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Lack of tolerance against “self” antigens or “self” commensal bacteria leads to 

autoimmune and inflammatory disorders. Current treatment of those diseases 

is symptomatic, not specific and unfortunately often not effective. Recent ad-

vances in the fields of immunology, cell biology, genetics and bioinformatics 

led to identification of new therapeutic targets and tools for treatment of auto-

immune and inflammatory disorders. One of these novel prevention and 

treatment strategies is induction of immune tolerance. This thesis focuses on 

inducing immune tolerance by regulatory T (Treg) cells generated in vitro by 

activation of naive T cells, or in vivo by adeno-associated virus (AAV)- mediat-

ed delivery of immunomodulatory peptides (Part I). We also explored novel 

methods for tolerance induction with the aim to prevent unwanted immune 

responses directed at AAV vector capsid or immunogenic transgene product 

in the setting of gene therapy (Part II).  

 

Part I  Summary 

Treg cells are a cellular component of the immune system that is specialized in 

suppressing immune responses of effector cells. They can be divided into nat-

urally occurring, thymus-derived Treg (nTreg) cells and induced Treg (iTreg) 

cells which develop outside the thymus under specific conditions. Treg cells 

are responsible for sustaining homeostasis of the immune system, and defi-

ciency of Treg in the system is generally associated with severe inflammatory 

disease states. Treg can be induced ex vivo and have proven to be safe and 

efficient in clinical trials for graft versus host disease [1, 2]. Treg mediated im-

mune tolerance may also be employed as a treatment for diseases with an au-

toimmune or inflammatory background [3-8].  We have studied the latter in 

this thesis and used as in vivo model of inflammatory and autoimmune diseases 

two murine models of Inflammatory Bowel Disease (IBD) (CD45RB transfer 

and trinitrobenzene sulfonate mouse models). These models serve as mouse 

analogs of two chronic inflammatory disorders in humans, Crohn’s disease 

and ulcerative colitis. There is no definite, curative treatment available for 

those conditions and patients require lifelong symptomatic management.  
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Although the exact etiology of the IBD is unknown, it is thought to originate 

as a result of genetic and environmental factors that lead to inappropriate im-

mune responses against dietary or bacterial flora antigens present in the gut 

lumen. Those unwanted immune responses are specifically associated with 

activation of Th17 or Th2 cells and the inability to shut down the resulting 

immune-mediated inflammation. Clearly, inflammatory control by regulatory 

T cell therapy is an attractive treatment strategy for these disease states. A ma-

jor limitation to the use of nTreg cells is availability as they represent only a 

small percentage of the peripheral circulating CD4+T cell population. In order 

to overcome this issue, several groups have developed various methods to 

expand nTreg in vitro while keeping their functionality. Generally, the technol-

ogies are complex, time-consuming and the plasticity of nTreg cells in artificial 

environment during ex vivo expansion may lead to loss of their suppressive 

activity. Additionally their relative mature stage of differentiation makes ex-

pansion in vitro a difficult process.  

In Chapter 2 we describe a new simple method to generate stable and func-

tional human iTreg cells in vitro, providing a simple alternative to previously 

reported techniques. We applied this protocol to murine cells as reported in 

Chapter 3 and demonstrated the functionality of the generated iTreg cells, in 

vivo by their potential to ameliorate the disease phenotype in a CD45RB trans-

fer colitis mouse model. The iTreg cells can also be induced in vivo by a variety 

of immunomodulatory peptides such as for instance cationic host defense 

peptides that have been successfully employed for treatment of inflammatory 

and autoimmune diseases. Among those peptides are recently discovered reg-

ulatory T cell epitopes (Tregitopes) that are derived from immunoglobulin G 

(IgG). Tregitopes, which are stimulators of CD4+CD25+Foxp3+ T regulatory 

cell (Treg) expansion. The anti-inflammatory potential of Tregitope 167 and 

Tregitope 289 has been previously reported [9- 11], but a limiting factor of 

this treatment is the achievement of stable, therapeutic levels of the immuno-

modulatory peptides. A solution to this problem could be a gene therapy ap-

proach that would provide stable peptide expression after the delivery of the 

gene that encodes the peptide of interest and the most promising vector that 

can provide long term expression of the delivered gene after single administra-
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tion is adeno-associated virus (AAV). AAV-mediated gene therapy has been 

effective and safe in preclinical studies as well as in several clinical trials [12-

15]. In Chapter 4, we report the development of an AAV-based approach to 

deliver the anti-inflammatory Tregitope 167 peptide. Tregitope 167 transgene 

was delivered intravenously by an AAV vector in the trinitrobenzene sulfonate 

(TNBS) mouse model of IBD and this resulted in decreased intestinal inflam-

mation. Hence, tolerance induction using Treg might be a future prospect for 

inducing immune tolerance in autoimmune and inflammatory diseases.  

 

Part II Summary 

A main concern with AAV-based gene therapy is the presence of pre-existing 

neutralizing antibodies (NAB) against AAV due to naturally occurring asymp-

tomatic infections with the wild type virus or due to prior treatment with an 

AAV vector. Those anti-AAV NAB can inhibit transduction upon first ad-

ministration in case of pre-existing immunity or upon re-administration with 

the same AAV vector serotype [16-19]. As an alternative to repeated delivery 

of the same AAV serotype, cross-administration, which is the sequential use 

of different AAV serotypes, may be considered. AAV serotypes 5 and 1 have 

been shown to have no significant inhibitory cross-reaction. In Chapter 6 we 

have demonstrated that AAV serotypes 5 and 1 can be used sequentially for re

-administration in the liver with no significant inhibitory cross-reaction ob-

served. A non-human primate experiment is in preparation to confirm the 

data obtained in mice.  

Cross administration of different AAV serotypes for re-administration of ther-

apeutic gene, might not always be feasible, as different AAV serotypes [17] 

have different tissue tropisms. Therefore, a careful selection of appropriate 

AAV serotypes is required when employing this approach for a specific target 

tissue.  

Another option to avoid formation of NAB against AAV vectors would be 

modifying the AAV vector capsid to exclude viral epitopes which induce im-

mune response upon presentation to the immune cells [20]. Finally, the most 
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common and widely applied approach to inhibit immune responses is use of 

immunosuppressive drugs [21]. Our group has investigated the influence of 

bortezomib and anti-CD20 alone or in combination therapy on NAB against 

AAV capsid formation (in press). We describe this approach in Chapter 7. 

This approach clearly reduced immune responses, but the effect was short-

lived which indicates that in order to reach satisfying and long-term results 

extended treatment regimens will be necessary. 

Another obstacle that needs to be overcome in AAV-based gene therapy is 

the appearance of immune responses against the expressed protein which 

might result in loss of therapeutic gene expression [22-26]. MicroRNA, mir-

142-3p, which is specifically expressed in antigen presenting cells (APCs) may 

be used as a novel approach to avoid transgene directed immunogenicity. In-

corporation of mir-142-3p target sequences within a transgene sequence has 

been shown to prevent of mRNA and protein expression in haematopoietic 

lineage cells, including APCs in both in vitro and in vivo setup [27]. The use of 

mir-142-3p target sequences prevented immune responses towards the 

transgene product in mice when a lentiviral vector was used for gene delivery 

targeting the liver [28, 29]. Furthermore, our group provided evidence that 

both humoral and cellular immune responses against the transgene product 

can be efficiently reduced by use of mir-142-3p target sequences in AAV-

based intramuscular gene delivery and these experiments are summarized in 

Chapter 8.  

 

Conclusions and future perspectives 

The major achievements reported in this thesis are the identification of two 

novel approaches to generate regulatory T cells with the capacity to ameliorate 

inflammatory response and to restore immune tolerance. Additionally, in rela-

tion to AAV-mediated gene delivery approach to induce tolerance, we devel-

oped new strategies to prevent specific immune responses to the transgene 

product or to the adeno-associated virus (AAV) vector capsid. Initially, we 

provided the basis for further clinical development of cell therapies that in-

volve Treg cells for the treatment of autoimmune and inflammatory diseases 
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by developing approaches to generate both in vitro and in vivo Treg cells. 

Next, we reported a functional approach to reduce the immune responses 

against the transgene product after intramuscular delivery by an AAV vector. 

This strategy could be applied in any AAV vector- based gene therapy target-

ing the muscle where there is a risk of immune responses against transgene 

product. We are currently pursuing further research to evaluate the impact of 

mir-142-3pT regulated AAV gene delivery on the normal miRNA profile in 

the muscle tissue. 

We also investigated the feasibility of cross-administration of AAV vectors, as 

an approach to avoid the problem of formation of neutralizing antibodies 

(NAB) against AAV capsid following primary delivery. Such antibodies may 

interfere with AAV vector transduction upon re-administration of the same 

serotype. We showed that AAV5 and AAV1 could be sequentially delivered 

and the NAB against the capsids of those AAV vectors do not cross-react. 

Hence, this is an attractive approach for therapeutic protein re-administration. 

Our study was performed in a mouse model and should be confirmed in non-

human primates before its possible translation to the human patients. 

We subsequently studied the effect of immune suppressive regimens on neu-

tralizing antibody (NAB) formation against the AAV capsid. Bortezomib and/

or anti-CD20 treatment did not lower the anti-AAV NAB level to a value that 

would permit the re-administration of AAV vector. Therefore, there is a need 

for further studies that would include longer treatment time, dose-finding and 

the introduction of additional immunosuppressive therapeutics that would 

influence not only the B but also the T cell population.  
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