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I AAV vectors 

Adeno-associated (AAV) vectors are used to achieve therapeutic gene delivery 

for the treatment of genetic and chronic disorders. Recombinant AAV vectors 

contain an expression cassette with a transgene of choice flanked by two non-

coding viral inverted terminal repeats (ITR’s) enclosed in a capsid which is 

composed of three proteins: VP1, VP2 and VP3. When AAV enters the cell, 

its genome is converted into double-stranded, transcriptionally active DNA, 

which predominantly persists in a non-integrated episomal form [1, 2]. These 

vectors efficiently transduce a wide variety of tissues and can provide the long 

term expression of the delivered gene after a single administration. Important-

ly, AAV vectors have not been associated with any pathology in humans and 

are replication-defective. AAV-based gene delivery has been successfully em-

ployed in treatment of genetic disorders in preclinical studies as well as in clin-

ical trials [3-6]. The clinical studies included hundreds of patients and indicate 

an excellent safety record of AAV vectors for gene therapy in humans. The 

different safety aspects of AAV for the use in humans have recently been 

summarized elsewhere [7]. Immune responses have been assessed in clinical 

trials by measuring systemic and local cytotoxic reactions as well as neutraliz-

ing antibodies (NAB) against AAV and/or the expressed therapeutic protein 

[3, 5, 8-17]. The immunogenicity data reported so far show that immune re-

sponses against AAV capsid proteins can vary and are influenced by the target 

organ, route of delivery and dosing schedule.  

 

II Cellular immune responses against AAV vectors 

The first observation of a cellular immune response induced by AAV gene 

therapy occurred in patients with Hemophilia B who were treated with an 

AAV2 vector to deliver human coagulation factor IX [14, 18]. In this study, a 

cell mediated immune response to AAV2 capsid was reported, which was 

measured in parallel with a loss of transgene expression. Similar observations 

were reported in a more recent clinical study with AAV serotype 8 for FIX 
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delivery to the liver of Hemophilia B patients, when two patients receiving the 

highest vector dose required a short course of glucocorticoids which normal-

ized serum aminotransferase levels and prevented the loss of transgene ex-

pression [6]. Whereas in patients with Hemophilia B a correlation between the 

induction of a CD8+ T cell response towards the AAV capsid proteins and a 

loss of transgene expression was observed, this does not seem to be an issue 

in case of the intramuscular AAV vector delivery. In a clinical study in patients 

with α-1 antitrypsin deficiency in which the gene for α-1 antitrypsin was deliv-

ered by an AAV1 capsid, cellular immune responses were found against the 

capsid proteins from day 14 on in all subjects. However, the functional activi-

ties of those T cells, as well as the biological effects thereof are not clear since 

the expression of the transgene was sustained at sub-therapeutic levels in all 

subjects. These data suggest that the cellular immune responses to the AAV 

capsid did not eliminate the transduced cells [8]. Similarly, systemic and local 

cellular immune responses induced by intramuscular injection of alipogene 

tiparvovec did not impact on clinical efficacy and safety [4]. 

 

III Managing humoral immune responses against AAV 

capsid 

A major challenge for successful tissue targeting of AAV vectors in patients is 

the presence of circulating neutralizing antibodies (NAB) against AAV vector 

capsid. There is little knowledge about the antigenic structures of AAV cap-

sids and how exactly they interact with the antibodies that are raised against 

them. Nevertheless, antigenic epitopes have been identified and described for 

AAV capsids of serotypes 2 and 8 [19-21].  

NAB can be present in the patient’s blood prior to therapy due to naturally 

acquired infections with the wild type AAV virus (pre-existing NAB) pre-

existing NAB against AAV are currently an exclusion criteria for participation 

in clinical trials that use AAV vectors. This is a major problem, because, de-

pending on the AAV serotype, the reported prevalence of serotype-specific 
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pre-existing anti-AAV NAB in humans is considerable and there is a signifi-

cant difference between AAV serotypes (Figure 1) [22]. 

 

  

Figure 1. Adapted from Boutin et al. (Human Gene Therapy 2010). Prevalence of neutralizing 

factors in serum against AAV types 1, 2, 5, 6, 8 and 9, n indicates the number of serum samples 

tested.  

Anti-AAV NAB are also formed after first administration of AAV vector gene 

therapy. Those NAB may reach high titers and have been reported to persist 

after treatment.  

Although AAV-mediated expression generally is long-lived, re-administration 

may be necessary, during the lifetime of the patient, the naturally occurring 

turnover of cells might lead to loss of AAV transduced cells that episomally 

express DNA encoding the therapeutic protein, resulting in a decrease of the 

production of therapeutic protein. Repeated AAV treatment might also be 

needed if the initial treatment does not result in expression of sufficient thera-

peutic protein. In both cases, re-administration of the same AAV is thought 

not to be possible due to the presence of circulating NAB formed after the 

first administration. Those antibodies totally block the transduction and no 

efficacy of the treatment can be observed [1, 23].  

 In order to address these issues, numerous approaches have been explored to 

overcome or circumvent humoral immune responses directed at AAV vectors. 
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A. Cross administration of different natural AAV serotypes 

Twelve AAV serotypes have been identified to date in humans and over 100 

serotypes in nonhuman primates [24]. All serotypes studied present antigens 

that induce production of neutralizing antibodies (NAB). A potential strategy 

to avoid interference of NAB with primary or secondary AAV-based gene 

delivery is the use of AAV vector serotypes with different antibody reactivity 

profiles but similar affinity for the target tissue. When choosing AAV vector 

serotypes for such “cross-administration” approaches two pivotal aspects 

should be carefully considered.  

Firstly, as would be predicted, homology between AAV serotypes might influ-

ence the possibility of NAB cross-reactivity [22, 25, 26]. Indeed, for closely 

related AAV serotypes 1 and 6 in in vitro studies, cross –neutralization of NAB 

from those serotypes was observed. AAV4, on the other hand, which is a di-

vergent serotype, was only neutralized by the anti-AAV4 NAB from the spec-

trum of anti-AAV1-6 NAB, while AAV5 serotype showed to be inhibited by 

anti-AAV1, 2, 3, 5, and 6 NAB but not by anti-AAV4 NAB [26]. Additionally 

AAV7 and AAV8 have minimal cross-reactivity to other serotypes.  

Secondly, different AAV serotypes have divergent tissue tropisms and differ-

ent transduction efficiencies [27]. As a consequence, depending on the target 

tissue, the choice of alternative AAV serotypes might be limited. 

Cross-administration approaches have proven to be successful in non-human 

primates, when AAV2/5 vector was administered intravenously in animal that 

had pre-existing anti-AAV8 NAB. In contrast, AAV8 vector administration in 

an animal with pre-existing anti-AAV8 NAB did not result in therapeutic pro-

tein expression [28]. Effective cross-administration strategy in vivo without a 

significant cross-inhibitory effect was also observed after cross-administration 

of AAV1, 2 and 5 serotypes in mouse skeletal muscle [29]. 

Although this approach has proven to be successful in the research setting, it 

should be noted that changing serotypes, also changes the drug from regulato-

ry point of view and this would necessitate separate costly drug approval pro-

cedures for every serotype used.  
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B. Genetic AAV capsid  

Extensive efforts have been directed towards the development of new artifi-

cial, less immunogenic AAV capsid variants. Conceptually, genetic modifica-

tion of the regions that contain immunogenic AAV capsid epitopes could be 

an approach to escape pre-existing NAB binding and neutralization of modi-

fied AAV capsid. One of such strategies involves targeted modifications of 

identified antigenic regions of AAV capsid [21]. Such rational design was for 

instance investigated by Huttner at al. who demonstrated that insertion of 

different ligands at position 587 in AAV2 VP1 protein allow the transduction 

of cells in the presence of anti-AAV2 NAB [30]. Another group successfully 

employed a directed evolution strategy to generate large AAV2 mutant capsid 

library followed by high-throughput selection process to isolate mutants 

which evade NAB formation [31].  

Even though the AAV capsid engineering methods are promising, none of the 

currently identified AAV capsid mutants are completely resistant to NAB and 

accumulated mutations in AAV capsid may negatively affect efficiency of gene 

delivery. For example, AAV vector production, purification, stability, infectivi-

ty and tissue tropism might be affected. Finally, the immunogenicity of the 

new AAV capsids should be carefully investigated to assess whether they 

would be suitable for re-administration purposes.  

C. Chemical modifications of the AAV capsid  

Chemical polymers are used for steric stabilization of drug carrier systems 

such as lipoplexes, nanoparticles, and liposomes. Chemical polymers are coat-

ing materials that form a protective hydrophilic layer that limits the interaction 

with blood components. Coated nanoparticles are not efficiently absorbed by 

macrophages and therefore show reduced immune responses. The best char-

acterized protein stabilizer material is polyethylene glycol (PEG) and its use 

has been approved in several therapeutic products. PEG is generally non-toxic 

and it extends the half-life of proteins with a reduction of immune responses. 

The attachment of chemical ligands to AAV capsid could potentially protect 

the AAV capsid from binding of NAB. Several groups have tested AAV cap-

sid coating with PEG and other polymers [32-34] but  this has resulted in a 
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moderate protection of AAV capsid against NAB at best, and in some cases 

the modification caused impaired AAV infectivity [34].  

Hence, chemical conjugation of polymers to AAV capsids remains challenging 

and needs to be further developed. The current technology is not satisfactory 

as it does not fully prevent immunogenicity and may cause a loss of AAV in-

fectivity. 

D. Physical removal of circulating anti-AAV NAB  

Plasmapheresis is an extracorporeal blood component separation technique 

which is currently used in the clinic to remove high-molecular-weight sub-

stances such as autoantibodies, immune complexes, cryoglobulins, and bacte-

rial lipopolysaccharides [35]. Plasmapheresis may be used to remove antibod-

ies from the bloodstream, thereby preventing them from binding to their tar-

gets. Due to the fact that plasmapheresis does not interfere with antibody pro-

duction, the therapeutic effect generally is only transient. Plasmapheresis was 

used as a strategy to lower anti-AAV NAB, and different groups have report-

ed promising results. Nonetheless, plasmapheresis by itself seems to be an 

option only for patients that have relatively low anti-AAV NAB titers [36, 37]. 

Physical contact between anti-AAV NAB in blood and injected AAV vector 

can be also prevented by specific delivery technologies. For delivery of AAV 

vectors to the liver in individuals with NAB, specific portal vein injection 

strategies were developed. The first approach involves portal vein branch 

flushing with saline that is directly followed with AAV8 vector injection. The 

second method is based on injection of the vector into the portal vein with 

the use of balloon catheter. Both of the methods proved to be similarly effec-

tive, but second is considered to be safer [38, 39]. This approach needs to be 

further investigated in order to determine the possibility of its application 

when high titers of NAB are present.   

E. Immunosuppression  

Immune suppression (IS) is used in the clinical practice to reduce or prevent 

immune response in organ transplantation and to treat autoimmune diseases. 

IS regimens are based on combinations of drugs such as glucocorticoids, anti-
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proliferative and antimetabolite agents, calcineurin inhibitors, rapamycin in-

hibitors, and immune cell depleting or nondepleting monoclonal antibodies. 

Immunosuppressive drugs have many side effects and treatment with them 

increases susceptibility to opportunistic infections or chance of cancer occur-

rence.  

For reduction of anti-AAV NAB titers B cell targeting drugs, as bortezomib 

or anti-CD20 monoclonal antibody have been investigated. Bortezomib, 

which is a proteasome inhibitor that is approved for the treatment of multiple 

myeloma, can eliminate both short- and long-lived plasma cells by activation 

of the terminal unfolded protein response [40]. Unfortunately the bortezomib-

induced reduction in the levels of anti-AAV NAB was not sufficient to allow 

for re-administration of AAV vector. This limitation was related to residual 

anti-AAV NAB levels and bortezomib’s inability to completely deplete 

memory B cells that are re-activated upon AAV vector re-administration 

(Karman 2010). The use of anti-CD20 antibody (rituximab) alone [41] or in 

combination with cyclosporine A [42] also showed only partial efficacy in 

lowering the anti-AAV NAB titer.  

Novel IS approaches can specifically target CD4+ T cells. Targeting of CD4+ 

T cells in mice with non-depleting anti-CD4 antibody and cyclosporine A at 

the time of AAV delivery resulted in inhibition of the primary induction of 

anti-AAV NAB and it allowed for efficient re-administration of the same 

AAV serotype [43]. This IS strategy has to be further investigated for efficacy 

and safety in non-human primates before possible clinical application in AAV-

based gene therapy. It also remains unknown whether this approach will 

prove to be effective in case of already established anti-AAV NAB titers (pre-

existing anti-AAV NAB) which at the moment exclude many patients from 

AAV-based gene therapy. 

F. Adsorption of NAB against AAV capsid 

The principle of antibody adsorption was first demonstrated in gene therapy 

studies with adenovirus studies in which antibodies directed against adenoviral 

capsid were depleted from rabbit serum with the use of chromatography col-

umns containing bound capsid proteins [44]. Such specific antibody depletion 
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proved to facilitate the transduction with adenovirus [45].  A similar principle 

of antibody adsorption was also studied in AAV-based gene delivery in mice 

by Scallan et al. who demonstrated that the presence of empty AAV capsids, 

which acted as decoys, significantly reduced the neutralization of AAV by anti

-AAV NAB [46]. Mingozzi et al. have recently shown in mice and non-human 

primates that injection of therapeutic AAV vector together with empty AAV 

capsids allows liver transduction in the presence of even high titers of anti-

AAV NAB. An additional factor in their experimental setup was the use of a 

mutant empty AAV capsid that cannot enter target cells but can adsorb anti-

AAV NAB [47].   

 

IV Handling cellular and humoral immune responses 

against transgene product 

Next to the immune responses against the AAV capsid protein, cellular and 

humoral immune responses can be induced against the protein encoded by the 

transgene and it can cause a limited efficacy of the treatment [48]. The devel-

opment of specific immune responses directed against the transgene product 

has been shown to be highly dependent on route of administration, AAV vec-

tor serotype, AAV vector dose, tissue specificity of the promoter and clinical 

profile of the patient.  

Even though, promising pre-clinical experimental data have been obtained 

when targeting the liver [49-54], immune responses against the transgene 

product were reported in case of intramuscular AAV-based gene delivery 

which resulted in a limited efficacy of the treatment [55-57]. The cellular and 

humoral immune responses that can occur against the delivered transgene 

product might result in a loss of transgene expression, as reported in pre-

clinical animal studies [58, 57]. Similarly, in the clinical trial for treatment of 

Duchenne’s muscular dystrophy study in which children were injected intra-

muscularly with AAV-minidystrophin, immune responses against minidystro-

phin were observed and expression of the transgene product was lost over 

time [59, 60].  
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To circumvent the appearance of immune responses against transgene prod-

uct several approaches can be considered. 

A. Immune suppression  

Clinical strategies to avoid immune responses directed at expressed proteins 

include the use of IS regimens. This approach proved to be efficient in pre-

clinical studies using intramuscular AAV gene delivery. For instance, treat-

ment with cyclophosphamide at the time of AAV administration and subse-

quently twice a week for next 6 weeks resulted in a sustained partial correction 

of haemophilia B in a null mutation dog model [61]. Another promising out-

come was obtained when using immunosuppression with a combination of 

anti-thymocyte globulin (ATG), cyclosporine (CSP) and mycophenolate mo-

fetil (MMF) which resulted in long-term expression of canine micro-

dystrophin in skeletal muscle after intramuscular AAV-based delivery into 

canine X-linked muscular dystrophy model. 

Although immune suppression may have some efficacy, in order to ensure 

long-term durability of protein expression, immune-modulating therapeutic 

approaches should facilitate tolerance induction towards the transgene prod-

uct. Importantly, some IS regimens interfere with the induction or mainte-

nance of tolerance towards the transgene. For example, it has been reported 

that administration of MMF, sirolimus and daclizumab resulted in a decrease 

of the Treg population which correlated with formation of inhibitory antibod-

ies against human FIX while none of those was observed when the 2-drug IS 

consisting of MMF and sirolimus was used [62]. 

Many different IS regimen combinations for attenuation of transgene-directed 

immunity in AAV-based gene therapy have been tested in pre-clinical animal 

models with quite promising results [42, 43, 63, 64]. However, some IS drugs 

have significant side-effects and lack antigen-specificity [65], and it is desirable 

to be able to exclude those drugs from future IS approaches in gene therapy. 

B. Alternative AAV vector delivery methods 

An approach that has been recently developed and might be an attractive al-

ternative to IS regimens when targeting the muscle with AAV-based gene de-
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livery are regional intravenous (RI) deliveries instead of intramuscular (IM) 

injections. Toromanoff et al. have demonstrated that IM injections of AAV in 

non-human primates are frequently associated with presence of inflammatory 

infiltrates and the destruction of transduced myofibers necessitating the use of 

IS. In contrast, RI AAV delivery resulted in a stable transgene expression 

without immunosuppressive treatment. It seems that the local vector distribu-

tion in the skeletal muscle is a key factor that triggers the immunogenicity af-

ter IM delivery, and this route of administration results in a high number of 

vector genome copies per cell. On the other hand, RI route of AAV delivery 

resulted in homogenous and wide spread vector distribution and lower vector 

genome copies per cell [66]. Arruda et al. have demonstrated similar results in 

canine skeletal muscle for FIX after RI delivery by AAV2 vector [67].  

C. Tissue-specific promoter use 

Avoiding the overexpression of the transgene product in non-target tissues 

and especially in antigen presenting cells (APCs) is a very important method 

to avoid transgene directed immune responses. Tissue-specific promoters 

have been demonstrated to have an important role in reducing the immune 

responses to the transgene products in pre-clinical animal models, especially in 

muscle directed AAV-based gene therapy for muscular dystrophy [68, 69]. 

D. B-cell mediated tolerance induction 

B lymphocytes can act as antigen presenting cells (APCs) and via this pathway 

they may induce of antigen-specific tolerance [70, 71]. Genetically modified B 

cells have proven to be excellent tolerogenic APCs in several animal models. 

Expression of peptide-immunoglobulin fusion proteins by B cells can induce 

tolerance towards the fused peptide and this results in reduced cellular and 

humoral immune responses against that peptide upon immunization in CFA  

[72-74]. Therefore, transgene product specific tolerance induction using autol-

ogous B-cell gene therapy could be a potential strategy to avoid transgene-

directed immune responses in AAV-based gene therapy.     

E. Exploiting the endogenous microRNA machinery for regulation of 

transgene-directed immune responses 
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MicroRNAs are small non-coding RNAs that are endogenously expressed in a 

tissue-specific manner and play an important role in maintaining their func-

tions and differentiation [75, 76]. They are also important in innate and adap-

tive immunity as they control differentiation of various immune cell subsets 

and their functions [77-79]. 

MicroRNAs are capable of post-transcriptional regulation of gene expression 

when they bind to their specific target sequence. Modification of viral vector 

cassettes with microRNA targets is the latest pursuit to regulate gene expres-

sion in gene therapy. A recently explored strategy to avoid immune responses 

against transgene products in gene therapy took advantage of the activity of 

mir-142-3p, which is a miRNA specifically expressed in antigen presenting 

cells (APCs). Incorporation of mir-142-3p target sequences within a transgene 

sequence has been shown to mediate inhibition of transgene expression in 

haematopoietic lineage cells, including APCs in both in vitro and in vivo setup  

[80]. The use of mir-142-3p target sequences prevented immune responses 

towards the transgene product in mice when a lentiviral vector was used for 

gene delivery targeting the liver [81, 82]. Additionally, our group provided evi-

dence that humoral and cellular immune responses against the transgene prod-

uct can be efficiently reduced by use of mir-142-3p target sequences in AAV-

based intramuscular gene delivery [83]. Boisgerault et al. also applied that 

strategy in intramuscular AAV-based gene delivery settings and confirmed our 

findings [84].  

 

V Concluding remarks 

Significant progress has been made in the use of AAV vectors in human gene 

therapy and the first AAV vector product for treatment of lipoprotein lipase 

deficiency received market authorization in Europe  [85, 86]. Immune re-

sponses observed during AAV gene therapy trials in humans do not appear to 

be a safety risk. However, for future indications, host immune responses 

against AAV vector capsid and the transgene product will need to be more 

effectively addressed. There is a need for the development of safe and effi-
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cient strategies that would allow treatment of patients with pre-existing NAB 

against AAV capsids, re-administration of AAV vectors in case transgene ex-

pression is lost due to natural turnover of the transfected cells and that pre-

vent or treat possible immune responses against the transgene product.  
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