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Chapter 1

In tro d u c tio n

Once the heritable character of a trait has been established, the strategies available for

gene m ap p ing m ay be sp lit into tw o classes. In the fi rst ’candidate gene’ ap p roach,

p rior biological k now ledge is available abou t the fu nction of one or several genes,

the scientifi c q u estion to be tested is w hether this lim ited nu m ber of p re-identifi ed

genes infl u ences the trait of interest. S u bseq u ently , researchers are u su ally interested

in q u antify ing those eff ects. A lthou gh the fi eld of genetics off ers som e p ecu liarities,

w ell k now n ep idem iological m ethods are su ited to answ er this ty p e of q u estions. T he

second ’p ositional m ap p ing’ ap p roach req u ires, in p rincip le, no p rior biological k now l-

edge bu t its p u rp ose is p erhap s less am bitiou s: it aim s at identify ing chrom osom al

regions w hich contain genes infl u encing a trait. A s far as the search for genes is con-

cerned, the fi rst ap p roach therefore is an hy p otheses-testing ex ercise w hile the second

ap p roach generates hy p otheses. link age as w ell as association stu dies fall into the p osi-

tional m ap p ing category . T he form er relies on the biological p rocess of recom bination

(see 1.1) and the latter on the p resence of link age diseq u ilibriu m (see also 1.1) in

p op u lations. In the traditional gene-m ap p ing p aradigm , p ositional m ap p ing p recedes

candidate gene-m ap p ing bu t the frontiers betw een the tw o categories are som etim es

fu z z y . Indeed now aday s, association scans often attem p t to com bine the tw o step s

together. T his thesis only deals w ith issu es related to link age m ap p ing.

1.1 S o m e b asic s in g en etic s

T his section introdu ces som e basic concep ts of genetics that are a p re-req u isite to the

u nderstanding of the p roblem of link age.

A gene is defi ned as a seq u ence of desox y ribonu cleic acid (D N A ) that codes a

p rotein; m ost of ou r D N A is non-coding. D esp ite this form al defi nition, the term gene
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Chapter 1. Introduction

is often loosely used to refer to a piece of DNA or genetic material, whether coding

or not. This imprecision in terminology is often a hurdle for statisticians willing to

enter the realm of genetics. Nevertheless, I will adhere to this practice. The genetic

material of human beings is stored in 23 pairs of chromosomes, 22 pairs of autosomes

and 1 pair of sex chromosomes. The transmission of this material from parents to

offspring occurs independently at each chromosome: each parent contributes one copy

of his/ her two genes at random to an offspring via their gametes, this is known as the

law of segregation or M endel’s first law. P arents, however, rarely transmit an entire

copy of one of their two chromosomes (termed grand-paternal and grand-maternal).

Instead, their transmitted chromosome is made up of alternating segments from the

grand-paternal and grand-maternal chromosomes. This exchange of genes between

the grand-paternal and grand-maternal chromosomes occurs during the formation of

gametes or meiosis at points called crossovers, as a result chromosomes in gametes

and resulting offspring are made up of recombinant chromosomes (see F ig.1).
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F igure 1.1: Chromosomes in gametes and offspring after recombinations - C indicates a crossov er

ev ent

This recombination process ensures genetic diversity, it is also the phenomenon

that makes linkage analysis possible because it introduces variation in genetic sim-

ilarity between relatives across one single chromosome. A recombination event be-

tween two chromosomal positions or loci is equivalent to an odd number of crossovers
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Chapter 1. Introduction

between those two loci in one meiosis, this happens at a certain rate called the re-

combination fraction θ. The recombination fraction increases with physical distance,

however the relation between the two varies across the genome. If two loci are close

together on the same chromosome, they are said to be linked; if they are very far

apart, on the same chromosome or on different chromosomes, they are unlinked and

the law of segregation implies that θ = 0 .5 . The genetic distance dAB (unit=Morgan)

between two loci A and B is defined as the average number of crossovers between

them per meiosis, by linearity of the expectation dAC = dAB + dBC (if B lies between

A and C). This additive property of the genetic distance scale is extremely convenient

but obviously does not apply to recombination fractions although this is the proba-

bilistic quantity needed for computations in linkage testing. Mapping functions that

convert recombination fraction θ into genetic distance m, or conversely, are therefore

available. One slightly simplistic but practically important such function is given by

H aldane’s function θ = 1

2
(1 − e−2m) which is obtained by assuming that the number

of crossovers between two loci follows a Poisson distribution with mean proportional

to the genetic distance between loci.

Since the genetic similarity between relatives extends over relatively large chro-

mosomal segments, it would be far too costly and ineffi cient to sequence the whole

genome of each individual. G eneticists have identified DNA polymorphisms (so called

markers) which can be seen as genes (in the loose sense) whose alleles (the different

forms that a gene can take) can easily be identified by modern molecular biology tech-

niques. It must be stressed that this technology can only determine the unordered

pair of alleles (or genotype) at each marker for the two paired chromosomes of an

individual. Classically, a few hundreds highly polymorphic genetic markers known as

micro-satellites are scattered more or less evenly across all chromosomes. Since they

have many and therefore relatively rare alleles, those markers allow one to tell whether

relatives share the same genes at that location with little uncertainty. Those markers

are usually taken in non-coding regions of the genome and are therefore believed,

due to lack of selective pressure, to be neither related with each other nor with the

potentially causing genes, in the overall population. In genetic jargon, the markers

are said to be in linkage equilibrium with each other and with the genes 1. Another

1In statistical terms, considering the one-allele genotypes of gametes at different loci as random
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Chapter 1. Introduction

type of (bi-allelic) markers known as single nucleotide polymorphisms (SNP) is now

routinely used in gene-association studies, these markers are more densely available

across the genome and they can be cheaply typed in chips called SNP-arrays. They

are now being used in linkage analysis too although their use is more problematic

due to linkage disequilibrium between them. Despite the intensive computations in-

volved in their use in linkage analysis, they offer the promise of a cheap and evenly

distributed linkage information map across the genome.

1.2 Overview of linkage methods

The first traits to be mapped by linkage methods were Mendelian i.e. they were rare

and determined in an almost one-to-one relation by the genotype at a single location.

W ith such strong genetic effects, the actual mode of inheritance (i.e. genetic model)

was fairly well known via segregation analysis (which only requires phenotypic data

in families). This type of traits lent itself very well to the so-called parametric linkage

methods. In its simplest version, this methodology postulates a genetic model for

the trait values Y given the genotype at the causing locus with genotype G via a

penetrance function P(Y |G). The likelihood L(M |Y ; θ) of the data at a marker

M given the recombination fraction θ between marker M and true locus can be

computed and the corresponding likelihood ratio test supθ

L(M |Y ;θ)
L(M |Y ; θ= 0 .5 ) provides a

test for linkage.

This model for linkage was appealing for Mendelian traits and did yield an un-

precedented harvest of genes for those rare diseases but it is much less suited for the

analysis of complex traits. The methodological emphasis has long switched to biomet-

rical models and to the so-called non-parametric linkage methods. This other branch

of methods is essentially based on identifying chromosomal regions where phenotypic

similarity coincides with genotypic similarity. The concept of identity-by-descent

(IBD) formalizes the idea of genetic similarity between relatives: two genes are said

to be IBD if they are copies of the same ancestral gene. The IBD configuration at

different loci in a pedigree is not observable directly but it can be conceived of as

variables (a haplotype is a possible value of the resulting multivariate random variable), two loci are

said to be in link age eq uilibrium if the genotypes at those two loci are independently distributed, if

not they are said to be in link age diseq uilibrium
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Chapter 1. Introduction

a hidden Markov process whose transition probabilities depend upon the recombi-

nation fractions [L ander and Botstein, 19 8 9 ] between loci. The observations at the

markers are used to calculate the IBD distribution at any arbitrary position on the

chromosome [K ruglyak et al., 19 9 6 ; Abecasis et al., 2002].

Continuous traits

For a quantitative trait, a Gaussian distribution naturally arises from the view that

many factors, whether environmental or genetic, with equally small individual effects

contribute to the trait. By further assuming a random mating population, one obtains

the so-called variance components model [L ange et al., 19 7 6 ; Amos, 19 9 4; Almasy and

Blangero, 19 9 8 ]. In a simple additive version of the model, the total trait variance

is decomposed into three sources: familial or common environment, additive genetic

and measurement error or unique environment. The covariance of two relatives turns

out to be the sum of the common environment variance and the additive genetic

variance times a kinship coefficient which is proportional to the average proportion of

genes that the relatives share. The model is often used in heritability and segregation

analysis where the purpose is to establish the genetic character of a trait and to further

characterize its mode of inheritance. Monozygotic twins have the same genes while

dizygotic twins share only half of them but the degree to which the environment is

shared by individuals in the two types of twinships is identical. Twin studies therefore

provide a simple design for testing for a purely genetic component.

If IBD was measured exactly at a causative additive gene, the covariance for two

relatives in the variance components model would include a term equal to the product

of kinship coefficient by the gene attributable variance σ2
q times the IBD sharing.

The test for linkage at any putative position is therefore based on rejecting the null

hypothesis that σ2
q = 0 in favor of the alternative σ2

q > 0. In unselected families,

this is traditionally done using a likelihood ratio test statistic. In practice, IBD

is measured at locations nearby the causing gene(s) and the estimated attributable

variance will be a deteriorated version of σ2
q , nevertheless the test statistic will tend

to be maximal at positions closest to the true gene location. The popularity of the

variance components model in quantitative trait locus (Q TL ) mapping is undoubtedly

due to its extreme flexibility: variance components corresponding to non-additive
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(dominant) gene effects, gene-gene interactions, gene by covariate interactions can

be accommodated, the model mean can be corrected for important covariate effects,

multivariate phenotypes can be conjunctly analyzed, the method can be adapted for

analysis of the sex-chromosomes [E kstrø m, 2004] and mixtures of variance components

models can be used to face the problem of locus heterogeneity (see 1.3) [E kstrø m and

Dalgaard, 2003]; these extensions are only hindered by the computations required for

fitting the corresponding models.

The much less computationally greedy regression-based methods for linkage anal-

ysis stem back to the work of Haseman and E lston [1972] who proposed to regress the

squared difference in phenotypic values of siblings on their IBD sharing. In 30 years,

many variations have appeared on the theme and they are all based on the regression

of some form of phenotypic similarity statistic on the IBD sharing. It is only recently

that light has been shed on the relation between Haseman-E lston regressions and the

score test of the linkage parameter σ2
q = 0 in the variance components model [Tang

and Siegmund, 2001; Putter et al., 2002; Wang and Huang, 2002a]: some optimal form

of Haseman-E lston regression happens to coincide with such a score test in an additive

variance components model for sibling pairs. The conceptualization of those regres-

sion methods as score tests in the flexible variance components model frameworks

has opened the way to fruitful generalizations of the regression-based methods e.g. to

arbitrary pedigrees. In addition to their light computational burden, regression-based

or score test based methods are appealing because of their potential robustness (in

terms of false positive rate) to normality and to outliers. Finally, by inverting the

regression i.e. IBD is regressed on a function of phenotypic similarity, the method

can in principle be used to make valid inference in families sampled using their trait

values [Sham et al., 2002].

Qualitative traits

For qualitative traits, which for linkage studies is almost synonymous of binary traits

(i.e. disease in the medical field), non-parametric testing for linkage is usually done

by comparing the average observed IBD sharing with its expected value under the

assumption of no linkage. In designs where only one type of independent relative

pairs is collected (e.g. affected sib-pair designs, ASP), this test based on deviation of
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IBD sharing uses 1 degree of freedom (df), while a totally model-free ASP analysis

necessitates a 2-df test [R isch, 1990]. Although the recognition of constraints for

the parameters reduces the space of alternatives [Holmans, 1993], the higher level

of significance required for the 2-df test often annihilates the gain in non-centrality

parameter and the 1-df test appears to be a good testing strategy for a wide range of

genetic models. Different types of independent relative pairs (e.g. affected sib pairs,

discordant sib pairs, affected cousins) can be combined by using a weighted average of

the excess IBD sharing of each kind; whatever the weights, provided markers segregate

in a Mendelian fashion, the test will have adequate type I error, however its optimality

will depend on how close the chosen relative weights are from the true relative excesses

in IBD sharing at the causative locus [Teng and Siegmund, 1997].

Although less attractive than when disease inheritance is clearly Mendelian, larger

families are sometimes sampled in linkage studies for complex traits. In that case,

IBD-based tests can be generalized by the use of sensible scoring functions of the

different IBD configurations in a pedigree [Whittemore and Halpern, 1994; Kong and

Cox, 1997]. Alternatively, locally optimal tests based on the likelihood of the IBD

configuration in each pedigree may be derived. The tests are pedigree-specific and

only optimal if the true relative weights of the different parameters are known but

sensible guesses provide decent efficiency across a wide range of genetic models [Teng

and Siegmund, 1997]. As in the case of families consisting only of pairs of relatives,

combining families of different types is a matter of assigning relative weights to the

family-specific tests.

The incorporation of covariate information into disease linkage studies has been an

active area of research in the past few years [Schaid et al., 2003]. The usual approach

amounts to regressing the IBD sharing on the covariates of interest in a linear or non-

linear fashion [Olson, 1999]. At least for categorical covariates, the approach can be

made non-parametric at the cost of an increase in the number of parameters, however

parsimonious models are needed in order to carry out efficient inference. Age is a

crucial covariate to take into account in order to include unaffected individuals in a

linkage study. Another way to approach the problem is to use the disease age of onset

as the possibly censored endpoint.
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Significance level

Since the position of the true locus is often completely ignored, the whole genome is

scanned using a linkage statistic on a grid of chromosomal positions, this multiplicity

of tests increases the false positive rate. The tests at neighboring positions are highly

correlated so a Bonferroni correction of the α level of each test is too conservative.

Asymptotic arguments based on the theory of Gaussian processes leads to approxi-

mate thresholds for the non-parametric methods statistics [Lander and Green, 1987;

Feingold et al., 1993]. These thresholds rely on the Haldane’s mapping function, they

depend on the type of families studied (which determines the correlation structure

of the process) and the degrees of freedom for the test; although they are derived

under the idealized assumption of a dense map of completely informative markers,

the thresholds seem to be only slightly conservative when applied to discrete evenly

distributed maps of partially informative markers [Teng and Siegmund, 1998]. Due

to a tradition dating back to the early days of parametric linkage [Morton, 1955], sta-

tistical significance of linkage tests is usually presented as a LOD score (originally a

log10 of the odds that a locus is linked versus unlinked) which is obtained by dividing

a χ2
[1]-distributed statistics by 2 × ln(10). In current practical situations of human

sib-pair linkage studies, a LOD score of 3 or higher gives a rule of thumb for declaring

that a 1-df statistics based on average IBD sharing is significant.

In practice, various types of families are often combined, marker information varies

across the genome and the assumptions underlying the linkage model (eg. normality

in variance components model) might not be fulfilled. Nowadays, researchers tend

to base their assessment of significance on simulations. Given the ’experimental con-

ditions’ of a study (marker map characteristics, pedigree structures and patterns of

genotype missingness), marker genotypes can be simulated under the null hypothe-

sis of no linkage i.e. by simply obeying the rules of Mendelian segregation. In that

way, provided the linkage statistic can be quickly computed, the null distribution of

the statistic may be obtained at any point on the genome. This method, sometimes

called gene-dropping, therefore yields point-wise empirical p-values. The number of

times the statistic exceeds a certain threshold on a given chromosome can be counted

(note that this entails the choice of a minimal distance for considering two consecu-
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tive peaks as separate). By combining the corresponding independent p-values on all

chromosomes, one can obtain a genomewide assessment of significance.

1.3 Issues in linkage mapping

Linkage analysis has been successful in the gene mapping of hundreds of mendelian

diseases, however application of the same methodology in the search for genes re-

sponsible for complex traits has proved extremely disappointing. Most studies often

provide only suggestive evidence for linkage, and when clearly significant, replication

of the findings appears to be the exception rather than the rule.

Failure of the linkage approach to gene-mapping of complex traits is often at-

tributed to locus heterogeneity i.e. the fact that the loci influencing a trait differ

across families or groups of families 2. This is indeed a problem likely to be more

acute in linkage studies of complex traits where data from numerous small families are

gathered as opposed to a small number of large families. A direct corollary of locus

heterogeneity is that linkage studies are under-powered. In fact, due to the polygenic

nature of complex traits, most studies probably lack the sample size to detect the

inherent small gene effects.

One obvious way to tackle the problem of heterogeneity is to refine the definition of

a phenotype by defining more homogeneous clinical subgroups, so instead of sampling

breast cancer patients, geneticists successfully selected families with early-onset breast

cancer. Researchers also try to select phenotypes that are likely to be more closely

related to a biological mechanism than a broadly defined disease itself. For instance

different plasma lipid levels can be measured in the search for genes involved in obesity.

One strategy for improving power is to resort to selective genotyping [Risch and

Z hang, 1995] i.e. to only genotype families whose extreme phenotypic values promise

to deliver high linkage information. Another natural route for solving the issue of

power is by a sufficient increase of the sample size. Collaborative efforts such as

the GenomEU twin project (http://www.genomeutwin.org/) are being set up

in order to gather sufficient data from different centers. This obviously calls for meta-

2Another type of heterogeneity called allelic heterogeneity refers to a situation where different

allelic mutations at the same locus contribute to a phenotype, however, linkage analysis is immune

to this type of heterogeneity
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analytic methodologies routinely used in the field of clinical trials.

It is also felt that the models underlying the linkage methods are too simplistic, for

instance, important covariates or interactions are often ignored. Although biologically

plausible, incorporation of gene-gene interactions in models for linkage analysis is

unlikely to yield substantial benefit [Tang and Siegmund, 2002; Purcell and Sham,

2004]. Using covariate information appears to be a more promising path towards a

refinement of the methods [Peng et al., 2005].

1.4 This thesis

This thesis presents some attempts to improve the current design and analysis of

linkage studies for complex traits. The statistical methodology adopted is driven by

the fact that genes involved in complex traits have small effects, it therefore seems

legitimate to use score tests [Cox and Hinkley, 1974] because of their local optimality

properties. In addition, score tests often give rise to tractable expressions, in the

context of linkage these can be meaningfully interpreted in terms of regressions and

quickly computed which is a crucial feature in genetics.

Chapter 2 deals mainly with the analysis of quantitative traits in families that

have been selected based on their trait values. We derive a general score test for

linkage in arbitrary pedigrees which is based on the likelihood conditional on the phe-

notypic values. Although the derivation of the test relies on the normally distributed

variance components model, its size is robust to deviations from normality. Under

local alternatives and assuming the variance components model correctly specifies the

distribution of the phenotype, the test has some optimality properties. In addition,

the value of the test’s Fisher information provides an indication of the informativeness

of each family and can be used as a criterion for genotyping selection. The test is

adapted to the case of binary data via a liability threshold model.

Chapter 3 advocates the use of selected families in the mapping of complex traits

using twins. The methodology relies on the informativeness criterion derived in chap-

ter 2, but we quantify the potential gains obtained using a series of examples of quan-

titative and qualitative phenotypes that are relevant to the GenomEUtwin project.

Chapter 4 addresses the issue of genotyping error in linkage analysis. We first
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study analytically the impact of genotyping error on linkage and provide formula

for the bias incurred. These results provide insights into some empirical findings,

in particular, we are able to explain the differences in impact of genotyping error

in random and selected designs. Finally, we suggest a robust modification of the

usual linkage test based on a genomic control of the excess IBD sharing, it provides

robustness against genotyping error as well as against other processes whose effect is

to distort the expected value of the IBD sharing.

Chapter 5 is concerned with the (in)validity of a range of standard methods when

marker information is incomplete, in particular circumstances where the generalized

estimating equations method for gene localization [Liang et al., 2001] fails are identi-

fied.

Chapter 6 transfers standard meta-analytic techniques to the field of QTL map-

ping. The field has some specificities that can be accommodated, in particular, the

problem of genetic locus heterogeneity is looked at carefully. In absence of covari-

ate observations at the individual level and under a homogeneous model, the meta-

analytic approach is asymptotically equivalent to an analysis of a pooled data set but

it is logistically much easier to carry out.

Finally, in chapter 7, we develop an approximate score test for linkage in the rich

class of generalized linear models. It is based on a pseudo-likelihood of the data and

although unlikely to be optimal in all situations, the test has the advantage of being

tractable and to have a robust type I error. It provides a simple way to incorporate

known covariate effects into linkage analysis and is applicable to arbitrary pedigrees.

The last chapter is a conclusion where I draw a perspective of the role of linkage

in gene mapping.
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