to the parameterization used,
centered with respect to the distribution of . The score £ is also centered with
respect to the distribution of x. Looking back at equation (2.2), we see that the
score function for 7 in the joint model of x and 7 also equals 3 = (7. This has the
important consequence that there is no loss of information by basing inference only on
the conditional distribution of x |7 for random samples, or only on the distribution

of 7| x, the selection model for selected samples.

Fisher’s information Z7 = E (—g’—; log f- (| X)) for v in the selection model is

also the variance of the score function var(¢7) and is thus given by

(2.4) I7 = i vec(C)' vary (vec(m)) vec(C) .
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

The exact calculation of var, (vec(m)) involves enumeration of all joint probabilities
P(m;;, mr) for each possible inheritance vector in a pedigree. In practice, this is ef-
ficiently achieved through the use of the ——ibd and —-matrices options in the
MERLIN software [Abecasis et al., 2002] with a pedigree file describing the appropri-
ate pedigree structure and one marker with all values as missing. Note that under
the assumption of complete IBD information, Fisher’s information as given in For-
mula (2.4) can be directly used as a criterion for selection of the most informative

individuals based on trait values.

The score test statistic z is formed by adding the scores from independent pedigrees

and dividing by the square root of its variance under the null hypothesis:

2il7

JE I

(2.5) z=

Under the null hypothesis of no linkage, z has asymptotically a standard normal
distribution. The test is one-sided, only positive values of z being regarded as evidence
for linkage. In other words, zi defined as being equal to 0 if z < 0 and to 22 if z > 0

is asymptotically distributed as %Xg + %X%

Formulae (2.1) and (2.4) provide an interpretation of this score test in terms of
regression. Similar to Sham et al. [2002], the numerator of the score test statistic z
can be interpreted as an estimate of the slope of the regression through the origin
of excess IBD sharing on a function of the trait values. The dependent variables are
the observed excess IBD sharing between all W pairs of members in pedigree
of size m while corresponding observations of the explanatory variable are quadratic
functions of the original trait values as defined above. Those results are applicable
to general pedigrees but take a very simple and appealing form in sib pairs and some
other specialized cases as shown below. The slope estimate of the score test statistic
is standardized by the square root of Fisher’s information, but this standardization

can also be interpreted as the standard error of the slope estimate of the numerator

under the null hypothesis.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.3 Special designs

In this section we give explicit formulae for the score test in general sibships and
nuclear families. The interpretation of the test in terms of regression for sib pairs pro-
vides interesting insight into the relation of our method with the so called Haseman-
Elston regressions and helps us understand why these optimal methods for random
samples turn out to be sub-optimal when data are subject to selection unless modi-
fied as in Sham and Purcell [2001]. We refer the reader to Skatkiewicz et al. [2003];
Cuenco et al. [2003] for a comprehensive review and numerical comparison of methods

for selected sib pairs.

Sibships
In a sibship of size m consisting of m siblings, X is given by

1 if j =k

(2.6) 3% =
’ (mjk— v+ 302+ ifj £k

Hence, for v =0, with p = %aQ +c2,

1
(2.7) S=(1-pI+p) so B'= i I—wnd) ,

with w,,, = where I is the m x m identity matrix and J is the m x m matrix

Y (R
1+(m—1)p
whose elements are all equal to 1. It can be shown mathematically that the elements

of the matrix C = X7 !x (E_lx)/ — 37! are given by

L
(1—-p)?

Under the assumption of perfect marker information, the IBD distributions are un-

2.8)  Cy =

(:cixj - mwmi(l'i + .Tj) + (mme)Q) + fpwm ’

correlated for sib pairs within a sibship and have mean %, the score function is thus
given by
1
o5 (o)
1<i<j<m
and Fisher’s information by

1
I;fzg Z c3 .

1<i<j<m
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In sib pair designs, the two by two covariance matrix ¥ is given by
1 Y —3)+p
Vm—35)+p 1

The score function and information in v = 0 are

—~

(w1, m250) = (71— 5) C(w1,72;p)

1
2
02@1,932; P)

I;T(l‘l,xmp)

0| =

where
(L+p*)z1ms — p(af + 23) + p(1 - p?)
(1= |
The score test in a sample of n independent sib pairs with phenotypes (1, Z;2)

0(131,352;!3) =

i=1,...,n

is given by . )
Dim1 (771' - 5) C(241, Ti2; p)

\/é Yoy C2(win, ig; p)

and its robust version by
i (mi — %) C(zi1, i p)
. .
\/Z:l:l (7T7: - %) C%(zi1, Ti2; p)

The score test in that instance simply is the regression of the excess IBD sharing

- % on a function of the trait values C'(x; p) through the origin. This method was

already proposed by Tang and Siegmund [2001] and Sham and Purcell [2001]. In
a recent numerical comparison of methods for selected samples, Skatkiewicz et al.
[2003] and Cuenco et al. [2003] showed that it has good properties in finite samples
for extreme proband ascertained sib pairs and discordant sib pairs designs. The same
test was also motivated heuristically using an approximation for excess IBD sharing

in Putter et al. [2003].

In selected samples, one crucial feature of this regression as far as power is con-
cerned, is that it is constrained through the origin. Indeed, the variance of the
slope estimate in an unconstrained regression, which is inversely proportional to
>, (Ci — C)2 = Y, C? — nC?, will always be greater than its constrained version,
whose variance is inversely proportional to ), C2. The contour plot of C is displayed
in Figure 2.1 for p = 0.2 and p = 0.5, with the corresponding trait values density in-

dicated in gray scale (the density plots were generated using the scatterplots function
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

of Eilers and Goeman [2004]). It clearly shows that extreme concordant sib pairs have
moderately large positive C' values whereas extremely discordant sib pairs have large
negative C' values. As long as sib pairs are selected so that C is close to 0, whether
the regression is constrained through the origin or not is irrelevant. However, should
one consider only extremely discordant pairs, then C' is negative and the power can

increase dramatically, when using methods for selected samples.

Sib 2

Figure 2.1: Joint distribution of sib trait values x (gray scale) and contour plot of C(x, p) (p = 0.2,

left panel and p = 0.5, right panel)

Nuclear families

We now consider a general nuclear family with m sibs with trait value vector xg
and two parents with trait value vector x,, then the variance-covariance matrix %
can be partitioned as

DIFFEED I

ps Xy

> =

The sib-sib submatrix 3, is the only submatrix to contain the linkage parameter ~.
At v =0, X, is the same as (2.6) and (2.7) with p replaced by pss = 2a® + c?. The
other submatrices are given by X, = E;S = pspdmz2 and X,, = (1 — ppp) Iz + pppJas.
Here, I,,, is the identity matrix of dimension m and J,,; is the matrix of dimension

m x | with all elements equal to 1. The parameter pg, denotes the parent-sib trait
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correlation and pp, the father-mother trait correlation, both of which are assumed to
be known. The correlations pss, psp and pp, are given by 0.5, 0.5 and 0 times the
additive genetic variance respectively, plus a scalar times the common environment
variance. For pgs, this multiplication factor will be 1 but we allow for smaller and
mutually different factors for ps, and p,p. Matrices X, and X, do not involve the
linkage parameter vy because there is no variation in IBD sharing between sibs and
parents, nor between the two parents assuming they do not share alleles identical by
descent. In practice however, parents are often genotyped because they are helpful
in determining the IBD sharing of the siblings. With those conventions and using
a similar reasoning as in (2.2) and (2.3), one can show that the score function for
v in the 7 |x,,x, model equals the score function for v in the x, |, x, model; in
other words, the parents’ phenotypes can simply be considered as ’covariates’ in the
analysis. Now, using standard results on conditional normal distributions, it turns
out that

2psp
L+ ppp

Xs | T, Xp ~~ N(ﬁ)_(pv s _pspﬁJmm) with 3 =
thus
(xs = B%p) /| (1= psp)? |7, %, ~ N(0,5¢) |

where ¥ has diagonal elements equal to 1 and off-diagonal elements equal to

(3= 577+ s = 9B) /(1= pu)

Finally, the score obtains as
oLy -1 1
05 = (1= psph) Y. Gy (my- 3
1<i<j<m

and the information as

I7 = (1—pophB)°

>,

1<i<j<m

| =

with C;; given by formula (2.8) with x = (x, — %) / (1 —pspﬂ)l/2 and p =
(pss — pspBB) / (1 — pspB). In most realistic situations p will be smaller than ps,.
The effect of including the parents on values of C' is shown graphically in Figure 2.2.

When the parent-sib trait correlation pg, is small, whether parents are included or not
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affects C' mainly through the distortion of p. However when py, is substantial (e.g.
high heritability or high household effect) and the parents’ average trait values is high
(or low), the effect is to shift the contour of C' towards the north east quadrant (or
south west quadrant) i.e. concordant siblings with non extreme values become valu-
able, whereas concordant siblings with extreme values become less attractive. For
discordant pairs, the contour lines of C' for average and extreme parents trait values

cross, indicating that the inclusion of the extreme parents can affect C' either way.

532104135 0
T T

sib 2

T
-3 2 - 0 1 2 3 3 2 -4 0 1 2 3

Figure 2.2: Joint distribution of sib trait values x (gray scale) and contour plot of C(x,p) (left
panel: pss = psp = 0.2 and ppp = 0.1, and right panel: pss = psp = 0.5 and ppp = 0.1) for X, =0
(continuous lines, C' values along vertical axis) and X, = 2 (dotted lines, C' values along horizontal

axis)

Sibships and nuclear families of different sizes can easily be combined by weighting

each family score according to its associated variance as suggested in Section 2.2.

2.4 Dominance

So far in our discussion we have neglected the effect of dominance. We show below
what changes it involves in the score test compared to a fully additive model. We only
consider here the most common design which allows evaluation of dominance variance

component in non-inbred pedigrees: sibships consisting only of dizygotic twins or full
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siblings. In presence of dominance, the conditional covariance ¥ given the IBD status

7t becomes

A +d?+cc+e? =1, ifj==k,
(Zlj =19 (mk— 35+ Aprymr0p — D 5 #k.
+3a? + ;d* +

where d? denotes total dominance variance and t? represents the proportion of total

variance attributable to the dominance component at the locus of interest.

We re-parameterize the model as in Tang and Siegmund [2001] so as to make the
terms involving 7 uncorrelated, with mean 0 and same variance: let v = ¢*>+1t? and
0= \% The covariance matrix 3 then writes

1, ifj=k,
[E}jk = (ij - %)’V - %(1{7%:0.5} - %)5 iftj#k.
+3a% + 1d* + 2,

The score for v is as in formula (2.1) (however v is now the sum of the additive and

the dominant QTL variances) and the score with respect to § is given by

1

1
gg = —— VGC(C)/VGC(].{,‘-:()_E;} - 5) .

2v/2
Due to the new parameterization, ¢7 and ¢§ are orthogonal under complete infor-
mation (this is because 7,5, and 1¢r,.=0.5) are uncorrelated in sib pairs [Amos et al.,

1989]), and Fisher’s information in (v, d) = (0,0) is given by

where ZT = $vec(C)’ vary (vec(liz—o.5})) vec(C) and I7 is given by formula (2.4).

Under the assumption of a fully informative marker map Z7 = I7 = % Di<ic j<m Cizj,
5 =Y 1<icj<m Ci (mij — 3) and

7 = f% Zl§i<j§m Cij (l{mjzo_g,} — %) with C;; as in formula (2.8), and the one-
sided score test of the joint null hypothesis (v,d) = (0,0) under the constraint 0 <
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V2 § < 7 is then given by

[rr2 [,\-2 .

sz o if0<v2e5 <ir,
o2 .

£3 , if 0 < /7 and 0 < /(F

(V205 +67)°  if —5 07 <0 < V3L and [T >0

1
3
0, otherwise .

The local optimality properties of the univariate score test are preserved by this
statistic since it is asymptotically equivalent to the likelihood ratio test [Verbeke and
Molenberghs, 2003]. Under the null hypothesis of no locus effect, zi is distributed
as (1 — k)x3 + 3x3 + wx3 with & = 0.098 [Shapiro, 1988]. Note that this test is the
same as the one proposed by Wang and Huang [2002b] (see Section 2.6 for a closer

comparison).

2.5 Dichotomous traits

Zeegers et al. [2003] have developed a modified Haseman-Elston regression for binary
traits and have shown that it is approximately equivalent in power to the liability-
threshold variance components model. In order to apply similar ideas to those devel-
oped in previous sections to dichotomous traits we use this so-called liability threshold
model. Under such setting, a continuous variable arbitrarily scaled to have mean 0
and variance 1 underlies the trait of interest. In pedigrees involving only one type of
family members relationship like sibships, the model is fully characterized by two pa-
rameters: the overall prevalence of the trait K (or equivalently the liability threshold
t where K =1 — ®(¢), ® denotes here the cumulative density function of a standard
normal) and the correlation p between the scaled liabilities of two sibs, also known as
the tetrachoric correlation for the trait of interest. Different types of family members
relationship may correspond to different tetrachoric correlations. Provided population
data are available, the maximum likelihood method can be used to obtain estimates
of the tetrachoric correlation between different relative pairs. Approximate formulae
due to Pearson [1901] appear in Sham [1998, Section 5.5.5].

The probability p,(y | 7) of the affection states of the pedigree members being y,
given 7r, where y is one of the possible phenotypes, is obtained by integration of the

density f, (x| ) for the underlying liability as expressed in the variance components
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setting of Section 2.2 over Ry, the region corresponding to phenotype y on the liability

scale

py(y|m) = /GR fy(x|m)dx .

Yy

The score & for p,(y|m) at v = 0 equals

fRy %fy(X\ﬂ)dx B fRy 2 fr (x| m)dx
fRy fy(x|mdx fRy fy(x|m)dx

As for the continuous case, the score £7 for 7 of the selection model 7 |y is equal to the

0 x
Q’:afvlogpv(ﬂﬂ'): = Ex (€v|X€R}’) .

score £ for the y | m model. Using formula (2.1) and by linearity of the expectation

E

)

1
=10 = 3 vec(Cy ) vec(m — Em) ,

and

1
17 = 1 vec(Cy )’ vary (vec(m)) vec(Cy)

with Cy = Ex(C(x,p) |x € Ry).

In the case of sib pair designs, there are only three possible unordered phenotypes:
Affected/Affected (AA), Affected/Unaffected (AU) and Unaffected /Unaffected (UU).
This implies that there are only three possible values of Cy: Caa, Cay, Cyyu, each
corresponding to the conditional expectation of C(x,p), given x in the appropriate
region on the liability scale. For a data set consisting of n 44 affected sib pairs, nay

discordant sib pairs and nyy unaffected sib pairs, the score test then equals

o Caa ZiGAA (7” - %) + Cau ZieAU (771' - %) + Cuu ZieUU (7” - %)

\/% (naaCi, +navChy + nuvCiy)

and a robust score test is given by
* _ Caa ZieAA (m - %) + Cav ZieAU (m— — %) + Cyu ZiEUU (m. _ %)
\/CilA >icaa (771’ - %) +Chv YicAU (771' - %) +Cy Yievu (”i - %)

Nowadays, the C, quantities can be approximated to a sufficient degree of precision

z

using Monte Carlo simulation techniques.
Values of Caa, Cay and Cpyy are provided in Table 2.1 for typical values of
the tetrachoric correlation p and trait prevalence K. Under this liability threshold

model, the main characteristics of the sib pair designs are that UU sib pairs provide
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AA AU uu AA AU uu
K P Prob. c Prob. c Prob. c K P Prob. c Prob. c Prob. c
0.001 0.1 0.0000 9.63 0.0020 -0.04 0.9980 0.00 0.05 0.1 0.0037 3.68 0.0926 -0.29 0.9037 0.02
0.2 0.0000 8.26 0.0020 -0.06 0.9980 0.00 0.2 0.0053 3.25 0.0895 -0.38 0.9053 0.02
0.3 0.0000 7.24 0.0020 -0.10 0.9980 0.00 0.3 0.0071 2.92 0.0857 -0.49 0.9071 0.02
0.4 0.0000 6.43 0.0019 -0.20 0.9980 0.00 0.4 0.0094 2.67 0.0812 -0.62 0.9094 0.03
0.5 0.0001 5.82 0.0019 -0.34 0.9981 0.00 0.5 0.0122 2.48 0.0756 -0.80 0.9122 0.03
0.6 0.0001 5.37 0.0018 -0.55 0.9981 0.00 0.6 0.0155 2.36 0.0690 -1.06 0.9155 0.04
0.01 0.1 0.0002 6.06 0.0196 -0.12 0.9802 0.00 0.1 0.1 0.0133 2.69 0.1733 -0.41 0.8133 0.04
0.2 0.0003 5.27 0.0193 -0.18 0.9803 0.00 0.2 0.0172 2.40 0.1656 -0.50 0.8172 0.05
0.3 0.0006 4.66 0.0189 -0.27 0.9806 0.00 0.3 0.0216 2.18 0.1567 -0.60 0.8216 0.06
0.4 0.0009 4.20 0.0183 -0.40 0.9809 0.00 0.4 0.0267 2.02 0.1468 -0.73 0.8266 0.06
0.5 0.0013 3.85 0.0174 -0.57 0.9813 0.01 0.5 0.0324 1.90 0.1352 -0.91 0.8324 0.07
0.6 0.0019 3.60 0.0163 -0.83 0.9819 0.01 0.6 0.0390 1.83 0.1220 -1.17 0.8390 0.08
0.02 0.1 0.0007 5.02 0.0386 -0.18 0.9607 0.00 0.2 0.1 0.0481 1.75 0.3038 -0.55 0.6481 0.13
0.2 0.0011 4.39 0.0378 -0.26 0.9611 0.01 0.2 0.0568 1.58 0.2864 -0.63 0.6568 0.14
0.3 0.0017 3.91 0.0366 -0.35 0.9617 0.01 0.3 0.0662 1.46 0.2676 -0.72 0.6661 0.15
0.4 0.0024 3.54 0.0352 -0.49 0.9624 0.01 0.4 0.0762 1.37 0.2476 -0.85 0.6762 0.15
0.5 0.0034 3.26 0.0332 -0.67 0.9634 0.01 0.5 0.0871 1.31 0.2256 -1.02 0.6872 0.17
0.6 0.0046 3.07 0.0307 -0.93 0.9646 0.01 0.6 0.0992 1.29 0.2015 -1.27 0.6992 0.18

xé

Table 2.1: Probabilities of affection states and average C' values for sib pairs
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very little information whereas AA sib pairs provide the most information especially
as the trait becomes rare. However, it must be stressed that as the prevalence of the

trait increases, AU sib pairs become more informative. If only one type of phenotype

-1
is used (say only affected sib pairs) the score test is equivalent to z = (1—3) and the
(say only pairs) q YD)

2 1
robust score test equal z* = (gc (;)) which are two standardized versions of the mean

IBD sharing test. These tests are well established [Blackwelder and Elston, 1985] and

have been in popular use for decades. As for the continuous case the test can be
seen as a regression through the origin of the excess IBD sharing on a function C' of
the trait, however the function C' only takes a limited number of distinct values. To
illustrate this regression, we generated the affection states for 10000 sib pairs using
the liability threshold model with K = 0.05, p = 0.4 and v = 0.15. The 150 most
informative pairs were selected using the corresponding C? obtained from table 2.1;
this resulted in all 97 affected pairs and 53 random discordant pairs being selected.

Figure 2.3 illustrates the regression for this simulated data set.

One attractive feature of our approach is that it naturally allows combination of
sib pairs of different nature (more generally, pedigree pairs of different nature and
familial relationships). Each type of pairs contributes to the deviation from average
IBD sharing with a weight proportional to the average value of the C' function in the
corresponding region. Note that in practice, table I can also be used with pedigrees
consisting of other types of relative pairs. For example, if n% 4 pedigrees consisting
of affected cousins also are available then their contribution to the numerator of the
previous z will simply be Ca4 Z?:Af‘ (7§ — %) where C44 is drawn from table I
with K as the population prevalence of the trait and p equal to the trait tetrachoric
correlation between cousins. Our approach also offers an elegant solution to the
problem of prevalence heterogeneity in the population: if a data set consists of groups
with different disease prevalence, the contribution of each group to the overall test is

weighted accordingly (see Table I).

2.6 Discussion

In the context of the variance components model, we have given an expression of

the score test for linkage under sample selection based on phenotype values. It is

28



Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

S g

o

o
o
o

o

o 8
S o

ik :

£ 8

]

o ©

@7 o

o)

o

o

< 8

S <]

T T T T T
1 AU 0 1 2 3

Figure 2.3: Regression of m — % on C(x,p) for 150 selected sib pairs (K = 0.05, p = 0.4 and

v =0.15)

a general expression for arbitrary pedigrees which takes a very simple form in some
widely used designs. Commenges [1994] first introduced score tests in the context of
linkage, however his approach is not conditional on trait values and therefore leads
to reduced power in selected samples. In a recent article, Tritchler et al. [2003]
give a general score test in nuclear families conditional on the trait values under the
assumption that the trait distribution depends on different genetic models through
the exponential family. Our results give a very similar expression to theirs. In their
software implementation, they allow the population mean to be specified by the user
but not the population sib-sib correlation and our understanding is that the authors
attempt to estimate this correlation from the selected data, which potentially results
in power loss (unless the ascertainment mechanism is known). Our approach is to fully
acknowledge the fact that selected samples do not provide unbiased estimates of the

population trait distribution characteristics and to assume that unbiased estimates
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of the first and second moments of the population trait are available a priori. In the
context of the GenomEUtwin project, where twin registries provide us with precise
population mean and twin-twin correlation, this seems a realistic assumption.

The score test that we derive also has a simple interpretation in terms of regression
of IBD sharing on a function of the phenotypes. Sham et al. [2002] have recently
proposed a general method of analysis for quantitative linkage data which explicitly
regresses IBD sharing on all possible squared sums and differences of trait values
within a family. As shown in Section 2.2, the score test essentially is a regression
of the excess IBD sharing on a quadratic function of the trait values whose shape
depends on the normality assumption. When the data truly are normal, it seems
reasonable to expect that the score test results in similar regressor as in the method
of Sham et al. [2002]. We have compared the information content provided by the
two methods in sibships and nuclear families of different sizes and they happen to
exactly coincide. In fact, as demonstrated in a recently published paper [Chen et al.,
2004], the two methods are the same for quantitative traits under an additive model
(with trait correlations assumed to be the same over all pairs of relatives). The IBD
covariance matrix is determined solely by family relations; no marker information is
needed to compute it, which is a prerequisite to make it useful for selection prior to
genotyping. Note that calculation of the information index in [Sham et al., 2002] does
not require marker information either.

One possible criticism of the variance components model is that departure from the
normality assumption might invalidate its results. However, the analogy of the test
with regression methods, very much as the score test in unselected data coincides with
the optimally weighted Haseman-Elston regression [Putter et al., 2002], pleads in favor
of its robustness. In fact, as the regression interpretation of the score reveals, the test
depends on the distribution of the trait values only through its second order moments.
So as long as the shape of the distribution does not show any great departure from
normality for those moments (e.g. heavy tail) then the test should remain valid.
When the model clearly is wrong, the robust version of the test should preclude
over-optimistic inference.

We showed in Section 2.2 that in the current variance components setting under

which population marginal characteristics are known and the only unknown parameter
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is the linkage parameter -y, there is no loss of information when conditioning on trait
values. This is a direct consequence of the fact that scores for the selection model 7 | x,
the x | 7w model and the joint (x,7r) model are identical. The situation becomes more
complicated when population parameters are unknown and need to be conjunctly
estimated.

As announced in Section 2.2, we now turn to the case of imperfect IBD information.
In practice, 7 is not known with certainty. In fact, the only available data are
marker information which we denote M and the phenotypes x. Strictly speaking, the
likelihood to be considered should be expressed in terms of those data, i.e. we should
write f, (M, x) for the joint distribution of M and x and f,(M | x) for the conditional
distribution of M | x . It turns out that the score Kfyw for the M | x distribution simply
becomes the weighted average of the score £7 for the idealized fully informative model

éfy = . P(m| M) {7 and thus, with # = E(w [ M),
1
M = —vec(C)'vec(rt — E7t) .

Since Efr = Em, this result means that Formula (2.1) still holds true with imperfect
data but 7 values have to be replaced by estimates given marker data available 7.
Values of P(w|M) and 7 are calculated using for example the Lander-Green or
Elston-Stewart algorithms [Lander and Botstein, 1989] as implemented in publicly
available softwares like GENEHUNTER [Kruglyak et al., 1996] or MERLIN [Abecasis
et al., 2002]. Note that this result theoretically justifies (as mentioned by Commenges
[1994] and Tang and Siegmund [2001]) the use of the so-called # approach in variance
components linkage modelling for arbitrary pedigrees. The corresponding Fisher’s

information is given by

) = i vec(C)’ varys (vec(w)) vec(C) .

Given a marker map and a certain pedigree structure, Monte Carlo simulations can
be used to approximate varys (vec(7r)). A conservative alternative is to use Z7 as
given by Formula (2.4) instead of I,]yw in the standardization of E,]y . One consequence
of imperfect information in the case of sibships for example is that negative terms
appear on the off-diagonal components of the varys (vec(#)) matrix. When consider-

ing both additive and dominance variance components, the scores £7 and (7 derived
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in Section 2.4 are no longer orthogonal and the use of the test as defined in that
section is not optimal. It is possible to obtain the expression of a multivariate score
test that is asymptotically optimal [Verbeke and Molenberghs, 2003] and whose null
distribution ((1 — &)X + $Xx} + kX3, where £ depends on informativeness) can be
obtained using results in Shapiro [1988]. The details are beyond the scope of this
article, however the results appear in Wang and Huang [2002b] who consider only
random samples and therefore suggest to estimate the sib-sib correlation as well as
P(w = 0.5| M), E(#) and var(#) from the data. Interestingly, our derivation shows
that their approach is perfectly valid in selected samples too, provided the population
sib-sib correlation is known and unbiased values for P(w = 0.5 | M), E(#) and var(#)
are calculated (e.g. using Monte Carlo simulation technique described above). Note
that in selected samples, the use of population estimates for those 'nuisance’ parame-
ters amounts to constraining the regression through the origin and is critical in order
to maintain maximum power. In practice, the asymptotic results might fail to hold
in finite samples and it seems wise to use re-sampling methods (bootstrap) in order

to obtain a robust assessment of significance.

By use of the liability threshold model, the continuous case extends to the case
of dichotomous traits. Because of the well-known optimality properties of the score
test (which is asymptotically equivalent to the likelihood-ratio test), it provides an
efficient means to test for linkage in affected sib pairs and in discordant sib pairs as
well as a way to combine the two types of data when needs arise. More complicated
pedigrees can also be handled in a very flexible manner. In this selection framework
where IBD sharing 7 is considered conditional on the trait values x, the extension to

multiple traits, in analogy with multiple regression, should be fairly straightforward.

This score test approach has been implemented into a C program calling upon
the publicly available software MERLIN [Abecasis et al., 2002] and is available at

http://www.msbi.nl/Genetics .
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2.7 Appendix

Score test

The score function for v in the x| model is denoted by £% and by definition equals

2= % log f, (x| ) with

m 1 1 _
log fy(x|m) = ) log(27) — 3 log(|X2]) — §X,E 'x

Standard results on matrix algebra (see, e.g. [Searle et al., 1992, Appendix M.7]) show
that

&= % (T (r - Em)E 'x — tr(E (7 — Em))}
Because of the relation a’b = tr(ba’), the previous equation can be rewritten

1 _ —
K;‘:itr(z " —Em)(Z 'xx' 1)) .
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