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Chapter 9

Substring Differences in

Genomes

In this chapter, we introduce a new way of determining the difference between
full genomes of different species, based upon the occurrence of small substrings
in both genomes. Basically we count the number of occurrences of all substrings
of a certain length and use that to determine to what extent two genomes
are alike. Based on these numbers several difference measures can be defined,
e.g., a Euclidean distance in the vector space that has the same dimension as
the number of possible substrings of a certain length, a multiset distance, or
other measures. Each of these measures can be applied for phylogenetic tree
generation. We also pay attention to some visualisations and several statistics.

9.1 Introduction

Determining how one species relates to the other can be done in many ways. One
of the many techniques is to look at the DNA. At this moment, many genomes
can be downloaded from the internet [69], although not all genomes are complete
yet. Also the genomes of many individuals of a given species become publicly
available. In this chapter, we do not look for genes or markers in the genome,
or any other annotation whatsoever, but just at the occurrence of substrings.
Therefore the techniques described here can be used for a number of other
problems, ranging from chromosome resemblance to the detection of plagiarism
or document similarities for search engines.

In Section 9.2, we will describe a way to compare two long strings by counting
rare substrings. This seemingly simple approach is highly non-trivial because
the number of substrings is enormous. We have tried a number of ways to do
the computation efficiently, like caching, using trees and hash tables, but all
these methods need far too much memory. Note that if the substrings are small,
these methods are just fine and solve the problem in linear time, but we deal
with rather large substrings (length 14 and above). The only way to count
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96 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

large substrings was to use an exponential (in memory) approach, but with the
adaptation that when the amount of available memory is not enough, we make
multiple passes over the data; in each pass we search for all substrings with a
pre-set prefix.

The count of all substrings is reintegrated in the genome data, so we know
the exact position. Unfortunately, the DNA at a certain position in the genome
of one species does not have to correspond to the DNA at the same position of
the genome of another species. This annotated genome can be used in a large
variety of applications. One of them, (using the co-occurrence of substrings as
a metric) we shall discuss in this chapter.

We will introduce some elementary statistics and visualisations in Section 9.3,
a distance measure for the comparison of two species in Section 9.4 and based
on this the generation of phylogenetic trees in Section 9.5. In Section 9.6 we
introduce a distance measure for multisets which we apply to our data. We
conclude in Section 9.7.

9.2 Determining rare factors

The discovery of (almost) unique substrings of a given length n in a genome is
not as trivial as it might seem. We use the following strategy:

• Convert the entire genome to a binary sequence, using a suitable encoding
scheme.

• Use a sliding window to get all subsequences of length n.

• Count these subsequences and remember in which part of the genome each
of the subsequences were found, by remembering the starting points.

9.2.1 Conversion

In Table 9.1 we give one of the possible binary encodings for nucleotides. How-
ever, these values were not chosen at random. Note that the complementary
letters are also complementary in the binary encoding, i.e., A and T are com-
plementary, and so are 00 and 11. There is an advantage in such a scheme,
because the calculation of the complement of such a string is a very simple and
fast operation. We shall see further on why this is important.

nucleotide A C G T
encoding 00 01 10 11

Table 9.1: Binary encoding of the nucleotides

Generally speaking, using a binary encoding scheme is beneficial because
some operations can be done in parallel (the complement of sixteen nucleotides
can be calculated with one operation on a 32-bit machine) and a binary encoding
uses only one fourth of the memory it would usually take.
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9.2.2 Sliding window

After we have converted the DNA to binary data, we use a sliding window to
get all subsequences of a certain length. If we are searching for substrings of
length n, we make an array of size 4n. Each time we move the window we get
another position in the array, and we simply increase the value of that array
element. An advantage of this sliding window is that we only have to read one
value to generate the next index. We simply shift the old index to the left and
concatenate the newly read value to the end of the sequence.

The size of the array is the main difficulty in this approach. To give an
indication: for n = 16, we have to make an array with 416 entries, and if each
entry consists of one byte, the array will be 4 Gigabytes large. The size of the
input files have no influence on this array.

To make sure that all random access is done in memory, we use a memory
locked part of the main memory. In practice, this will probably be smaller than
the amount of required memory. Therefore, we make multiple passes over our
input where in each pass a prefix is fixed. For example, if we require 4 Gibabytes
of memory and we can only lock 2 Gigabytes, we make two passes over the input.
In the first pass the fist bit is fixed and has the value 0. This means that in the
first pass all substrings are counted that start with an A or C. This implies that
the amount of physical memory used must always be a power of 2.

For substrings of length 18 and below, this is probably the most efficient
data structure to work with, this is because the genome of most species is so
large that most (if not all) combinations occur. For the human genome we know
that about 95% of the substrings of length 18 are unique. If we put this data in a
space-efficient data structure like a trie, we need about 650 Gigabytes (twice as
much as one might expect, but this is because we need to use 64 bits pointers).
If we use a PATRICIA tree [52], we still need about 100 Gigabytes (we base this
assumption on the fact that the branching factor of the tree is very high).

The reason that we chose to use strings with a length between 12 and 18, is
because using larger strings than 18 are not needed (most of the substrings of
this length are unique) and below 12 there are too few unique substrings.

9.2.3 Counting

Since DNA is double stranded, we can not simply count all substrings, because
the reverse complement of a string is essentially the same as the original string.
Therefore we look at the other index as well. One of these two indexes has the
smallest numerical value, and this one will be used as representative of the pair.
Keeping track of the reverse complement is just as easy as keeping track of the
original string. The difference is that we shift the old index to the right and
insert the inverted newly read value to the beginning of the sequence. If we now
encounter either of those sequences, we increase the value of the sequence with
the lowest binary representation. This way both the sequence and its reverse
complement are mapped to the same position in the counting table.

This results in a table where every possible subsequence is counted, however
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due to physical limitations (the size of the table in memory and the size of the
annotated genomes that will be written to disk afterwards), we chose to count up
to three, so if there is a three in this table, it means the corresponding substring
is present three or more times. To be precise, each nibble in the counting table
is used as an entry. This reduces the amount of memory for the table by a factor
of two, but it complicates writing and reading in the table slightly; for an even
substring length (ending in A or G) we do an And with the value 0× 0F and in
the other case we do a Shift Right of 4 bits.

When counting the substrings in two species, we use the first half of the
value of each element in the counting table for species A and the second half
for species B (leaving only two bits for each species). This is quite convenient
since we can look up the number of occurrences of a certain substring in both
species at once.

9.3 Elementary statistics and visualisations

Now we can calculate a number of elementary statistics and do some visualisa-
tions. For example, we can give the number of unique strings of a given length
and even the position of these strings. As a first example, in Table 9.2 the
number of unique substrings of a certain length is shown. Note that each unique
string of length n automatically accounts for (m−n)+1 unique strings of length
m, if m > n (a string of length n is a substring of (m− n) + 1 strings of length
m).

size 11 12 13 14 15 16
Human 210 47,668 1,335,256 15,412,176 85,793,791 346,600,204
Chimp 300 62,149 1,509,471 16,636,054 87,029,038 346,319,725

Table 9.2: Number of unique substrings in Human and Chimpanzee

Of course, this does not account for all unique strings of high length as can be
seen in Table 9.2. The values grow far more rapid than the ones dictated by the
formula above. Statistically, given a random string, the larger the length of the
substring, the higher the chance is that a given substring is unique. This is the
reason we find far more unique strings of higher length.

In Figure 9.1 we see the occurrence of unique strings in a Human. We vi-
sualise the number of unique strings of length 12, for each consecutive series of
100,000 base pairs. The vertical dotted lines denote the chromosome boundaries;
these are ordered as follows: 1 to 22, then X, Y, and finally the mitochondrial
DNA. This mitochondrial DNA is so small that it does not show up in these
graphs. The white bands located at offset 1300 and 15900, for example, are due
to unsampled or highly unstable DNA, and in either case it is missing from our
input.

In Figure 9.2 we only plot the occurrences above 15. In Figure 9.3 we have
plotted the number of occurrences of strings that are unique in the human
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Figure 9.1: Occurrence of unique strings in Human
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Figure 9.2: Occurrence of unique strings (length above 15) in Human

genome and not present in the genome of a chimp. Figure 9.4 shows unique
strings for a chimp. The chromosomes are ordered 1 to 22, then Un, X, Y,
and finally the mitochondrial DNA. This can for example be used to select
markers to put on a microarray [63] to make a distinction between two (or more)
species. In Figure 9.3 and 9.5, we see where these markers can be found. Another
application is the selection of primers [23], commonly used in techniques like
Multiplex Ligation-dependent Probe Amplification (MLPA) [64] and Polymerase
Chain Reaction, or PCR [17]. We see the regions where the number of primers
are abundant in Figure 9.2 for the human and in Figure 9.4 for the chimp.
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Figure 9.3: Occurrence of unique strings present in Human and not in Chimp
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Figure 9.4: Occurrence of unique strings in Chimp

9.4 Distances and weights

After the substrings of length n have been counted, we make a matrix where two
species are represented by counting the number of strings that occur a times in
species A and b times in species B for 0 ≤ a, b ≤ 3. This is a method that loses
a lot of information, but we have a very small matrix left to work with and as
we shall see further on, the information in this matrix is still sufficient to make
a difference between species. The 4×4 matrix M , referred to as the counting
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Figure 9.5: Occurrence of unique strings present in Chimp and not in Human

matrix, contains the following data:

M = M(A, B) = (mi,j) =

⎛
⎜⎜⎜⎝

m0,0 m0,1 m0,2 m0,3

m1,0 m1,1 m1,2 m1,3

m2,0 m2,1 m2,2 m2,3

m3,0 m3,1 m3,2 m3,3

⎞
⎟⎟⎟⎠

Where mi,j denotes how many substrings are present i times in species A and j
times in species B. As mentioned before, we only count up to three, so, e.g., the
element m1,3 is the amount of substrings that are present once in species A and
three or more times in species B. All elements that contribute to the difference
are underlined to indicate the relevant elements of the matrix.

We want to use the following distance formula:

dist(S, T ) =
|S\T |+ |T\S|
|S ∪ T | , (9.1)

where S and T are sets. We divide the symmetrical difference of set S and T by
the maximum value of the numerator. If both S and T are the empty set, we
let dist(S, T ) = 0. The reason we choose for this particular distance measure is
because it takes the sizes of the sets into account (also see [24]). To adjust this
formula to work with our matrix, we have to rewrite it as follows (for species A
and B):

dist(A, B) =

∑3
i=1(m0,i + mi,0)

4� −m0,0
, (9.2)

where M = M(A, B) is the counting matrix of the pair (A, B) and 4� −m0,0 is
the total number of substrings that occur in at least one of A and B.

One of the shortcomings of this distance is that only the absolute differ-
ences are used, i.e., only the substrings present in one of the species. Another
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shortcoming is that all differences are weighted equally, although it is perhaps
reasonable to assume that a substring that is present once has less significance
than one that is present more than three times.

To compensate for these shortcomings, we use a weighting matrix W :

W = (wi,j) =

⎛
⎜⎜⎝

0 α3 α4 α5

α3 0 α0 α2

α4 α0 0 α1

α5 α2 α1 0

⎞
⎟⎟⎠

The values of α0, . . . , α5 are weights applied to the matrix M . They are ordered
in ascending order of significance, e.g., we assume that the value of m2,1 is less
significant than m3,2, and therefore we should set α0 to a lower value than α1.
We base this assumption on the fact that if a substring is present zero times in
species A and two times in species B, this is a more significant difference than
once in species A and two times in species B for example. We now define

distW (A, B) =

∑
i,j wi,jmi,j

max(α0, . . . , α5)(4� −m0,0)
, (9.3)

where W is the weighting matrix and M is the counting matrix. We calculate
the weighted sum of the relevant matrix elements and divide by the maximum
possible difference. Note that this is a generalization of Equation 9.2, if we
choose α0 = α1 = α2 = 0 and α3 = α4 = α5 = 1, then we get Equation 9.2
again.

9.5 Experiments and results

We have done two types of experiments. The first one is the comparison of a
pair of species, the second one is extracting a distance from the first experiments
and to combine a number of species in a distance matrix.

9.5.1 Raw data

For the following results, we have chosen to look at sequences of length n = 14.
Table 9.3 is the raw comparison matrix of a human genome and that of a

chimp. Notice that the number at position (0, 0) is huge and non-informative.
The other numbers on the main diagonal are also relatively large. This might
mean that there are lots of similarities between the two species. The number at
(3, 3) is also very large, but that is because it is actually the sum of all points
(x, y) with x, y ≥ 3. Actually, all points (3, x) and (x, 3) with x ∈ N are less
informative than the other numbers in this matrix, because we can not be sure
if the 3 “is actually” a 3.

We will compare these figures with the difference between a cow and yeast. In
Table 9.4, we see a quite different picture. The matrix is even less symmetrical.
We see two reasons. Firstly a cow and yeast are quite different species, and
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Human
0 1 2 ≥ 3

0 150,783,349 4,486,933 1,216,093 498,090
1 3,212,656 7,352,318 3,737,739 2,333,341

Chimp 2 602,927 2,621,970 4,011,169 4,907,515
≥ 3 145,530 950,955 2,697,230 78,877,641

Table 9.3: Differences between Human and Chimp

secondly the genome of yeast is a lot shorter than that of a cow. Therefore a
given random string is more likely to be present in a cow, so the matrix is what
we would expect it to be.

Yeast
0 1 2 ≥ 3

0 153,248,529 544,363 21,518 5,229
1 15,023,538 548,614 25,707 5,624

Cow 2 11,361,444 489,848 26,124 5,459
≥ 3 78,706,409 7,293,480 876,010 253,560

Table 9.4: Differences between Yeast and Cow

9.5.2 Visualisation of the raw data

For the following results, we have chosen to look at sequences of length n = 16.
In Figure 9.6 we have plotted an interpolation of the values in the matrix M
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Figure 9.6: Human-Chimp raw data
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Figure 9.7: Human-Cow raw data

of the human genome and that of the chimp. Notice that although the matrix
contains lots of information, the graph is almost symmetric, this is also the case
for the almost identical Figure 9.7. This is because the similarities between the
two species are much larger than the differences. Another disturbing factor is
the point at (0, 0): this is where all substrings that are not present in either
species are. If the length of the substrings becomes too large (like here), this
peak will be enormous. This is why we chose to leave out similarities in the next
two pictures. In Figure 9.8 the difference between the human genome and that
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Figure 9.8: Human-Chimp raw data, main diagonal removed

of a chimp is plotted. The main diagonal has been removed from the data to
emphasize the differences (the values at these positions are interpolated). The
same technique is used in Figure 9.9, where the difference between human and
cow is plotted.
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Figure 9.9: Human-Cow raw data, main diagonal removed

9.5.3 Comparison of many species

We have taken the genomes of the species shown in Table 9.5 from [69].

species abbreviation genome length
Bee B 5.13 · 108

C elegans Ce 1.02 · 108

Chicken Ci 1.13 · 109

Chimp C 3.15 · 109

Cow Co 3.60 · 109

Dog D 2.58 · 109

Drosophila melanogaster Dm 1.35 · 108

Human H 3.15 · 109

SARS S 3.69 · 104

Yeast Y 1.24 · 107

Table 9.5: Species

In Table 9.6 we give the distance matrix, where we took αi = 1 for all i.
Notice that since the metric is symmetric, we do not have to show the upper
half of the matrix, because we can just mirror it in the main diagonal. Also
note that although we have not done any weighting, some things are already
remarkable, for instance: SARS is at distance 0.999 to all of the other species
(as expected) and the lowest distance (0.446) is the one between a human and
a chimp.

In Table 9.7 we took α0 = 1, α1 = 2, α2 = 4, α3 = 10, α4 = 20 and α5 = 1.
These values are taken quite arbitrary. The reason we chose for this particular
set of values, is because if we assume that the two genomes are normal random
strings, this would be a nice weighting scheme.
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Y S H Dm D Co C Ci Ce B
Y .000
S .999 .000
H .997 .999 .000
Dm .990 .999 .979 .000
D .997 .999 .740 .977 .000
Co .997 .999 .744 .977 .750 .000
C .997 .999 .442 .977 .748 .752 .000
Ci .995 .999 .834 .968 .833 .833 .830 .000
Ce .988 .999 .984 .959 .982 .983 .982 .973 .000
B .991 .999 .971 .957 .969 .969 .969 .959 .953 .000

Table 9.6: Distance matrix for αi = 1 for i = 0, 1, 2, 3, 4, 5

Y S H Dm D Co C Ci Ce B
Y .000
S .507 .000
H .442 .443 .000
Dm .517 .525 .431 .000
D .463 .464 .293 .450 .000
Co .456 .457 .294 .443 .301 .000
C .459 .461 .142 .447 .300 .301 .000
Ci .514 .518 .340 .491 .349 .348 .346 .000
Ce .513 .524 .435 .494 .454 .447 .450 .495 .000
B .519 .526 .433 .494 .451 .445 .448 .488 .491 .000

Table 9.7: Distance matrix with weight (large α3 and α4, see text)

From these distance matrices we can make a phylogenetic tree [11]. We chose
to make two visualisations, one rooted tree in which the distances are not pre-
served and one unrooted tree where distances are preserved as much as possible.
Of course, since this is only a projection of the actual data, more trees can be
drawn apart from these ones. In Figure 9.10 and 9.11 we see a rooted tree in
which distances are not preserved. This is only to give the reader a global view
of the distances between the given species. In Figure 9.12 and 9.13 we see an
unrooted tree with partially preserved distances. The path from yeast to SARS
for example is shorter than the path from yeast to cow. We see a difference in
the warm-blooded animals when we compare these trees, the triple Dog, Cow,
Chicken seem to be affected by our choice of weights. These differences can be
observed in both the rooted and the unrooted trees.

Figure 9.10, 9.11, 9.12 and 9.13 are constructed by means of the Fitch-
Margoliash [21] algorithm. They are visualisations of the matrices in Table 9.6
and 9.7.
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Figure 9.10: Phylogenetic tree of Table 9.6

Figure 9.11: Phylogenetic tree of Table 9.7

9.6 A multiset distance measure

In this section we use a distance measure designed for multisets (see Chapter 6).
This metric is parametrised by a function f that, given a few restrictions, will
give a valid metric. (We shall adhere to these restrictions.)

The distance measure is defined as follows:

df (X, Y ) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y )| .

The numerator is the sum of values of a function f , that indicates the difference
between the number of elements in one category. In this case, the difference in
occurrences of a particular piece of DNA. The denominator is the number of
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Figure 9.12: Unrooted phylogenetic tree of Table 9.6

Figure 9.13: Unrooted phylogenetic tree of Table 9.7

categories, in this case, the number of strands of DNA present in either of the
samples.

The function we use is:

f(x, y) =
|x− y|

(x + 1)(y + 1)
.

The reason for using this function is quite intuitive. If a particular strand
of DNA is present once in one of the samples, and not in the other sample,
the function will return distance 1/2. But when this strand is present in one
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sample once and twice in the other, the distance will be 1/6. In other words,
the fact that two samples share a piece of DNA or not, is more important than
the number of occurrences, though the latter is included.

Y S H Dm D Co C Ci Ce B
Y .000
S .505 .000
H .618 .623 .000
Dm .511 .519 .582 .000
D .610 .615 .315 .574 .000
Co .613 .618 .320 .577 .323 .000
C .611 .616 .150 .574 .320 .325 .000
Ci .581 .587 .389 .542 .388 .390 .386 .000
Ce .516 .528 .590 .490 .582 .584 .582 .549 .000
B .532 .542 .571 .493 .563 .565 .562 .531 .491 .000

Table 9.8: Distance matrix as calculated with the multiset metric

Figure 9.14: Phylogenetic tree of Table 9.8

Using the metric described above, we obtain the distance matrix shown in
Table 9.8. The rooted and unrooted phylogenetic trees are shown in Figure 9.14
and 9.15.

9.7 Conclusions and further research

We have shown that determining (rare) substrings in a genome is possible up to
a certain length. With the result we can make an annotated genome from which
we can extract lots of data. The cumulative count of strings that occur n times
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Figure 9.15: Unrooted phylogenetic tree of Table 9.8

in species A and m times in species B, where n, m are at most 4, still contains
enough data to make a phylogenetic tree.

The techniques described in this chapter could also be used to discover Single
Nucleotide Polymorphisms or SNP’s [55] by using two individuals of the same
species as input.

For further research we could make a distance measure based on (some of)
the unique strings themselves, not the amount of them. This way we could make
a very accurate distinction between species or individuals.


