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Chapter 6

Metrics for

Mining Multisets

In this chapter, we propose a new class of distance measures (metrics) designed
for multisets, both of which are a recurrent theme in many data mining appli-
cations. One particular instance of this class originated from the necessity for a
clustering of criminal behaviours.

These distance measures are parametrised by a function f which, given a
few simple restrictions, will always produce a valid metric. This flexibility allows
these measures to be tailored for many domain-specific applications.

In this chapter, the metrics are applied in bio-informatics (genomics), crimi-
nal behaviour clustering and text mining. The metric we propose also is a gener-
alization of some known measures, e.g., the Jaccard distance and the Canberra
distance. We discuss several options, and compare the behaviour of different
instances.

6.1 Introduction

In many fields data mining is applied to find information in large amounts of
data. A few example areas are bio-informatics, crime analysis and of course
computer science itself. In data mining, multisets (also referred to as bags) are
a recurring theme. Finding distance measures or metrics (for multisets) is one
aspect of data mining [67]. When a suitable measure is found, many types of
analysis, such as clustering, can be performed on specific documents, DNA and
other instances of multisets.

The reasons for finding distance measures are very diverse. In crime analy-
sis [9] for example, it is possible to determine the distance between two criminals
based on their behaviour (their crime record). In bio-informatics comparing two
species with only the information of their DNA (or short fragments of it) can be
done. This is especially useful in forensic applications where DNA strands are
frequently damaged, so the fragments that are extracted from samples cannot
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54 CHAPTER 6. METRICS FOR MINING MULTISETS

be given a place on the genome. Even without the information of the place-
ment of the DNA fragments found, it is possible to differentiate between species
and even individuals by using techniques described in this chapter. We finally
mention market basket analysis, where distances between multisets are basic for
further analysis. As a motivating example, the distance between two customers
can or cannot take into account the numbers of purchases of individual prod-
ucts (thus providing either multisets or sets), and it is also possible to stress the
difference between 1 and 2 sales on the one hand and, e.g., 41 and 42 sales on
the other hand.

In Section 6.3 we give a new class of distance measures that are suitable
for comparing multisets. The class has a parameter f (a function) that has a
couple of simple properties which, if met, will always produce a valid metric. To
the best of our knowledge, the class is new, and generalizes several of the more
well-known distance measures mentioned in Section 6.2 and Section 6.3.

For different domains, different problems arise and different distance mea-
sures will be needed. For many of them, a tailor made function f can be provided
and if the given restrictions apply to f , no further effort has to be made with
respect to the validity of the metric. We mention several examples in the appli-
cations in Section 6.4. Different choices of f may lead to different visualisations.
Furthermore, choosing such a function f is rather straightforward and intuitively
easier to do than constructing a metric directly.

6.2 Background

Finite multisets from a universe with n elements can be viewed as points in n-
dimensional space. For example, the multiset {a, b, a, a, b, a} can be abbreviated
to {a4, b2} (since the order of elements is irrelevant) and by leaving out the
element names, we get the vector (4, 2) in 2-dimensional space. Several known
distance measures can be applied. We mention the most important ones. In
Section 6.3 we will show the relation with our metric. In all cases, we consider
multisets X, Y over {1, 2, . . . , n}, and let xi ∈ R≥0 (resp. yi) be the number of
times that i (i = 1, 2, . . . , n) occurs in X (resp. Y ).

• Minkowski distance of order p [67]

d(X, Y ) =

(
n∑

i=1

|xi − yi|p
)1/p

For p = 1, we get the Manhattan distance; for p = 2, we get the well-known
Euclidean distance; if we let p =∞, we get the Chebyshev distance or L∞

metric.

• Canberra distance

d(X, Y ) =

n∑
i=1

|xi − yi|
xi + yi
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When both xi and yi are zero, the fraction is defined as zero. Often the
distance is divided by the number of indices i for which at least one of xi

or yi is non zero.

• Jaccard distance for sets [34]

d(X, Y ) =
n∑

i=1

|xi − yi| /
(
n−

n∑
i=1

(1− xi)(1− yi)
)

• Bray-Curtis (Sorensen) distance (often used in botany, ecology and envi-
ronmental science) [6]

d(X, Y ) =
n∑

i=1

|xi − yi| /
n∑

i=1

(xi + yi)

• Mahalanobis distance (generalized form of the Euclidean distance) [48]
This is an example of a metric that requires a more complicated scheme:
the covariance matrix of the data must be computed, which is quite time-
consuming. We will not further discuss this type of metric here.

6.3 The metric

In this section we will define our new class of metrics. As a parameter we have
a function f that must meet several properties.

Let f be a function f : R≥0 ×R≥0 → R≥0 with finite supremum M and the
following properties:

f(x, y) = f(y, x) for all x, y ∈ R≥0 (6.1)

f(x, x) = 0 for all x ∈ R≥0 (6.2)

f(x, 0) ≥ M/2 for all x ∈ R>0 (6.3)

f(x, y) ≤ f(x, z) + f(z, y) for all x, y, z ∈ R≥0 (6.4)

For a multiset X, let S(X) denote its underlying set. For multisets X, Y with
S(X), S(Y ) ⊆ {1, 2, . . . , n} we define df (∅, ∅) = 0 and

df (X, Y ) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y )|
if both X and Y are non-empty. Again, xi ∈ R≥0 (resp. yi) is the number of
times that i (i = 1, 2, . . . , n) occurs in X (resp. Y ; usually xi and yi are integers);
|S(X) ∪ S(Y )| is the number of elements in X ∪ Y , seen as set. Note that
0 ≤ df (X, Y ) ≤ M , df (X, Y ) = df (Y, X) and df (X, Y ) = 0 ⇒ S(X) = S(Y ).
If f also satisfies

f(x, y) = 0 ⇒ x = y for all x, y ∈ R≥0 (6.5)
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we have df (X, Y ) = 0 ⇒ X = Y . It is clear that properties (1), (2) and (4)
must hold in order to ensure that we have a metric; indeed, just consider the
case where n = 1.

The function f specifies the difference between the number of occurrences of
a particular element in two multisets. Constructing such a function is natural
and can easily be done by domain experts. Also note that the function f is
defined for all positive real numbers; this property is only used when weights
are involved (see Section 6.3), and it also makes the proof below more general.

We now show that df satisfies the triangle inequality, and therefore is a
metric.

Theorem 1. For all X, Y, Z with S(X), S(Y ), S(Z) ⊆ {1, 2, . . . , n} we have:

df (X, Y ) ≤ df (X, Z) + df (Z, Y )

Proof. We may assume that not both X and Y are ∅. If df (X, Z)+df (Z, Y ) ≥ M
we are done, since df (X, Y ) ≤ M . So we may assume that df (X, Z)+df (Z, Y ) <
M . Now

df (X, Y ) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y )| =

∑
i∈S(X)∪S(Y ) f(xi, yi)

|S(X) ∪ S(Y )|

≤
∑

i∈S(X)∪S(Y ) f(xi, zi) +
∑

i∈S(X)∪S(Y ) f(zi, yi)

|S(X) ∪ S(Y )|

=

∑
i∈S(X)∪T f(xi, zi) +

∑
i∈S(Y )∪T f(zi, yi)

|S(X) ∪ S(Y )|
where the set T is defined by T = S(Z) ∩ (S(X) ∪ S(Y )). We have∑

i∈S(X)∪T

f(xi, zi) =
∑

i∈S(X)∪S(Z)

f(xi, zi) −
∑

i∈S(Z)\T

f(0, zi)

≤
∑

i∈S(X)∪S(Z)

f(xi, zi)− tM

2

with t = |S(Z) \ T |. We conclude

df (X, Y ) ≤
∑

i∈S(X)∪S(Z) f(xi, zi) +
∑

i∈S(Y )∪S(Z) f(zi, yi)− tM

|S(X) ∪ S(Y )|
=

df (X, Z)|S(X) ∪ S(Z)| + df (Z, Y )|S(Y ) ∪ S(Z)| − tM

|S(X) ∪ S(Y )|

Now−tM ≤ −t(df (X, Z)+df (Z, Y )) (because of the assumption that df (X, Z)+
df (Z, Y ) < M). So, noting that |S(X) ∪ S(Z)| = t + |S(X) ∪ T | (and similarly
for |S(Y ) ∪ S(Z)|) we get

df (X, Y ) ≤ df (X, Z)|S(X) ∪ T | + df (Z, Y )|S(Y ) ∪ T |
|S(X) ∪ S(Y )|

≤ df (X, Z) + df (Z, Y )
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since |S(X) ∪ T | ≤ |S(X) ∪ S(Y )| (and similarly for |S(Y ) ∪ T |). �

Before studying several properties of the metric, we first notice that its
behaviour deviates from that of standard distance measures. As an example, if
we have two given points, and we move one of these in a “new” dimension, the
distance changes considerably whereas in the Euclidean case it does not.

Interesting properties of this measure are:

• If X and Y are “normal” sets, i.e., xi, yi ∈ {0, 1} (i = 1, 2, . . . , n), we note
that

df (X, Y ) = f(1, 0)
|X \ Y |+ |Y \X|

|X ∪ Y | = f(1, 0)

(
1− |X ∩ Y |

|X ∪ Y |
)

• df (∅, (1, . . . , 1︸ ︷︷ ︸
n

)) = nf(1, 0)/n = f(1, 0).

Here we use the notation (x1, x2, . . . , xn) for the multiset X, where again xi

denotes the number of times the element i occurs in X (cf. the example in
Section 6.2).

A variant of this measure can be defined as follows:

d̃f (X, Y ) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y )|+ 1

By using this measure, we can drop the separate definition of d̃f (∅, ∅). Another
advantage of this measure is that d(∅, {x}) = d(∅, {x, y}) = . . . = 1

2f(1, 0),

while d̃(∅, {x}) = 1
2f(1, 0), d̃(∅, {x, y}) = 2

3f(1, 0) and so on. All conditions
for a distance measure hold, since this function is still symmetric, the distance
between identical multisets is zero, and the triangle inequality holds. To show
the latter property, we can use a proof that is analogous to the one above,
except for the last step, in which we replace |S(X) ∪ T |/|S(X) ∪ S(Y )| ≤ 1 by
|S(X) ∪ T |/(|S(X) ∪ S(Y )|+ 1) ≤ 1. Another way of proving it is by adding a
new element ∗ that is present once in each multiset. This reduces the problem
to the property shown above: d̃f (X, Y ) = df (X ∪ {∗}, Y ∪ {∗}).

The application of weights for certain elements can be done by multiplying
the number of elements to which the weight must by applied by the weight. These
weights need not be integers, which is the reason why f is defined on real num-
bers in Section 6.3. As an example, suppose we have the multiset X = (1, 2, 1)
and we want to apply the weight 10 to the first element. The resulting multiset
X ′ is defined by X ′ = (10, 2, 1). We shall return to this issue in Section 6.4.

In order to obtain more reasonable and intuitive measures, the following
restriction can be posed upon f :

f(x, y) ≤ f(x′, y′) if x′ ≤ x ≤ y ≤ y′ (6.6)

It then follows that limk→∞ f(k, 0) = M . In this case it is easy to show that
the condition that f(x, 0) ≥ M/2 is mandatory for the triangle inequality to
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hold. Indeed, let X = (k, 0, . . . , 0), Y = (0, . . . , 0) and Z = (0, �, . . . , �). With
|S(X)| = 1, |S(Y )| = 0 and |S(Z)| = n− 1, we have

df (X, Y ) = f(k, 0)→ M when k →∞
df (X, Z) =

f(k, 0) + (n− 1)f(�, 0)

n
→ M + (n− 1)f(�, 0)

n
when k →∞

df (Z, Y ) =
(n− 1)f(�, 0)

n− 1
= f(�, 0)

Now df (X, Y ) ≤ df (X, Z) + df (Z, Y ) implies f(k, 0) ≤ 2f(�, 0) (let n → ∞).
With f(�, 0) < M/2 for some � > 0 this is not true, so the triangle inequality
does not hold.

A natural way to generate a suitable f is the following. Start with a function
g : R≥0 → R≥0, and put f(x, y) = |g(x)− g(y)|. Clearly, properties (1), (2) and
(4) hold for f . We may take g(0) = 0. If in addition g is an increasing function
with limx→∞ g(x) = M and g(x) ≥ M/2 for x ∈ R>0, f also satisfies properties
(3) and (6.6). If g is injective, e.g., if g is strictly increasing, (5) holds too.

Typical examples include:

• g(x) = 1 for x with 0 < x ≤ 1 and g(x) = M = 2 for x with x ≥ 1

• g(x) = 1/2 for x with 0 < x < L and g(x) = M = 1 for x with x ≥ L;
here L is a (large) constant

• g(x) = 1/2 for x with 0 < x ≤ 1 and g(x) = x/(x + 1) for x with x > 1
(M = 1), see Section 6.4; note that if we only use integer arguments, we
just need the “x/(x + 1) part”

• g(x) = 1/2 for x with 0 < x ≤ 1 and g(x) = (2x − 1)/2x for x with x > 1
(M = 1)

We conclude with a more intuitive explanation of the metric. Consider two
vases filled with marbles of different colours. We first take a look at the marbles
of the first colour. If both vases contain many marbles of this colour, the dif-
ference should be small, but the difference between one marble and no marbles
should be large. The exact difference can be tuned by altering the function f ,
which specifies the distance between groups with a different number of marbles
of the same colour.

When looking at all colours, we repeat the procedure above and divide by
the amount of colours we have encountered. This differs from division by the
total number of marbles, or by (some variation of) the total number of possible
colours. This latter option, for instance chosen in case of the Euclidean distance,
does not keep track of the “sizes” of the multisets under consideration. Choosing
the total number of marbles as denominator — as the Bray-Curtis distance
does — has the disadvantage that adding one marble of a fresh colour is hardly
noticed, while our metric is much more sensible to this. Our metric emphasizes
the number of different colours.
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Relation with other distance measures

Many well-known distance measures are special cases of the one we de-
scribe here. For example the Jaccard distance can be constructed by any f
with f(1, 0) = 1, where the multisets must be “normal” sets, so A = S(A) and
B = S(B). As noted before, this results in the following formula for sets:

d(X, Y ) =
|X\Y |+ |Y \X|

|X ∪ Y |
To produce the Canberra distance (with the extended denominator) we use

the following f :

f(x, y) =
|x− y|
x + y

for (x, y) = (0, 0)

and f(0, 0) = 0. Note that this f cannot be constructed by a function g in the
way explained above.

6.4 Applications

In this section we use the following function for f :

f0(x, y) =
|x− y|

(x + 1)(y + 1)

This function satisfies properties (1)–(6) mentioned in the previous section; it
is a result of using g(x) = x/(x + 1). This function has the interesting property
that if both x and y are large, the resulting value is small. For example, the
(pairwise) distance between 0 and 1 is larger than the distance between 8 and
9, which is intuitive in many applications concerning multisets.

The visualisation algorithm we use in this section is a randomized push-
and-pull oriented algorithm [43], comparable to a competitive neural network.
It gives a projection of the original points in a 2-dimensional space. The reason
we use this algorithm is because it is fast and able to give a clustering for many
data points, where normal dimension reduction algorithms perhaps would fail.
For the purpose of this chapter, there is no need to go into detail concerning this
algorithm. We only state here that the Euclidean distances between points in
the 2-dimensional space approximate the original distances as good as possible.

Plagiarism: When comparing two documents while ignoring the context
and the semantics, we can make a multiset of words in the documents. To
accommodate for the difference in lengths of two documents, we can increase
the weight for each word in the smallest document by the relative size of the
documents. In this way, identical copies of the same text will be detected.

In this chapter we will not further elaborate on this; we only mention the
flexibility of the measures, which allows for many user-defined alterations.

Genomics: We will give an example of an instance of our distance measure
in the genomics domain. We do not claim this particular instance is the best
for clustering species, but from the illustrative example it can be seen that this
instance does work.
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A genome of some biological species can be considered as a long string over
a small finite alphabet, usually {A, C, G, T}; it can be converted into a multiset
by using a sliding window of length n to count the occurrence of each substring
(or factor) of length n. Of course the number of occurrences will depend on n:
the larger n is, the lower the number of occurrences will be on average.

Figure 6.1: Visualisation for ten species; left: all ten; right: the four mammals
By determining the number of occurrences of each factor in two genomes, we

obtain two multisets that can be compared to each other. If we use our distance
measure with the function mentioned above, the occurrences of unique or almost
unique substrings will account for most of the difference between the genomes.
Factors that occur many times in both genomes are accounted for accordingly.

In this way we compare two species mostly on the number of differences
between rare substrings in their DNA. In Figure 6.1 a clustering based on this
distance is shown; DNA [69] of ten species (SARS, Yeast, Bee, C. Elegans,
Drosophila Melanogaster, Chicken, Cow, Dog, Chimp and Human) is used; the
right part of the figure zooms in on the four mammals, which are very close
together in the left part of the figure (the labels are practically on top of each
other). The sizes of the genomes vary from 3.69 · 104 for SARS to 3.60 · 109 for
Cow. As in the case of Plagiarism, we here also compensate for the difference
in sizes.

Apart from this type of clustering, other visualisations are possible too: the
metric can also be used to generate a phylogenetic tree, for example.

Criminal records

For comparing criminal records [9], the above function is very well suited.
When we make a multiset from criminal records, we get for example a multiset
where the first element represents bicycle theft, the second one represents violent
crimes, and so on. The difference between no crime and one or more crimes in
each category accounts for a large difference, while having two large numbers
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in each category accounts for almost no difference at all. This is rather useful,
since two people who steal bikes on a regular basis, can be seen as much alike.

Of course there are some differences between the categories which one might
want to accentuate. For example, a murder is considered a much more severe
offence than a bicycle theft. One way to accommodate for this difference is to
use a vector of weights W = (w1, w2, . . . , wn) with wi ∈ R≥0 and to make the
following adjustments to the distance measure:

dW
f (X, Y ) =

∑n
i=1 f(wixi, wiyi)

|S(X) ∪ S(Y )|
It is easy to prove that this adjustment does not change the fact that the distance
formula is still a good metric.

Now, by choosing the vector of weights carefully (this must be done by an
expert in criminology) we can assign relative weights for crimes. In our example,
we can set the weight for bicycle theft to 1 and the weight for murder to a large
integer to accentuate the severity of the crime.

As a test case, we made the following synthetic dataset with fictional crimes
A, B, C and D of increasing severity, and criminals ranging from 1 to 10. For
each criminal the number of crimes in each category is given. For instance, 1 is
innocent, 2 is an incidental small criminal, 6 is a one-time offender of a serious
crime, and 10 is a severe all-round criminal.

1 2 3 4 5 6 7 8 9 10
A 0 2 10 0 0 0 0 2 0 2
B 0 0 0 2 0 0 2 4 0 2
C 0 0 0 0 1 0 2 0 3 2
D 0 0 0 0 0 1 1 0 5 2

Table 6.1: Ten criminals, four crimes

In the top-left picture of Figure 6.2 we see a clustering of these ten crimi-
nals with the standard f0. In the picture right next to it, we applied weights
1, 10, 100, 1000, respectively, to the crimes, to specify the weight of the crime.
We now see that criminals 7 and 10 are very close together, but at the same
time, criminals 2 and 3 also stay close. “Criminal” 1 is surprisingly rather close
to the two criminals who have committed relatively light crimes. The reason
that criminals 5 and 6 are close together is because they are one-time offenders,
and have a large distance to the rest of the group.

In the bottom-left picture, we see a clustering with f chosen in such a way
that we get the Jaccard distance, so we treat the criminals as sets. Notice that
criminals 2 and 3 now have distance zero to each other (the labels are on top of
each other in this picture). The bottom-right clustering uses a totally different
f : f1(x, y) = 3

2 − f0(x, y) for (x, y) = (0, 0) and f1(0, 0) = 0. Note that, e.g.,
f1(0, 1) = 1 > 3

4 = f1(0, 3), so property (6.6) does not hold for f1. Now criminals
with disjoint behaviour are grouped, leading to a “dissimilarity” clustering.
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Figure 6.2: Four different clusterings for ten criminals

6.5 Conclusions and further research

In this chapter we have proposed a new flexible distance measure, that is suitable
in many fields of interest. It can be fine tuned to a large extent.

We can use this measure as a basis for further analysis, like the analysis of
criminal careers. In that case, we suggest that the distance measure is used as
a basis for alignment to make the best match between two careers. By doing
this, and by comparing sub-careers, we might be able to extrapolate criminal
behaviour based upon the criminal record through time. We also want to apply
the measure to a real, large database. Finally, we would like to examine the
relation with more statistically oriented measures.


