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Introduction

The joint

Joints are the hinges in the skeleton and they facilitate movement of the body.
They are indispensable for all kinds of movements, like walking, grabbing
things and jumping. A joint is composed of two opposing bones connected by
a capsule (See figure 1). The inner layer of the capsule forms the synovial mem
brane. Sometimes a joint also contains ligaments, menisci or additional bones
like the patella. The rest of this introduction will discuss the structure and func-
tion of the synovium and its cells.

Normal joint Rheumatoid
arthritis joint
Synovial Bone

membrane

Cartilage

Figure 1 Schematic representation of a normal healthy joint (left) and a joint from a patient with
rheumatoid arthritis (right).
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Synovium and fibroblast-like synoviocytes

Synovium is very variable, being composed of several layers, any of which may
be present or absent at a given site (see figure 2). The anatomical and histologi-
cal boundaries of the tissue are often hard to identify (1). The function of the
synovium is to facilitate skeletal movement by the maintenance of a fluid-filled
space around cartilage or tendon surfaces.

The presence of fluid is dependent on 3 factors:

1) the subatmospheric pressure within the cavity at rest, which encourages the
entry of plasma dialysate.

2) the addition of hyaluronan (HA) to this dialysate.

3) the presence of a compact uninterrupted superficial synovial tissue layer or
membrane (1).

The synovial intima consists of a layer of overlapping cells, rarely more than 3
cells thick, without a basal lamina or tight junctions (2).

Intimal cells are a mixture of macrophages and fibroblast-like cells (1;3) and
synovial intimal cells vary in shape from polygonal cells with round or oval
nuclei to elongated cells with spindle shaped nuclei (2). The differences are
based on electron microscopy. The different cells are called type A and type

B synoviocytes. Type A synoviocytes contain prominent Golgi complex and
many vesicles and vacuoles, while type B synoviocytes contain a lot of rough
endoplasmic reticulum and only sparse Golgi complex and vacuoles. Another
feature of type A cells are greater amounts of filopodia, mitochondria, intracy -
toplasmic filaments and lysosomes than type B cells (2).

During the 1980s the type A synoviocytes were considered to be tissue macro -
phages and type B synoviocytes the fibroblast-like synoviocytes (FLS) or fibro-
blasts. The work presented in this thesis focuses on FLS and their role in joint
destruction during rheumatoid arthritis.

FLS form together with macrophages in the lining layer the border between the
stroma of the synovium and the synovial joint filled with synovial fluid. Syno -
vial fluid is an ultrafiltrate from the blood in which several molecules are added
by FLS. This synovial fluid functions as a lubricant in the joint and facilitates
movement, but it also contains nutrients for the chondrocytes in the cartilage,
relevant because cartilage is hardly vascularized. Cultured FLS show a charac-
teristic fibroblast spindle shaped morphology and express fibroblast markers,
like vimentin and collagens (4).

Development of synovium and differentiation of FLS
Synovial joint development in the foetus can be divided into 2 stages:
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1. Formation of a primitive skeletal core or anlage. This is composed of cartilagi
nous elements and is destined to form individual bones. These “prebones” are
separated by transverse bands of relatively flattened cells, known as interzones.
The periphery of each interzone is destined to become synovium and becomes
vascularised, while the centre remains avascular.

2. Cavitation of the interzone. During this process the cartilaginous and syno -
vial elements separate and take on their final form (5).

How this separation is initiated and elongates is not exactly known, however it
is thought that hyaluronan (HA) plays an important role. The cells involved in
the cavitation of synovial joints are CD44 positive, which is a receptor for HA
(6).

HA is a nonsulphated, high molecular weight unbranched polysaccharide
composed of repeating disacchararide units of glucuronate linked to N-acetyl
glucosamine. The substrate precursors of HA are (uridine diphospho-) UDP-
glucuronate and UDP-N-acetylglucosamine. Hyaluronan synthase transfers
these two precursors alternately to nascent HA. Uridine diphosphoglucose de-
hydrogenase (UDPGD) is the enzyme responsible for the conversion of UDP-
glucose to UDP-glucuronate and this conversion is thought to be the rate limit-
ing step in the synthesis of HA (7). Cells immediately bordering the line of joint
separation have high UDPGD activity just like synoviocytes of human adult
synovium (4;5).

After synovial tissue has been clearly separated from adjacent cartilage at 12
weeks after gestation or later, significant staining for f-integrin was seen in
synovium. At this stage, staining is relatively prominent on the surface layer

of cells. These data are the only indication that a distinct intimal synoviocyte
phenotype starts to develop, because these cells were still negative for VCAM-1
as opposed to adult intimal layer synoviocytes (5). In normal adult synovium
fibroblasts two phenotypes are observed: intimal (present in the lining) and
subintimal (present in the stroma of the synovium). The intimal fibroblasts ex -
press UDPGD, HA, VCAM-1 and CD55. The intimal fibroblasts also express
fibronectin, type IV collagen, laminin and chondroitin-6-sulphate bearing pro -
teoglycans, which are associated with basal laminae. Other molecules that are
expressed by intimal fibroblasts are two types of microfibril based on fibrillin-1
and type VI collagen, Lubricin, phospholipids and unusual carbohydrate enti -
ties (1,4;6).

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic, inflammatory disease of the joints with
an unknown etiology. Both genetic and environmental factors contribute to

disease susceptibility and the prevalence of RA is greater in women than in
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Figure 2 Structure of the synovium in healthy persons (upper panel) and in patients with
rheumatoid arthritis (lower panel).
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men. One of the genetic factors associated with RA is the shared epitope. This
implicates in increased presence of certain HLA alleles in patients in RA. RA is
believed to be an autoimmune disease characterized by infiltration of immune
and inflammatory cells into the synovium, hyperplasia of the synovial lining,
formation of lymph follicles and development of pannus. There is progressive
cartilage destruction and finally erosion of the underlying bone. Fibroblast-like
synoviocytes (FLS) are thought to be one of the principle cells involved in pan-
nus formation as demonstrated by histology and the intimate physical relation
of the cartilage pannus junction suggests a prominentrole in cartilage degrada-
tion. In this thesis the role of FLS in the pathology of RA is investigated with
emphasis on the invasive properties of FLS.

Characteristics of FLS in RA as compared to FLS in healthy human adult
synovium

Morphology and behaviour

Characteristic lesions found in RA synovium are hypertrophy, proliferation of
synovial connective tissue (pannus formation) and subintimal infiltration with
mononuclear cells (see also figure 2) The pannus tissue is found on the border
between synovium and cartilage and in the pannus tissue cells were identified
that showed characteristics of both FLS and chondrocytes. They expressed on -
cogenes, mRNA for matrix degrading enzymes, vimentin and collagen type II
(8;9). These data are compatible with a possible contribution to the destruction
of cartilage by pannocytes in RA. Because FLS can undergo chondrogenesis
when cultured in the presence of TGF-P1, this suggests that these pannocytes
have a synovial origin (10).

Invasiveness

The first study to show that FLS from patients with RA are invasive into carti -
lage comes from the severe combined immunodeficient (SCID) mouse co-im -
plantation model of RA (11). In this model, isolated RA FLS are implanted to -
gether with normal human cartilage under the renal capsule of SCID mice (11).
Because these mice lack a functional immune system, they do not reject the
implants and this allows for the study of the interaction between RA FLS and
normal human cartilage.

In table 1 cytokines and other proteins are listed that are known to affect FLS
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migration and invasion. In joints of patients with RA fibrin deposits adhering
to the synovial surface are typical of the disease. Aggregation of fibrin to the
synovial surface in rabbits with antigen-induced arthritis can activate the FLS
in the lining layer to invade into the aggregates (12).

Table 1 Effector molecules with an effect on migration and invasion of FLS

Factor Cellular or tissue source Effect
TNF-a Macrophage, activated monocyte, B cell, T cell, fibro- +
blast
PDGF Platelet, macrophage, endothelial cell, skeletal muscle
cell, glial cell, type I astrocyte, myoblast, kidney, epi- +

thelial cell, mesangial cell
TGEF-p Platelet, macrophage, T cell, skeletal muscle cell, fibro- +

blast
bFGF Brain, retina, bone matrix, endothelial cell, macrophage +
EGF Granulocyte, ectodermal cell, kidney, duodenal gland, +
platelet
IGF-1 Fibroblast, skeletal muscle cell, liver, endothelial cell, T +
(SmC) cell
Collagen ECM +
Fibronectin ECM
Fibrin Platelets +
Interferon T lymphocytes, NK cell (IFN-y), all cells (IFN-a) -

Recently, an inverse correlation between invasion and proliferation was shown
(13), suggesting a dissociation between proliferation and invasion. This has also
been shown for several tumours, were an inverse correlation has been found
between rate of proliferation and metastasis of a tumour. This is indirectly con
firmed by Kasperkovitz et al (14), who found that two groups of FLS exist in
RA patients. One group expressed genes involved in proliferation, like growth
factors and the other group expressed genes involved in cartilage degradation
(see also below). Besides adhesion CD44 is also involved in invasion of RA FLS.
FLS expressing the splice variants v3 and v6 were significantly more invasive
than FLS not expressing these variants and antibodies against these variants
inhibited the invasiveness. Furthermore, the invasive cells showed reduced ex-
pression of CD44v7/v8 (15), which confirms the observations that invasive cells
show reduced proliferation compared to non-invasive cells, because CD44v7/
v8 is associated with increased proliferation of FLS (16).
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Adhesion molecules

Integrins

One of the most striking features of RA FLS is their ability to grow anchorage
independent in soft agarose for mutiple passages and escape contact inhibition,
which could be inhibited by TGF-p or retinoids (17). Furthermore, RA FLS up-
regulate different adhesion molecules that allow them to attach to cartilage.
One family of adhesion molecules that is up-regulated on RA FLS are thein -
tegrins (18). Integrins consist of two non-covalently bound subunits, a and f.
The a subunit family consists of al to a6 or av and the p subunit has three
isoforms 1, 33 and p4. The expression of B1 integrins contributes to increased
binding to the cartilage (18;19) and antibodies against p1 integrin inhibited, at
least in part, the binding of RA FLS to the ECM (18). Several integrins function
as fibronectin receptors and therefore it has been suggested that the fibronectin-
rich environment of the RA cartilage surface facilitates adhesion of FLS to the
articular cartilage. Furthermore, adhesion to fibronectin via av integrin recep -
tors downregulated the expression of MMP-1 and induced proliferation in re -
sponse to PDGF (20). In contrast, loss of cell adhesion was associated with loss
of cytoskeletal structure and change in cell shape and increased MMP-1 expres
sion (20). Crosslinking of 1 integrin or binding of fibronectin or collagen type
Iinduces the expression of ICAM-1 and Fas on FLS from patients with RA (21).
Normal FLS constitutively express the integrins av and 3, however expression
of B3 integrin is less in RA FLS and expression of these integrins was further
downregulated by the pro-inflammatory cytokines IL-13 and TNF-a (22). IL-1{3
induced invasion of RA FLS into cartilage slices and this invasion was depend-
ent on the integrins p1, a4, a5 and av (23).

The expression of the oncogenes c-fos and c-myc is also regulated by integrins.
This demonstrates that integrins not only play a role as receptor molecules in -
volved in cell adhesion, but they can also interact with several signaling path -
ways involved in the pathogenesis of RA (24). These pathways mainly involve
oncogenes and can confer independency of adherence to cells.

Cadherins

Cadherins are transmembrane glycoproteins expressed in restricted patterns.
They mediate homophilic adhesion between cells. Several cadherins exist with
a specific tissue localization, like E-cadherin in epithelia and N-cadherin in
the nervous system. Together with intracellular catenins they bind to the ac -
tin cytoskeleton and can activate intracellular signaling pathways, influence
cytoskeletal organization and orchestrate multicellular arrangements (25;26).
Changes in cadherin expression are associated with cell transformation and tu-
mor metastasis.
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Cadherin-11 and not E-cadherin was found to be expressed in FLS from healthy
individuals and patients with RA and OA and cadherin-11 mediated adhesion
of FLS on Cadherin-11/ Fc fusion protein coated plates, which facilitate cad -
herin-cadherin interactions (27). Cadherin-11 staining was seen at sites of cell-
cell contact in ladder-like series of lines. This corresponded with the filopodial
processes on FLS (27). Cadherin-11 is associated with invasive tumour beha-
viour in breast and prostate carcinomas (28;29). Therefore, it will be of interest
to study whether this cadherin is important in the locally invasive behaviour of
the rheumatoid synovium. Although it is unknown whether synoviocytes are
epithelial cells, some reports show that they express E-cadherin (30;31), in con-
trast to other reports (27) that do not find E-cadherin expression in FLS.
Triggering of LTBR on FLS increases the expression of the adhesion molecules
VCAM-1 and ICAM-1, indicating increased adhesive properties of FLS, which
can help with the formation of ectopic germinal centers (GC) in RA synovium
(32) (see also below in “Interactions with other cell types”). ICAM-1 has been
demonstrated to distinguish between proliferative RA FLS and apoptotic/
growth arrested FLS, because cells positive for ICAM-1 represent growth ar -
rest with up-regulation of Fas and p53, whereas ICAM-1 negative cells were
proliferative (33).

CD44

CD44 has previously been identified as a lymphocyte homing factor. However,
nowadays many functions for CD44 are known, most of which are concerned
with cell adhesion. It is the major cell surface receptor for hyaluronan (34). The
gene of CD44 consists of various exons that can be spliced out of the protein
and different splicing combinations give the protein different functions and
some splice variants are associated with increased metastasis of tumours. FLS
from patients with RA show a wide variety of splicing combinations at high
levels (35). Expression of CD44 exons 7 and 8 (CD44v7/8) is associated with
increased proliferation of FLS and antibodies against this epitope, but not other
exons, inhibited proliferation (16). This implicates a role for CD44 in the trans -
formation of RA FLS. Another function of CD44 recently discovered is the up-
regulation of Fas on the membrane of FLS and this amplified the Fas-mediated
apoptotic change (36).

Matrix degradation

A hallmark of the inflammatory synovitis seen in RA patients is the subsequent
erosion of articular cartilage and bone presumably caused by pannus tissue,
which is not seen in osteoarthritis (OA). Addition of FLS and monocytes to

cultured and radiolabeled cartilage slices resulted in cartilage degradation and
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this was augmented by addition of TNF-a, IL-1f and IL-6 (23;37). Degradation
only occurred by direct contact with the cartilage via CD44 and was dependent
on 1, a4, ab and aV integrin expression.

ADAMs and MMPs

In RA several enzymes that can degrade the extracellular matrix (ECM) are
overexpressed. Families of these enzymes are the matrix metalloproteinases
(MMPs), a disintegrin and metalloproteinase family (ADAMs) and the cathe -
psins. ADAM15 is overexpressed in RA synovial tissue. It is expressed by FLS,
macrophages and plasma cells (38). This implicates a role for this metallopro -
tease in the pathogenesis of cartilage destruction in RA. In the synovium, sev -
eral MMPs play an important role in the degradation of ECM. MMP-1, MMP-3,
MMP-9, MMP13, MMP-14 and MMP-15 (39-45) are the most important MMPs
that are up-regulated in RA FLS compared to OA or normal healthy FLS.

In contrast, Reboul et al. demonstrated that MMP-13 is not expressed in FLS,
but only in chondrocytes and that it probably play a role in OA and not in RA
(46). Expression of MMP-3 was found mainly in the lining FLS, but also in the
sublining layer (47-49) (50;51) and MMP-3 activity was crucial for aggrecan and
collagen type II breakdown during adjuvant induced arthritis in mice (52).
Expression of MMP-8 in FLS is rather controversially, because Konttinen et al
found no expression in synovium from patients with RA or trauma, but previ-
ously from the same group expression of this MMP has been demonstrated in
FLS from patients with RA (53). The membrane type (MT-) MMP MT1-MMP
(MMP-14), MMP-2 and MMP-13 showed strong co-expression in RA FLS (54).
MT1- and MT3-MMP are abundantly expressed in RA synovial lining cells
(55;56) and this expression of MT-MMPs is important because MT-MMPs not
only degrade ECM, but they also play an important role in the activation of
other MMPs, such as MMP-2 and MMP-13 (57). MT1-MMP deficient mice de -
velop spontaneous arthritis among other diseases due to inadequate collagen
turnover (58). In contrast, MMP-9 knockout mice display milder arthritis after
immunization with antibody, while MMP-2 knockout mice also show more se-
vere diasease (59).

MMPs are also found in the synovial fluid of patients with RA (42), with very
high expression of MMP-1 and -3 (60;61). Expression of MMP-1 and -3 and
tissue inhibitors of metalloproteinases (TIMP)-1 is also found in the serum of
patients with RA and the levels of MMP-1 and -3 correlate with disease activity
and predict clinical response (62-66). Serum levels of MMP-3 have been shown
to be higher in patients who carry the shared epitope, especially early in the
disease course in RA patients. This may partly reflect the association between
shared epitope and more erosive disease (64). Anti-TNF-a therapy down-regu-
lates serum levels of MMP-1, -3 and MMP-TIMP ratio (67).
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Expression of MMP-13 is of importance for RA, because it is the main protease
to cleave type II collagenase and it can cleave aggrecan, a large cartilage prote-
oglycan (68). Its mRNA was induced in FLS when they were co-cultured with
normal human cartilage or when FLS were cultured within 3 dimensional col -
lagen gels (69) and expression of MMP-13 correlates with levels of systemic
inflammation markers (43).

The activity of MMPs is counterbalanced by TIMPs, which are also produced
by FLS in the lining of the synovium (49). Expression of TIMPs is enhanced by
IL-6, IL-11 and TGF-p via expression of the transcription factor Egr-1 (70). Over
expression of TIMP-2 has been shown to ameliorate collagen induced arthritis
in mice (71) and overexpression of TIMP-1 in TNF-a transgenic mice reduces
joint damage (72). Expression of MMDPs is tightly regulated and oncogenes and
cytokines play an important role in this regulation. Ras can induce expression
of MMP-1, -3, -9 and -13 via c-Raf-1 (73). When FLS were transduced with dom
inant negative c-Raf-1 (a downstream messenger of Ras) or dominant negative
c-Myc, invasiveness in this model was significantly inhibited as compared to
mock transduced cells (73). The inhibition of invasiveness was not complete,
however due to rapid apoptosis induction after transduction with both vectors,
this could not be used in the SCID mouse model. Egr-1 and fos are known to
induce expression of MMP-1 in fibroblasts (74). IL-1p induces the expression of
MMP-1, -3 and -9 in fibroblasts (75) and IL-1p induced expression of MMP-1 is
dependent on Bcl-3 (76).

It is known that many MMPs contain AP-1 binding sites in their promotors,
indicating that the AP-1 transcription factor is involved in the tissue specific ex
pression of MMPs (77;78). However, although AP-1 is necessary for transcrip -
tion of MMPs, it is not sufficient. It cooperates with other transcription factors
to regulate MMP expression (77). Like AP-1, NF-xB induces the expression of
MMPs (79), but it is unclear which regulatory pathway contributes most signifi
cantly to the altered expression of MMPs in RA (80). Inhibition of NF-xB acti -
vation inhibits the expression of MMP-1 (81) and -3 but leaves the expression
of TIMP-1 unaffected (79) shifting the balance towards repair. Transforming
Growth Factor (TGF)-p has been shown to induce expression of MMP-1 (82)
and inhibit the expression of MMP-3 probably via the expression of Fos which
can bind in a multimeric protein complex to a DNA sequence identified as the
TGEF-B1 inhibitory element (83). This complex is probably different from AP-1,
because AP-1 induces expression of MMPs, including MMP-3. Furthermore,
TGEF-B induces the expression of tissue inhibitor of MMPs (TIMP) shifting the
balance proteinase/inhibitor towards a net neosynthesis of ECM (84) via which
TGF-p is also involved in the formation of fibrosis, another characteristic of RA
in some patients.

Extracellular matrix metalloproteinase inducer (EMMPRIN) can induce local
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production of at least MMPs-1, -2 and -3 and its expression is up-regulated in
the rheumatoid synovial membrane compared to OA. This supports a role for
EMMPRIN in joint destruction in RA (85;86).

Recently, it was shown that expression of MMP-1, -3, and -9 is increased by
enhanced activity of the MAPK ERK (87). Beside a role in apoptosis, the tumor
suppressor p53 has also been demonstrated to play a role in the regulation of
MMP expression. Wild-type p53 and retinoblastoma (88), also a tumour sup -
pressor, downregulate the expression of MMP-1 and -13, but in cells with mu-
tant p53 this downregulation is inhibited and in one mutant, expression is even
enhanced 2-4 fold (89).

Cathepsins

Cathepsins B, D, K and L are cysteine proteases that are expressed in RA syn -
ovium (90-96). Expression levels of cathepsin K in RA FLS correlated with dis -
ease severity (94) and enzymatic activity of cathepsins in AIA rats was posi -
tively correlated with joint destruction and inflammation (97). Ras oncogene
can induce expression of cathepsin L and B in several transformed cell lines and
in RA synovium combined overexpression of Ras and cathepsin L are found
mainly at the site of invasion (98). Expression of cathepsins can be up-regulated
by cytokines including PDGF, TNF-a (cathepsin B, L and K), IL-1f (cathepsin
K), bFGF (cathepsin L), IL-1§ (cathepsin B and L) and IFN-y (cathepsin B and
L) (92;9).

Serine proteases

A third family of proteases involved in the degradation of extracellular matrix
are the serine proteases. This family include plasmin and plasminogen activa -
tors which are important in RA because of their fibronolytic function and their
capacity to degrade a wide range of ECM molecules and activation of MMP-1
and -3 (99). Furthermore, the plasminogen activation system and their inhibi -
tors are expressed at significantly higher levels in RA synovium as compared to
OA or normal synovium. Inhibition of the urokinase-type plasminogen activa-
tor resulted in a significant reduction of cartilage matrix degradation in vitro
and in cartilage invasion in vivo (99).

Aggrecanases

A recently discovered family of matrix degrading enzymes, aggrecanase-1 and
-2, are expressed in RA FLS and expression of aggrecanase-1 is induced by
TGEF-B1, indicating a role for these enzymes in joint destruction of RA (100).
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Figure 3 Interaction between FLS and other cell types play an important role in the modulation of
synovitis and joint destruction
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Interaction with other cell types

In the rheumatoid synovium the FLS also interact with various cell types to
modulate synovitis and joint destruction (see figure 3).

Macrophages and osteoclasts

RA FLS play an important role in the activation of macrophages in the lining
and their differentiation into multinucleated, osteoclast-like bone resorbing
cells (101). RA FLS express large amounts of the osteoclast-differentiation factor
(ODF), which correlates with the ability of these cells to induce osteoclastogen-
esis in peripheral blood monocytes in vitro (102) and in synovial cells (103)FLS
express functional IL-2 receptor - and y-chains (CD122 and CD132) and are
able to recruit macrophages into the rheumatoid synovium by secreting mac -
rophage chemoattractant protein-1 (MCP-1) in response to IL-2 derived from

T cells (104). MCP-1 has also been shown to stimulate expression of MMP-1

in human fibroblasts (105). RA FLS in the lining can also interact with macro -
phages via CD55-CD97 interaction (106), which may be involved in induction
of FcyRlIlla expression on macrophages (6). Coculture of macrophages and FLS
induced cartilage degradation and this could be inhibited by antibodies against
IL-1p, IL-6, CD44 and TNF-a (37;107).

FLS also play a role in bone catabolism by secreting RANKL and macrophage-
colony stimulating factor (M-CSF) which are necessary for osteoclast devel -
opment (108). As a counteraction of bone catabolism, FLS also secrete bone
morphogenic protein-2 (BMP-2) and -6 after stimulation with IL-13 and TNF-
a (109). BMP-2 participates in the compensatory response by stimulating new
bone formation (110). As an additional function, BMP-2 induces apoptosis in
FLS, while BMP-6 protected against apoptosis induced by nitric oxide (109).

T and B cells

RA FLS in the lining layer of the synovium are an important source of IL-16
(111), which has been demonstrated as a chemoattractant for CD4+ T cells and
appears at least in part responsible for the anergic state of T cells in the syno -
vial state (112). Furthermore, direct contact between T cells and FLS caused
up-regulation of CD69 and CD25 on T cells, negligible T cell proliferation and
HLA-DR on FLS (113). IL-1 exists as a soluble form, but also as a membrane
bound isoform (MA-IL-1). MA-IL-1 is expressed on RA FLS and macrophages
and induced proliferation of T cells, but also of FLS in an autocrine manner.
Furthermore, it promoted proteoglycan release from cartilage, a measure for
cartilage destruction (114).

FLS fom patients with RA have similar properties as follicular dendritic cells
in the sense that they can bind B cells and are able to inhibit T and B cells from
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apoptosis (115;116). Cell-cell contact between B cells and RA FLS via VLA-4 and
V-CAM-1 up-regulates expression of BCL-XL in B cells which inhibits apoptosis
of these B cells (117;118) and together with CXCL12-CXCR4 interaction support
migration of B and T cells below a monolayer of FLS (pseudoemperipolesis)
(119;120). The pseudoemperipolesis of B cells is dependent on VLA-4, but not
VCAM-1 and binding of B cells to the FLS induces expression of IL-6 and IL-8.
However this is dependent on VLA-4 independent cell-cell contact (121).

Lymphoid structures

FLS from patients with RA express the lymphotoxin  receptor (LTBR) (32),
which is indispensible in the formation lymphoid tissue. Tertiary lymphoid tis
sue is formed in several patients with RA (122) and these germinal center (GC)
like structures are capable of supporting B cell affinity maturation. Stimulation
of LTPR on RA FLS increased the expression of IL-1a and -3, IL-6, granulocyte
and monocyte colony stimulating factor (GM-CSF), TNF-a, MMP-1 and -3 (32).
These molecules all play an important role in the pathogenesis of RA. Stimula-
tion of RA FLS with LTalp2 increased the adhesiveness for T cells probably
via the increased expression of VCAM-1 and ICAM-1 (32). Triggering of LTBR
on RA FLS also increased the secrestion of the pro-inflammatory chemokines
CCL2, CCL5 and CXCLS8 and this stimulated the migration of T cells in a tran -
swell migration experiment (32). TNF-a, IL-1p and TGF-p1 regulate the expres
sion of CCL2, CCL5 and CXCL12 by RA FLS and these cells also express the
corresponding receptors CCR2, CCR5 and CXCR4 (123;124). It has also been
shown that the number of CXCR4 expressing CD4+ T cells was elevated in RA
synovium and that CXCL12-CXCR4 interactions inhibited activation-induced
apoptosis of these cells (124). This implicates that chemokines not only play

a role in inflammatory cell migration, but are also involved in the activation

of FLS in RA synovium. Expression of IL-6, IL-8, CXCL1 and CXCL2, COX-2
and PGE2 (125) in FLS are up-regulated by IL-17/IL-17R interaction, which is
a cytokine that is produced by T cells and is abundantly expressed in RA syn -
ovium. Its receptor is expressed on several cell types including FLS (126;127).
Treatment of mice after the onset of collagen induced arthritis (CIA) with a
neutralizing anti-murine IL-17 antibody reduced joint damage, systemic levels
of IL-6 and the severity of CIA (128).

Angiogenesis

RA FLS also express abundant angiopoietin-1 (Ang-1) and Ang-2 which are im
portant regulators of angiogenesis (133). Expression of Ang-1 is up-regulated
by TNF-a (134). The receptors of Ang-1 and -2 are Tiel and Tie2 and are also
expressed on FLS. Signaling via Ang/Tie2 is not only important for the up-
regulated angiogenesis in RA, but also for synoviocyte behaviour by regulating
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chemotactic cell movement (133).

Cell-cell contact between FLS and stimulated T cells can markedly increased
the production of MMP-1 and -3, VEGF, PGE2, IL-15, TNF-a and IL-18 (129-
131) in FLS. Up-regulated production of MMP-1 and -3 is at least partially me-
diated by cell-bound IL-1a and TNF-a and integrins play an important role in
VEGEF production, because antibodies against integrins inhibited the expression
of VEGF (130). Cell-cell contact between FLS and T cells also works the other
way around via CD47 and its ligand on FLS, thrombospondin, which induced
proliferation and survival of T cells (132).

Cartilage

Invasiveness of FLS from patients with RA is significantly decreased when FLS
are co-implanted with cartilage stored for 24 hours as compared to fresh carti -
lage. Furthermore, the cartilage breakdown by FLS is decreased when chondre
cyte protein biosynthesis is blocked by cycloheximide. The cartilage breakdown
was restored by addition of IL-1p (135). This implicates a role for chondrocytes
in cartilage breakdown by RA FLS even when the chondrocytes come from
normal healthy human cartilage.

Table 2 Effector molecules released by FLS

Signal function Effector molecules
Angiogenesis IL-8, TGF-B, PDGF, GM-CSF, G-CSF, FGF,
VEGF, EGF
Chemoattractant IL-8, IL-16, MCP-1, MIP-1a
Pro-inflammatory IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, LIF, PDGF,
MIF, GM-CSF, TRX
Anti-inflammatory p55 TNFR, p75 TNEFR, IL-10
Matrix degradation PGE2, MMP-1, MMP-2, MMP-3, cathepsins B,
Land K
Inhibit matrix degradation TIMP, TGF-$, IL-11
Osteoclastogenesis RANKL, VEGF
Bone formation TGEF-f3, BMP-2

Soluble mediators

Many cytokines, chemokines and growth factors are secreted by FLS in patients
with RA and table 2 shows a short summary of these mediators and their ef -
fects.

Myofibroblasts are activated or transformed fibroblasts exhibiting increased ex
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pression of cytokines and chemokines like stromal cell derived factor-1 (SDF-1)
(4), IL-6 and IL-8. These cytokines are abundantly expressed in RA FLS (127)
and this implicates another role for myofibroblasts in RA as mentioned above
(morphology and behaviour) (14). These cytokines play an important role in the
influx of inflammatory cells in the synovium.

Angiogenic factors

Platelet derived growth factor (PDGF) is not only expressed in platelets, but
also in endothelial cells, macrophages and synovial cells (136). PDGF stimulates
proliferation and anchorage independent growth in RA FLS (17). Synergisti -
cally with IL-1, PDGF can induce PGE2 (137), however IL-1 antagonizes the
proliferative effect of PDGF on FLS and PDGF did not increase the steady-state
levels of MMP-1 as IL-1 does (137). PDGF is overexpressed in the lining layer
of RA synovium (138) and the intensity of PDGF expression correlates with the
expression of heparin-binding growth factor (HBGF), which is a precursor of
acidic FGF (136). HBGF is abundantly expressed in rheumatoid synovium and
is a potent mitogen for FLS. FLS from patients with RA spontaneously express
acidic FGF and expression is increased compared to OA and normal FLS, which
is increased by TGF-p (139).

New blood vessel formation or angiogenesis is a characteristic feature of RA
and it is now appreciated that RA FLS play an important role in the forma -
tion of new blood vessels. They secrete important pro-angiogenic cytokines and
growth factors including TGEF-p, IL-8, PDGF, GM-CSF, EGF, FGF and VEGF.
VEGEF is one of the most potent angiogenic factors and is constitutively ex =~ -
pressed by RA FLS (140). Expression of VEGEF is further increased by IL-1. Due
to the inflammation in RA, hypoxic conditions are likely to occur and this also
leads to enhanced expression of VEGF.

Monocyte chemoattractants

Beside angiogenesis, RA FLS have the potential to induce synovitis by releasing
mediators that attract leukocytes and monocytes into the joint. After cytokine
stimulation, FLS can secrete macrophage chemotactic protein (MCP)-1 and
macrophage inflammatory protein (MIP)-1q, that are responsible for attracting
monocytes (82;141;142). FLS are stimulated to express IL-1p, IL-6, IL-8, COX-2,
PGE2 by MIF (143;144)and MIF induced phosphorylation of p38 and ERK and
P38 activation was responsible for the induced expression of COX-2 and IL-6
(144).

Inflammation modulators
RA FLS also play a role in the modulation of the inflammatory response. TGF-
B1 induces the expression of IL-1, TNF-a, IL-8 and MIP-1a by RA FLS thereby
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contributing to the progression of inflammation (82). RA FLS in the lining layer
express more Complement 2 (C2) and HLA-DR compared to OA FLS (40).
They can also trigger the acute phase response by releasing the IL-6-typecy -
tokines IL-6, IL-11 and Leukemia inhibitory factor (LIF) (145), furthermore, FLS
promote T-cell activation and expansion by IL-15 and IL-7 (146) and IL-15 is also
involved in the activation of FLS via an autocrine feedback loop. FLS express
the IL-15 receptor and triggering via exogenous IL-15 up-regulated expression
of BCL-xL and enhanced proliferation (147). Expression of IL-15 by FLSis in -
hibited by PGE2 via NF-xB (148). Oxidative stress in RA FLS and monocytes
induces thioredoxin and this augments the secretion of TNF-a and IL-1 and
also blocks apoptosis (149). Thioredoxin is important for the maintenance of an
appropriate intracellular redox balance, but secreted thioredoxin functions as a
cytokine-like molecule.

In an attempt to downregulate the inflammation, FLS also express IL-10 (150)
and this expression is up-regulated by PGE2 (148), IL-1p and TNF-a (150).

FLS from patients with RA are a source of nitric oxide (NO) in the synovial
fluid. NO may mediate pathology of RA through the induction of TNF-a pro -
duction (151).

IL-18 plays a role in the activation of T cells and macrophages in the synovium,
however not on FLS, because FLS do not express functional IL-18 receptor (152).
FLS do express the IL-18 antagonist (IL-18 binding protein (IL-18BP)) after stim
ulation with IFN-y, which may limit IL-18 biological activity in arthritis (153).

FLS phenotype in RA?

In RA, transformed-appearing cells are discerned, characterized by large, pale
nuclei, containing prominent nucleoli and an abundant cytoplasm. This trans -
formed-appearing phenotype of synovial lining cells is accompanied by the
production of matrix-degrading molecules and the upregulation and expres -
sion of signaling molecules such as growth factors, cytokines and adhesion
molecules (154-156). These groups of molecules are discussed below. Using a
general method for the identification of differences in patterns of gene expres -
sion, it was revealed that cultured RA FLS overexpress certain proinflammatory
genes that are potentially relevant to lymphocyte and monocyte entry and in -
teractions. They facilitate localization of immune reactions to the joint through
leucocyte chemokinesis, cell-cell adhesion, and matrix specialization (157). The
alterations of synovial components are thought to be due to activation of proto-
oncogenes that are involved in the regulation of the cell cycle (138).

There are also indications that FLS in RA have lost their original differentiation
state. This can be due to dedifferentiation or transdifferentiation or that there is
an influx of non-differentiated cells showing characteristics of embryonal cells.
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It has been shown that bone marrow CD34+ cells from patients with RA have
abnormal capacities to respond to TNF-a and to differentiate into FLS produc -
ing MMP-1 and prolyl 4-hydroxylase (158). This was not seen with cells from
controls (OA and healthy). And it has been shown that FLS can differentiate in
a large variety of different cell types, like adipocytes, osteoclasts and chondro -
cytes (10;159), suggesting a un-differentiated cell type.

Further evidence for the hypothesis of dedifferentiation of FLS is the increased
expression of wntba and fz5 (wingless and their receptors, frizzled families re -
spectively) pointing to an undifferentiated state of FLS in RA, because the wnt
pathway mainly plays a role during embryological development. Transfection
of normal FLS with a wnt5a expression vector induces expression of IL-6, IL-8
and IL-15, which are overexpressed in RA (160). On the other hand, inhibition
of either wntba or {z5 reduced expression of IL-6, IL-15 and RANKL in RA FLS
(161). Another member of the Wnt family that is expressed in RA FLS is wnt-1.
Expression of this member induces expression of fibronectin and pro-MMP-3
(162), compatible with RA.

FLS in patients with RA also express higher levels of H19 RNA, which is nor -
mally only expressed in embryonal tissues and adult skeletal muscle. H19 RNA
is re-expressed in several tumours and chronic inflammation. It acts as a marker
for chronic stress (163). Pleitrophin is another embryonic protein. It acts as a
growth and differentiation factor which is normally not expressed in adult tis -
sues. However, pleiotrophin is strongly up-regulated on RA FLS. Expression
can be up-regulated by TNF-a and EGF and it stimulates proliferation of FLS
(164).

Recently, two different phenotypes of FLS in patients with RA were detected.
In one group of RA patients FLS expressed mainly markers for cell proliferation
and differentiation like insulin-like growth factor 2 (IGF) and IGF binding pro-
tein 5. In the other group of RA patients, FLS expressed molecules associated
with myofibroblasts. These include a-smooth muscle actin (SMA), activin A
(TGE-B/activin pathway) and several types of collagens (14). The classification
in different groups also correlates with a previous classification of synovial
tissue into two groups, a high inflammatory group and a low/intermediate
inflammatory group (165). In their analysis, the myofibroblast group of FLS
correlates with the high inflammatory group of synovial tissue (14). Myofibrob
lasts play an important role in wound healing and pathologies with extensive
fibrosis (166;167) and fibrosis is a feature which is often seen in RA synovium.

Signaling pathways

FLS isolated from RA exhibit a different behaviour compared to FLS from OA.
Further evidence for this transformed state is the up-regulation of several sig -
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naling pathways are in FLS (See figure 4). Many of these pathways have also
been implicated in several cancers, which made researchers speculate about a
comparison with tumor formation. However, several differences with tumor
cells are observed. Cancers of the synovium are very rare. Synovial sarcomas
are the only known cancers of the synovium, but its origin is still under debate
because the cells of synovial sarcomas often show similarities with epithelial
cells, while the synoviocytes do not. Furthermore synovial sarcomas can also
form in tendon sheaths and other tissues in the joint (168).

In RA, FLS are not real tumor cells, but they certainly do show a transformed
phenotype. They show up-regulation of oncogenes like c-myc, Ras etc.

AP-1 and c-fos

One of these oncogenes that is abundantly expressed in RA synovium is c-fos
(74;169;170). It is involved in the activation of tissue degrading molecules, such
as matrix metalloproteinases (MMPs) MMP-1 and -3 (171;172) and colocalizes
with MMP-1 in FLS attached to bone erosions (74). Expression of c-fosisin -
duced by various stimuli including platelet derived growth factor (PDGF), ba-

IL-1pB TNF-a FGF PDGF MIF IL-17

Cell membrane

R 1NN

Ras PTEN AP-1 NF-xB p38 RK JNK  Egr-1 COX-2

Cytokines MMPs Proliferation Oncogenes apoptosis Prostaglandins

Figure 4 Example of the complexity of FLS signaling in RA. Note: This figure is far from complete,
to keep it readable.

-29.



- Introduction -

sic fibroblast growth factor (FGF), TNF-a and HOXD?9 (173). HOXD9Y is a tran -
scription factor that enhances proliferation of RA FLS (173). Fos proteins dimer
ize with Jun proteins to form activator protein-1 (AP-1), a transcriptional activa
tor. Various growth factors including TNF-a, IL-1 and macrophage migration
inhibitory factor (MIF) (143), which are abundantly expressed in RA synovium,
mediate the cellular production of AP-1. Combination of IL-1p, TNF-a and IL-
17 synergistically activate AP-1 (174) and high nuclear binding activity of AP-1
in nuclear extracts from tissues of patients with RA but not in OA controls has
been found (175). The family of Jun oncogenes not only promotes the growth
of fibroblasts, but there are also members (like jun-d) that suppress fibroblast
transformation and may antagonize ras. It was demonstrated that the prolifera
tive cjun and jun-b (176;177) are overexpressed in RA synovium and that the
inhibitory jun-d is downregulated (176). This may contribute to synovial cell
growth.

Egr-1

Early growth response gene-1 (egr-1) regulates transcription of other oncogenes
such as sis and ras and it can partially substitute for fos in the formation of AP-
1 (178). Egr-1 is immediately transcribed in fibroblasts after stimulation with
certain polypeptides like, PDGF and FGF (178). In RA FLS egr-1 is significantly
up-regulated and this activated transcription of egr-1 persisted (74) (179). Be -
cause sis and ras expression are induced by egr-1 and their expression is also
upregulated in RA synovium (98) egr-1 expression may be one of the initial
steps in the pathogenesis of RA.

C-myc and ras

Another oncogene that is expressed in RA synovial lining is c-myc
(47;169;180;181). It is expressed in approximately 30% of the cells (170) and these
are mainly the proliferating cells (180). C-myc and myb, a related oncogene,
protect cells from apoptosis when overexpressed and cooperation between myc
and ras can result in transformation of cells (182).

Ras oncogene is also expressed in RA synovial tissue in the lining layer at sites
of invasive growth and its expression level was similar as myc (98). Ras proteins
transduce mitotic signals across the plasma membrane by regulating signaling
enzymes such as tyrosine kinases and serine/threonine kinases. Ras can signal
via c-Raf-1 to induce extracellular regulated kinases (ERK) and Janus kinase
(JNK) phosphorylation, which are mitogen activated protein kinases (MAPKS)
and lead to proliferation (73). Dominant negative Ras inhibits IL-1f3 induced
ERK activation and expression of IL-6. Furthermore, injection of adenovirus en
coding dominant negative Ras in joints of Rats with adjuvant-induced arthritis
ameliorated inflammation and suppressed bone destruction (183).
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MAPK

MAPK play an important role in proliferation of cells. Three families of MAPKs
exist, ERK, JNK and p38 MAPK. P38 MAP kinase plays an important role in
RA, because it is known to induce expression of IL-1, TNF-a, MMP-1 and -3,
IL-6 and IL-8 (184). The upstream kinases of p38 MAPKK-3 and -6 are mainly
expressed in the lining layer of synovium without differences between RA and
OA, however they were more phosphorylated in RA synovium as compared
to OA synovium (185). Both MAPKK-3 and -6 can form stable complexes with
p38 and mediate downstream signaling in RA FLS.

The upstream kinases of JNK MAPKK-4 and -7 are also activated in RA FLS
as compared to OA FLS. This increased activity is mediated by IL-1, which is
abundantly present in RA synovium (186).

PTEN

Tumour suppressor genes encode for proteins that control the cell cycle and
apoptosis in normal cells. In many tumours, these genes are mutated or other -
wise inactivated, leading to disregulated cell cycle progression. Recently, it was
demonstrated that aggressive FLS from patients with RA lack the expression of
mRNA for PTEN (187). The protein product of this tumour suppressor exhibits
tyrosine phosphatase activity. In situ hybridization on RA synovium revealed
reduced expression of PTEN in the synovial lining layer but not in the sublining
layer. Moreover, only 40% of the cultured FLS expressed PTEN and co-implan
tation experiments in the SCID mouse showed no staining for PTEN in those
cells aggressively invading the cartilage (187). PTEN expression can regulate
c-Raf-1, which is an important downstream messenger of Ras (73).

NF-xB

Another pathway expressed in RA FLS is the nuclear factor xB (NF-«B) path -
way (188)(See table 3). NF-xB is a general name for dimeric transcription factors
comprised of members of the Rel family that include RelA (p65), c-Rel, RelB,
NF-xB1 (p50) and NF-«B2 (p52) and is mainly expressed on FLS adjacent to
the cartilage-pannus junction (189). NF-xB is induced by several pro-inflamma
tory cytokines, like IL-1, TNF-a, bFGF and PDGF. TNF-a, IL-1p and IL-17 act
synergistically to activate NF-xB (174). After activation it stimulates the tran -
scription of disease-relevant genes such as those encoding adhesion molecules,
MMPs and cytokines, including IL-1, TNF-a, IL-6, IL-8, VCAM-1 and ICAM-1
(79;81;191) (see table 3). NF-xB also renders FLS insensitive to apoptosisin -
duced by TNF-a and FasL (188;192). Inhibition of NF-«xB by decoys inhibited
the development of arthritis in a rat model of streptococcal cell wall (SCW)
induced arthritis (188) and the proliferation of FLS in vitro (81). As opposed to
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many pro-inflammatory cytokines, anti-inflammatory cytokines IL-10 and IL-
11 are independent of NF-«B. IL-11 is mainly produced by FLS (79).

Cyclo-oxygenases

Prostaglandins are pro-inflammatory lipids. Their production is generally high
in cultured RA FLS. This is due to the expression of inducible cyclo-oxygen -
ase (COX2) and can be suppressed by exogenous corticosteroids. IL-1p is an
important inducer of COX-2 expression and is at least in part responsible for
high prostaglandin levels in RA (193). Prostaglandin (PG)E1 raises intracellular
cAMP levels in fibroblasts, which decreases gene expression of MMP-1 (194),
but this was not seen by PGE2. Recently, it was shown that inhibiting COX2
enhanced expression of MMP-1 induced by IL-1p and TNF-a (87). This is prob-
ably due to a decrease in PGEL.

Due to the inflammation in RA synovium hypoxic conditions are likely to oc -
cur. The expression of hypoxia inducible factor-1a (HIF-1a) confirms this and
hypoxia induces the expression of VEGF and CXCL12 in RA FLS (195), thus
contributing to the persistence of synovitis. Hypoxia also increased the expres-
sion of COX-2, prostaglandins and MMPs in response to IL-1( (196).

Table 3 Targets of NF-kB (190)

Targets Effect

TNEF-a, IL-1, IL-6, IL-17 Inflammation

IL-8, MCP-1, ICAM-1, VCAM-1, Recruitment of inflammatory cells
GM-CSF

VEGF Neovascularization

COX2,iNOS Prostaglandin and NO production
MMP-1, MMP-3, MMP-9, MMP-13 Tissue remodelling

c-Myc, cyclin D Proliferation

IEX-1L, TRAF 1/2, c-IAP 1/2, XIAP, | Anti-apoptosis

Al/Bfl-1

Proliferation and apoptosis

One of the hallmarks of RA is hyperplasia of the synovium. Hyperplasia is
formed by large numbers of FLS. Normally the lining layer of the synovium
comprises one or two cell-layers, however in RA, the lining layer is thickened
and can consist of ten layers or more. This excess of synoviocytes is caused
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by an imbalance between apoptosis and proliferation. At this moment it is not
clear whether the cells show increased proliferation or decreased apoptosis or
both. Some studies show an increase in proliferation of FLS in RA as compared
to OA or normal controls (181), but other studies can find no difference in pro-
liferating cells in both RA and normal FLS (179). In this section on proliferation
and apoptosis, the following molecules will be discussed: c-myc, cyclin depenéd
ent kinase inhibitors (CDKI), Fas, Bcl-2, Sentrin, Flice inhibitory protein (FLIP),
TNEF-a, TGF-p, TRAIL, p53, synoviolin/Hrd1 and interferon-(IFN-)y.
Hashiramoto et al. demonstrate a key role in the regulation of proliferation for
c-myc. Inhibition of c-myc through gene transfer reduces growth of RA FLS and
can also induce apoptosis (197). Induction of the p16INK4a senescence gene
inhibited the growth of FLS from patients with RA in vitro and ameliorated the
course of rat adjuvant arthritis in vivo (198). However in RA FLS P16INK4a is
induced at sites of cartilage invasion in the SCID mouse coimplantation model
(199). P16INK4a is member of the family of cyclin dependent kinase inhibitors
(CDKI), which inhibit CDKs that are involved in cell cycle progression. Inhibi -
tion of CDK leads to senescence of cells. Another CDKI is p21. Expression of
this protein is lower in RA FLS compared to OA FLS and expression of p21 is in
versely correlated with median synovial lining thickness. P21 has an additional
function by inhibiting IL-6 and MMP-3 expression mediated via inhibition of
AP-1 activation (200).

Very little is known about the importance of apoptosis in RA. Using DNA la -
beling techniques, it has been shown that RA FLS undergo increased apoptosis
(201), other data have demonstrated that apoptosis is present in RA synovium
and not in OA or normal synovium (202;203) and that RA FLS are able to under
go apoptosis in response to Fas signaling (204). These cells were mainly found
in the sublining layer (202). The lining layer cells in contrast did not undergo
apoptosis or express Fas, but showed expression of the cell death suppressor
gene product Bcl-2 (205). Expression of Bcl-2 is highly expressed in RA FLS
(202) compared with OA FLS and this expression confers resistance to apopto -
sis (206). Dysregulation of apoptosis has been associated with established ani -
mal models of autoimmunity, including the MRL-Ipr/Ipr mouse (207), which
have a disorder in the Fas antigen, and the MRL gld/gld mouse (208), which
have a disorder in the Fas ligand. These mice get spontaneous arthritis (209).

It has been shown that RA FLS are susceptible to Fas induced apoptosis (210-
212), with activation of caspase-3 and -8 and FADD (213). The majority of FLS
are resistant to induction of apoptosis through the Fas pathway (212). In vivo

it is also possible that apoptosis does not occur, because the expression of Fas
ligand is deficient in RA synovium, leading to hyperplasia (214). Indication for
this is the observation that gene transfer of FasL in mice ameliorates collagen
induced arthrtitis and induced apoptosis in synovial cells (215). Inhibition of
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Fas induced apoptosis can be conferred by pro-inflammatory cytokines (210),
expression of antiapoptotic molecules or expression of soluble Fas. Expression
of soluble Fas is increased in RA SF compared to OA SF and this can inhibit Fas-
mediated apoptosis via capturing of FasL. RA FLS were one of the cell types
that expressed soluble Fas (216). Nitric oxide (NO) levels are elevated in RA SF
and it can inhibit Fas-induced apoptosis by directly inhibiting the activation of
caspase-3 (217).

Sentrin is a ubiquitin-like protein that has been shown to interact with the sig -
nal-competent forms of Fas and TNF receptor type 1 and thereby protects cells
from apoptosis mediated by Fas and TNF-a (218) and FLIP inhibits Fas-induced
apoptosis by competition with caspase-8 and by activation of NF-xB and Erk
(219). Sentrin and FLIP are both overexpressed in RA FLS mainly in the synovi
al lining layer (220;221). Down-regulation of FLIP by antisense oligonucleotide
sensitizes RA FLS to Fas mediated apoptosis (222). Expression of FLIP can be
induced by cytokines or growth factors like TNF-a or bFGF (223).

The serine-threonine kinase Akt is highly activated in RA FLS compared with
OA FLS and plays a role in the inhibition of apoptosis by TNF-a and TGF-

B (224-226). However, their mechanisms of inhibition differ. TGF-3 decreases
Fas and increases Bcl-2 (225;226) while TNF-a does not (227). TNF-a activates
NF-xB in RA FLS leading to proliferation of these cells. This was accompanied
by down-regulation of TNF receptor 1 (TNFR 1) and up-regulation of TNFR2
and TNFR associated factor (TRAF)1-6 (228). In contrast, in OA TNF-a renders
the FLS sensitive to Fas-induced apoptosis by up-regulation of expression of
caspase-3 and -8 (229). This may be an explanation for a putative beneficial
effect of anti-TNF therapy on the hyperplasia of the synovium during RA. Pos-
sible mechanisms via which TNF-a desensitizes RA FLS for apoptosis is via up-
regulation of FLIP (222) and/ or the activation of NF-kB, because inhibiting the
activation of NF-kB induces apoptosis in FLS stimulated with TNF-a (230). An
other TNF family member TNF-related apoptosis-inducing ligand (TRAIL) is
also able to induce apoptosis and one of its receptors, death receptor 5, is over-
expressed on RA FLS as compared to OA FLS (231). This can give therapeutic
opportunities because an agonistic antibody against death receptor 5 induces
apoptosis in vivo in tumours without severe toxicity to the organism (232) and
in vitro in RA FLS (231). In addition, TRAIL inhibits the hyperproliferation of
FLS in a mouse arthritis model (233).

Apoptosis can not only be induced via signals from outside the cell, but also
via signals from inside the cell, like DNA damage. P53 is a tumour suppres -
sor molecule activated by DNA damage that is mutated or inhibited in many
tumours (234,235). In normal cells expression of p53 is hardly detectable due to
its short halflife, while in tumour cells where it is inactivated large amounts of
p53 can usually be seen. When the DNA in a cell is irreparably damaged the cell
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activates p53 which can induce cell cycle arrest or apoptosis (236;237). Several
studies have shown overexpression of p53 in RA synovium and FLS (202;238-
245) and in rat adjuvant arthritis (246). Mutations have also been found in syn-
ovium from patients with RA but not in normal controls (247-251), however
this is not the case in other patient populations (252). p53 can inhibit invasion
of FLS in normal human cartilage when co-implanted (253) and in an in vitro
system (239), but in contrast in a distinct population of FLS it is induced during
the invasive process (254). Inhibition of p53 increased the rate of proliferation of
FLS and decreased apoptosis (239) and it was shown that the pro-inflammatory
cytokine macrophage migration inhibitory factor (MIF), which is abundantly
expressed in RA synovium, can downregulate the expression of p53 (255). Ad-
juvant induced arthritis in MIF knockout mice is less severe as compared to
wildtype mice. This is probably due (at least in part) to lower rate of prolifera -
tion and higher rate of apoptosis of the FLS in these mice (255). Human FLS
from patients with RA showed increased proliferation and decreased apoptosis
when they were treated with pathophysiologically relevant concentrations of
MIF (255;256).

A novel E3 ubiquitin ligase, Synoviolin/Hrd1 is overexpressed in RA FLS

and confers resistance to apoptosis in these cells (257). Mice overexpressing
Hrd1 show spontaneous athropathy, while decreased Hrd1 expression in mice
(Hrd+/-) conferred resistance to arthritis induction. Hrd1 expression is up-reg
ulated during endoplasmic reticulum (ER) stress in an attempt to degrade an
excess of proteins in the ER which are responsible for ER stress (257).
Inhibition of IFN-y signaling via blocking of signal transducer and activator of
transcription (STAT)-3 inhibits growth of FLS from both RA and OA patients.
Furthermore, these cells underwent apoptosis spontaneously and when trig -
gered by EGF, which normally acts as a growth factor (258).

Aim

The data described above imply a role for FLS in the pathogenesis of RA. Al -
though many characteristics of FLS in RA are investigated as descirbed above,
the functional role of FLS in invasion of cartilage is not completely clear. There

fore, this thesis focuses on the invasive properties of FLS in the disease course
of RA.

Outline of this thesis

- A description of the model of in vitro invasion used in most of the
chapters is given in chapter 2.
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-Researchers have assumed that FLS play an important role in the
pathogenesis and clinical pathology of RA, however this has never

been tested directly. In chapter 3 an association between FLS invasive-
ness and clinical joint destruction is explored.

-To investigate the mechanism of invasion of RA FLS, the expression

of MMPs in FLS from patients with RA or OA is tested and associated

with a diagnosis of RA and with invasion is described in chapter 4.
- An association between expression of CD44 splice variants and inva-
sion of RA FLS is explored in chapter 5.

-To investigate whether reduced apoptosis in RA is a cause of hyper-
plasia, the expression of FLIP in RA FLS is measured and compared

with the expression in OA FLS and FLS from healthy individuals. This

is described in chapter 6.

- The hypothesis whether FLS are epithelial cells that undergo a transi-

tion to mesenchymal cells during RA is investigated in chapter 7. This
transition is a common feature in many fibrotic processes and is called
Epithelial Mesenchymal transition (EMT).

‘In chapter 8 a possible therapy is investigated, which also gives evi-
dence for transformation of FLS. The therapy is based on apoptin, a
chicken virus protein that induces apoptosis in transformed cells, but

not in normal cells.

‘In chapter 9 the findings in this thesis are summarized and discussed.
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