
A quest for connections : ligands for the HCA2, adenosine A3 and GPR88
receptors
Blad, C.C.

Citation
Blad, C. C. (2012, November 15). A quest for connections : ligands for the HCA2, adenosine
A3 and GPR88 receptors. Retrieved from https://hdl.handle.net/1887/20128
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20128
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20128


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20128  holds various files of this Leiden University 
dissertation. 
 
Author:  Blad, Clara Catelijne 
Title: A quest for connections : ligands for the HCA2, adenosine A3 and GPR88 
receptors 
Date:  2012-11-15 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20128
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 1

General introduction





General introduction

11

G protein-coupled receptors in health and disease
G protein-coupled receptors (GPCRs), alternatively called 7-TM receptors (for 7 
transmembrane domains), comprise a large family of eukaryotic membrane proteins. 
When a GPCR is activated, for example by a hormone or a neurotransmitter, it transfers 
the message to intracellular signaling cascades. The most well-known of these cascades 
involve G protein activation, but recently it has become clear that other possible signaling 
mechanisms exist. In the end, these GPCR signals mediate vital functions of the human 
body, such as perception of the world around us, communication between the brain and 
other parts of the body, energy storage or mobilization, movement and fertility. 

Table 1. Examples of drugs acting on GPCRs. Adapted from [5].

GPCR Drug Indication

β2 adrenergic albuterol asthma

angiotensin AT1 losartan hypertension
calcitonin calcitonin osteoporosis
dopamine D2 haloperidol schizophrenia

gonadotropin-releasing factor goserelin cancer
histamine H2 ranitidine ulcer

serotonin 1D sumatriptan migraine
leukotriene pranlukast allergy, asthma
µ opioid morphine pain

Figure 1. Common secondary structure of GPCRs. A: Schematic representation of a GPCR, indicating transmembrane 
domains 1-7 (TM1-7), the α-helical domain termed helix 8 (H8), a palmitoylation site next to it (zigzag line) and two 
potential glycosylation sites in the N-terminal tail (Y shapes). From [6]. B. High-resolution crystal structure of the 
β2 adrenoceptor bound to carazolol (blue) together with the stabilizing T4 lysozyme protein (green) in place of the 
third intracellular loop. The helices that are shown next to each other in A form a barrel-like arrangement here, 
which is probably the form of the protein in vivo. The helices are indicated in roman numerals, including helix VIII 
in the C-terminal region. A small helix in extracellular loop 2 (ECL2), which may be typical for this receptor subtype, 
is also clearly visible. From [7].
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A total of 799 verified human GPCRs are known, thus representing about 3% of all genes 
in our genome [1]. These receptors bind to a large variety of ligands including small 
organic compounds, lipids, peptides, proteins and even photons. Approximately 50% of 
the GPCR repertoire is dedicated to olfaction.
From a pharmacological point of view, GPCRs are interesting drug targets because they 
are implicated in many different pathophysiological processes. Furthermore, it is relatively 
straightforward to design molecules that interact with GPCRs and this type of drugs are 
successfully used in the clinic [2]. An estimated 30 to 40% of all available drugs target 
GPCRs, with annual sales of over 65 billion dollars [3]. Some examples are given in table 
1. The variety of indications, for which these drugs are used, illustrates the omnipresence 
of GPCRs in the human body.
On a molecular level, all GPCRs have a common secondary structure. Their most striking 
features are the seven hydrophobic membrane-spanning alpha-helices (TM1-7) [4]. 
Extracellular and intracellular loops (EL and IL) connect the helices, and an extracellular 
N-terminal domain and intracellular C-terminus complete the protein (see figure 1A). The 
TM helices have been shown to form a barrel-like tertiary structure in the membrane, with 
TM1 and TM7 in close proximity (figure 1B). 

GPCR classification
Several classifications have been proposed for the GPCR superfamily on the basis of 
primary structure, endogenous ligand specificity and species source. In a classical system 
by Kolakowski, the GPCRs are segregated into seven families or classes (A-F and O) [8]. 
A modern version of this system is used in the GPCRDB database www.gpcr.org [9], 
distinguishing the following classes: A: rhodopsin-like, B: secretin-like, C: metabotropic 
glutamate-like, D: pheromone receptors, E: cAMP receptors and F: frizzled/smoothened. 
After the human genome sequence became available, a slightly different system called 
GRAFS was proposed [10-12]. In this system, the classes are named Glutamate, Rhodopsin, 
Adhesion, Frizzled and Secretin, plus a recent addition, Taste2. Thus, class B from the 
A-F system is divided in the Adhesion and Secretin classes, which reflects the inherent 
differences between these receptor clusters. Classes A (Rhodopsin), B (Secretin&Adhesion) 
and C (Glutamate) are most important in mammalian physiology. Of these, class A is by 
far the largest and most diverse. It contains 672 receptors, which includes 388 olfactory 
receptors [13]. The GPCRs that will be discussed in this thesis all belong to the class A, 
rhodopsin-like, GPCR family.

Properties of Rhodopsin-like GPCRs
Although the class A receptors are highly diverse in sequence and ligand binding 
properties, certain residues in the TM regions are conserved (see figure 2). Most striking 
are the microdomains D/ERY (TM3), CWxP (TM6) and NPxxY (TM7). Furthermore, two 
conserved cysteine residues are present in the extracellular domain, at the end of TM3 and 
in extracellular loop 2. They are thought to form a disulfide bridge in most class A GPCRs, 
which may be crucial to structural integrity and receptor function (see for example [14]).
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The position of the ligand binding site varies among class A receptors. Small ligands (such 
as biogenic amines, nucleosides, eicosanoids, lysophosphatidic acid and sphingosine-1-
phosphate) bind in a so-called TM cavity, formed by the seven TM alpha helices ([15] 
and references therein). The ligands for the hydroxy-carboxylic acid receptors and the 
adenosine receptors, which are described in the present work, fall in this category. Larger 
ligands, such as peptides and glycoprotein hormones, interact with the N-terminus 
and/or the extracellular loops, and in some cases also with the outer portions of the 
transmembrane helices. Examples are oxytocin, vasopressin, opioids, thyroid-stimulating 
hormone (TSH) and follicle-stimulating hormone (FSH) [16].
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Figure 2. Conserved features and structural motifs within the Class A, rhodopsin-like, GPCRs. The lower part of 
the figure shows the conserved residues from eight diverse class A GPCRs. Conserved residues are shown as circles 
colour-coded for amino acid properties. In the blue boxes conserved class A motifs are indicated with uppercase 
letters for completely conserved positions, lowercase letters for well-conserved positions (>50%) and x for variable 
positions. Conserved cysteine residues are shown in yellow and the disulphide bridge between EL1 and EL2, 
which is conserved in most GPCRs, is indicated as two lines. Dashed black lines show hydrogen bonds within 
bovine rhodopsin whereas dashed blue lines (from DRY to 247 and 251) show the postulated ionic lock, which is 
thought to keep the receptor in the inactive state. Dashed red lines display Van der Waals interactions within the 
β2-adrenoceptor model. In the upper part of the figure different N-termini of class A GPCRs are shown. The scissors 
indicate the cleavage site for the protease-activated receptors (PARs). From [13].
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High-resolution GPCR structures
Recently, some of the most important advances in the field have been made using 
X-ray crystallography. Structural analysis of GPCR molecules is very challenging and 
until recently, only the structure of rhodopsin was known [17-19]. In the last four years 
crystallization efforts finally paid off with the elucidation of high resolution crystal 
structures of squid rhodopsin, the β2 adrenergic receptor (β2AR), the β1AR, the A2A 
adenosine receptor (for a review see [20], see also figure 1), and most recently, the CXCR4 
receptor [21], the dopamine D3 receptor [22] and the histamine H1 receptor [23]. These 
receptors were all stabilized in the inactive state, since this facilitates crystallization. For 
(rhod)opsin, the active apoprotein was also crystallized [24-25]. In 2011, active, transmitter-
bound GPCRs have finally been crystallized, namely rhodopsin [26-27], the human β2AR 
[28] and the adenosine A2A receptor [29-30]. The newest structure of activated β2AR is even 
complexed with a Gs protein [31]. This new (relative) wealth of structural information 
has increased our understanding of the structure of the specific GPCRs, the position 
of the ligand binding pockets and the orientation of the ligands in those pockets. The 
structures of the different receptors are remarkably similar, confirming that the secondary 
and tertiary structure of GPCRs is highly conserved, although there are, of course, subtle 
differences. For example, the binding pocket of the antagonist ZM241385 in the A2A 
receptor was not as was anticipated on the basis of the β2 adrenergic crystal structure 
with its antagonist carazolol. Therefore, care should be taken when homology models are 
used to predict the structure of a receptor that has not been crystallized yet. Comparison 
of active and inactive structures suggests that binding of an agonist results in conserved 
rearrangements near the binding site, which then propagate through the transmembrane 
domains to yield an active state. Binding of a G protein or substitute seems necessary to 
stabilize a fully active state [32].

Receptor activation leads to G protein signaling
GPCRs form an important connection between the outside and the inside of the mammalian 
cell. When an endogenous agonist like a hormone or a neurotransmitter binds to a GPCR, 
a conformational change occurs in the receptor protein, which commonly leads to the 
activation of a G protein (guanine nucleotide-binding protein) [33]. The G protein α subunit 
will release GDP from its GTPase catalytic site and bind GTP. This causes the G protein to 
dissociate from the GPCR, and divide into the α subunit and the βγ complex. Both parts of 
the G protein can activate downstream effectors. The main Gα families are Gαs, Gαi/0 and 
Gαq. Gαs stimulates adenylate cyclase, thus stimulating cAMP production, whereas Gαi/0 
has the opposite effect, inhibiting adenylyl cyclase. Gαq can stimulate phospholipase C, 
which causes an increase in cytoplasmic calcium concentrations. Gβγ dimers can activate 
phosphoinositide 3-kinases, which in turn activate other proteins, including MAP-kinases. 
Interestingly, these mitogen-activated protein kinases can also be activated by GPCRs via 
other, G protein-independent pathways [34]. When activated, they can influence gene 
expression. Other effects can also occur; the skin flushing side effect of drugs acting on 
the hydroxy-carboxylic acid receptor 2 (HCA2) is possibly mediated by this pathway (see 
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chapter 2 and 3). The Gα subunit is deactivated when it converts GTP into GDP in its 
intrinsic GTPase domain. Gβγ dimers are deactivated when they bind a Gα subunit again.

The next step: internalization and arrestins
After a receptor has been activated, it is in many cases removed from the cell membrane. 
This internalization process is often (but not always) mediated by arrestins, which act as 
scaffold proteins that assemble a protein complex at the intracellular face of the receptor. 
Once inside the cell, the receptor protein can be broken down or recycled to the membrane 
after removal of the bound agonist [35-36]. Recruitment of arrestins to a receptor protein 
can also result in arrestin-mediated signaling, leading for example to the MAP-kinase 
activation mentioned above [37-38]. 

Different ligands have different effects
Next to agonists, GPCR ligands exist that de-activate the receptor (inverse agonists), as 
well as ligands that block the binding site but do not change the receptor activation state 
(neutral antagonists) (figure 3). We can also distinguish full agonists, which fully activate 
the receptor, and partial agonists, which cannot cause full activation even at concentrations 
that fully occupy the receptor. This last type of ligands for the HCA2 receptor is investigated 
in chapter 3. The existence of partial agonists suggests that GPCRs are not simply on-off 
switches. Rather, the receptor protein is now thought to exist in a range of conformational 
states. A bound ligand stabilizes a particular subset of states, and this determines which 
of all possible signaling pathways will be influenced, and also with which efficacy. In this 
more complex view of the receptor protein, a ligand is not simply an agonist, antagonist 
or inverse agonist, but can be, for example, an inverse agonist for the Gs pathway, and at 
the same time an agonist for the arrestin pathway [38-39]. In fact, this extreme example 
of ‘biased signaling’ has been demonstrated for the β2-adrenoceptor, where propranolol 
functioned as an inverse agonist on the Gs protein and its downstream pathways, but 
as a partial agonist on (most likely arrestin-mediated) activation of extracellular signal-
regulated kinase (ERK)1/2 [40]. Thus, one ligand binding to one receptor can have a whole 
spectrum of effects. A slightly different ligand may prompt the downstream cascades of 

Figure 3. Dose-response curves of ligands with different efficacy. Many GPCRs also display some basal activity in 
absence of a ligand. From: [20].
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the same receptor in a different manner. These phenomena, termed ligand texture and 
ligand-directed signaling, have only recently been recognized [39]. Ligand bias on the 
HCA2 receptor is discussed in chapters 2 and 3 of this thesis.

Manipulating downstream signaling
Understanding of the intracellular signaling cascades and how GPCRs stimulate them 
made it possible to bend these pathways to suit research purposes. For example, in 
immortalized cell lines expressing high levels of the chimeric G protein Gqi5 , all GPCRs that 
normally interact with Gi proteins are forced to signal through the Gq pathway, leading to 
an easily detectable increase in intracellular calcium concentration [41-42]. Gqi5 is identical 
to the Gq protein, except for five C-terminal residues which are exchanged for their Gi 
counterparts. These five amino acids determine the interaction with the receptor. Many 
variations of this strategy exist and are employed in the search for new GPCR ligands, 
often in a high-throughput screening setup where thousands of compounds can be tested 
per day. One example of such a screen is reported in chapter 7 of this work. 

Allosteric modulators
A special class of GPCR ligands is formed by allosteric modulators. These compounds 
bind to the receptor at a site distinct from the so-called orthosteric binding site, where the 
endogenous ligand binds. Binding of the modulator can influence the conformation of 
the receptor and modify the affinity and/or efficacy of orthosteric ligands. Some allosteric 
modulators also have intrinsic efficacy themselves and can activate the receptor without 
binding of an orthosteric agonist. Allosteric modulators can be promising drug candidates 
since they may be more specific and have less side effects. Allosteric binding sites of 
synthetic ligands are, in principle, not evolutionarily conserved, which makes it less 
likely for an allosteric modulator to have affinity for related GPCRs [43]. Furthermore, an 
allosteric enhancer that makes the endogenous agonist more potent could boost the natural 
signal without constantly activating the receptor. This can be an important therapeutic 
advantage because it improves the timing and localization of receptor activation. Two 
allosteric GPCR modulators are currently on the market: the calcimimetic cinacalcet, 
which is a positive allosteric enhancer of Ca2+-sensing receptors, and the anti-HIV drug 
maraviroc, an allosteric inhibitor of chemokine receptor CCR5 [44]. In chapter 5 of this 
thesis a number of new allosteric modulators for the HCA2 receptor are presented.

Orphan receptors and the quest for ligands
As mentioned above, a total of 799 human GPCRs have been identified, of which 369 are 
presumably non-sensory GPCRs (not involved in taste, vision or smell). Approximately 
100 to 140 of these potential drug targets are still ‘orphans’, with no known endogenous 
ligand and in most cases no known function [1, 45].

Classic and reverse pharmacology
The first GPCRs that were purified and cloned in the 1980s, were receptors for known 
signaling molecules (adrenalin and noradrenalin) that had been studied for decades (for 
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a review see [46]). This approach, where receptors are identified to match the known 
signaling molecules, has later been termed the classic pharmacology approach (see figure 
4, left scheme). After the first expression cloning of the β2-adrenoceptor in 1986 [47], and 
the finding that this receptor probably shared the 7 transmembrane domain topology of 
rhodopsin, pioneers of GPCR research soon suspected that this feature was common to 
many receptors signaling through G proteins. The rapid homology cloning of many other 
GPCRs, including those for acetylcholine, serotonin and the neuropeptide substance K, 
confirmed their hypothesis [48-49]. Some of the receptors that were cloned did not have 
a known ligand, but in many cases they were readily paired to one of the many ‘orphan’ 
signaling molecules. However, in the 1990s the number of cloned receptors had vastly 
increased due to the advent of PCR techniques, and the number of known signaling 
molecules that were not yet coupled to a receptor was dwindling. This imbalance reversed 
the roles of transmitter and receptor in research: known orphan receptors were used to 
fish for novel signaling molecules, instead of the other way around. The term reverse 
pharmacology is used for this approach. In this thesis, it was applied on the orphan 
receptor GPR88 (chapter 7).

The differences between the classical approach and the reverse pharmacology approach 
are illustrated in figure 4. In reverse pharmacology, an orphan GPCR is first identified 

Figure 4. Flow charts of the classical pharmacology approach and the reverse pharmacology approach that arose in 
the 1990s, mostly due to advances in homology cloning. Adapted from [5, 50].
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by homology cloning using molecular biology techniques, or, since the sequence of 
the human genome is known, in silico. The GPCR of interest is then expressed in a 
heterologous cell system, followed by screening against a compound collection or purified 
tissue extracts for receptor activation. The use of tissue extracts increases the chances of 
finding the endogenous ligand. However, important technical difficulties are associated 
with the latter strategy, including low signal-to-noise ratio and failure to isolate the ligand 
from an active extract. Therefore, synthetic compound collections are often used instead. 
The first receptors that were deorphanized by reverse pharmacology were the 5-HT1A 
serotonin receptor and the dopamine D2 receptor [51-52]. In total, the application of the 
reverse pharmacology approach led to the ‘deorphanization’ of more than 150 GPCRs, 
coupling them to approximately 75 endogenous ligands. Many of these ligands were novel 
Table 2. GPCRs listed as orphan receptors by IUPHAR with (putative) ligands identified from the literature.
Name Pseudonyms Ligand(s) References
CCRL2 CRAM CCL5 (RANTES), CCL19, chemerin [53-56]
CMKRL1 ChemR23 chemerin, resolvin E1 (RvE1), SIV/HIV-1 coreceptor [57-60]
CMKOR1 CXCR7, RDC1 CXCL12/SDF-1α [61-62]
GPR1 chemerin; glucose/sucrose (S. cerevisiae), HIV/SIV coreceptor [63-65]
GPR3 sphingosine 1-phosphate (S1P) [66]
GPR4 protons, lysolipids (?) [67-69]
GPR6 S1P (?) [66, 70]
GPR12 tyrosol, S1P, sphingosylphosphorylcholine (SPC) [66, 71-72]
GPR17 nucleotides, cysteinyl leukotriene (CysLT) [73]
GPR18 N-arachidonoylglycine, Δ(9)-tetrahydrocannabinol [70, 74-75]
GPR23 P2Y9, LPA4 lysophosphatidic acid (LPA) [76]
GPR32 resolvin D1 (RvD1) [77]
GPR34 lysophosphatidyl-L-serine [78]
GPR35 kynurenic acid, 2-acyl lysophosphatidic acids [79-80]
GPR37 PAEL neuropeptide head activator [81]
GPR39 Zn2+ [82-83]
GPR55 lysophosphatidylinositol, cannabinoids [84-85]
GPR63 S1P (?), dioleoylphosphatidic acid [70, 86]
GPR65 TDAG8 protons, psychosine (?) [87-88]
GPR68 OGR1 protons, sphingosylphosphorylcholine (?) [68, 89-90]
GPR75 CCL5 (RANTES) [91]
GPR84 medium-chain free fatty acids (FFA) [92]
GPR92 GPR93, LPA5 LPA, farnesyl pyrophosphate, geranyl geranyl diphosphate [93-96]

GPR119
oleoyl-lysophosphatidylcholine (OLPC), oleoylethanolamide
(OEA), N-oleoyldopamine (OLDA) [97-99]

GPR120 FFA [100]
GPR132 G2A protons, lysolipids (?), oxydized FFA (9-HODE, 11-HETE) [101-103]
MAS1 Mas Angiotensin 1-7, neuropeptide FF [104-105]

MRGPRD β-alanine [106]
MrgprX1 MrgX1, SNSR4 BAM8-22, BAM22 (1-22) and related peptides [107]
MrgprX2 MrgX2 corticostatin-14 [108]

OPN5 GPR99 photoreceptor (birds) [109]
OXGR1 GPR99 α-ketoglutarate (2-oxoglutarate) [110]
SUCNR1 GPR91 succinate [110]



General introduction

19

and unexpected signaling molecules, including calcium ions, trace amines, bile acids, 
kynurenic acid, protons, oleoylethanolamide, lysophosphatidylinositol, lysophosphatidic 
acid and a plethora of new neuropeptides. 

Ligands recently proposed for class A orphans
In the receptor database of the International Union of Basic and Clinical Pharmacology 
(IUPHAR-db), 97 rhodopsin-like (class A) orphans are listed. However, a search of the 
recent literature yielded putative endogenous ligands for 33 of these receptors (see table 
2). In some cases further studies may be needed, but we can assume that many of these 
receptors are now truly deorphanized. This shows that the deorphanization efforts 
still yield results. All but four of the new receptor-ligand pairs belong in 6 subgroups: 
proton/lysolipid (GPR4, GPR65, GPR68, G2A), chemokine (CCRL2, CMKRL1, CMKOR1, 
GPR1, GPR75), lipid mediators (GPR3, GPR6, GPR12, GPR23, GPR32, GPR34, GPR63, 
GPR92, GPR119), cannabinoid (GPR18, GPR55), Mas related (Mas, MRGPRD, MrgprX1, 
MrgprX2), and metabolic intermediates (GPR84, OXGR1, SUCNR1, GPR120). A number 
of these receptors seem to have more than one endogenous ligand. One could state that 
these receptors were not truly deorphanized when only one of the ligands was identified. 
Of course, it is impossible to prove that no additional ligands remain to be discovered for 
any given receptor. In chapter 6 of the current work, a new, possibly endogenous, ligand 
for the adenosine A3 receptor is reported.

Deorphanized receptors and the regulation of food intake
Clearly, deorphanization of GPCRs has had a profound influence on our understanding of 
mammalian physiology. For example, particularly large advances have been made in our 
understanding of the regulation of food intake. Several novel neuropeptides have been 
discovered as ligands for orphan GPCRs, including leptin, ghrelin and orexin [for a review 
see 45]. Furthermore, several GPCRs have been shown to react to nutrients and metabolic 
intermediates. These receptors seem to function as sensors for food and metabolic status, 
which is an unexpected new role for GPCRs. Nutrient sensing receptors include the calcium 
sensing receptor, GPRC6A and the dimeric taste receptor complex T1R1/T1R3, which are 
promiscuous receptors for several L-α-amino acids and divalent cations, as well as the 
T1R2/T1R3 dimer, which responds to sugars and D-amino acids [111]. These receptors are 
expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/
or kidney, where they regulate the release of hormones important for metabolism and the 
regulation of food intake. They can also influence gene expression, for example yielding 
an increase in the expression of nutrient transporters. Next to these class C receptors, 
several class A receptors are also involved in nutrient sensing. GPR92/93 expressed in the 
small intestine is activated by proteolytic degradation products and by lysophosphatidic 
acid [93-96]. Medium- and long-chain free fatty acids, from the hydrolysis of ingested fat 
and oil, activate the free fatty acid receptor 1 (FFA1) as well as GPR84 and GPR120 [92, 
100, 112-114]. FFA1 is expressed in the islets of Langerhans in the pancreas and the gut, 
whereas GPR120 is expressed in the gut, in adipose tissue and in the lung. FFA1 activation 
stimulates the release of the hormone GLP-1 from the gut, a role which may be shared 
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by GPR120. Activated FFA1 also potentiates glucose-stimulated insulin release from the 
pancreas, and it might be involved in the toxic effect of chronic high circulating free fatty 
acid levels on pancreatic β cells [115]. GPR84 is expressed in immune cells and its role 
in physiology has not yet been elucidated. Short-chain free fatty acids, which are mainly 
fermentation products of carbohydrate fibers, are ligands of the FFA2 and FFA3 receptors 
[116-117]. FFA2 is primarily expressed in immune cells, and has been shown to play an 
important role in neutrophil recruitment during intestinal inflammation [118], and it 
is thought to be involved in leukocyte chemotaxis by sensing the presence of bacterial 
fermentation products. Additionally, it appears to be involved in energy homeostasis and 
appetite regulation [119], including the mediation of the anti-lipolytic effect of acetate 
and proprionate [120]. FFA3 is more widely expressed than FFA2, with the highest 
expression in adipose tissue, and more moderate levels in immune cells and tissues. It has 
been suggested that FFA3 mediates the effect of proprionate on leptin release [121]. Next 
to nutrients, intermediates in (energy) metabolism have also been identified as GPCR 
ligands, some of which were mentioned above (see table 2). More specifically, succinate 
and α-ketoglutarate (2-oxoglutarate), two intermediates from the citric acid cycle, are 
the endogenous ligands of GPR91 and GPR99, respectively, and the receptors are now 
named SUCNR1 and OXGR1 [110]. These receptors are predominantly expressed in the 
kidney. Succinate stimulates renin release via GPR91, which causes an increase in blood 
pressure. Intermediates of the β-oxidation process, which is upstream of the citric acid 
cycle, activate HCA3 (GPR109B) [122]. The main ligand seems to be 3-hydroxy-octanoic 
acid. The same receptor has also been reported as a receptor for aromatic D-amino acids 
[123]. Two related receptors, HCA2 (GPR109A) and HCA1 (GPR81), are activated by the 
ketone body 3-hydroxybutyrate and by lactate, respectively [124-126]. Butyrate, a short-
chain free fatty acid, may be an additional ligand for HCA2 in the gut [127]. All three 
hydroxy-carboxylic acid receptors have an anti-lipolytic effect when activated. HCA2 and 
HCA3 are part of a negative feedback loop which keeps the release of fat stores in check 
under starvation conditions, whereas HCA1 plays a role in the antilipolytic effect of insulin 
[review 128]. This family of hydroxy-carboxylic acid receptors is discussed in detail in 
chapter 2, and HCA2 is the focus of chapters 3, 4 and 5.

Current challenges in deorphanization
After a peak in 2003 the deorphanization rate seems to be declining (see figure 5) [129]. 
This may be partly due to a shift in focus in the pharmaceutical industry. Many companies 
are currently faced with expiring patents of major blockbusters and increasing rules and 
regulations regarding safety, resulting in increased numbers of leads that fail to reach 
the market. The cost of compound screens for deorphanization is high and success not 
assured. Even if a ligand can be linked to an orphan receptor many years of additional 
R&D are needed to put a drug on the market. Less costly R&D programs could target the 
approximately 175 non-orphan GPCRs that are not currently targeted by drugs. Novel 
ligands, including allosteric modulators, or optimized versions of known ligands, can also 
be developed for the ~50 current GPCR drug targets. In the present climate pharmaceutical 
companies may more likely choose these R&D strategies.
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Furthermore, a number of challenges complicate the identification of ligands for the 
remaining orphan GPCRs. Many of the remaining orphan GPCRs do not show high 
sequence homology to a cluster of GPCRs with similar ligands. When orphans are 
phylogenetically localized between two receptor subfamilies it may mean they bind 
ligands that share properties of both ligand families. Some other orphans, such as GPR88, 
do not show any significant homology to a known receptor subfamily. Purification of a 
known ligand type from tissue extracts is already a highly challenging task, and if the 
ligand properties are totally unknown another degree of complexity is added.
Why did traditional screening methods fail to bring to light the ligands for the remaining 
orphan GPCRs? It is possible that some of these orphans display non-traditional signaling, 
for example through G protein-independent signaling cascades. Traditional assays are 

not equipped to identify this activation. The orphans may also need unknown interacting 
partners in order to function, for example another GPCR to form a functional heterodimer. 
In heterologous cell systems correct expression of functional GPCRs cannot always be 
obtained due to the absence of necessary protein partners. 
Finally, some of the orphans may be ‘real’ orphans with no physiological ligand at all, 

GPCR
Orphan 7TM

protein Effect on function 

GABAB1 GABAB2 Export to the cell surface and G protein coupling

DOR22a DOR83b Export and improvement of functionality

DOR43a DOR83b Export and improvement of functionality

T1R1 T1R3 Effect on receptor functionality and pharmacology

T1R2 T1R3 Effect on receptor functionality and pharmacology

MrgD MrgE Decrease of internalization; increase of ERK phosphorylation 
and intracellular [Ca2+]

MT1 GPR50 Loss of ligand binding and function

ORF74 Constitutive activity responsible for oncogenic action of Herpesvirus 8

UL33 Constitutive activity responsible for HCMV-related pathologies

EBI2 Constitutive activity in Epstein-Barr virus-infected cells

Table 3. Ligand-independent functions of orphan GPCRs. Adapted from [130].

DOR: Drosophila odorant receptors; EBI2: Epstein-Barr virus-induced receptor 2; ERK: extracellular signal-regulated 
kinase; HCMV: human cytomegalovirus; Mrg: Mas related gene; MT1: melatonin receptor 1; Smo: Smoothened; 
T1R: taste receptor.
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Figure 5. Declining rate of deorphanization since 2004. Adapted from [129].
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Table 4. Remaining class A orphan GPCRs from IUPHAR-db excluding the putatively liganded GPCRs shown in 
table 2. The receptors are classified according to a phylogenetic analysis by Joost and Methner [143]. The receptors 
at the bottom of the table were not included in this analysis.

Group Orphan Pseudonyms Remarks

A03 GPR15 GPRF
GPR25

A06 GPR22 GPRM constitutive activity [144]

A08

MAS1L
MRGPRE
MRGPRF
MRGPRG GPR169
MRGPRX3 SNSR1/2
MRGPRX4

A09 GPR19 GPRJ
GPR50

A10
LGR4 GPR48
LGR5 GPR49, GPR67
LGR6

A11
GPR31 GPRV
GPR42
GPR82

A12 GPR34 GPRy
GPR87

A15

EBI2 GPR183 constitutive activity [140]
P2RY5
P2RY8
P2RY10
GPR21 GPRL

A18

GPR27 SREB1
GPR45
GPR52
GPR61 constitutive activity [145]
GPR62
GPR78 constitutive activity [146]
GPR85 SREB2
GPR88
GPR101
GPR173 SREB3
GPR20 constitutive activity [147]
GPR26 constitutive activity [146]
GPR33 pseudogene in most individuals [148]
GPR37L1
GPR79 probable pseudogene [149]
GPR83
GPR135
GPR139
GPR1
GPR142
GPR146
GPR148
GPR149
GPR150
GPR151 GalR4, GalRL
GPR152
GPR153
GPR160
GPR161
GPR162
GPR171
GPR174
GPR182
OPN3
TAAR2 GPR58
TAAR3 probable pseudogene in primates [150]
TAAR4 probable pseudogene in primates [150]
TAAR5
TAAR6
TAAR8
TAAR9
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that exert their function(s) through ligand-independent mechanisms. Some examples of 
orphan GPCRs with known ligand-independent activity are summarized in table 3 [130]. 
The top four ‘orphan 7TM proteins’ (indeed, they may not be receptors, nor G protein-
coupled) in the table interact with the listed non-orphan GPCR to help it reach the cell 
surface (GABA, DOR) [131-133], change its functionality and/or signalling (DOR, T1R, 
Mrg) [131-132, 134-137], or inhibit its function (MT1/GPR50) [138]. The bottom three 
orphans, all virus-encoded, do not need a ligand to function because they are active in the 
absence of a ligand [139-142]. Evolutionary analysis showing the presence or absence of 
evolutionary pressure on the protein as a whole, or on the predicted binding site, can be 
used to determine whether the protein is likely to be functional and whether it is likely to 
interact with a ligand in order to function.

Inventarisation of Class A orphan GPCRs
In table 4, all remaining class A (Rhodopsin-like) orphan receptors are shown, taken from 
the IUPHAR-db but not including the receptors listed in table 2. Some of the receptors 
display constitutive activity, which may indicate that these proteins do not need ligands 
to function. Others are likely to be pseudogenes in some or all individuals. Phylogenetic 
analysis showing sequence similarities between orphan and liganded receptors can give 
valuable clues where to start the quest for a ligand. In table 4 the orphan GPCRs are 
classified according to an analysis by Joost and Methner [143]. Another useful method 
to classify orphan receptors is using phylogenetic analysis of the residues predicted to 
line the ligand binding cavity, as was done by Surgand and colleagues [15]. This method 
yielded surprising results in the case of GPR88, which belongs to the Rhodopsin-like 
receptors on the basis of its full sequence, but was classified with the Glutamate-like 
receptors (class C) in this analysis.
Deorphanization of the 65 orphan GPCRs in table 4, and/or elucidation of their biological 
functions, could have a great impact on our understanding of mammalian physiology. 
Furthermore, keeping in mind that drugs on the market today target only ~50 GPCRs, 
understanding of these orphans may give rise to a whole range of new medicines. 

Objectives and overview of this thesis

In the current work deorphanization and receptor-ligand pairing are a leading theme. I 
will describe studies on three GPCRs: the hydroxy-carboxylic acid receptor 2 (HCA2) , the 
orphan receptor GPR88 and the adenosine A3 receptor (A3R). 
HCA2 is a recently deorphanized GPCR that is of great interest as a drug target. In fact, one 
of its ligands, nicotinic acid, has been used as an anti-dyslipidemia drug for over 50 years. 
As described above, the endogenous ligand of HCA2 is 3-hydroxybutyrate, which acts as 
a negative feedback signal to preserve fat tissue during times of starvation. The biological 
and pharmacological roles of the HCA2 receptor and its two close family members HCA1 
and HCA3 are reviewed in chapter 2. In my research, I explored the signaling cascades 
that are influenced upon HCA2 activation by synthetic and endogenous agonists (chapter 
3). In the same chapter I describe the in vivo effects of two partial agonists for HCA2. 
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Furthermore, I investigated the binding of synthetic compounds to HCA2 both in an 
orthosteric and in an allosteric manner (chapter 4 and 5). 
As I have mentioned above, a receptor does not necessarily have only one unique ligand. 
For the adenosine A3 receptor, there are indications that it binds an additional ligand next 
to its canonical agonist adenosine. This ligand could be involved in the resistance of muscle 
tissue to tumor metastases. I attempted to identify this elusive ligand, and identified the 
antiproliferative compound N6-isopentenyl adenosine as an A3R ligand that may or may 
not be endogenous (chapter 6). 
GPR88 is an orphan GPCR expressed predominantly in two brain regions: the striatum 
and the central extended amygdala. GPR88 could be of major interest therapeutically, and 
I set out to identify a synthetic, if not endogenous, agonist for this receptor, screening a 
large number of compounds in a functional assay (chapter 7).
In this thesis, a recently discovered and deorphanized receptor is further investigated, 
expanding the ligand repertoire for two binding sites on the receptor; a new ligand is 
proposed for a GPCR long since paired to its ligand; and a ligand screen on an orphan 
GPCR is described, clearly identifying the challenges of such an operation. This research 
into the ‘simple’ interaction between small molecules and membrane proteins gives 
insights into human physiology and the mechanism of action of (future) drugs, and opens 
new horizons for pharmacotherapy.
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