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Introduction

Molecular Mechanism of cancer development

Cancer is the result of a multi-step process in
which cells acquire features that enable them
to divide uncontrollably and to metastasize.
Crucial steps in transformation of normal
cells into malignant cells are the ability of
cells to be self-sufficient in growth signals
and to be insensitive to growth-inhibitory
signals (Hanahan and Weinberg, 2000). As a
consequence the cell cycle will be deregulated
in favour of continues growth. The cell cycle
is the period from one cell division to the
next and can be divided into four phases.
In G1, the first phase, mitogenic stimulation
results in activation of cell cycle dependent
kinases like Cyclin D1/CDK4 and Cylin E/
CDK2, which activate proteins involved in
DNA replication and inhibit proteins that
retain cells in a non-dividing state (Dulic
et al.,, 1992; Koff et al.,, 1992; Morgan,
1997; Quelle et al., 1993). Cells that are
not stimulated to divide in G1 enter the GO
state and can remain quiescent for longer
periods of time. However, activated cells will
enter the second phase, S-phase, in which
DNA is duplicated and here for the activity
of cyclin A/CDK2 is required (Rosenblatt et
al., 1992). A schematic representation of the
cell cycle and in which stages these different
CDK/ Cyclin complexes are active is depicted
in Figure 1. In G2-phase cells ensure that
the DNA is properly replicated and that the
conditions are right for the final separation of
sister chromatids and cytokinesis in M-phase
or mitosis (Smits and Medema, 2001).

In cancer the transition from G1-phase to S-
phaseisoften deregulated due to altered gene
function. Continues growth signalling can be
a consequence of mutations in extracellular
receptors or intracellular signal transducers,
like the EGF receptor and Ras (Riese et al.,
2007; Schubbert et al., 2007). However,
it can also be due to amplifications of cell
cycle activating proteins such as Cyclin D1
and cyclin E or loss of negative regulators of
the cell cycle such as the CDK inhibitors p21

and p27 (Malumbres and Barbacid, 2001).
Also loss of a functional Retinoblastoma (Rb)
protein, which inhibits cell cycle progression
by inhibiting the E2F transcription factor
family that activate genes that are crucial
for G1/S transition, is a frequent event in
human cancers (Dannenberg and te Riele,
2006).

The basis of altered gene function often
lies in genetic changes, which result in
activation of oncogenes or repression
of tumour suppressor genes. However,
it has become increasingly clear that
epigenetic abnormalities can contribute to
tumourigenesis as well by altering patterns
of gene expression (Jones and Baylin, 2007;
Lund and van Lohuizen, 2004). Epigenetics
can be described as the heritable changes in
gene expression that are not accompanied
by changes in DNA sequence. These include
covalent modification of DNA and histone
proteins, such as methylation. Silencing
modifications will result in recruitment
of proteins, which change the chromatin
structure in a densely packed transcriptional
inactive state. On the other hand activating
modifications will recruit proteins that open
the chromatin to make it accessible for

CDK4/ Cyclin D

CDK1/ Cyclin B I \/\
’ CDK2/ Cyclin E

CDK2/ Cyclin A

Figure 1. Schematic representation of CDK activity
during different stages of the cell cycle. Lines show
the overlapping activity ranges of different CDK/ Cyclin

complexes.
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the transcription machinery (Kouzarides,
2007). A marked example of epigenetic
deregulation is the polycomb repressor gene
BMI1, which overexpression in mouse cells
has been shown to silence the INK4A locus
that encodes for the tumour suppressor
proteins pl16 and p19ARF (Jacobs et al.,
1999). Furthermore, BMI1 has been found
overexpressed in several human tumours,
suggesting that alterations in gene silencing
indeed may contribute to tumourigenesis
(Sparmann and van Lohuizen, 2006). The
importance of epigenetic changes versus
DNA mutations in cancer development was
further underscribed by studies showing
hypermethylation and thereby repression of
promoter regions of tumour suppressor genes
like Rb, VHL (von Hippel-Lindau), MLH1 and
p16 (Gal-Yam et al., 2007). Based on these
findings it has been proposed that promoter
methylation can act in a similar way to gene
mutation in cancer development.

DNA damage responses

Every cell division has a potential risk of
creating a mistake in the genetic code. As
a consequence the risk of developing cancer
will increase with age (Serrano and Blasco,
2007). Moreover, the chance of genetic
mutations is increased by exposure to DNA
damage inducing agents such as UV light.
Cells have evolved several mechanisms
to protect themselves from DNA damage
induced genetic abnormalities. Proteins like
ATM and ATR will sense DNA damage and
activate a genotoxic stress checkpoint that
induces a cell cycle arrest or activation of
repair proteins (Bartek and Lukas, 2007).
Unrestorable damage will result in a
permanent cell cycle arrest or apoptosis,
depending on the cell type.

A central player in the DNA damage response
is the transcription factor p53. In response
to double strand breaks ATM will activate the
CHK2 kinase (Matsuoka et al., 1998) that in
turn will phosphorylate the p53 N-terminus
(Chehab et al., 2000; Hirao et al., 2000;
Shieh et al., 2000). This phosphorylation
interferes with p53 binding to MDM2 (Chehab
et al., 1999; Shieh et al., 1997; Siliciano et
al., 1997). Significantly, MDM2 functions
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both in inhibiting p53 transcriptional activity
and as a p53 E3-ligase (Michael and Oren,
2003). Therefore, phosphorylation of p53 in
response to DNA damage will allow for its
stabilization and activation. The key role of
p53 in a DNA damage induced G1 arrest is
mediated through its transcriptional target
gene p21¢r! (el-Deiry et al., 1993),a cell cycle
inhibitor that exerts its function by inhibiting
CDK-cyclin complexes (Harper et al., 1993).
Additionally, p53 can induce apoptosis by
inducing transcription of proteins of the
apoptotic machinery, such as Bax and Puma
(Miyashita and Reed, 1995; Nakano and
Vousden, 2001). Further, degradation of
crucial cell cycle proteins can contribute to
a G1 cell cycle arrest, such as the increased
proteolysis of Cyclin D1, Cdc6é and Cdc25A
(Agami and Bernards, 2000; Duursma and
Agami, 2005; Mailand et al., 2000).

The importance of a proper DNA damage
response is clear from a large number of
heritable human diseases that arise from
defects in checkpoints or DNA damage repair
functions (Shiloh, 2003). Examples are the
mutations in genes as ATM or BRCA1, which
highly increase the risk of developing cancer.
Patients with mutated ATM are diagnosed
with the Ataxia telangiectasis syndrome and
are immune deficient and are particularly
predisposed to leukaemia’s and lymphomas.
Patients with a mutation in BRCA1 (Breast
cancer 1) have an increased risk to develop
breast cancer or ovarian cancer. Also in non-
heritable forms of cancer genes participating
in DNA damage responses are often lost. p53
is considered as one of the most important
tumour suppressor proteins and its function
is impaired in a large percentage of human
tumours (Levine, 1997).

DNA replication

In S-phase, DNA is replicated in a tightly
regulated manner to ensure proper
duplication of the genome. In G1-phase of
the cell cycle DNA replication is initiated at
origins of replication, by binding of Cdc6
to the Origin Recognition Complex (ORC)
(Liang et al., 1995) (Figure 2). This allows
binding of Cdt1, which is a loading factor for
the minichromosome maintenance (MCM)
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Figure 2. Schematic representation of initiation of DNA replication. CDK2/ Cyclin E as well as Cdc7/ Dbf4 activity

convert a pre-RC (pre-Replication Complex) to a post-RC.

complex (Maiorano et al., 2000), a putative
replicative helicase (Blow and Dutta, 2005).
This prereplication complex (preRC) is
triggered for replication at the onset of S-
phase by binding of MCM10 (Wohlschlegel
et al.,, 2002) and phosphorylation of preRC
proteins by CDK2/Cyclin E and Cdc7/Dbf4.
This facilitates the loading of Cdc45 and DNA
polymerase-alpha (Arias and Walter, 2007).
The activation of pre-RCs does not only
account for accurate timing of replication,
but also converts pre-RCs into post-RCs,
which are not competent for initiation of
replication.

The binding of Cdc6 and Cdtl to the ORC
complex in G1l-phase is thought to be the
limiting step in initiation of DNA replication
and is therefore called replication licensing.
To ascertain proper timing of origin licensing,
both Cdt1 and Cdc6 are regulated by multiple
pathways. Since both genes are targets of
transcription factors of the E2F family, their
expression increases in G1 when E2Fs are
active (Hateboer et al., 1998; Yoshida and
Inoue, 2004). To prevent re-licensing of
replication origins Cdtl is degraded in the
beginning of S-phase by ubiquitin mediated
proteolysis. In humans, two E3 ligases
are involved in Cdtl degradation, CUL4-
DDB1CDT2 and SCFSkp2 (Li et al., 2003;
Nishitani et al., 2006). In addition direct
binding of Cdtl to Geminin will inhibit its
function (Wohlschlegel et al., 2000). Cdc6

protein stability has been shown to be
regulated by the E3 ligase APCC (Petersen
et al., 2000). Interestingly, serine 54
phosphorylation of Cdc6 by CDK2/ cyclin
E stabilizes the protein by interfering with
APCCht mediated regulation (Duursma and
Agami, 2005), which will be discussed in
this thesis. Subsequently, it was shown by
others that phosphorylation of this site by
cyclin E plays a role in exit from quiescence
and entrance into the cell cycle (Mailand and
Diffley, 2005).

Cells have evolved several checkpoints that
prevent DNA replication in case of DNA
damage. One of these checkpoints inhibits
origin firing by downregulating the levels of
licensing proteins. Cdtl has been described
to be degraded in response to gamma-
irradiation in an ATM independent manner by
the Cul4-Rocl E3 ligase (Higa et al., 2003)
or in an ATM and ATR dependent manner
upon treatment with both UV and gamma-
irradiation by the SCFs+*2 E3-ligase (Kondo et
al., 2004). We found that also the licensing
protein Cdc6 is degraded upon gamma-
irradiation in a p53-dependent manner
(Duursma and Agami, 2005) (described
in this thesis). It has been reported by
others that Cdc6 can also be degraded
in a p53 independent manner, possibly
by the Huwel E3 ligase (Blanchard et al.,
2002; Hall et al., 2007). This indicates that
following DNA damage both Cdtl and Cdc6

11




Chapter 1

protein abundance are regulated by multiple
pathways as well, perhaps signifying the
prevention of origin licensing in cells with
damaged DNA.

Deregulation of initiation of DNA replication
can be linked to cancer in several ways. It
was shown that rereplication of the genome
can be induced by deregulation of licensing
factors. Overexpression of Cdtl and Cdc6
along with Cyclin A resulted in rereplication
of human cancer cells with inactive p53
(Vaziri et al., 2003). Further, loss of Geminin
was shown to induce rereplication in the
presence of functional p53 (Melixetian et al.,
2004).

Interestingly, a role for aberrant DNA
replication was suggested in oncogene
induced senescence (Bartkova et al.,
2006; Di Micco et al.,, 2006). Oncogene
activation, such as expression of active
RasV12, resulted in augmented numbers
of active replication origins and changes
in replication fork progression (Di Micco et
al.,, 2006). This in turn resulted in a partly
replicated and rereplicated genome, which
induced senescence via activation of the
DNA damage checkpoint. Abrogation of this
checkpoint could prevent oncogene-induced
senescence and resulted in tumour growth
in @ mouse model (Di Micco et al., 2006).

Epigenetics

In mammals, epigenetic gene silencing
can be regulated by direct modifications of
DNA, but also by modifications of histones,
protein complexes around which the DNA
is enfolded. DNA can be modified by DNA
methyltransferases (DNMTs), which transfer
methyl groups from a S-adenosyl methionine
(SAM) methyl donor to cytosine residues
in DNA at CpG dinucleotides. These CpG
dinucleotides are underrepresented in the
genome apart from discrete regions with high
CpG content that are called CpG islands and
these occur mostly in gene promoter regions
and in repetitive DNA sequences (Gal-Yam
et al., 2007). Histones can be modified at
many sites by many different proteins, but
two important families of proteins are the
Polycomb group (PcG) proteins and the
Thritorax Group (TrxG). The PcG proteins
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are assembled in complexes that can initiate
repression by methylation of lysines such
as histone H3 lysine 27 (H3K27) in histone
tails, and complexes that maintain silencing
by facilitating additional remodelling of the
chromatin (Schuettengruber et al., 2007).
The activity of silencing complexes can be
counteracted by complexes that promote
transcriptionally active chromatin. During
development the Thritorax Group (TrxG)
antagonizes the effects of PcG group
proteins by methylating histone H3K4 and
thereby marking the chromatin as active
(Schuettengruber et al.,, 2007). Mixed
Lineage Leukemia 1 (MLL1) is a human
TrxG homologue and a novel regulatory
mechanism of this gene will be discussed in
chapter 5.

Genomic DNA methylation of cytosines
can be established by the ‘de novo’
methyltransferases Dnmt3a and Dnmt3b,
which are able to methylate unmethylated
DNA during early development and
gametogenesis (Okano et al., 1999). This
genomic imprinting coincides with their high
expression in embryonic stem cells, whereas
Dnmt3a and Dnmt3b are expressed to a low
extent in differentiated somatic cells (Okano
et al., 1998). On the other hand Dnmtl,
the maintenance DNA methyltransferase,
is merely expressed in somatic cells. It has
a strong preference for hemi-methylated
DNA and was shown to be the factor that
preserves methylation marks on newly
synthesized DNA during DNA replication
(Gruenbaum et al., 1982; Leonhardt et al.,
1992). Inactivation of a single Dnmt in mice
results in embryonic lethality or the mice die
shortly after birth, indicating that all three
methyltransferases are essential for normal
development (Li et al., 1992; Okano et al.,
1999).

Although Dnmt3a and Dnmt3b have
overlapping functions in imprinting of genes,
Dnmt3b was shown to be essential for
methylation of centromeric minor satellite
repeats (Okano et al.,, 1999; Xu et al,,
1999). Furthermore, inactivating mutations
in the human Dnmt3b gene were linked
to the Immunodeficiency, Centromeric
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region instability and Facial anomalies (ICF)
syndrome (Xu et al., 1999) and in all tissues
of these patients reduced methylation of
the minor satellite repeats was observed
(Jeanpierre et al.,, 1993). Interestingly,
lymphocytes of these patients show a high
frequency of chromosomal abnormalities of
chromosome 1, 9 and 16 such as centromeric
decondensation and chromosome and
chromatid breaks that are mostly restricted
to the juxtacentromeric regions. In addition,
multiradiate structures of chromosomes are
observed (Maraschio et al., 1988; Sumner
et al.,, 1998; Tuck-Muller et al., 2000).
ICF patients are also characterized by low
numbers of T-cells and this was recapitulated
in @ mouse model for the ICF syndrome. In
this model an ICF-like mutation in Dnmt3b
was shown to result in decreased T-cell
survival (Ueda et al., 2006). From a study
with conditional Dnmt3b knock-out mice it
appeared that Dnmt3b is not involved in
lymphoid lineage differentiation, but it does
play a critical role in hematopoietic stem cell
renewal (Tadokoro et al., 2007).

Initially, aberrant DNA hypomethylation
was proposed to play a role in cancer,
since tumour cells were shown to have a
reduced content of methylated cytosines
and a reduced amount of methylated genes
(Feinberg and Vogelstein, 1983; Gama-Sosa
et al.,, 1983). This hypomethylation was
shown to result in reactivation of imprinted
oncogenes, which in the case of Insulin
Growth Factor 2 (IGF2) was associated with
an increased risk for colon cancer (Cui et al.,
2003; Sakatani et al., 2005). In addition,
DNA hypomethylation was shown to promote
chromosomal instability and it was shown to
be sufficient to induce T-cell lymphomas in a
mouse model (Eden et al., 2003; Gaudet et
al., 2003).

In contrast, DNA hypermethylation of
promoter regions was shown to promote
tumourigenesis by repressing tumour
suppressor gene activity. CpG islands in
the promoter of the Rb tumour suppressor
gene were the first discovered aberrantly
methylated sequences in cancer (Greger
et al., 1989). This was followed by

several studies showing that promoter
hypermethylation correlated with reduced
expression, such as methylation of the p16
gene in bladder cancer (Gonzalez-Zulueta
et al., 1995) and the mismatch repair gene
hMLH1 in colon cancer (Kane et al., 1997).
From the above it is clear that a tight control
of DNA methyltransferase abundance is
required. In chapter 4 of this thesis we
describe a novel regulatory mechanism of
Dnmt3b by a miRNA family.

MicroRNAs

MicroRNAs (miRNAs) are endogenous non-
coding single-stranded RNAs of about 19-
25 nucleotides, which function as negative
regulators of protein coding mRNA sequences
(Bushati and Cohen, 2007). According to
computational studies each miRNA can
regulate hundreds of mRNA targets and more
than 30% of animal genes may be miRNA
targets (Brennecke et al., 2005; Krek et al.,
2005; Lewis et al., 2005; Xie et al., 2005).
Therefore it is not surprising that miRNA
have been implicated in regulation of many
biological processes, such as differentiation,
apoptosis and metabolism (Bushati and
Cohen, 2007).

miRNAs are generally transcribed by
RNA polymerase II into large pri-miRNA
transcripts (Cai et al.,, 2004; Lee et al.,
2004), which are processed by the RNase III
enzyme Drosha and it's co-factor Pasha into
a approximately 70 nucleotide pre-miRNA
that is folded in the characteristic stem-loop
structure (Lee et al., 2003)(Figure 3). This
pre-miRNA will be exported to the cytosol by
RAN-GTP and exportin 5 (Lund et al., 2004;
Yi et al., 2003), where it will be processed
further by Dicer, another RNase III enzyme
(Hutvagner et al., 2001). Dicer cuts the
loop of pre-miRNAs to generate a double
stranded mature miRNA of which one strand
will be loaded onto the miRNA-associated
multiprotein RNA-induced silencing complex
(miRISC), which directs the miRNA to its
target mRNA (Carmell and Hannon, 2004).
Several studies indicate that nucleotides 2-
8 of the 5’ end of the mature miRNA (the
miRNA seed) are important in mRNA target
recognition (Doench and Sharp, 2004; Lewis
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Figure 3. Schematic representation of miRNA biogenesis.

et al., 2005). In animals, miRNAs exert
their function by binding with imperfect
complementarity to the 3'UTR of protein
coding mRNA sequences. This results in
translational repression and enhanced RNA
decay, possibly through reduced adenylation
of the mRNA (Standart and Jackson, 2007).
However, it has also been described that in
case of near-perfect homology of the miRNA
with the 3'UTR, the target mRNA can be
cleaved in manner similar to siRNA-guided
cleavage (Yekta et al., 2004). Also in plants
miRNAs bind target mRNA with very high
sequence complementarity and can induce
both translational repression or siRNA-
like RNA cleavage (Chen, 2004; Llave et
al., 2002; Rhoades et al., 2002). However,
in contrast to mammalian miRNAs, which
target 3’UTRs, most plant miRNAs target
protein coding sequences (CDS). Currently,
no functional miRNA binding sites have been
identified in mammalian CDS, nevertheless,
computational approaches predict that CDS
miRNA targets are present in mammals as
well (Miranda et al., 2006). In this thesis we
show for the first time an example of a human
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miRNA that regulates the protein abundance
of Dnmt3b by binding to its coding region
with high sequence complementarity.

With the possibility of miRNAs to regulate
key cellular processes like cell growth and
apoptosis, impaired miRNA expression has
been implicated in tumourigenesis. Like
protein encoding genes, deregulation of
miRNA encoding genes can occur through
genetic alterations such as amplifications,
deletions and point mutations. One of the
first examples was the frequent deletion of
miR-15a and miR-16-1in chronic lymphocytic
leukemia (CLL) (Calin et al., 2002), which
where shown later to negatively regulate
the anti-apoptotic oncogene BCL2 (Cimmino
et al., 2005). Also certain transcripts of
the let-7 miRNA family were shown to
be down-regulated in human lung cancer
and this correlated with decreased post-
operative survival (Takamizawa et al.,
2004). This suggested a role for let-7 as
a tumour suppressor and this was further
supported by evidence that the let-7 family
can negatively regulate Ras (Johnson et al.,
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2005). In addition, it has been shown that
let-7 can regulate the HMGA2 oncogene (Lee
and Dutta, 2007; Mayr et al., 2007). Notably,
HMGA2 translocates in certain leukaemia’s
thereby losing its 3’'UTR with let-7 target
sites, which renders the HMGA2 fusion
protein insensitive to let-7 regulation.
Conversely, the expression of other miRNAs
was found increased in tumours, such as
the miR-17-92 cluster on chromosome 13
that was shown to be amplified in human
B-cell lymphoma’s (He et al., 2005).
Remarkably, this cluster was shown to be
upregulated by MYC and to modulate E2F1
expression (O’Donnell et al., 2005), but
also to collaborate with MYC by accelerating
tumourigenesis in a mouse B-cell lymphoma
model (He et al., 2005). In addition, miR-
372 and miR-373 have been identified from
a genetic screen for miRNAs that cooperate
with oncogenic RAS to transform primary
human cells, thereby bypassing activation of
the p53 pathway (Voorhoeve et al., 2006).
Interestingly, these miRNAs were found to
be expressed in most testicular germ cell
tumours, which are wild-type for p53. This
suggests a role for miR-372 and miR-373 in
the development of these tumours. Finally,
the p27 tumour suppressor was shown to
be regulated by miR-221 and miR-222 (le
Sage et al., 2007). High expression of these
miRNAs was found to correlate inversely
with reduced expression of p27 in human
glioblastoma’s and reducing the levels of
miR-221 in these cells resulted in decreased
proliferation.

From the above it is clear that genetic
alterations of human miRNAs can play a key
role in tumourigenesis. However, human
miRNAs expression can also be altered
by epigenetic changes such as aberrant
methylation of CpG islands in promoter
regions. Treatment of cancer cells with a
demethylating agent resulted in increased
expression of miR-127 and BCL6 was
identified as a target (Saito et al., 2006).
In another study CpG methylation status of
miRNAs were analysed in breast tissues and
here miRNA-9-1 was demonstrated to be
methylated in breast tumour tissues but not

in normal tissue (Lehmann et al., 2007).
Lastly, altered transcriptional activation of
miRNAs might contribute to the process of
tumourigenesis. This was discussed above
for the miR-17-92 cluster, which is regulated
by MYC. However, recent studies identified
several miRNAs that are regulated by the
tumour suppressor protein p53 of which
miR-34 was most prominent (Bommer et
al., 2007; Chang et al., 2007; Corney et al.,
2007; He et al., 2007; Raver-Shapira et al.,
2007; Tarasov et al., 2007). Significantly,
p53 was shown to directly target the miR-
34 promoter region and loss of p53 resulted
in decreased miR-34 expression. Ectopic
expression of miR-34 induced apoptosis
and a cell cycle arrest, thereby suppressing
tumour cell proliferation. This indicates that
reduced miRNA expression due to functional
inactivation of well-known tumour suppressor
pathways might contribute to the process of
carcinogenesis as well.

Outline of this thesis

The studies described in this thesis aimed
to gain more insight in the regulation and
function of the Cdc6 and the miR-148/152
family.

In Chapter 2 we studied the effect of
DNA damage on Cdc6 protein stability. We
identified that phosphorylation of Cdc6
at Serine 54 by CDK2/ Cyclin E stabilises
the protein during normal replication. In
response to DNA damage this kinase complex
is inhibited in a p53 and p21-dependent
manner, resulting in decreased Cdc6 protein
level. In Chapter 3, the implications of these
findings will be discussed in more detail.
Next, we studied several aspects of the
function of the conserved miR-148/152
miRNA family. In chapter 4, we describe our
finding that miR-148 regulates Dnmt3b mRNA
through interacting with its protein coding
sequence. Notably, all current described
mammalian miRNAs target mRNAs by binding
to mRNA 3'UTRs. In Chapter 5, we extended
this study by exploring whether miR-148
mediated regulation of Dnmt3b plays a
role in early human thymic development.
Interestingly, we found differential
expression of miR-148 in plasmacytoid
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dendritic cells (pDCs) and its precursor
cell. Moreover, exogenous expression of
miR-148 resulted in a dramatic increase of
pDCs in an in vitro assay, suggesting that
miR-148 expression interferes with normal
differentiation, survival or apoptosis. In
Chapter 6, we describe a role for miR-152 in
S and G2/M-phase of cell cycle progression
in diploid fibroblasts. These findings will be
generally discussed in Chapter 7.
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