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General introduction

Preterm birth and the immature brain

Preterm birth is an important public health problem. In the Netherlands, each year 

approximately 14,000 infants are born prematurely at a gestational age (GA) of less 

than 37 weeks. This represents about 8.0% of all live births. Approximately 2,500 (1.4% 

of all live births in 2005) of these preterm infants are born very prematurely, at a GA of 

less than 32 weeks. The incidence of preterm birth has risen over the past decades and 

is still rising, partly because of the increase in some of the risk factors for preterm birth, 

including increased maternal age at first birth, more widespread application of fertility 

treatments, and more multiple pregnancies (1).

Important advances in the care of newborn infants during the past decades have 

greatly improved the survival and outcome of very preterm infants (GA < 32 weeks). 

Despite these advances, very preterm infants are still at risk of health problems, both 

during the neonatal period and later in life. One of the major complications of preterm 

birth is injury to the brain. 

In very preterm infants, important maturational processes of the brain still need to take 

place after birth (2-9). Very preterm infants spend a long, for brain development critical, 

period in an incubator on a neonatal intensive- or high-care unit, where undesirable 

visual and auditory stimuli are superfluous and intense. The clinical condition of most 

of these infants is unstable, requiring intensive respiratory and/or circulatory support. 

In addition, they frequently undergo stressful and painful medical and nursing 

procedures. Many infants need analgesic and/or sedative medication. All these factors 

may influence and destabilize cerebral blood flow and oxygenation, and thereby 

increase the risk of brain injury and deviant growth and development. 

Brain injury in very preterm infants forms an important problem, not only for the 

infants but also for the parents, health care and society in general. This is partly related 

to the large number of these infants who survive with serious neurodevelopmental 

disability, including cognitive, behavioral, attention or socialization deficits in 25-50% 

and major motor deficits in 5-10% (8-13). In many very preterm neonates neurological 

development is delayed and suboptimal in comparison with full-term neonates, even if 

their age is corrected for prematurity and/or without overt brain injury (14-20).
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Neuro-imaging

Imaging the preterm brain during the neonatal period has become an essential, basic 

part of the modern care of very preterm infants. The two most commonly used and 

valuable techniques to image the newborn infant’s brain are cranial ultrasonography 

(cUS) and magnetic resonance imaging (MRI). Computed tomography (CT) is nowadays 

only used under rare circumstances, especially as the radiation dose involved in CT 

scanning is significant and in most cases it has little or no additional diagnostic value 

compared to high-quality cUS. 

Cranial ultrasonography

cUS was introduced into neonatology as a diagnostic tool in the late 1970s. In short, 

ultrasound makes use of high-frequency sound waves that are sent into the body by 

the transducer. The sound waves are reflected at sites of density changes between 

and within tissues, e.g. between brain white matter (WM) and cerebrospinal fluid. 

The reflections of the sound waves are returned to the transducer, and processed and 

transformed into images by the ultrasound machine and software.

Advances in technology over the past decades have improved the quality of cUS 

imaging, and it is now the preferred technique for imaging the newborn infant’s brain 

throughout the neonatal period and thereafter until closure of the fontanels. cUS can 

be initiated at a very early stage, shortly after birth, and is the most readily available 

and easily repeatable tool. It is safe, non-invasive, and can be done at the bedside 

with little disturbance to the infant. In addition, it is reliable for detecting congenital 

and perinatally acquired anomalies of the brain and for following brain growth and 

development (8,14,21-24) (Chapters 2 and 3).

For detailed descriptions on the main aims of cUS imaging in newborn infants, 

performing a standard high-quality cUS examination through the anterior fontanel, 

use of additional acoustic windows, and recommendations on timing, see Chapters 2 

and 3 of this thesis and the practical guide to ‘Neonatal Cranial Ultrasonography’ by van 

Wezel-Meijler (8).

Although the advantages of cUS are numerous and widely appreciated, it also has 

several limitations that need to be acknowledged. These include that evaluation 

of superficial structures is often difficult, it is not always possible to precisely define 
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abnormalities in the cerebellum and posterior fossa, more diffuse and subtle changes 

may not be well detected, myelination cannot be visualized, and image quality can 

be affected by small acoustic windows and fluid and/or thick black hair between the 

transducer and brain. Consequently, there are several indications for (additional) MR 

imaging in neonates (8) (Chapter 4).

Magnetic resonance imaging 

MRI is a relatively new technique that has been used for medical imaging of the 

structure and function of the body for just over 30 years. It provides detailed images 

of the body, including its organs and tissues, in different planes. In short, MRI uses a 

powerful magnetic field to align the hydrogen protons in water molecules, of which 

the human body mainly consists, in the direction of the field. A radiofrequency pulse 

is then used to systematically alter the alignment of this magnetization, causing the 

hydrogen protons to produce a rotating magnetic field that is detectable by the MR 

scanner. This signal can be manipulated by additional magnetic field pulses to build up 

enough information to construct an image of (part of ) the body.

Since MRI was first introduced into neonatology for imaging the newborn infant’s brain, 

it has greatly contributed to our understanding of brain injury and maturation, and the 

prediction of neurodevelopmental outcome in both preterm and full-term neonates. 

Nowadays, MRI is becoming more widely available for clinical imaging, and higher field 

strength MR systems (1.5 and 3 Tesla), providing higher resolution images, are being 

used. Consequently, neonatal MR imaging has become increasingly important as a 

diagnostic tool (4,25-29) (Chapter 4). 

MR imaging has several advantages over cUS imaging. MRI demonstrates maturational 

processes of the brain, and changes therein, in great detail, and is more sensitive for 

assessing the exact site and extent and the origin of lesions. It thereby helps to define 

pathological processes and contributes to accurate prediction of outcome in newborn 

infants. MRI may (additionally) detect abnormalities in areas that are difficult to visualize 

with cUS, and is generally considered better for detecting diffuse and subtle injury 

(3-8,24,30-37). Modern MRI techniques, including diffusion-weighted and diffusion-

tensor imaging, allow assessment of both the macro- and microstructure of brain 

structures and tissues, quantification of brain growth and development, and very early 
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detection of hypoxic-ischaemic injury. In addition, quantitative volumetric analysis, 

either manually or (semi-)automatically, enable volume measurements of different 

structures and tissues, including the deep and cortical grey matter (GM), myelinated 

and unmyelinated WM, and cerebrospinal fluid spaces (32,38-47). 

However, although safe, MRI is a more burdening neuro-imaging technique to the sick, 

very preterm infant than cUS; the infant needs to be transported to and from the MR 

unit and mostly cannot stay in its own incubator during the examination. This poses 

challenges regarding patient preparation, monitoring, temperature regulation and 

safety. Very early imaging, within a few hours of birth, is therefore difficult to realize 

and, unlike sequential cUS, repetitive MR examinations, particularly to follow brain 

maturation and the evolution of injury throughout the neonatal period, are undesirable 

in these vulnerable patients (Chapter 4). Neonatal MR imaging also poses challenges 

with regard to optimal timing and sequence optimization, partly because of the very 

high water content of the immature neonatal brain that decreases with ongoing 

maturation (4,8,29,35,48) (Chapter 4). In addition, some brain findings, including 

lenticulostriate vasculopathy (LSV), calcification, germinolytic cysts and abnormality of 

the choroid plexus, are better or only visualized by cUS (33,49). 

For all these reasons, cUS and MRI are nowadays mostly considered to be complementary 

neuro-imaging tools. In very preterm infants, we rely on sequential cUS throughout 

the neonatal period and a single MRI examination, preferably performed around term 

equivalent age (TEA). In our hospital, all neonatal MRI examinations are performed 

according to standard protocols for imaging the newborn infant’s brain, which can be 

adjusted in individual cases based on the infant’s clinical course and cUS findings (8) 

(Chapter 4).

Brain growth and development

Important maturational processes of the brain, including gyration, myelination, cell 

migration, germinal matrix involution and increase in volume, weight and surface area, 

take place during the late fetal period and early infancy. As mentioned above, in very 

preterm infants these processes, normally almost completely (gyration, cell migration) 

or partially (myelination, brain growth) occurring antenatally, need to take place after 

birth (2-7). 
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The maturational processes can be visualized with modern neuro-imaging techniques 

and show as (age-)specific phenomena on cUS and MRI, changing continuously with 

age. To distinguish these processes from pathology, it is important for those performing 

cUS and MRI, and particularly for those assessing the images, to be well informed 

on normal brain growth and development, on phenomena reflecting maturational 

processes on cUS and MRI, and on (gestational) age-related patterns of brain injury. In 

very preterm neonates, this not only includes signal changes on cUS and MRI in brain 

tissues such as the WM and deep GM and changes in size and structure of the brain 

over time, but also alterations in brain size and structure in comparison with full-term 

neonates at equivalent postmenstrual age. 

Gyration starts very early, in the second trimester of pregnancy, and continues in an 

orderly and predictable way, proceeding from the posterior to the anterior parts of 

the brain. In infants born extremely prematurely (24-26 weeks’ GA), the surface of the 

brain is still very smooth and has a lissencephalic appearance. Gyration is normally 

completed around term age, when the brain surface has an almost mature appearance. 

Consequently, in very preterm infants the brain surface before TEA, as depicted 

by neuro-imaging, differs substantially from that around TEA (4,6,8-9,41,50-55). 

(Quantitative) MRI studies have shown that very preterm neonates around TEA have 

less complexity of cortical gyration and reduced cortical GM volumes compared with 

full-term neonates (38,43,45,47,52). 

Like gyration, myelination starts during the second trimester of pregnancy and 

progresses in an orderly and predictable way, proceeding from the central to the 

peripheral parts and from the posterior to the anterior parts of the brain. The posterior 

brainstem is the first structure to become myelinated, while the anterior brainstem, 

internal capsule and cerebral hemispheres do not start to myelinate until the mid-third 

trimester. Myelination proceeds rapidly during the late fetal period and infancy, and 

continues until early adolescence. In very preterm infants, myelination largely takes 

place after birth (2-5,7-9,41,50,52-53,56). Although myelination is only depicted by MRI 

and not by cUS, myelination, cell migration and germinal matrix involution do result in 

changes in the WM that are shown on cUS (8,24). 

The germinal matrix is a highly cellular and vascular structure producing neuroblasts 

and glioblasts. It lines the entire wall of the lateral and 3rd ventricles during early 
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gestation, and regresses from 24 to 26 weeks onwards. After 34 weeks’ gestation, 

remnants only remain in the caudo-thalamic notch and temporal horns of the lateral 

ventricles. In very preterm infants before TEA, the germinal matrix can be detected on 

cUS as small areas of high echogenicity, mostly only around the caudo-thalamic notch, 

while on T1- and T2-weighted MR images it is clearly visible as a respectively high and 

low signal intensity zone in the ventricular wall (4,8-9,24,41,50,57). 

From the first trimester of pregnancy onwards, neurons and glial cells migrate through 

the WM, from the germinal matrix towards the immature cortex. Neuronal cell migration 

is complete around 20 weeks’ gestation, while migration of glial cells continues until 

late gestation (second and third trimester) (4,9,57-59). In very preterm infants during 

the early preterm period, glial cell migration is visible on conventional MR images as 

bands of alternating signal intensity (4,24,35,41,50,57-62). On cUS, this process may 

be represented by bilateral, symmetrical areas of subtle increased echogenicity in the 

frontal and parietal periventricular WM (8,24).

In fetuses and in very preterm infants during the early preterm period, the extracerebral 

spaces are often wide and the lateral ventricles wide and asymmetrical (predominantly 

left-sided and occipital horns). Due to brain growth and fluid loss during the first few 

postnatal days, these spaces gradually become smaller with age (4,8). However, in most 

preterm neonates around TEA, cerebrospinal fluid spaces are wider in comparison with 

full-term neonates (9,40,43,45,47,62).

Brain injury 

As in very preterm infants brain maturation largely takes place after birth, their brains 

are vulnerable to injury and deviant growth and development. Brain injury is a major 

cause of neurological handicaps in very preterm infants (8-13). In addition, in many 

very preterm infants neurological development is suboptimal, even if corrected for 

prematurity and/or without overt brain injury (14-20). It can therefore be hypothesized 

that some forms of cerebral pathology are overlooked or not demonstrated by currently 

used imaging techniques, that brain growth and/or development is disturbed, and/or 

that certain phenomena are incorrectly considered normal because they frequently 

occur in this age-group (32,38,41,43,63). 
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In newborn infants, the pattern of brain injury varies, depending not only on the origin 

(i.e. traumatic, ischaemic, hypoglycaemic, inflammatory and/or haemorrhagic) and 

severity of the insult, but also on the postmenstrual age at the time of the insult. In very 

preterm infants, the periventricular WM and germinal matrix are the most vulnerable to 

injury during the perinatal period (9,64). 

Early neuro-imaging studies in very preterm infants were mainly directed at the detection 

of peri- and intraventricular haemorrhage, periventricular haemorrhagic infarction, 

post-haemorrhagic ventricular dilatation and cystic periventricular leukomalacia (PVL) 

(27,65-74) (Chapter 2). Over the past decades, the incidence of these abnormalities has 

decreased and the distribution of WM injury has shifted from cystic and focal lesions to 

more diffuse and/or subtle changes (9,25,30-31,33,36-37,43,63,75-79). In very preterm 

infants around TEA, dilatation of the lateral ventricles, widening of extracerebral spaces 

and decreased complexity of gyration are nowadays frequently reported (9,38,40,42-

43,45,47,62). In addition, cUS and MR imaging have improved considerably. Recent 

studies describing the incidence and evolution of various brain imaging findings in 

very preterm infants, as detected with modern, high-quality cUS and MRI, are limited. 

Identification of risk factors for brain abnormalities in very preterm infants may 

contribute to appreciating the infants at risk and to early detection and intervention. It 

may even contribute to prevention of brain injury and neurological sequelae. Previous 

studies have described risk factors for different forms of injury occurring in the preterm 

infant’s brain (31,77,80-95). However, neonatal care has advanced and the relation 

between more diffuse and/or subtle forms of WM injury and clinical data is still largely 

unknown. Recent studies on risk factors for brain abnormalities in very preterm infants 

throughout the neonatal period are scarce.  

White matter

The WM of the cerebral hemispheres predominantly consists of fibres of the cortico-

spinal tracts, including descending motor fibres, association fibres and optic radiations. 

It plays an important role in many functions, including motor control, cognition, 

behavioural and attention functions, and vision. Injury to and/or deviant growth and 

development of the WM may therefore lead to significant neurological sequelae, such 

as spastic motor disorders, cognitive deficits, behavioural and attention deficits, and 

visual impairment (9).
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In the preterm infant’s brain, the periventricular WM is largely unmyelinated and has 

a very high water content. Myelination of the WM starts in the mid-third trimester of 

pregnancy, and progresses at a high rate until the first months after term age. During 

the early preterm period, glial cells are still migrating through the WM. In addition, up to 

the first months after TEA, the volume of the WM increases considerably. Consequently, 

in preterm infants, the WM changes almost continuously from birth until early infancy 

(2-5,7-9,41,50,52-53,56-59). 

MRI shows these maturational processes in the WM in detail (2-5,7-9,24,41,50,53,57-

62). As cUS is the preferred and usually the initial technique for sequential imaging of 

the preterm infant’s brain (8,14,21), it is important to define phenomena that represent 

normal maturational processes as visualized on cUS. 

Bilateral, symmetrical areas of increased echogenicity are frequently encountered on 

cUS scans of apparently well preterm infants. The areas are mainly located in the frontal 

and parietal periventricular WM, are less echogenic than the choroid plexus, and do 

not evolve into obvious lesions. They usually have a linear or smoothly rounded shape. 

Some of the areas have been correlated anatomically with areas of glial cell migration 

in the preterm brain before TEA (8,24). It can therefore be hypothesized that these 

bilateral, symmetrical echogenic areas reflect maturational processes of the immature 

WM on cUS, comparable to areas of altered signal intensity in the periventricular WM, 

previously suggested to represent maturational processes, on MRI (4,24,41,50,57-58,60-

62).

As mentioned above, in very preterm infants, the distribution of WM injury has shifted 

from cystic and focal lesions, such as cystic PVL and periventricular haemorrhagic 

infarction, to more diffuse and/or subtle changes, such as periventricular echodensities 

(PVE) on cUS and punctate WM lesions (PWML) and diffuse and excessive high signal 

intensity in the WM (DEHSI) on MRI. Recent studies have focused on the detection and 

implications of these latter WM changes (9,15,24,30-31,33-34,36-37,62-64,75-79,84,96-

99). 

Echodensities in the periventricular WM (PVE), also referred to as periventricular flaring, 

are frequently encountered on cUS scans of very preterm infants, and may represent 

ischaemic and/or inflammatory damage (9,22,64). PVE are transient, persisting for 

a variable period of time, and can subsequently resolve or evolve into cystic lesions 
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(22,24,36). When persisting for more than 7 days, PVE are considered the first stage of 

PVL (22). PVL often leads to neuronal/axonal injury, affecting not only the WM but also 

the deep and cortical GM, cerebellum and brainstem (9,64). In preterm infants, cystic 

forms of PVL have been associated with reduced WM and deep and cortical GM volumes 

and increased volumes of cerebrospinal fluid spaces around TEA (42-43,47). They often 

lead to neurological impairment and are mostly well detected by cUS (15,63,100). If 

long-lasting, milder forms of PVE, not evolving into cysts, may also be associated with 

suboptimal or deviant neurological development, especially when combined with 

changes in size and/or shape of lateral ventricles (15,19,33,76,97,99,101). It is important 

for clinicians to distinguish pathological PVE, especially those leading to neurological 

sequelae, from phenomena representing maturational processes in the immature WM 

on cUS (24,102).

Concerns have been raised that cUS is not a good tool for detecting subtle and/or 

diffuse WM injury, particularly as seen on MRI of very preterm infants around TEA, 

such as PWML and DEHSI (9,30-31,33,36,62-63,75-76,78-79,98,100,103). PWML show 

as small areas of high signal on T1- and low signal on T2-weighted MR images. They 

are mostly isolated or linearly in organization and located in the periventricular WM at 

the level of the centrum semiovale and/or adjacent to the optic radiation (31,75,98). 

DEHSI shows as areas of excessive high signal intensity diffusely distributed within the 

periventricular and/or subcortical WM on T2-weighted MR images (33). These subtle 

and/or diffuse forms of WM injury have been associated with changes in diffusivity in 

the WM, with deviant brain growth and development, and with decreased WM and 

deep and cortical GM volumes and increased volumes of cerebrospinal fluid spaces 

(25,31,42-43,47,62,80,98). Several authors have attempted to find cUS-correlates for 

PWML and DEHSI, but so far these have not been established (30,33,36,63,75-76,78-

79,100). Although the clinical importance of subtle and/or diffuse WM injury on MRI 

has not fully been elucidated, preterm infants with this finding seem to be at risk of 

motor and mental impairment (9,30-31,33,63-64,96-98). The low sensitivity of cUS for 

subtle and/or diffuse WM injury has prompted several authors to suggest a standard 

MRI examination in all very preterm infants (63,76,78,100). Recent studies on WM injury 

in very preterm infants using frequent, sequential high-quality cUS throughout the 

neonatal period and/or assessing not only changes within the WM but also other brain 

changes thought to be related to WM injury (such as ventricular dilatation) are limited. 
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Deep grey matter

The deep GM, i.e. the basal ganglia and thalami (BGT), is important in the guidance of 

signals to and from other brain structures; all information to and from the cortical GM 

is guided through and modulated by the thalamus (9,64). Consequently, the deep GM 

plays an important role in many functions, including motor control, cognition, affective 

functions and vision. Injury to and/or deviant growth and development of the deep 

GM may therefore lead to significant neurological sequelae, such as motor problems, 

cognitive deficits, affective deficits and visual impairment (9).

The basal ganglia consist of the caudate nucleus and lentiform nucleus, which is 

subdivided into the globus pallidus and putamen. The caudate nucleus, lentiform 

nucleus and thalamus are separated by the anterior and posterior limbs of the internal 

capsule (104). Myelination of the deep GM starts early, at the beginning of the third 

trimester of pregnancy. It then progresses rapidly throughout the different areas of 

the deep GM until 3 months post-term. Consequently, in preterm infants, the deep GM 

changes almost continuously from birth until maturation is complete (2,4-5,7,56).

MRI shows the maturational processes in the deep GM in detail, as has been described by 

several authors (2-5,7,61). However, albeit less detailed, cUS may also show maturational 

processes in these structures in very preterm infants (72,105). Although, so far, this has 

received little attention, it is important to define phenomena that represent normal 

maturational processes of the immature deep GM as visualized on cUS in very preterm 

infants, and to distinguish these from pathological processes.

Echogenicity of the BGT region (EG-BGT) is frequently encountered on cUS scans of 

very preterm infants and fetuses. EG-BGT is mostly seen as bilateral, subtle and diffusely 

increased echogenicity in the BGT region in comparison with surrounding tissue. Its 

origin and clinical significance in both preterm infants and fetuses are largely unclear 

(72,105-106). It can be hypothesized that EG-BGT, like the bilateral, symmetrical 

echogenic areas in the frontal and parietal periventricular WM mentioned above 

(24,102), represents a normal maturational phenomenon of the immature deep GM. 

However, like mostly more distinct, demarcated and often more inhomogeneous 

echodensities in the BGT in (near) full-term neonates (107-109), it may also reflect 

ischaemic and/or inflammatory damage and be of clinical importance.
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Injury to the deep GM seems relatively infrequent in very preterm infants. The main 

forms of injury to the BGT include localized lesions that are unilateral or bilateral and 

mostly reflect infarction of the lenticulostriate branches of the middle cerebral artery 

and haemorrhage. They have been associated with suboptimal neurodevelopmental 

outcome (19,110-114). The incidence of these focal lesions in preterm infants seems 

low, with incidences reported up to 5% for cUS and up to 8% for MRI, and they appear 

to resolve before TEA (19,31,33,105-106,111,115-117). 

Another, more frequent localized finding in the deep GM of very preterm infants is 

LSV. LSV is depicted by cUS as an unilateral or bilateral punctate, linear or branching 

echogenic structure in the distribution of the thalamo-striatal vessels. It has been 

associated with a wide variety of clinical conditions of the fetus and neonate, including 

congenital (e.g. TORCH) and acquired neonatal infections, chromosomal abnormalities, 

congenital heart disease, other congenital malformations, hypoxic-ischaemic events, 

and metabolic disorders (23,49,118-135). In addition, it occurs more often in infants of 

multiple pregnancies, particularly monochorionic twin pregnancies, than of singleton 

pregnancies and in full-term neonates than in preterm neonates (123,126,136-138). 

However, the incidence, aetiology and clinical significance of LSV in very preterm infants 

are largely unclear, and so far no MRI-correlate has been established (121,123,127). 

Finally, recent studies have described visually and quantitatively assessed reductions 

in deep GM volumes in preterm neonates around TEA in comparison with full-term 

neonates, being more prominent in case of WM injury (31,39,43,46,64,115,139-141). 

However, neuro-imaging data on growth and development of the deep GM, and their 

relation with WM injury, in very preterm infants are limited (43,46,115).

Outline of the thesis

The general aim of this thesis is to study and describe brain imaging findings in very 

preterm infants, including normal maturational phenomena as well as pathological 

changes, using modern, high-quality imaging techniques. 

This thesis reports the results of 11 reviews and original studies on neuro-imaging in 

(very preterm) neonates and is divided into six parts. Except for the study in Chapter 



Chapter 1

22

7, which was performed at the Hammersmith Hospital, London (United Kingdom), 

all studies were performed at the tertiary neonatal referral centre of the Leiden 

University Medical Center, Leiden (the Netherlands), and restricted to the population 

of infants born very prematurely (GA < 32 weeks). We selected this population as very 

preterm infants are the most at risk of experiencing brain injury, and are a relatively 

homogeneous group with respect to the occurrence of brain injury and severity of 

illness. Besides the studies reported in Chapters 8 and 10, all studies had a prospective 

design and were performed in large (consecutive) cohorts of very preterm infants.

Part II reviews the techniques used to image and follow the newborn infant’s brain 

during the neonatal period. 

Chapters 2 and 3 discuss our experience on neonatal cUS imaging and address issues 

on technical aspects, appropriate timing and protocols, diagnostic accuracy, safety, and 

optimizing its performance.

Chapter 4 discusses our experience on neonatal MR imaging and addresses its 

indications, technical aspects and sequences, appropriate timing and protocols, safety, 

and patient preparation and transportation.

Part III gives an overview of brain imaging findings in very preterm infants.

Chapter 5 describes the incidence and evolution of brain imaging findings, assessed 

with frequent, sequential cUS throughout the neonatal period and MRI around TEA. The 

accuracy of both techniques is compared for findings seen around TEA.

Chapter 6 reports the relation between frequent and/or clinically relevant brain 

imaging findings during the early neonatal period and around TEA and several 

potential perinatal risk factors. It is evaluated whether risk factors have changed over 

recent decades. 

Part IV focuses on imaging of the WM in very preterm infants.

Chapter 7 describes the incidence and origin of bilateral, symmetrical and subtle 

echogenic areas in the frontal and parietal periventricular WM, frequently seen on cUS 

scans of apparently well preterm infants. cUS scans are compared with contemporaneous 

T2-weighted MR images to identify MR-correlates for these cUS phenomena.



General introduction and Outline of the thesis

23

Chapter 8 assesses the value of sequential, neonatal cUS and MRI within the first 

3 months after birth for detecting WM changes, and for predicting short-term 

neurodevelopmental outcome based on WM changes. 

Chapter 9 evaluates the reliability of a classification system for grading WM injury, 

based on a combination of findings in the WM and abnormality of lateral ventricles 

on frequent, sequential cUS throughout the neonatal period, using a MRI classification 

system as reference standard.

Part V focuses on imaging of the deep GM in very preterm infants. 

Chapter 10 assesses the incidence, clinical significance and origin of bilateral, subtle 

and diffusely increased echogenicity in the basal ganglia and thalami (EG-BGT), 

frequently seen on cUS scans of very preterm infants. EG-BGT is related to findings in 

the deep GM on MRI and to short-term neurological outcome.

Chapter 11 systematically describes imaging findings of the deep GM, and their relation 

with age and WM injury, assessed with sequential, neonatal cUS and MRI around TEA. 

The incidence and characteristics of EG-BGT and its relation with other brain imaging 

findings and quantitative measurements of the deep GM are studied. Additionally, the 

relation between quantitative measurements of the deep GM, indicative of growth and 

development, and age and WM injury is assessed.

Chapter 12 studies the incidence, evolution and clinical significance of LSV, as seen on 

frequent, sequential cUS throughout the neonatal period. LSV is related to perinatal 

clinical parameters, previously associated with brain injury in preterm infants, and to 

findings in the deep GM on MRI. 

Part VI

Chapter 13 gives an overview of the main findings and conclusions of the reviews and 

original studies reported in this thesis, and discusses future perspectives and proposals 

for further research. 

A summary in English is presented in Chapter 14, and a summary in Dutch in Chapter 

15.
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