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Chapter 8

Selection of DNA Markers

Given a genome, i.e., a long string over a fixed finite alphabet, the problem is to
find short (dis)similar substrings. This computationally intensive task has many
biological applications. We first describe an algorithm to detect substrings that
have edit distance to a fixed substring at most equal to a given e. We then
propose an algorithm that finds the set of all substrings that have edit distance
larger than e to all others. Several applications are given, where attention is paid
to practical biological issues such as hairpins and GC percentage. An experiment
shows the potential of the methods.

8.1 Introduction

The genomes of several species have been available on the internet for a couple of
years now. Because of the availability in an electronic format, computers can be
used to do experiments that would normally take months or even years. Data
mining research incorporates the exploration of raw data, identifying genes,
designing primers, searching for differences between individuals or differences
between species. Common in many of these techniques is the use of unique
strings. Finding these strings is a challenging task and the main topic of this
chapter.

There are a number of techniques that benefit from the existence of unique
strings, segments of DNA that occur only once in the genome under considera-
tion. Finding primers, i.e., markers for specific positions of the genome, is one
of them. Primers can be used to identify genes that are associated with dis-
eases, but also the identification or classification of blood samples can be done
with primers. Furthermore unique strings can be used in phylogenetic research
to make an ancestral tree of species or populations. Microarrays are also popu-
lated with a large number of unique or nearly unique strings. All these problems
benefit from the possibility of generating large amounts of dissimilar substrings
of the genome.

Some work on marker selection has been done in the past, e.g., a pragmatic
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80 CHAPTER 8. SELECTION OF DNA MARKERS

approach for a relative small number of markers can be found in [70]. In [20]
we see an approach that uses an alternative of the distance-based measure: the
similarity-measure in neural networks for the analysis of DNA and amino-acids
sequences; [56] is an overview of the application of Evolutionary Algorithms in
bioinformatics tasks like gene sequence analysis, gene mapping, DNA fragment
assembly and so on; [46] presents new techniques for recognizing promoters
(E. Coli) given an unlabelled DNA sequence based on feature extraction and a
neural network for classification; [58] is a practical application that computes
primer pairs for genome scale amplification, and also does extraction of coding
sequences and primer pair optimization; [27] is a primer design program that
uses fuzzy logic to calculate primer qualities, and also uses suffix trees to enhance
the spacial complexity; [37] looks at the multi criteria decision process of primer
design and reports that trade-off between deviations from ideal values of all
of the criteria can result in a considerable speedup. A practical application for
retrieving and assembling gene sequences can be found in [71], where afterwards
primer pairs are designed for amplification. For more information about the
related subject of multiple alignment see [72], where dot-matrices are viewed as
projections of unknown n-dimensional points and alignment for n sequences is
done by image reconstruction in an n-dimensional space with noise.

However, our major concern is not the design of individual primers, but
rather the creation of large sets of primers with special properties. In partic-
ular, these primers should be as dissimilar as possible. For example, in PCR
experiments, a lot of primers can be put together to do several experiments
at once. Because the amount of primers is very large in comparison with the
target DNA, chances are that the primers react with each other instead of with
the DNA. To prevent this, it is necessary to generate a set of primers that will
not react with each other. This is done by selecting only those primers that are
highly dissimilar from all other ones. This is a computationally challenging task,
because in principle all strings must be compared to each other.

In Section 8.2 we address the combinatorial background. The major algo-
rithms are described in Section 8.3. The Proximity Search algorithm finds all
occurrences of a string s in a given set of strings, allowing at most e errors. The
Distance Selection algorithm produces the strings that are at distance larger
than e to all other strings in the set. For both algorithms a trie is used for effi-
ciently storing the given set. As distance the so-called edit distance is employed,
with some possible variations. In Section 8.4 we mention practical applications
and their implications, e.g., the hairpin problem that arises from the occur-
rence of self-similar strings. An extensive experiment is reported in Section 8.5.
To make our task more biologically relevant we have put some additional con-
straints on the markers. Apart from being unique, the markers have to adhere
to minimum and maximum thresholds of GC content and bonding energy. An-
other constraint is on the combinatorial nature of the string itself: it should not
contain a repeating sequence. Our basic approach does not provide us with the
tools to deal with all these additional restrictions. In this section the method is
augmented to handle these biological requirements. We conclude in Section 8.6.
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8.2 Combinatorial background

In this section we sketch the combinatorial background to illustrate the memory
requirements. We have about 3·109 nucleotides in the human genome, so we also
have about 3 · 109 factors of a given length � (for small �). These huge numbers
pose a severe restriction on the necessary data structures.

We determine unique substrings by counting the occurrence of all strings
of a given length �. The reason we chose for counting is because using a trie
would result in enormous memory usage. If for example we make a trie to
count the occurrences of length �, we need 4� nodes in the lowest level. The
number of internal nodes will be:

∑�−1
i=0 4i = 1

3(4� − 1), which makes the total
amount of nodes 1

3(4�+1 − 1). The number of branches will be four times as
large, i.e., 4

3(4�+1−1). In the case of � = 18, we need a huge amount of memory
only to hold the trie. Assume that we represent each node by means of four
pointers. In this case each node consists of four 32-bits (= 4 bytes) pointers,
which makes the total amount of used memory 4 · 1

3(418+1 − 1) ≈ 3 · 1011 bytes
(341 Gigabytes). However, since we can only address 4 Gigabytes of memory
with a 32-bits integer, we have to use 64-bits pointers, which makes the amount
of memory 683 Gigabytes. Furthermore, we need some sort of counter at the
leaves of the trie (the nodes at the lowest level). This will increase the amount
of memory by at least another 418 bytes (another 64 Gigabytes).

Let us see how much memory it would take if we store all substrings of length
18 in the complete human genome in a trie. The worst case is when all strings
are unique (which is possible, since the number of combinations (418) exceeds
the number of substrings (3 · 109). Let us assume that up to depth 15 the trie
is complete and below this it has 3 · 109 nodes per level. Because the number of
nodes in the last couple of levels exceed 232 we have to use 64-bits pointers. Up
to level 15 there are

∑�+1
i=0 4i = 1

3(4l+1−1) ≈ 3·109 nodes, all having four 64-bits
pointers. This results in a memory usage of approximately 106 · 109 bytes. The
levels 16 and 17 both have 3 · 109 nodes with one pointer, resulting in 48 · 109

bytes. The leaves only need to have a counter. This sums up to a total memory
usage of approximately 157 · 109 bytes, which is about 146 Gigabytes. This is
why we chose to use direct indexing into an array (which in this case only uses
64 Gigabytes of memory). Details are given in Section 8.5.1. In the next section,
however, we can still successfully apply tries, because in that case we already
have selected a relatively small subset of the set of all substrings.

8.3 Proximity search and distance selection

In this section we describe two algorithms that find (dis)similar substrings of a
given string. We consider the genome, for example that of a human, as a string
over a finite alphabet Σ. Usually Σ = {a, c, g, t}, but the alphabet may also
include other symbols when parts of the genome are unknown or marked. For
this genome we want to extract a set of substrings of length � that are highly
dissimilar to each other. To make this precise we require that the selected strings
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have edit distance (or Levenshtein distance [45]) larger than e to all others. The
values of � and e (1 ≤ e ≤ �) are specified beforehand.

The edit distance between two strings is defined as the minimum number of
simple operations that is needed to transform one string into the other; a simple
operation is either a deletion, an insertion or a substitution of a single character.
If only substitutions are allowed we obtain the Hamming distance. Determining
the edit distance between two strings is an intensive operation (with quadratic
complexity), and if we want to calculate the edit distance between all strings,
we need quite a lot of calculation, of order O(�2m2), where m is the amount of
strings.

By inserting the candidate strings in a trie T , we can calculate the edit
distance to all the other strings in a more efficient way. So we now assume that
the trie T contains a set of substrings of a given string; this set should not be
too large. Our basic algorithm, referred to as Proximity Search, tries to find a
string s in a trie with root T , allowing at most e errors, and proceeds as follows:

Proximity (T, e, s) ::
if MarkedAsEndpoint (T ) and s = λ then

Visit (T );
else

for σ in Σ do

if Exists (T.σ) then

if Head (s) = σ then

Proximity (T.σ, e,Tail (s));
else if e > 0 then

Proximity (T.σ, e− 1,Tail (s));
if e > 0 then

Proximity (T.σ, e− 1, s); % insertion

Proximity (T, e− 1,Tail (s)); % deletion

Proximity Search.

The function Exists (T ) returns true if and only if the node (pointer) T exists.
The function MarkedAsEndpoint (T ) returns true if and only if the root of T is
special, i.e., marked as the end of a word. The function Visit (T ) visits the root
node, and does the necessary bookkeeping, e.g., outputs the path and/or marks
the last node. The functions Head (s) and Tail (s) return the head and the tail
of the string s, respectively. Finally, T.σ is the pointer that leads to the child
that corresponds with σ; and λ denotes the empty string.

Essentially we traverse the trie in a normal depth first way, except for the
fact that we allow a number of errors. If we have read a character from the trie,
we compare it with the first character of the string to be matched, if it matches,
we do nothing, if it doesn’t match, we decrease the amount of allowed errors.
If the amount of allowed errors is less than zero, we exit the function. If we
encounter the end of a word in the trie (referred to as an “endpoint”), and there
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are no characters left in the string, we have found a match. The end of a word
is marked with a flag in the node. This node does not need to be a leaf, so we
are able to compare words of different length. A similar approach can be found
in [2].

The kind of trie is of no importance; we can either use a binary trie or a
trie that has a maximum branching factor of that of the size of the alphabet
(although it is of course advisable to use a branching factor that is a divisor of
the size of the alphabet in the case that the branching factor is smaller). In our
illustration, we use the latter.

We describe the algorithm through two examples, where the second one also
allows for insertions and deletions. In both examples we assume that all nodes
are marked as endpoints. In the first example we do not use the last three lines
of our algorithm (responsible for insertions and deletions); effectively, we “visit”
all strings at at most a given Hamming distance from the original one. In the
examples we take Σ = {a, b}, and we always fill the trie with all combinations
in Σ∗ of the appropriate length.

Example 1 (Proximity Search, parallel alignment): In Fig. 8.1 we see a trie
with all combinations of 3 letters over the alphabet {a, b}; all nodes in the trie
are marked as endpoints. The word abb is highlighted as a path in the trie. If we
want to find all strings of length 3 at Hamming distance 1 from the word abb we
use our recursive algorithm. The black dots denote the strings that are found,
that is, all strings with at most one mismatch. Notice that in this example no
insertions or deletions are allowed.

So the outcome of our algorithm consists of aab, aba, abb and bbb. Because
of the nature of our algorithm a lot of branches are not traversed, for example
the subtrie under the path ba is skipped.

a b a b

a b a b a b a b

a b

Figure 8.1: All words in {a, b}∗ at at most Hamming distance 1 from abb

The complexity of this algorithm, where we do not allow for insertions and
deletions, is (�k)e+1 where � is the length of the string we are searching for, k is
the size of the alphabet and e is the number of errors allowed. We assume that
the trie is full. If this is not the case, the complexity is lower than this, and k
must be replaced by some appropriate average.

Example 2 (Proximity Search, parallel alignment with insertions and dele-
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tions): In Fig. 8.2 we see all strings that are at most at edit distance 1 from
the word abb, where in this case we do allow insertions or deletions. Again, all
nodes in the trie are marked as endpoints.

a b

a b

a b

a b

a b a b a b

a b

a b a b

a b a b a b a b

a b

Figure 8.2: All words in {a, b}∗ at at most edit distance 1 from abb

In this case the complexity of the algorithm is (3�k)e+1 The extra 3 is the
result of the three times we enter the recursion per node. Henceforth, we shall
refer to this algorithm as Proximity Search.

However, we want to know which strings are highly dissimilar. To do that
we extend our algorithm in the following way. Again, let T be a trie containing
a set of substrings of a given string, where the endpoints are marked as such.
Initially, all these nodes are marked as “good”. Let L = L(T ) be the set of all
endpoints in the trie. First we do a Proximity Search for each string s ∈ L.
If it finds more than one string, mark all these strings (including s itself) as
“bad”. If we are about to start a search for a string that is marked as “bad”,
skip it. The reason we can skip this search is because the distance between two
strings is symmetric, and therefore we shall encounter all strings that would
be marked as “bad” at a later stage in this part of the algorithm. This is an
optimization which makes the algorithm run faster as it progresses. When this
part of the algorithm is finished, we traverse the trie one more time and extract
all strings that are not marked as “bad”. The result is a set of strings that have
a distance to each other string that exceeds a preset distance e. We shall refer
to this algorithm as Distance Selection: it marks all strings in T as “bad” that
have distance ≤ e to some other string in T (except for itself):
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DistanceSelection (T, L, e) ::
for s in L do

if not IsBad (s, T ) then

R := empty trie;
Proximity (T, e, s);
if ManyEndPoints (R) then

MarkAsBad (T, R);

Proximity Search.

The function IsBad (s, T ) returns true if and only if the node at the end of
the path s is marked as “bad”. The function ManyEndPoints (T ) returns true
if and only if the trie T contains more than one node that is marked as an
endpoint. The function MarkAsBad (T, R) marks all strings that occur in R as
well as in T as “bad” in trie T . In this case, we let Visit (T ) (from the function
Proximity) add a string (with last node marked as endpoint) to an initially
empty trie R of solutions it has encountered.

Example 3 (Distance Selection): Suppose the genome of a certain species is
built up out of the letters from the alphabet {a, b}, for example abaababaabaaba.
We consider all substrings of length � = 5. There are only four unique substrings
in this genome, the other two (abaab and baaba) both occur three times. The
four unique strings are put into a trie as shown in Fig. 8.3, where the leaves are
the only endpoints. The first child is always an a and the second one is always
a b. After the application of the sequential Distance Selection algorithm (with

a

a b

a b a

b b

a b a

a a ab

Figure 8.3: Trie of unique strings

distance e = 1) only one string is left: the string ababa.

The Distance Selection algorithm can be improved by propagating the “bad”
label to the parent if all children are marked as “bad”. If we find a string in a
subtrie that is marked as “bad”, we do not have to search the rest of the subtrie
because all strings are already marked. This optimization can improve the speed
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of the Distance Selection algorithm a lot, especially if e is large.
To make this algorithm practical for DNA marker selection, we have to

perform some adjustments. Most of them are necessary to make the initial trie
as small as possible. If we don’t do that, the trie will most likely become too
large to handle, cf. Section 8.2. This has also been done in Example 3. However,
this means that the selected strings are far away from each other, but not
necessarily far away from all other substrings of the original genome. We shall
give the different steps in the next section.

For the purposes sketched in Example 1 and Example 2 we can also use a
directed acyclic graph (DAG) for memory efficiency, but in our examples we
use a trie. This is in the first place because the examples are more clear and
secondly because for the Distance Selection algorithm a DAG can not be used.
This is because in a DAG more than one path can lead to a node that is marked
as the end of a word. Marking such a node as “bad” could disqualify more than
one word in the trie and could lead to undesirable results.

8.4 Applications

We indicate some biological applications for the algorithms proposed in the
previous section.

8.4.1 Primer pair selection

Primers are used in techniques like the Polymerase Chain Reaction (PCR) [17]
and Multiplex Ligation-Dependent Probe Amplification (MLPA) [64].

For primer selection, we use the following scheme (not necessarily in this
order):

1. Determine all unique strings of length �.

2. Filter for simple repeats.

3. Filter on GC-count.

4. Filter on bonding energy.

5. Put the remaining strings in a trie and use the Distance Selection algo-
rithm to select the best strings.

The resulting strings are guaranteed to be highly dissimilar to all other strings
in the resulting set. In general it is not true that they are highly dissimilar to all
strings in the original set. Because these strings are used for primers, the main
concern is that the primers do not stick together in real life experiments. The
fact that they may bind to other parts of the genome is of less concern. The
reason for that is because primers are used in pairs, and the chance of a primer
pair having the same problems, is neglectable.
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8.4.2 DNA marker selection

For DNA markers in general the story is somewhat different. In contrast with
primers, general DNA markers are not used in pairs. Therefore the emphasis
must be more on bonding to the DNA in the genome. Thus the edit distance
between the markers becomes as important as the edit distance between the
markers and all other substrings in the genome. Therefore we use a slightly
adapted technique to select them; essentially it is the same as the one we used
to select primers, except in the last step, where we use the Distance Selection
algorithm in a different way.

We again extract all strings of length � from the genome and test them to
the trie with the Distance Selection algorithm (instead of the strings that are
in the subset (and in the trie)).

8.4.3 Other applications

With a couple of alterations, we can use the same techniques to check primers
for the formation of hairpins or primer-dimers. A hairpin in this context means
that a primer is its own reverse complement, or at least up to a certain degree.
The reverse complement is obtained by reversing the string and replacing every
nucleotide with its complement (A↔T, C↔G). If a primer’s head is the reverse
complement of its tail, chances are that the primer folds and binds to itself.
This is what we call a hairpin. A primer-dimer is a similar structure, where
two primers stick together. There are two sorts of primer-dimers: the ones that
stick with the heads to each other, and the ones that stick with the tails. Both
hairpins and primer-dimers are undesirable structures that should be removed
from a set of primers.

Although many programs can check things like this, we use the structure of
the trie again to check every combination at once. Another advantage is that we
can allow for one or more errors in the formation of hairpins or primer-dimers.

For the normal formation of primer-dimers, we first make the reverse com-
plement of the primer we are checking. The reason for this is that using the
reverse complement does not have any impact on the trie. Otherwise we would
have to use the normal reverse and check if a matches to t instead of itself.
With this approach, we don’t have to worry about hairpins any more, because
the algorithm above has already filtered them out. Take for example the primer
in Fig. 8.4; this is a primer that has formed a hairpin.

vwxyz
vwxyz

Figure 8.4: A primer in hairpin configuration

But in the algorithm, we have also tested the primer to itself in the config-
uration shown in Fig. 8.5, so there is no need to do it again.
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vwxyz
vwxyz

zyxwv
zyxwv

Figure 8.5: Two identical primers that could form a hairpin

8.5 Experiments

As an illustration of the methods described in this chapter, the pairwise align-
ment of many primers using a trie, we have done an experiment on a part of the
human genome. The reason we only took a part is that in this case the numbers
are somewhat easier to interpret.

In this experiment, we select pairs of primers as they are commonly used
in pairs in real life experiments like PCR. Rather than just selecting a set of
markers that are only tested for their uniqueness, we have chosen to implement
also some restrictions that have a biochemical motivation. Of course, restricting
the number of markers before computing their edit distance will reduce the
computational effort for that last step.

The computer on which we ran our experiment is a Pentium IV based ma-
chine at 1,8 GHz with 256 Megabytes of internal memory. The operating system
is SUSE Linux 9.2 with a 2.6.8 kernel.

We summarize the results of this experiment below. The last step of the
experiment was performed using the algorithmic technique sketched before. In
the remainder of the section we explain some additional details of our experi-
ment, involving the selection of unique primers and filtering the primers based
on combinatorial and biochemical properties.

The results are as follows:

Finding markers We took the human chromosome 1 from [69] (version June
26, 2006) which consists of 247,249,719 basepairs. In the first step of our analysis
we extracted all unique strings of length 16. There were 123,685,514 of them
(out of a grand total of 247,249,703). We need exactly 2 Gigabytes of memory
to count all occurrences of length 16 and we ran our experiment on a computer
with 256 Megabytes of memory. To be on the safe side, we chose the amount
of memory available for our program to be 128 Megabytes, so we had to make
16 passes over our input data. The program was run as root to ensure memory
locking. This process took 12 minutes and 49 seconds.

Filtering repeats Simple repeats are strings of low complexity, and in some
sense not of much interest to biologists. We denote a repeat in the following
way. By (x . . . x︸ ︷︷ ︸

s

)r we denote a repetition of r copies of a string of length s. So

for instance, (xxx)2 means a string of length 6 consisting of two equal halves of
length 3, like abbabb; note that the character x may represent different charac-
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ters. In this notation, we filtered out all of the following simple repeats: (x)5,
(xx)5, (xxx)4, (xxxx)3, (xxxxxxx)2, (xxxxx)3, (xxxxxxxx)2 and (xxxxxx)3.
This resulted in a set with 115,695,993 elements. This program was also run as
root to ensure memory locking and took 2 minutes and 34 seconds.

GC content and temperature After that, we selected primer pairs based on
a GC count between 20% and 80 %, and a melting temperature between 60 ℃ and
63℃. The internal spacing of the primers was between 480 and 520 basepairs
and the spacing between the primer pairs had a minimum of 9,800 basepairs.
This resulted in 41,565 primers. This process took 28 seconds.

Edit distance After the Distance Selection (with respect to the formation of
primer-dimers and normal alignment) with minimum edit distance 2, there were
35,781 primers left. This process took took 8 minutes and 47 seconds. If we set
the edit distance to 3 only 7,530 primers remained.

This experiment shows that Distance Selection can make an enormous dif-
ference with respect to primer selection.

8.5.1 Finding markers: Determining unique substrings

We have chosen to count occurrences of length 16 strings, in a rather direct
way, making multiple passes over the input data. At each pass we count the
occurrences of a “block” of possible length 16 segments and write the result to
disk afterwards. This algorithm is designed to use linear disk access as much as
possible. All random access is done in memory only.

First, we convert the DNA data from ASCII to binary. This has three ad-
vantages. As the data is compressed by a factor of 4 (using only 2 bits per
nucleotide), we need to use only one-fourth of the original memory. As a di-
rect consequence, we can read data at 4 times the speed, for each pass. Finally,
calculation with base-4 numbers is trivial compared to string operations with
respect to the amount of calculation. The number of passes is directly related
to the amount of data that fits in the memory.

Assigning the right two bit code to each letter, we can even take advantage
of binary operators like the not operator, if we choose a and t as each others
complement in the encoding (as they are in nature), as well as c and g. Hence
we take the order a, c, g, t (which happens to be the alphabetical one), and
code these nucleotides as 00, 01, 10, and 11 in binary.

Since we are interested in strings of length 16 we keep track of the last 16
nucleotides. When we read a new nucleotide, the string is shifted to the right
by two bits, and the new two bits are shifted in (at the least significant end).
This is a very inexpensive method to keep track of the last read string.

Of course there are some additional complications in preprocessing the data.
The first one is that the data (as available via [69]) does not consist of only four
letters. It has an alphabet of 10 letters. These are the normal letters, {a, c, g, t},
the normal letters written in capital, {A, C, G, T}, and the letters {n, N}. The
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capitals denote repeating segments or sequences of “low complexity” in the
DNA (pieces of DNA that have a repetition with a period of 12 or less), which
are biologically less interesting regions. The letters n and N denote the absence
of data. We have decided to look for markers in the lower case segments of
{a, c, g, t} only.

However, we cannot simply erase the other letters. For example, suppose we
convert the string ATATATttNttaatNnn to ttttaat, then we will have found a
string which is not part of the original DNA. One way of circumventing this
problem is to remove all capitals and the letter n, and by keeping track of when
in the output file we need to re-calculate the current number. We put these
offsets in a separate table. In this way we avoid having to use additional escape
sequences in the binary code of the DNA, making the code shorter and faster
to read.

In our example we get two tables, one containing the binary equivalent of
tttta and one containing the offsets 6, 2, 1, 5 and 3. To decode these tables, we
take the offsets table and first write 6 n’s, then we decode 2 nucleotides, then
we write 1 n and 5 more nucleotides. Finally we write 3 more n’s, which results
in nnnnnnttnttaatnnn, the same string we had before, except all the capitals
have been converted to n’s.

Our input data stores only a single strand of the DNA, but in practice
one considers both strands. Each time we find the occurrence of a string, we
also have to take into account the reverse complement of the string, as this
is also present in the DNA. Rather than counting both strings however, we
have chosen to take one of the two as a representative of the pair, incrementing
only the counter of the smallest string (lexicographically ordered). Comparing
strings can be done with the standard < operator, another advantage of the
binary recoding. Of course, we keep track of the reverse complement on the fly,
shifting and adding new bits (but in the other direction). Again this is a rather
inexpensive operation.

In an additional experiment we have selected unique primers not only for the
first chromosome, but also for the full genome. As an illustration, in Fig. 8.6 we
see the number of occurrences of unique strings of length 12 for each consecutive
series of 100,000 basepairs on the full human genome. The vertical dotted lines
denote the chromosome boundaries; these are ordered as follows: 1 to 22, then
X, Y, and finally the mitochondrial DNA. This mitochondrial DNA is so small
that it does not show up in these graphs. The histogram shows the “hotspots”
where many markers are found. The white bands (at offsets 1,300 and 15,900
for example) are due to unknown or unstable DNA. It is missing in our input
(a large series of n’s).

8.5.2 Filtering out simple repeats

Strings containing short repetitive substrings are not of much interest to biolo-
gists, and that is why we filter out such “simple repeats”.

This implies that we have to perform a certain pattern matching on the
markers found. Since the markers all have a fixed length we do not have to



8.5. EXPERIMENTS 91

 0

 10

 20

 30

 40

 50

 60

 70

 0  5000  10000  15000  20000  25000  30000  35000

nu
m

be
r o

f o
cc

ur
re

nc
es

offset

Figure 8.6: Occurrence of unique strings in the human genome

search for repetitions of unbounded length. Instead we can determine the un-
wanted substrings beforehand and search for them in the markers. We have
stored the simple repeats in a trie, using the technique of Aho-Corasick [1],
which is basically Knuth-Morris-Pratt [38] pattern matching, but applied to a
set of patterns rather than a single pattern. This makes it possible to scan for
all forbidden repeats in parallel.
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Figure 8.7: Wired repetition trie

After computing all simple repeats they are stored in a trie. As an illustra-
tion, Fig. 8.7 shows a trie to filter out the repetitions (x)3 and (xx)2 over the
two letter alphabet {a, b}, i.e., aaa, bbb, abab and baba. Note that aaaa and
bbbb are already excluded. Whenever we reach the node at the right, we have
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found a simple repetition and we can disqualify that part of the input. This trie
is “wired” by dashed edges that are added in a preprocessing phase, asserting
that we always keep track of the longest prefix of one of the unwanted strings
while scanning the marker. As usual with the Aho-Corasick method, we have
to take special care when one of the unwanted repeats is a substring of another
one, like aa and baabaa for the repeats (x)2 and (xxx)2.

8.5.3 GC content and temperature

The practical use of primers in experiments is governed by bounds on the GC

content of the primer and its melting temperature, and tools like Primer3 [60]
allow the user to specify bounds. Keeping track of the GC-percentage is an easy
task if we keep track of the symbols that are shifted in and out of the current
substring of length 16, while reading the data. So when the least significant
nucleotide of the reverse complement is c or g, we decrease the GC-count (it is
shifted out in the next step). Then we shift in the new nucleotide, and if the least
significant nucleotide on the original strand is c or g, we increase the GC-count.
We actually use both the string itself and its reverse complement, because it is
faster to extract the least significant bits.

A formula to calculate the melting temperature of a piece of DNA is given
in [7]. We chose to implement this in an algorithm acting like the one calculating
the GC-percentage.

The formula for the temperature is mainly based on the successive pairs
occurring in the fragment, each of the pairs contributing to the bonding energy of
the primer. We keep track of the two last nucleotides on the reverse complement
(the first ones to be shifted out), and the next ones shifted in, and we can update
the melting temperature by a simple table lookup. Internally we use integers to
represent the temperature, to avoid rounding errors.

8.6 Conclusions and further research

We conclude that we can select primers and DNA markers that have a high
chance of performing well in real laboratory experiments and microarrays.

As can be seen from our experiment in Section 8.5, most primers are dis-
qualified because of the GC content and bonding energy, so intuitively one might
think that this should be the first step in our analysis. This might be a good
solution if the GC content and bonding energy are known in advance, which is
often not the case in practice. With the current solution we can still tinker with
the options, and that is the reason that the focus is primarily on unique strings.

Instead of working with tries we would like to experiment with Compact
Directed Acyclic Word Graphs (CDAWG) [33]; this datastructure behaves like
a trie (for our purposes), but is more compact. Furthermore the online algorithm
stated in [33] is very attractive for these kinds of problems.

At present, the output of the Distance Selection algorithm is not used iter-
atively. We could for example still use the other primer in a primer pair if one
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primer is discarded. Since all these ideas are still very new, lots of experiments
should be done.




