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Chapter 4

Bayesian Inconsistency:
Explanations and Discussion

In this chapter, we give several explanations of how the Bayesian inconsistency
seen in Chapter 4 may occur under ‘bad’ misspecification, and why SafeBayes
provides a solution to this problem. We also discuss how our inconsistency
example and the SafeBayes method relate to other work.

4.1 Bayes’ behaviour explained
In this section we explain how anomalous behaviour of the Bayesian posterior
may arise, taking a frequentist perspective. Section 4.1.1 is merely provided to
give some initial intuition and may be skipped. The proof of Theorem 4.1 is
given in Appendix 4.A.2.

4.1.1 Explanation I: Variance issues
Example 4.A. [Bernoulli] Consider the following very simple scenario: our
‘model’ consists of two Bernoulli distributions,M = {Pθ | θ ∈ {0.2, 0.8}},
with Pθ expressing that Y1, Y2, . . . ∼ i.i.d. Ber(θ). We perform Bayesian infer-
ence based on a uniform prior onM. Suppose first that the data are, in fact,
sampled i.i.d. from Pθ∗ , where θ∗ is the ‘true’ parameter. The model is mis-
specified, in particular we will take a θ∗ 6∈ {0.2, 0.8}. The log-likelihood ratio
between the two distributions for data Yn with n1 ones and n0 = n− n1 zeroes,
measured for convenience in bits (base 2), is given by

L = log2
f0.8(Yn)

f0.2(Yn)
= log2

(0.8)n1(0.2)n0

(0.2)n1(0.8)n0
= 2(n1 − n0). (4.1)

With uniform priors, the posterior will prefer θ = 0.2 as soon as L < 0.
First suppose θ∗ = 1/2. Then both distributions inM are equally far from

θ∗ in terms of KL divergence (or any other commonly used measure). By the
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72 Chapter 4. Bayesian Inconsistency: Explanations and Discussion

central limit theorem, however, we expect that the probability that |L| >
√

n/2
is larger than a constant for all large n; in this particular case we numerically
find that, for all n, it is larger than 0.32.

This implies that, at each n, minθ∈{0.2,0.8} π(θ | Yn) ≈ 2−
√

n/2 with ‘true’
probability at least 0.32. Thus, there is a nonnegligible ‘true’ probability that
the posterior on one of the two distributions is negligibly small, and a naive
Bayesian who adopted such a model would be strongly convinced that the
other distribution would be better even though both distributions are equally
bad. While this already indicates that strange things may happen under mis-
specification, we are of course more interested in the situation in which θ∗ 6=
1/2, so that one of the two distributions inM is truly ‘better’. Now, if the
‘true’ parameter θ∗ is within O(1/

√
n) of 1/2, then, by the central limit the-

orem, the probability that L < 0 is nonnegligible. For example, if θ∗ is exactly
1/2 + 1/

√
n, then this probability is larger than 0.16 for all n. Thus, for val-

ues of θ∗ this close to 1/2, there is no way we can even expect Bayes to learn
the ‘best’ value. For fixed (independent of n), larger values of θ∗, like 0.6, the
posterior will concentrate at 0.8 at an exponential rate, but the sample size at
which concentration starts is considerably larger than the sample sized needed
when the true parameter is in fact 0.8. For example, at n = 50, P0.6(L < 0) ≈
0.1, P0.8(L < 0) ≈ 2 · 10−5; both probabilities go to 0 exponentially fast but their
ratio increases exponentially with n. So, under a fixed θ∗, with increasing n,
Bayes may take longer to concentrate on the best θ̃ if θ̃ 6= θ∗ (misspecification)
than if θ̃ = θ∗, but it eventually ‘recovers’ (this was seen in the ridge experi-
ments of Section 3.5.4). Now, for largermodels, the consequence of slower con-
centration of the log-likelihood ratio L is that the probability that some ‘bad’ Pθ

happens to ‘win’ is substantially larger than with a correct model. Grünwald
and Langford (2007) showed that, in a classification context with an infinite-
dimensional model, there are so many of such ‘bad’ Pθ that Bayes does not
recover any more, and the posterior keeps putting most of its mass on a bad
model for ever (although the particular bad model on which it puts its mass
keeps changing). In Chapter 3 we empirically showed the same in a regression
problem.

Now one might conjecture that the issues above are caused by the fact that
the modelM is ‘disconnected’. In the Bernoulli example above, the problem
indeed goes away if instead of the model M, we adopt its ‘closure’ M′ =
{Pθ | θ ∈ [0.2, 0.8]}. However, high-dimensional regression problems exhibit
the same phenomenon, even if their parameter spaces are connected. It turns
out that in general, to get concentration at the same rates as if the model were
correct, themodel must be convex, i.e. closed under taking any finite mixture of
the densities, which is a much stronger requirement thanmere connectedness.
For standard Gaussian regression problems with Y | X ∼ N(0, σ2), this would
mean that wewould have to adopt amodel inwhichY | X can be anyGaussian
mixture with arbitrarily many components — which is clearly not practical
(note that ‘convex’ refers to the space of densities, not the space of regression
functions (Grünwald and Langford, 2007, Section 6.3.5)).
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4.1.2 Explanation II: Good vs. bad misspecification
Barron (1998) showed that sequential Bayesian prediction under a logarithmic
score function shows excellent behaviour in a cumulative risk sense; for a re-
lated result see (Barron et al., 1999, Lemma 4). Although Barron (1998) focuses
on the well-specified case, this assumption is not required for the proof and
the result still holds even if the modelM is completely wrong. For a precise
description and proof of this result emphasizing that it holds undermisspecifi-
cation, see (Grünwald, 2007, Section 15.2). At first sight, this leads to a paradox,
as we now explain.

A paradox? Let θ̃ index the KL-optimal distribution in Θ as in Section 3.2.1.
The result of Barron (1998) essentially says that, for arbitrary models Θ, for all
n,

EZn∼P∗

[
n

∑
i=1

risklog(Π | Zi−1)− risklog(θ̃)
]
≤ redn, (4.2)

where risklog(W), for a distribution W on Θ, is defined as the log-risk obtained
when predicting by the W-mixture of fθ , i.e.

risklog(W) = EX,Y∼P∗ [− log Eθ∼W fθ(Y | X)]. (4.3)

In (4.2), this coincides with log-risk of the Bayes predictive density f̄ (· | Zi−1),
as defined by (3.8). Here, as in the remainder of this section, we look at the
standard Bayes predictive density, i.e. η = 1. redn is the so-called relative ex-
pected stochastic complexity or redundancy (Grünwald, 2007), which depends on
the prior and for ‘reasonable’ priors is typically small. The result thus means
that, when sequentially predicting using the standard predictive distribution
under a log-scoring rule, one does not losemuch compared towhen predicting
with the log-risk optimal θ̃.

WhenM is a union of a finite or countably infinite number of parametric
exponential families and p̃ < ∞ is well-defined, then, under some further reg-
ularity conditions, which hold in the regression example of Chapter 3 (Grün-
wald, 2007), the redundancy is, up to O(1), equal to the BIC term (k̃/2) log n,
where k̃ is the dimensionality of the smallest model containing θ̃. In the regres-
sion case,M p̃ has p̃ + 2 parameters (β0, . . . , βp, σ2), so in the two experiments
of Section 3.5, k̃ = 6. Thus, in our regression example, when sequentially pre-
dicting with the standard Bayes predictive f̄ (· | Zi−1), the cumulative log-risk
is at most n · risklog(θ̃) which is linear in n, plus a logarithmic term that be-
comes comparatively negligible as n increases. This is confirmed by Figure 4.2
on page 77. Now, for each individual θ = (p, β, σ2)we know from Section 3.2.3
that, if its log-risk is close to that of θ̃, then its square-risk must also be close to
that of θ̃; and θ̃ itself has the smallest square-risk among all θ ∈ Θ. Hence, one
would expect the reasoning for log-risk to transfer to square-risk: it seems that
when sequentially predicting with the standard Bayes predictive f̄ (· | Zi−1),
the cumulative square-risk should atmost be n times the instantaneous square-
risk of θ̃ plus a term that hardly grows with n; in other words, the cumulative
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P̄

M

Figure 4.1: Benign vs. bad misspecification: P̃ = arg minP∈M D(P∗‖P) is the
distribution in modelM that minimizes KL divergence to the ‘true’ P∗, but,
since the model is nonconvex, the Bayes predictive distribution P̄ may hap-
pen to be very different from any P ∈ M. When this happens, we can have
‘bad misspecification’ and then it may be necessary to decrease the learning
rate (in this simplistic drawing P̄ is a mixture of just two distributions; in
our regression example it mixes infinitely many). Yet if P∗ were such that
infP∈M D(P∗‖P) does not decrease if the infimum is taken over the convex
hull ofM (e.g. if Q rather than P̃ reached the minimum), then any learning
rate η < 1 is fine (‘benign’ misspecification). In the picture, we even have
D(P∗‖P̄) < D(P∗‖P̃); in this case we can get hypercompression.

square-risk from time 1 to n, averaged over time by dividing by n, should rap-
idly converge to the constant instantaneous risk of θ̃. Yet the experiments of
Section 3.5 clearly show that this is not the case: Figure 3.3 shows that, until
n = 100, it is about 3 times as large.

This ‘paradox’ is resolved oncewe realize that the Bayesian predictive dens-
ity f̄ (· |i−1) is a mixture of various fθ , and not necessarily similar to fθ for any
individual θ — the link between log-risk and square-risk (3.4) only holds for
individual θ = (p, β, σ2), not for mixtures of them. Indeed, if at each point in
time i, f̄ (· | Zi) would be very similar (in terms of e.g. Hellinger distance) to
some particular fθi with θi ∈ Θ, then there would really be a contradiction.
Thus, the discrepancy between the good log-risk and bad square-risk results
in fact implies that at a substantial fraction of sample sizes i, f̄ (· | Zi) must
be substantially different from every θ ∈ Θ. In other words, the posterior is not
concentrated at such i. A cartoon picture of this situation is given in Figure 4.1:
the Bayes predictive achieves small log-risk because it mixes together several
distributions into a single predictive distribution which is very different from
any particular single fθ ∈ M. By Barron’s bound, (4.2), the resulting f̄ (· | Zi)
must, averaged over i, have atmost a risk almost as small as the risk of θ̃. We can
thus, at least informally, distinguish between “benign” and “bad” misspecifi-
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cation. Bad misspecification occurs if there is a nonnegligible probability that
for a range of sample sizes, the predictive distribution is substantially different
from any of the distributions inM. As Figure 4.1 suggests, ‘bad’ misspecifica-
tion cannot occur for convex modelsM— and indeed, the results by Li (1999)
suggest that for such models consistency holds under weak conditions for any
η < 1, even under misspecification.

4.1.3 Hypercompression
The picture suggests that, if, as in our regression model, the model is non-
convex (i.e. the set of densities { fθ | θ ∈ Θ} is not closed under taking mix-
tures), then f̄ (· | Zi) might in fact be significantly better in terms of log-risk
than the best θ̃, and its individual constituents might even all be substantially
worse than θ̃. If this were indeed the case then, with high P∗-probability, we
would also get the analogous result for an actual sample (and not just in ex-
pectation): the cumulative log-risk obtained by the Bayes predictive should be
significantly smaller than the cumulative log-risk achieved with the optimal f̃ .
Figure 4.2 below shows that this indeed happens with our data, until n ≈ 100.

The no-hypercompression inequality In fact, Figure 4.2 shows a phenom-
enon that is virtually impossible if the Bayesian’s model and prior are ‘correct’
in the sense that data Zn would behave like a typical sample from them: it eas-
ily follows from Markov’s inequality (for details see Grünwald, 2007, Chapter
3) that, letting Π denote the Bayesian’s joint distribution on Θ×Zn, for each
K ≥ 0,

Π
{
(θ, Zn) :

n

∑
i=1

(
− log f̄ (Yi | Xi, Zi−1)

)
≤

n

∑
i=1

(
− log fθ(Yi | Xi, Zi−1)

)
− K

}
≤ e−K,

i.e. the probability that the Bayes predictive f̄ cumulatively outperforms fθ ,
with θ drawn from the prior, by K log-loss units is exponentially small in K.
Figure 4.2 below thus shows that at sample size n ≈ 90, an a priori formu-
lated event has happened of probability less than e−30, clearly indicating that
something about our model or prior is quite wrong.

Since the difference in cumulative log-loss between f̄ and fθ can be inter-
preted as the amount of bits saved when coding the data with a code that
would be optimal under f̄ rather than fθ , this result has been called the no-
hypercompression inequality by Grünwald (2007). The figure shows that for our
data, we have substantial hypercompression.

The SafeBayes error measure As seen from (3.18), SafeBayes measures the
performance of η-generalized Bayes not by the cumulative log-loss, as stand-
ard Bayes does, but instead by the cumulative posterior-expected error when
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predicting by drawing from the posterior. Oneway to interpret this alternative
error measure is that, at least in expectation, we cannot get hypercompression.
Defining (compare to (4.3)!)

riskR-log(W) = EX,Y∼P∗ Eθ∼W [− log fθ(Y | X)], (4.4)
we get by Fubini’s theorem,

riskR-log(W)− risklog(θ̃)
= Eθ∼W EX,Y∼P∗ [[− log fθ(Y | X)]− [− log fθ̃(Y | X)]] ≥ 0, (4.5)

where the inequality follows by definition of θ̃ being log-risk optimal among
Θ. There is thus a crucial difference between riskR-log and risklog — for the
latter we just argued that, under misspecification, risklog(W)− risklog(θ̃) ≤ 0
is very well possible. Thus, in contrast to predicting with the mixture density
Eθ∼W fθ , prediction by randomization (first sampling θ ∼W and then predict-
ing with the sampled fθ) cannot ‘exploit’ the fact that mixture densities might
have smaller log-risk than their components. Thus, if the difference (4.5) is
small, then W must put most of its mass on distributions θ ∈ Θ that have small
log-risk themselves. For individual θ, we know that small log-risk implies small
square-risk. This implies that if (4.5) is small, then the (standard) posterior is
concentrated on distributions with small square-risk.

Experimental demonstration of hypercompression for standard Bayes Fig-
ure 4.2 and Figure 4.3 show the predictive capabilities of standard Bayes in
the wrong model example in terms of cumulative and instantaneous log-loss on
a simulated sample. The graphs clearly demonstrate hypercompression: the
Bayes predictive cumulatively performs better than the best single model / the
best distribution in the model space, until at about n ≈ 100 there is a phase
transition. At individual points, we see that it sometimes performs a little
worse, and sometimes (namely at the ‘easy’ (0, 0) points) much better than
the best distribution. We also see that, as anticipated above, randomized and
in-model Bayesian prediction do not show hypercompression and in fact per-
form terribly on the log-loss until the phase transition at n = 100, when they
become almost as good as standard Bayes. We see that for η = 1, they per-
form much worse. An important conclusion is that if we are only interested in
log-loss prediction, it is clear that we just want to use Bayes rather than randomized
or in-model prediction with different η.

As an aside, we note that the first few outcomes have a dramatic effect on
cumulative R- and I-log-loss (it disappears from Figure 4.2); this may be
due to the fact that our densities — other than those considered by Grün-
wald (2012) — have unbounded support so that there is no v such that
Theorem 4.1 below holds. This observation inspired the idea described in
Section 5.2.1 about ignoring the first few outcomes when determining the
optimal η. Also, we emphasize that the hypercompression phenomenon
takes placesmore generally, not just in our regression setup— for example,
the classification inconsistency noted by Grünwald and Langford (2007)
can be understood in terms of hypercompression as well.
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Figure 4.2: Cumulative standard, R-, and I-log-loss as defined in (3.18) and
(3.22) respectively of standard Bayesian prediction (η = 1) on a single run for
the model-averaging experiment of Figure 3.3. We clearly see that standard
Bayes achieves hypercompression, being better than the best single model. And,
as predicted by theory, randomized Bayes is never better than standard Bayes,
whose curve has negative slope because the densities of outcomes are > 1 on
average.

Figure 4.3: Instantaneous standard, R- and I-log-loss of standard Bayesian pre-
diction for the run depicted in Figure 4.2.
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Figure 4.4: Variance of standard Bayes predictive distribution conditioned on
a new input S as a function of S after 50 examples for the polynomial model-
wrong experiment (Figure 3.1), shown both for the predictive distribution
based on the full, model-averaging posterior and for the posterior conditioned
on the MAP modelM p̆map . For both posteriors, the posterior mean of Y is in-
correct for x 6= 0, yet f̄ (Y | Z50, X) still achieves small risk because of its small
variance at X = 0.

How hypercompression arises in regression Figure 4.4 gives some clues as
to how hypercompression is achieved: it shows the variance of the predictive
distribution f̄ (· | Z50) as a function of S ∈ [−1, 1] for the polynomial example
of Figure 3.1 in the introduction, at sample size n = 50, where hypercompres-
sion takes place. Figure 3.1 gave the posterior mean (regression function) at
n = 100; the function at n = 50 looks similar, correctly having mean 0 at S = 0
but, incorrectly, mean far from 0 at most other S. The predictive distribution
conditioned on the MAP modelM p̆map(Z50)

is a t-distribution with approxim-
ately p̆map(Z50) ≈ 50 degrees of freedom, which means that it is approximately
normal. Figure 4.4 shows that its variance ismuch smaller than the variance σ̃2

at S = 0; as a result, its log-risk conditional on U = 0 is smaller than that of
θ̃ = ( p̃, β̃, σ̃2) by some large amount A. Conditioned at S 6= 0, its conditional
mean is off by some amount, and its variance is, on average, slightly (but not
much) smaller than σ̃2, making its conditional log-risk given U 6= 0 larger than
that of θ̃ by an amount A′ where, it turns out, A′ is smaller than A. Both events
S = 0 and S 6= 0 happen with probability 1/2, so that the final, unconditional
log-risk of f̄ (· | Z50) is smaller than that of θ̃.

Summarizing, hypercompression occurs because the variance of the pre-
dictive distribution conditioned on past data and a new X is much smaller
than σ̃2 at X = 0. This suggests that, if instead of a prior on σ2 we use models
Mp with a fixed σ2, we can only get hypercompression (and correspondingly
bad square-risk behaviour) if σ2 � σ̃2, because the predictive variance based
on linear modelsMp with fixed variance σ2 given X = x is, for all x, lower
bounded by σ2. Our experiments in Section 5.1.1 confirm that this is indeed
what happens.
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4.1.4 Explanation III: Themixability gap& theBayesianbelief
in concentration

Aswe indicated at the end of Section 4.1.2, badmisspecification can occur only
if the standard (η = 1) posterior is nonconcentrated.1 Intriguingly, by formal-
izing ‘concentration’ in the appropriate way, we will now show, under some
conditions on the prior, that a Bayesian a priori always believes that the posterior
will concentrate very fast. Thus, if we observe data Zn, and for many n′ ≤ n,
the posterior based on Zn′ is not concentrated, then we can view this as an in-
dication of bad misspecification. In the next section we will see that SafeBayes
selects a η̂ � 1 iff we have such nonconcentration at η = 1. Thus, SafeBayes
can partially be understood as a prior predictive check, i.e. a test whether the
assumptions implied by the prior actually hold on the data (Box, 1980).

The mixability gap We express posterior nonconcentration in terms of the
mixability gap (Grünwald, 2012; De Rooij et al., 2014). In this section we only
consider the special case of η = 1 (standard Bayes), for which the mixability
gap δi is defined as the difference between 1-R-log-loss (3.18) and standard
log-loss as obtained by predicting with the posterior predictive, at sample size
i:

δi := Eθ∼Π|zi−1 [− log f (yi | xi, θ)]−
(
− log Eθ∼Π|zi−1 [ f (yi | xi, θ)]

)
= Eθ∼Π|zi−1 [− log fθ(yi | xi)]−

(
− log f̄ (yi | xi, zi−1)

)
, (4.6)

Straightforward application of Jensen’s inequality as in (3.19) gives that δi ≥ 0.
δi, which depends on z1, . . . , zi, is ameasure of the posterior’s concentratedness
at sample size i when used to predict yi given xi: it is small if fθ(yi | xi) does
not vary much among the θ that have substantial η-posterior mass; by strict
convexity of − log, it is 0 iff there exists a set Θ0 with Π(Θ0 | Zi−1) = 1 such
that for all θ, θ′ ∈ Θ0, fθ(yi | xi) = fθ′(yi | xi).

We set the cumulative mixability gap to be ∆n := ∑n
i=1 δi.

The Bayesian belief in posterior concentration As a theoretical contribu-
tion of this chapter, we now show that, under some conditions on model and
prior, if the data are as expected by the model and prior, then the expected
mixability gap goes to 0 as O((log n)/n), and hence a Bayesian automatically
a priori believes that the posterior will concentrate fast. For simplicity we re-
strict ourselves to a modelM = {Pθ | θ ∈ Θ} where Θ is countable, and we
let all θ ∈ Θ represent a conditional distribution for Y given X, extended to n
outcomes by independence. We let π be a probability mass on Θ, and define
the joint Bayesian distribution Π on Θ×Yn | X n in the usual way, so that for
measurable A ⊂ Yn, Π((θ∗,A) | Xn = xn) = π(θ∗) · Pθ∗(A | Xn = xn).
The random variable θ∗ refers to the θ chosen according to density π. We will

1Things would simplify if we could say ‘bad misspecification can occur if and only if there is
hypercompression’, but we do not know whether that is the case; see Section 4.3.3.
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look at the Bayesian probability distribution of the θ∗-expectedmixability gap,
δ̄n := Eθ∗ [δn].

Theorem 4.1. Consider a countable model with prior Π as above. Suppose that the
density ratios in Θ are uniformly bounded, i.e. there is a v > 1 such that for all x, y ∈
X × Y , all θ, θ′ ∈ Θ, fθ(y | x)/ fθ′(y | x) ≤ v. Suppose that for some η < 1 we
have ∑θ π(θ)η < ∞. Then for every a > 0 there are constants C0 and C1 such that,
for all n,

Π
(

δ̄n ≥ C0 ·
log n

n

)
≤ C1 ·

1
na . (4.7)

Moreover, for any 0 < a′ ≤ 1, there exist C2 and C3 such that

Π
(

∆n ≥ C2 · na′
)
≤ C3 ·

(log n)2

na′ , (4.8)

i.e. the Bayesian believes that the mixability gap will be small on average and that the
cumulative mixability gap will be small with high probability.

Thus, even though ∆n is the difference between two quantities that are typ-
ically linear in n, with high probability it grows only polylogarithmically. This
means that observing a large value of ∆n strongly indicates misspecification.

We hasten to add that the regularity conditions for Theorem 4.1 do not
hold in the regression problem of Chapter 3; the theorem is merely meant
to show that ∆n is believed to be small in idealized circumstances that have
been simplified so as to make mathematical analysis easier. Note however,
that the regularity conditions do not constrain Θ in the most important re-
spect: by allowing countably infinite Θ, we can approximate nonparamet-
ric models arbitrarily well by suitable covers (Cover and Thomas, 1991).
In particular we do allow sets Θ for which maximum likelihood methods
would lead to disastrous overfitting at all sample sizes. Also the condition
that ∑ π(θ)η < ∞ is standard in proving Bayesian and MDL convergence
theorems (Barron and Cover, 1991; Zhang, 2006a). In fact, since the con-
stants C0 and C1 scale logarithmically in v, we expect that Theorem 4.1 can
be extended to the regression settingwe are dealingwith here as long as all
distributions in the model have exponentially small tails, using methods
similar to those in Grünwald (2014).

Example 4.B. [Cumulative nonconcentration can (andwill) go together with
momentary concentration: Example 4.A, Bernoulli, cont.] Consider the first
instance of the Bernoulli Example 4.A again, where we again look at what hap-
pens if both distributions are equally bad:M = {P0.2, P0.8}, whereas Y1, Y2, . . .
are i.i.d. ∼ Pθ∗ with θ∗ = 1/2. As we showed in that example, at any given n,
with Pθ∗ -probability at least 0.32, minθ∈{0.2,0.8} π(θ | Yn) ≈ 2−

√
n/2: the pos-

terior puts almost all mass on one θ. Lemma 6 of Van Erven et al. (2011) shows
that in such cases δn is small; in this case, δn ≤ 2(e− 2)minθ∈{0.2,0.8} π(θ | Yn)

≈ 1.42 · 2−
√

n/2. Thus, the posterior looks exceedingly concentrated at time
n, with nonnegligible probability (this unwarranted confidence is a simplified
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version of what was called the fair balance paradox by Yang (2007b), who conjec-
tured it is the underlying reason for the problem of ‘overconfident posteriors’
in Bayesian phylogenetic tree inference). However, SafeBayes detects misspe-
cification by looking at cumulative concentration, i.e. the sum of the δ’s: L as
in (4.1) can be interpreted as a random walk on Z starting at the origin, with
equal probabilities to move to the left and to the right. By the central limit
theorem, the random walk crosses the origin at time n with probability about
1/
√

nπ/2 = Õ(n−1/2), so that we may conjecture that, with high probability,
it crosses the origin Õ(n · n−1/2) = Õ(n1/2) times. Each time it crosses the ori-
gin, the posterior is uniform and hence as nonconcentrated as it can be, and ∆n
is increased by at least a fixed constant. Onewould therefore expect (under the
‘true’ θ∗) that ∆n is of order

√
n, which by Theorem 4.1 is much larger than a

Bayesian a priori expect it to be— the model fails the ‘prior predictive check’.2

4.2 How SafeBayes works

In its simplest form, the in-model fixed variance case, SafeBayes finds the η̂
that minimizes cumulative square-loss on the sample and thus can simply be
understood as a pragmatic attempt to find a η̂ that achieves small risk. How-
ever, the other versions of SafeBayes do not have such an easy interpretation.
To explain them further, we need to generalize the notion of mixability gap in
terms of the η′-flattened η-generalized Bayesian predictive density. The latter
is defined, for η, η′ ≤ 1, as:

f̄ (yi | xi, zi−1, 〈η′〉; η) :=
(

Eθ∼Π|zi−1,η

[
f η′

θ (yi | xi)
])1/η′

. (4.9)

By Jensen’s inequality, we have f̄ (yi | xi, zi−1, 〈η′〉; η) ≤ f̄ (yi | xi, zi−1, η) for
any η′ ≤ 1 and any (xi, yi). Indeed, intentionally, f̄ (· | 〈η′〉; η) is a ‘defect-
ive’ density in the sense that

∫
R f̄ (y | xi, zi−1, 〈η′〉; η)dy < 1. The log-loss

achieved by η-generalized, η′-flattened Bayesian prediction is called (η, η′)-
mix-loss from now on, following terminology from De Rooij et al. (2014). For
0 < η ≤ η′ ≤ 1, the mixability gap δi,η,η′ is defined as the difference between
the η-R-log-loss and the η′-mix-loss:

δi,η,η′ := Eθ∼Π|Zi−1,η [− log fθ(Yi | Xi)]−
(
− log f̄ (Yi | Xi, Zi−1; 〈η′〉; η)

)
.

(4.10)
We once again define a cumulative version ∆n,η,η′ = ∑n

i=1 δi,η,η′ , and note that
the definitions are compatible with the special cases δi := δi,1,1 and ∆n := ∆n,1,1
defined in the previous subsection. Nowwe can rewrite the cumulative R-log-

2This heuristic argument can actually be formalized: if data are i.i.d. Bernoulli(1/2), then the
expected regret for every absolute loss predictor is of order Õ(n1/2) (Cesa-Bianchi and Lugosi,
2006), which implies, via the connections between regret and ∆n given by De Rooij et al. (2014),
that ∆n must also be of order n1/2; we omit further details.
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loss achieved by Bayes with the η-generalized posterior as

n

∑
i=1

Eθ∼Π|zi−1,η [− log fθ(yi | xi)] = ∆n,η,η′ +CMLn,η,η′ , (4.11)

where

CMLn,η,η′ =

(
n

∑
i=1
− log f̄ (yi | xi, zi−1, 〈η′〉; η)

)
is the cumulative (η, η′)-mix-loss. (4.11) holds for all 0 < η ≤ η′ ≤ 1. Consider
first η′ = 1. As was seen, if ∆n,1,1 is large, then this indicates potential bad
misspecification. But (4.11) still holds for smaller η′ < 1; by Jensen’s inequality,
for any fixed η, decreasing η′ will make ∆n,η,η′ smaller as well. Indeed, for any
fixed P∗, defining

δ̄η′ := sup
W

EX,Y∼P∗

[
Eθ∼W [− log fθ(Y | X)]−

(
− 1

η′
log Eθ∼W [ fθ(Y | X)η′ ]

)]
,

where the supremum is over all distributions on Θ, we have

lim
η′↓0

δ̄η′ = 0,

so we have an upper bound on the expectation of ∆n,η,η′ independent of the
actual data that, for small enough η′, will become negligibly small. But the
left-hand side of (4.11) does not depend on η′, so if, by decreasing η′, we de-
crease ∆n,η,η′ , CMLn,η,η′ must increase by the same amount — so as yet we
have gained nothing. Indeed, not surprisingly, Barron’s bound does not hold
any more for CMLn,η,η′ with η = 1 and η′ < 1 (and in general, it does not
hold for η, η′ whenever η′ < η). But, it turns out, a version of Barron’s bound
still holds for CMLn,η′ ,η′ , for all η′ > 0: the cumulative log-risk of η′-flattened,
η′-generalized Bayes is still guaranteed to be within a small redn of the cu-
mulative log-risk of θ̃, although redn does monotonically increase as η′ gets
smaller — simply because the prior becomes more important relative to the
data (standard results in learning theory show that CMLn,η,η is monotonically
decreasing in η, and can be upper bounded as O(1/η); see e.g. (De Rooij et al.,
2014, Lemma 1). Thus, it makes sense to consider the special case η′ = η, and
think of SafeBayes as finding the η minimizing

n

∑
i=1

Eθ∼Π|zi−1,η [− log fθ(yi | xi)] = ∆n,η,η +CMLn,η,η , (4.12)

since we have clear interpretations of both terms: the second indicates, by Bar-
ron’s bound, how much worse the η-generalized posterior predicts in terms
of log-loss compared to the optimal θ̃; the first indicates how much is addi-
tionally lost if one is forced to predict by distributions inside the model. The
second term decreases in η, the first has an upper bound which increases in
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η. SafeBayes can now be understood as trying to minimize both terms at the
same time.

Now broadly speaking, the central convergence result of Grünwald (2012)
states that ∆n,η,η will be ‘sufficiently small’ for all η < 1, and under some fur-
ther conditions even for η = 1, if the model is correct or convex; and it will
also be ‘sufficiently small’ if the model is incorrect, as long as η is smaller than
some ‘critical’ value ηcrit (which may depend on n though). Here ‘sufficiently
small’ means that it is not the dominating term in (4.12). Intuitively, we would
like the η̂ determined by SafeBayes to be the largest η that is smaller than ηcrit.
Grünwald (2012) shows that SafeBayes indeed finds such an η, and that predic-
tion based on the generalized posterior with this η achieves good frequentist
convergence rates.

Experimental illustration Consider the main wrong-model experiment of
Section 3.5. Figure 4.5 shows, as a function of η, in red, the cumulative η-
R-log-loss measured by SafeBayes, averaged over 30 runs of the wrong-model
experiment of Figure 3.3. In each individual run, SafeBayes picks the η̂ minim-
izing this quantity; we thus get that onmost runs, η̂ is close to 0.4. In contrast to
η-R-log-loss, and as predicted by theory, the η-mix-loss (in purple) decreases
monotonically and coincides with the standard Bayesian log-loss at η = 1 and
with the η-R-log-loss as η ↓ 0. We also see hypercompression again: near
η = 1, both the Bayesian log-loss and the mix-loss are smaller than the log-
loss achieved by the best θ̃ in the model. At η = 0.5, there is a sudden sharp
rise in ∆n,η,η (the difference between the red and purple curves). We can think
of SafeBayes as trying to identify this ‘critical’ ηcrit.

Theorem 4.1 shows that, if both model and prior are well-specified, then
the Bayesian posterior cumulatively concentrates in a very strong sense.
More generally, if the model is correct but also if there is ‘benign’ misspe-

Figure 4.5: Cumulative losses up to sample 100 (where the posterior has not
converged yet) as a function of η, averaged over 30 runs, for the experiment of
Figure 3.3. η-B-log-loss is the cumulative log-loss achieved by standard Bayes
with the η-generalized posterior.
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cification, then, under some conditions on the prior, by the results of Grün-
wald (2012), the Bayesian posterior eventually cumulatively concentrates
at η = 1. One might thus be tempted to interpret ηcrit (the learning rate
which SafeBayes tries to learn) as ‘largest learning rate at which the pos-
terior cumulatively concentrates’. However, this interpretation works only
if ηcrit = 1. If ηcrit < 1, we can only show that, for every η < ηcrit, ∆n,η,η
is small; true cumulative concentration would instead mean that ∆n,η,1 is
small for such η (note we must have ∆n,η,η ≤ ∆n,η,1 by Jensen). The fig-
ure shows that ∆n,η,1 (the difference between the red and blue curve) may
indeed be large even at small η. A better interpretation is that, for every
fixed η, with decreasing η′, the geometry of the (η, η′)-mix-loss changes,
so that the loss difference between themix loss and the R-log-loss obtained
by randomization gets smaller. By then further using the generalized pos-
terior for the same η′, we guarantee that a version of Barron’s bound holds
for the (η′, η′)-mix-loss.

Replacing R- by I-loss Although the proofs of Grünwald (2012) are op-
timized for R-SafeBayes, the same story as above can be told for any fixed
transformation from the posterior to a possibly randomized prediction, i.e.
anything of the form (3.21); in particular for the most extreme transforma-
tion where we replace the posterior predictive by the distribution indexed
by the posterior mean parameters so that instead of R-SafeBayes we end
up with I-SafeBayes. In fact, the importance of the distinction between
‘in-model’ and ‘out-model’ prediction under model misspecification has
been emphasized before (Grünwald, 2007; Barron and Hengartner, 1998;
Kotłowski et al., 2010). In general, althoughwe do not know how to exploit
this intuition to strengthen the convergence proofs of Grünwald (2012), it
seems more natural to replace the randomized predictions by determin-
istic, in-model predictions.

4.3 Discussion, open problems and conclusion
“If a subjective distribution Π attaches probability zero to a non-ignorable
event, and if this event happens, then Π must be treated with suspicion,
and modified or replaced” (emphasis added)
— A.P. Dawid (1982).

“Some models are obviously wrong, yet evidently useful”
— (very freely paraphrasing Box, 1979).

We already discussed the theoretical significance of the inconsistency result
in the introduction. Extensive further discussion on Bayesian inference under
misspecification is given byWalker (2013) and Grünwald and Langford (2007).
For us, it remains to discuss the place of both the inconsistency result and our
solution in Bayesian methodology.

Following the well-known Bayesian statisticians Box (1980), Good (1983),
Dawid (1982, 2004) and Gelman (2004) (see also Gelman and Shalizi, 2012),
we take the stance that model checking is a crucial part of successful Bayesian
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practice. When there is a large discrepancy between amodel’s predictions and
actual observations, it is not merely sufficient to keep gathering data and up-
date one’s posterior: something more radical is needed. In many such cases,
the right thing to do is to go back to the drawing board and try to devise a
more realistic model. However, we think this story is incomplete: in machine
learning and pattern recognition, one often encounters situations in which the
model employed is obviously wrong in some respects, yet there is a model
instantiation (parameter vector) that is pretty adequate for the specific predic-
tion task one is interested in. Examples of such obviously-wrong-yet-pretty-
adequate models are, like in Chapter 3, assuming homoskedasticity in lin-
ear regression when the goal is to approximate the true regression function
and the true noise is heteroskedastic,3 but also the use of N-grams in lan-
guage modelling (is the probability of a word given the previous three words
really independent of everything that was said earlier?), logistic regression
in e.g. spam filtering, and every single successful data compression method
that we know of (see Bayes and Gzip (Grünwald, 2007, Chapter 17, page 537)).
The difference with the more standard statistical (be it Bayesian or frequent-
ist) mode of reasoning is eloquently described in Breiman’s (2001) the two cul-
tures.4 Bayesian inference is among the most successful methods currently
used in the obviously-wrong-yet-pretty-adequate-situation (to witness, state-
of-the-art data compression methods such as Context-Tree-Weighting (Wil-
lems et al., 1995) have a Bayesian interpretation). Yet our results show that
there is a danger: even if the employed model is pretty adequate (in the sense
of containing a pretty good predictor), the Bayesian machinery might not be
able to find it. The SafeBayesian algorithm can thus be viewed as an attempt
to provide an alternative for the data-analysis cycle (Gelman and Shalizi, 2012)
to this, in some sense, less ambitious setting: just like in the standard cycle, we
do a model check, albeit a very specific one: we check whether there is ‘cu-
mulative concentration of the posterior’ (see Section 4.1.4). If there is not, we
know that wemay not be learning to predict as well as the best predictor in our
model, so we modify our posterior. Not in the strong sense of ‘going back to
the drawing board’, but in the much weaker sense of making the learning rate
smaller —we cannot hope that our model of reality has improved, because we
still employ the same model — but we can now guarantee that we are doing
the best we canwith our givenmodel, somethingwhichmay be enough for the
task at hand and which, as our experiments show, cannot always be achieved
with standard Bayes.

3As long as, as in Chapter 3, the tails of the conditional distribution of Y given X = x are sub-
Gaussian, for each x; if they are not, there may be real outliers and then one cannot say that the
model is ‘pretty adequate’ any more.

4The ‘two cultures’ does not refer to the Bayesian-frequentist divide, but to the modelling vs.
prediction-divide. We certainly do not take the extreme view that statisticians should only be
interested in prediction tasks such as classification and square-error prediction rather than dens-
ity estimation and testing; our point is merely that in some cases, the goal of inference is clearly
defined (it could be classification, but it could also be determination whether some random vari-
ables are (conditionally) (in)dependent), whereas part of our model is unavoidably misspecified;
and in such cases, one may want to use a generalized form of Bayesian inference.
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Benign vs. badmisspecification Onemight argue that the example of Chap-
ter 3 is rather extreme, and that in practical situations, choosing a learning rate
different from 1 may never be a useful thing to do. A crucial point here is that
one can have ‘benign’ and ‘bad’ misspecification (Section 4.1.2). Under benign
misspecification, standard Bayes with η = 1 will behave nicely under weak
assumptions on the prior. While in our particular example, after ‘eyeballing’
the data one would probably have chosen a different, less misspecified model,
it may be the case that ‘bad’ misspecification (as in Figure 4.1) also occurs, at
least to some extent, in general, real-world data and is then not so easily spot-
ted. Since we simply do not knowwhether such situations occur in practice, to
be on the safe side, it seems desirable to have a theory about when we can get
away with using standard Bayesian inference for a given prediction task even
if the model is wrong, and how we can still use it with little modification if
there is badmisspecification. Our work (esp. (Grünwald, 2014), the theoretical
counterpart to Chapters 3–5) is a first step in this direction.

Towards a theory of Bayesian inference under misspecification What we
have inmind is a theory of Bayesian inference undermisspecification, inwhich
the goal of learning plays a crucial role. The standard Bayesian approach is very
ambitious: it can be used to solve every conceivable type of prediction or in-
ference task. Every such task can be encoded as a loss or utility function, and,
given the data and the prior, onemerely has to calculate the posterior, and then
makes an optimal decision by taking the act that minimizes expected loss or
maximizes expected utility according to the posterior. Crucially, one uses the
same posterior, independently of the utility function at hand, implying that
one believes that one’s own beliefs are correct in every possible respect. We en-
vision a more modest approach, in which one acknowledges that one’s beliefs
are only adequate in some respects, not in others; how one proceeds then de-
pends on how one’s model and loss function interact. For example, if one is
interested in data compression then, this problem being essentially equivalent
to cumulative log-loss prediction, by Barron’s (1998) bound one can simply use
the standard (η = 1) Bayesian predictive distribution — even under misspe-
cification, this will guarantee that one predicts (at least!) as well as one could
with the best element of one’s model. If, on the other hand, one is interested in
any of the KL-associated inference tasks (for linear models, these are square-
loss and reliability, Section 3.2.3), then using η = 1 is not sufficient any more,
and one may have to learn η from the data, e.g. in the SafeBayesian manner.
Finally, if we are interested in an inference task that is not KL-associated un-
der our model (i.e., a model instance can be good in the KL sense but bad in
the task of interest), then a more radical step is needed: either go back to the
drawing board and design a newmodel after all; or perhaps, the model can be
changed in a more pragmatic way so that, for the right η, η-generalized Bayes
once againwill find the best predictor for the task at hand. Let us outline such a
procedure for the case that the inference talk is simply prediction under some
loss function ` : Y × Ŷ → R. In this case, if the `-risk is not KL-associated
this simply means that, for some data, the log likelihood is not a monotonic
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function of the loss `. To get the desired association, we may associate each
conditional distribution Pθ(Y | X) in the model with its associated Bayes act
δθ : δθ(x) is defined as the act ŷ ∈ Ŷ which minimizes Pθ | X = x-expected loss
EY∼Pθ |X=x[`(y, ŷ)]. We can then define a new set of densities

f new
θ,γ (y | x) =

1
Z(γ)

e−γ`(y,δθ(x)), (4.13)

and perform (generalized) Bayesian inference based on these. Note that this
effectively replaces, for each θ, the full likelihood by a ‘likelihood’ in which
some information has been lost, and is thus reminiscent of what is done in
pseudo-likelihood (Besag, 1975), substitution likelihood (Jeffreys, 1961; Dunson and
Taylor, 2005), or rank-based likelihood (Gu and Ghosal, 2009) approaches (as a
Bayesian, one may not want to lose information, but whether this still applies
in nonparametric problems (Robins andWasserman, 2000) let alone undermis-
specification (Grünwald and Halpern, 2004) is up to debate).

(4.13) can be made precise in two ways: either one just sets γ and Z(γ) to
1, and allows the f new

θ to be pseudo-densities, not necessarily integrating to
1 for each x. This is a standard approach in learning theory (Zhang, 2006b;
Catoni, 2007). One could then learn η by, e.g., the basic SafeBayes algorithm
with `θ(x, y) := `(y, δθ(x)) instead of log-loss. Or, one could define Z(γ) so
that the densities normalize (how to achieve this if

∫
y e−γ`(y,δθ(x))dy depends

on x is explained by Grünwald (2008)) and put a prior on γ as well (for linear
models, this is akin to putting a prior on the variance). Thiswill make the loss `
KL-associated and the KL-optimal θ̃ will also have the reliability property, see
again (Grünwald, 2008) for details. In this case we will get, with zi = (xi, yi),
`θ(zi) := `(yi, δθ(xi)), and using a prior on Θ and the scaling parameter γ, that
the η-generalized posterior becomes

π(θ, γ | zn, η) ∝
1

Z(γ)ηn e−ηγ ∑n
i=1 `θ(zi) · π(θ, γ). (4.14)

This idea was, in essence, already suggested by (Grünwald, 1998, Example 5.4)
(see also Grünwald (1999)) under the name of entropification (however, Grün-
wald’s papers wrongly suggest that, by introducing the scale parameter γ, it
would be sufficient to only consider η = 1); see also (Lacoste-Julien et al., 2011;
Quadrianto and Ghahramani, 2014).

Now both ‘pure’ subjective Bayesians and ‘pure’ frequentists might dis-
miss this programme as severe ad-hockery: the strict Bayesian would claim
that nothing is needed on top of the Bayesian machinery; the strict frequentist
would argue that Bayesian inference was never designed to ‘work’ under mis-
specification, so in misspecified situations it might be better to avoid Bayesian
methods altogether rather than trying to ‘repair’ them. We strongly disagree
with both types of purism, the reason being the ever-increasing number of
successful applications of Bayesian methods in machine learning in situations
in which models are obviously wrong. We would like to challenge the pure
subjective Bayesian to explain this success, given that the statistician is using
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a priori distributions that reflect beliefs which she knows to be false, and are
thus not really her beliefs. We would like to challenge the pure frequentist to
come up with better, non-Bayesian methods instead. In summary, we would
urge both purists not to throw away the Bayesian baby with the misspecified
bath water!

Moreover, from a prequential (Dawid, 1984), learning theory (citations see
below) andMinimumDescription Length (MDL (Barron et al., 1998)) perspect-
ive, the extension from Bayes to SafeBayes is perfectly natural. From the pre-
quential perspective, SafeBayes seeks to find the largest η at which the gener-
alized Bayesian predictions have a predictive interpretation in terms of the loss
of interest rather than the log-loss. The learning theory andMDL perspectives
are further explained in the next section.

4.3.1 Related work I: Learning theory and MDL
Learning theory From the learning theory perspective, generalized Bayesian
updating as in (4.14) with Z(γ) set to 1 can be seen as the result of a simple reg-
ularized loss minimization procedure (this was probably first noted by Willi-
ams (1980); see in particular (Zhang, 2006b)), which means that it continues
to make sense if exp(−γ`θ) as in (4.13) does not have a direct probabilistic in-
terpretation. Variations of such generalized Bayesian updating are known as
“aggregating algorithm”, “Hedge” or “exponential weights”, and often have
good worst-case optimality properties in nonstochastic settings (Vovk, 1990;
Cesa-Bianchi and Lugosi, 2006) — but to get these the learning rate must of-
ten be set as small as O(1/

√
n). Similarly, PAC-Bayesian inference (Audibert,

2004; Zhang, 2006b; Catoni, 2007) (for a variation, see (Freund et al., 2004)) is
also based on a posterior of form (4.13) and can achieve minimax optimal rates
in e.g. classification problems by choosing an appropriate η, usually also very
small. From this perspective, SafeBayes can be understood as trying to find a
larger η than the worst-case optimal one, if the data indicate that the situation
is not worst-case and faster learning is possible. Finally, Bissiri et al. (2013) give
a motivation for (4.14) (with Z(γ) ≡ 1) based on coherence arguments that are
more Bayesian in flavour.

MDL Of particular interest is the interpretation of the SafeBayesian method
in terms of the MDL principle for model selection, which views learning as
data compression. When several models for the same data are available, MDL
picks the model that extracts the most ‘regularity’ from the data, as measured
by the minimum number of bits needed to code the data with the help of the
model. This is an interpretation that remains valid even if amodel is completely
misspecified (Grünwald, 2007). The resulting procedure (based on so-called
normalized maximum likelihood codelengths) is operationally almost identical
to Bayes factor model selection. Thus, it provides a potential answer to the
question ‘what does a high posterior belief in a model really mean, since one
knows all models under consideration to be incorrect in any case?’ (asked by,
e.g., Gelman and Shalizi (2012)): even if all models arewrong, the information-
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theoretic MDL interpretation stands. However, our work implies that there is
a serious issue with these NML codes: note that any distribution P in a model
M can be mapped to a code (the Shannon-Fano code) that would be optimal in
expectation if data were sampled from P. Now, our work shows that if the data
are sampled from some P∗ 6∈ M, then the codes based on Bayesian predictive
distributions can sometimes compress substantially better in expectation than
can be done based on any P ∈ M—this is the hypercompression phenomenon
of Section 4.1.3. The same thing then holds for the NML codes, which assign
almost the same codelengths as the Bayesian ones. Our work thus invalidates
the interpretation of NML codelengths as ‘compression with the help of (and
only of!) the model’, and suggests that, similarly to in-model SafeBayes one
should design and use ‘in-model’ versions of the NML codes instead — codes
that are guaranteed not to outperform, at least in expectation, the code based
on the best distribution in the model.

4.3.2 Related work II: Analysis of Bayesian behaviour under
misspecification

Consistency theorems The study of consistency and rate of convergence un-
der misspecification for likelihood-based and specifically Bayesian methods
go back at least to Berk (1966). For recent state-of-the-art work on likelihood-
based, non-Bayesian methods see e.g. Dümbgen et al. (2011) and the very gen-
eral Spokoiny (2012). Recent work on Bayesian methods includes Kleijn and
Van der Vaart (2006), De Blasi andWalker (2013) and Ramamoorthi et al. (2013)
who obtained results in quite general, i.i.d. nonparametric settings, non-i.i.d.
settings (Shalizi, 2009), and more specific settings (Sriram et al., 2013); see also
Grünwald (2014). Yet, as explicitly remarked by De Blasi and Walker (2013),
the conditions on model and prior needed for consistency under misspecifi-
cation are generally stronger than those needed when the model is correct.
Essentially, if the data are i.i.d. both according to the model and the sampling
distribution P∗, then Theorem 1 (in particular its Corollary 1) of De Blasi and
Walker (2013) implies the following: if, for all ε > 0, the model can be covered
by a finite number of ε-Hellinger balls, then the Bayesian posterior eventu-
ally concentrates: for all δ, γ > 0, the posterior mass on distributions within
Hellinger distance δ of the Pθ̃ that is closest to P∗ in KL divergence will be-
come larger than 1− γ for all n larger than some nγ. This implies that both in
the ridge regression (finite p) and in the model averaging experiments (finite
pmax), Bayes eventually ‘recovers’ — as we indeed see in our experimental res-
ults. However, if pmax = ∞, then the model has no finite Hellinger cover any
more for small enough ε and indeed the conditions for Theorem 1 of De Blasi
andWalker (2013) do not apply anymore. Our results show that in such a case
we can indeed have inconsistency if the model is incorrect. On the other hand,
even if pmax = ∞, we do have consistency in the setup of our correct-model
experiment for the standard Bayesian posterior, as follows from the results by
Zhang (2006a).
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The limiting η = 1 Like several earlier results (Barron and Cover, 1991;
Walker and Hjort, 2002), Zhang’s consistency results for correct models hold
under very weak conditions for generalized Bayes with any η < 1, and only
under much stronger conditions for η = 1. Zhang provides an example of
inconsistency-like behaviour in the well-specified case with η = 1 that auto-
matically disappears as soon as one picks η < 1, leading Zhang (2006a) to
claim that in general, generalized Bayesian methods (η < 1) are more stable
than standard Bayesian ones. Zhang’s example, and the example of Bayesian
model selection inconsistency in awell-specifiedmodel by Csiszár and Shields
(2000) are closely related to ours, in that the Bayes predictive distribution for
η = 1 becomes significantly different from any distribution in the model (see
Figure 4.1). In their examples, the problem is resolved by taking any η < 1; in
our misspecification case, η should even be taken much smaller.

Anomalous behaviour and modifications of Bayesian posterior under mis-
specification Anomalous behaviour of Bayesian inference under misspecifi-
cation was, of course, observed before, e.g. (less dramatically than here) by
Yang (2007b); Müller (2013) and (as dramatically, but involving a very artificial
model) Grünwald and Langford (2007). Presumably also related is the ‘brit-
tleness’ of Bayesian inference that has been observed by Owhadi and Scovel
(2013). Not surprisingly then, we are not the first to suggest modification
of likelihood-based estimators (see e.g. White, 1982; Royall and Tsou, 2003;
Kotłowski et al., 2010) and posteriors (Royall and Tsou, 2003; Hoff and Wake-
field, 2012; Doucet and Shephard, 2012; Müller, 2013). The latter three ap-
proaches (that extend the first) employ the so-called sandwich posterior, inwhich
the covariance matrix of the posterior is changed based on a ‘sandwich for-
mula’ involving the empirical variance; Müller (2013) provides extensive ex-
planation and experimentation. Compared to the sandwich approach, our
proposal, besides being applicable in fully nonparametric contexts, seems sub-
stantially more radical. This can be seen from the regression applications in
Müller (2013), which involve a noninformative Jeffreys’ prior on the regression
coefficient vector β. With such a prior (as well as any normal prior scaled by
variance σ2), the posterior mean of β, and thus also the frequentist square-risk
(which only depends on the posterior mean) remains unaffected by the sand-
wich modification, so for square-risk the method would perform like stand-
ard Bayes in our model-wrong experiments. Thus Müller (2013, Section 2.4)
demonstrates its usefulness on other loss functions. Nevertheless, both the
sandwich and the SafeBayesian methods can be thought of as methods for
measuring the spread of a posterior, and it would be useful to compare the
two in detail, both in theory and practice.

4.3.3 Future work and open problems

The results of these chapters raise several issues and prompt the following re-
search agenda:
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1. Themisspecification in our examplewould presumably be easily spotted
in practice. This raises the question whether ‘bad’ misspecification also
arises for data sets that occur in practice and for which it would not be
easily spotted. Currently, we know only of one experiment in this direc-
tion: Jansen (2013) applied the Bayesian Lasso (Park and Casella, 2008) to
several real-world data sets, where the λ (i.e. 1/η) is taken thatminimizes
the cumulative square-losswhereas at the same time σ2 is a free parameter.
Thus it is a hybrid of I-square-SafeBayes and I-log-SafeBayes, but equal
to neither; the method was (somewhat) outperformed by standard Bayes
onmost data sets tried. However, we also tried this hybridmethod in the
model-wrong experiment of Chapter 3 and found that it is not competi-
tive with either of the two ‘true’ in-model SafeBayes methods either; so
the experiment does not ‘really’ test SafeBayes; more precise experiments
are needed.

2. Our method has one major disadvantage: even if the data do not have a
natural ordering, the η̂ selected by SafeBayes will, in general, be order-
dependent. Grünwald (2011) suggested a very different (and in fact, the
first) method to learn η̂, that does not have this problem. However, it
is only applicable to countable models, and has no obvious computa-
tionally efficient implementation, so we do not know whether it has a
future. Another method that is clearly related to I-square-SafeBayes is to
determine η using leave-one-out cross-validation based on the squared
error. This method is also order-independent and behaves comparably
to I-square-SafeBayes (Section 5.1.1), but it is not clear how to extend
it to general misspecified models. While we show in the same section
that cross-validation based on log-loss of the Bayes predictive distribu-
tion fails dramatically, it may be that cross-validation based on log-loss
of the Bayes posterior mean would generally work fine, and this method
can be applied to general misspecifiedmodels, not just linear ones. Com-
pared to I-log-SafeBayes this in-model log-loss cross-validationwould have
the advantage that it is order independent, and the disadvantage that it
cannot (at least not straightforwardly) be used in an online setting and/or
for non-i.i.d. models. Also, we suspect that if the number of models is
exponential in the covariates (as in variable selection), cross-validation
may be prone to overfitting whereas SafeBayes would not be, but this
is just extrapolation from the well-specified case: it would be useful to
investigate “in-model cross-validation” further.

3. What exactly are relations between the sandwich posterior (see above)
and our approach? It would be good to test SafeBayes on the data sets
used by Müller (2013).

4. It would be useful to establish exactlywhat properties of Bayesian updat-
ing remain valid for generalized Bayesian updating, andwhat properties
do not hold anymore. For example, telescoping (Cesa-Bianchi and Lugosi,
2006) holds for the standard posterior, for the η-flattened, η-generalized
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posterior, but not for the (nonflattened) η-generalized posterior.

5. As discussed at the end of Section 4.2, the final term in (3.23) is lack-
ing in the in-model versions of SafeBayes, and this does suggest that
they should work better than the randomization versions — the corres-
ponding ∆η,η is always smaller. Yet we have no theoretical results to this
end, and our empirical results confirm this to some extent (R-square-
SafeBayes is not competitive), but not fully (R-log-SafeBayes is competi-
tive), so more research is needed here.

6. As we indicated in Section 4.1.3, hypercompression implies nonconcen-
tration, but we do not know whether the reverse implication holds as
well, sowemay perhaps have badmisspecification yet no hypercompres-
sion. It would give significant insight if we knew whether this indeed
could happen.

7. In light of the discussion underneath (4.13), one would like to formu-
late a general theory of substitution likelihoods so that likelihoods can
be determined based on the inference task of interest, so that this task
becomes KL-associated, for arbitrary prediction tasks. Ideally, (4.13) and
approaches such as pseudo-likelihood and rank-based likelihood would
all become a special case. If this can be done, we would have a truly
generalized Bayesian method.
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Appendix 4.A More on mix loss

4.A.1 Implementing SafeBayes
To implement the SafeBayesian algorithm (page 52), generalized posteriors
must be computed for different values of η, and the randomized loss (3.18)
must be computed for each sample size. For linear models with conjugate pri-
ors as considered in our experiments, all required quantities can be computed
analytically. We have already seen how to do this for modelsMp with fixed
dimension p. For unions of such models, it turns out that the mix-loss is a
helpful tool.

Role of mix loss in generalized posterior over models The generalized pos-
terior across a discrete set ofmodels is given by (3.7), which, writing τ = (β, σ2),
is, via (3.10) and (3.9), equivalent to

π(p | zn, η) =
∫

Θp
π(p, τ | zn, η) dτ

∝
∫
( f (yn | xn, τ, p))ηπ(τ | p) dτ π(p). (4.15)

Here ∝ means ‘proportional to’ when p is varied and zn and η are fixed. In
practice we prefer to calculate this quantity incrementally: the posterior for
zn+1 with prior Π is equal to the posterior for a single data point zn+1 when
the posterior for zn is used as prior (in this sense the generalized posterior
behaves like the standard posterior): using this to further rewrite the second
line of (4.15) gives

π(p | zn, η)

∝
∫
( f (yn | xn, τ, p))ηπ(τ | p) dτ π(p)

=
∫
( f (yn | xn, τ, p))η · ( f (yn−1 | xn−1, τ, p))ηπ(τ | p) dτ π(p)

=
∫
( f (yn | xn, τ, p))η

·
(

π(τ | zn−1, p, η) ·
∫
( f (yn−1 | xn−1, τ′)ηπ(τ′ | p)dτ′

)
dτ π(p)

∝
∫
( f (yn | xn, τ, p))η · π(τ | zn−1, p, η) dτ · π(p | zn−1, η),

where in the third inequality we used the definition of the generalized pos-
terior and in the last we used (4.15).

The integral appearing in both the cumulative and the step-wise expression
equals the expectation in (4.9) from the η-flattened η-generalized Bayesian pre-
dictive density for n and 1 outcome respectively; − log[(·)1/η ] of this quantity
is the mix loss of model p. We will now derive formulas for this quantity.
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Model with fixed variance Use the notation of Section 3.3.1. Write σ2
mix =

σ2(1/η + xn+1Σnx>n+1). Then the mix loss for predicting one new data point
yn+1 is

− log f̄ (yn+1 | xn+1, zn, 〈η〉; η) =
1
η

[
1
2
(η − 1) log(2πσ2)

+
1
2

log η +
1
2

log(2πσ2
mix) +

1
2σ2

mix
(yn+1 − xn+1βn)

2
]

.

Model with conjugate prior on variance Using the notation of Section 3.3.1,
the mix loss is given by

− log f̄ (yn+1 | xn+1, zn, 〈η〉; η) =
1
η

[
1
2

η log π +
1
2

log(1 + ηxn+1Σnx>n+1)

+ an+1 log(2bn +
(yn+1 − xn+1βn)2

1/η + xn+1Σnx>n+1
)− an log 2bn − log

Γ(an+1)

Γ(an)

]
.

4.A.2 Belief in concentration (proof of Theorem 4.1)
For simplicity, we only give the proof for the unconditional case, in which
the θ represent distributions Pθ on z ∈ Z ; extension to the conditional case
is straightforward. For 0 < η < 1, let dη(θ∗‖θ) denote the Rènyi di-
vergence of order 1 − η (Van Erven and Harremoës, 2014), i.e. dη(θ∗‖θ) =

− 1
η log EZ∼θ∗

(
fθ(Z)
fθ∗ (Z)

)η
. We first state a lemma, proved further below. In the

lemma, as in the remainder of the proof, (θ∗, Zn) is the random variable dis-
tributed according to the Bayesian distribution Π.

Lemma 4.2. Let Θ, Π and π be as in the statement of Theorem 4.1. For every 1/2 ≤
η < 1, ε > 0, let Θ̄η,ε := {θ ∈ Θ | dη(θ∗‖θ) > ε}. For every b > 0 and every
sample size n and setting ε := (b log n)/(nη) and cη = (1− η)/(1 + η(1− η)),
we have:

Π
(

Π(Θ̄η,ε | Zn) ≥ n−bcη

)
≤ 2

(
∑

θ∈Θ
π(θ)η

)
· n−bcη .

In particular, if π is summable for some η < 1, then using b = 1/cη , we get
that the Bayesian probability that the posterior probability of the set of θ farther than
b(log n)/n from θ∗ exceeds 1/n, is O(1/n).

We proceed to prove Theorem 4.1 using this lemma. By the information
inequality (Cover and Thomas, 1991), we have for every probability density
f 6= fθ∗ that

D(θ∗‖θ) = EZn∼Pθ∗ [− log fθ(Zn) + log fθ∗(Zn)]

≥ EZn∼Pθ∗ [− log fθ(Zn) + log f (Z)].
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In particular this holds with f = f̄ | Zn, the Bayes predictive distribution
based on the sample seen so far. It then follows from (4.6) that

δ̄n ≤ Eθ∼Π|Zn [D(θ∗‖θ)] (4.16)

Since πη is decreasing in η, we may without loss of generality assume that the
η mentioned in the theorem statement is at least 1/2. Now note (Van Erven
and Harremoës, 2014, Theorem 16) that for every 1/2 < η < 1, d1/2(θ

∗‖θ) ≤
(η/(1− η)) · dη(θ∗‖θ). We also know from (Yang and Barron, 1999, Lemma
4) that the KL divergence D(θ∗‖θ) satisfies D(θ∗‖θ) ≤ (2 + log v)d1/2(θ

∗‖θ).
Since trivially dη(θ∗‖θ) ≤ log v, we have, with C = η

1−η · (2+ 2 log v), for every
ε > 0, using (4.16),

δ̄n ≤ C · Eθ∼Π|Zn [dη(θ
∗‖θ)]

≤ CΠ
(
dη > ε | Zn) log v + C

(
1−Π

(
dη > ε | Zn)) ε

≤ C
(
Π
(
dη > ε | Zn) log v + ε

)
,

so that Π
(
dη > ε | Zn) ≥ (C−1δ̄n − ε)/(log v) and by Lemma 4.2, we have for

ε = b(log n)/(nη) as in the lemma, that

Π
(

C−1δ̄n − ε

log v
≥ n−bcη

)
≤ 2

(
∑

θ∈Θ
π(θ)η

)
· n−bcη .

Rewriting this expression, plugging in the value of ε and using η ≥ 1/2, gives

Π
(

δ̄n ≥ C
(
(log v)n−bcη +

2b(log n)
n

) )
≤ 2

(
∑

θ∈Θ
π(θ)η

)
· n−bcη . (4.17)

The first part of the result follows by setting b = a/cη . For the second res-
ult, note that the first result implies (take a = 2), by the union bound over
sample sizes 1, . . . , n, that the Bayesian probability that EZn∼θ∗ [∆n] exceeds
C0 ∑n

i=1(log i)/i � (log n)2 is O(1/n). Thus there exists C′, C′0 such that the
Bayesian probability that EZn∼θ∗ [∆n] exceeds C′0(log n)2 is bounded by C′/n.
Thus for the probability in (4.8) we have

Π
(

∆n ≥ C2 · na′
)
= Π

(
∆n ≥ C2 · na′ , EZn∼θ∗ [∆n] ≥ C′0(log n)2

)
+ Π

(
∆n ≥ C2 · na′ , EZn∼θ∗ [∆n] < C′0(log n)2

)
≤ Π

(
EZn∼θ∗ [∆n] ≥ C′0(log n)2

)
+ Π

(
∆n ≥ C2 · na′ , EZn∼θ∗ [∆n] < C′0(log n)2

)
≤ C′

n
+

C′0(log n)2

C2na′ ,

where in the final stepwe usedMarkov’s inequality. The second result follows.
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Proof of Lemma 4.2 Fix A > 0 and γ > 0. We have

Π
(
Π(Θ̄η,ε | Zn) ≥ A

)
= Π

(
∑θ∈Θ̄η,ε

π(θ) · fθ(Zn)

∑θ∈Θ π(θ) · fθ(Zn)
≥ A

)

= Π

(
∑θ∈Θ̄η,ε

π(θ) · fθ(Zn)

fθ∗(Zn)
· fθ∗(Zn)

∑θ∈Θ π(θ) · fθ(Zn)
≥ A

)

≤ Π

(
∑θ∈Θ̄η,ε

π(θ) · fθ(Zn)

fθ∗(Zn)
≥ A1+γ

)
+Π

(
fθ∗(Zn)

∑θ∈Θ π(θ) · fθ(Zn)
≥ A−γ

)
,

(4.18)

where we used the union bound. The first term is equal to, and can be further
bounded as

= Π


(

∑θ∈Θ̄η,ε
π(θ) · fθ(Zn)

)η

( fθ∗(Zn))η ≥ Aη(1+γ)


≤ Π

(
∑θ∈Θ̄η,ε

π(θ)η · ( fθ(Zn))η

( fθ∗(Zn))η ≥ Aη(1+γ)

)

= ∑
θ∗

π(θ∗)Pθ∗

(
∑θ∈Θ̄η,ε

π(θ)η · ( fθ(Zn))η

( fθ∗(Zn))η ≥ Aη(1+γ)

)

≤ ∑
θ∗∈Θ

π(θ∗) EZn∼Pθ∗

[
∑θ∈Θ̄η,ε

π(θ)η · ( fθ(Zn))η

( fθ∗(Zn))η

]
· A−η(1+γ)

= ∑
θ∗∈Θ

π(θ∗) ∑
θ∈Θ̄η,ε

π(θ)η ·
(

EZ∼Pθ∗

[
( fθ(Z))η

( fθ∗(Z))η

])n
· A−η(1+γ)

≤

 ∑
θ∈Θ̄η,ε

π(θ)η

 e−nηε · A−η(1+γ).

where the first inequality follows by differentiation to η (or equivalently, by
monotonicity of `p-norms), the second is Markov’s, and the third is the defin-
ition of Rènyi divergence.

The second term in (4.18) can be bounded as

≤ Π
(

fθ∗(Zn)

π(θ∗) · fθ∗(Zn)
≥ A−γ

)
= Π(π(θ∗)−1+η ≥ A−(1−η)γ)

≤ Eθ∗∼Π[π(θ∗)−1+η ]Aγ(1−η) = ∑
θ∗

π(θ∗)η Aγ(1−η).

Combining the upper bounds on the two terms on the right in (4.18), we get:

Π
(
Π(Θ̄η,ε | Zn) ≥ A

)
≤

 ∑
θ∈Θ̄η,ε

π(θ)η

(e−nηε · A−η(1+γ) + Aγ(1−η)
)

.
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Now we plug in the chosen value of ε = (b log n)/(nη) and we set A =

n−b/(γ+η). With these values the second factor on the right becomes

e−nηε · A−η(1+γ) + Aγ(1−η)

= n−bnb(η(1+γ))/(γ+η) + n−bγ(1−η)/(γ+η) = 2n−b·γ· 1−η
γ+η .

Since this holds for all γ > 0, it also holds for γ = 1/(1− η), and the result
follows.




