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Chapter 4

Error Visualisation in the

Particle Model

In this chapter, we introduce a new method of analysing the errors introduced
by multidimensional scaling techniques. We associate an error of an item in
the output of these methods with a charge, and then interpolate this charge to
define a field.

We give a general method on how to do this interpolation and we provide
several methods and fine tuning techniques to calculate the charge of the items.

4.1 Introduction

The push and pull model [43], also known as the particle or spring model [19]
is a way of accomplishing a dimension reduction. However, as is the case in
each dimension reduction algorithm, an error is introduced in the output in
almost all cases. This error can be uniformly distributed throughout the whole
picture (this would perhaps be preferable), or it can be accumulated in one or
more parts of the picture. In the latter case, parts of the constructed dimension
reduction can be useless and thus visualisation of the error would gain insight
in the quality of the picture.

If an error map could be constructed for a dimension reduction, a potential
user could use this map to assess the quality of the original picture and decide
which parts are usable or not. By making a continuous map of the error, var-
ious standard techniques, like looking at the gradient, can be used for further
analysis.

Error visualisation is important for dimension reduction techniques, because
(apart from some trivial cases) we know that the produced image is only a
projection of the original data in some way, an approximation so to speak.
Because of this, the resulting image has errors and these errors might or might
not be uniformly distributed throughout the image. In the first case, there is no
further analysis to be done, in the latter case however, it can very well be that
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36 CHAPTER 4. ERROR VISUALISATION IN THE PARTICLE MODEL

a part of the outcome of a dimension reduction is completely unusable, while an
other part is still of value. To find out which parts of such an image are valuable
we need to gain insight into the error distribution throughout the image.

Populair methods to visualise the error usually give each item in the output
picture a colour, or a grey value, denoting its error, but with many points this
can give a rather chaotic picture which is hardly usable.

A general way of constructing an error map is given in Section 4.2. Further-
more, two natural implementations are given, along with a general threshold
function to filter out small deviations in the error maps. An artificial example
dataset and various experiments on it are given in Section 4.3. We conclude in
Section 4.4, we speculate upon the application of our method in other dimension
reduction techniques and give suggestions for further research.

4.2 Constructing the error map

In the push and pull model, the distances between any two particles p and q
from a given set is given by an input matrix. We call these distances the desired
distances, denoted by ddesired(p, q). The actual distances in the picture we call
the realised distances, denoted by drealised(p, q). Clearly, the goal of the push
and pull model is to minimise the difference between ddesired and drealised for all
pairs of points.

The output of the push and pull technique is a statical model of particles,
where in general there is a difference between the desired and realised distances.
The difference between these distances contributes to the error of a particle,
in some way. There are several choices of functions to calculate the total error
connected with a particle. This will be discussed in the next two subsections.

Once the total error connected with a particle is calculated, we can make
a plot of the error propagating through space. We let the error decay as the
distance to the particle grows. The error of a particle can be seen as analogous
to a charge, an error charge so to speak. We let this error propagate through the
space, analogous to the way an electrical charge propagates. We use a variant of
the well-known law of Coulomb to calculate the field strength at any distance
from the particle. When there are multiple particles, we use the sum of the field
strength values to calculate the strength of the error field at any point in the
space.

The scalar form of Coulomb’s law, which describes the magnitude of the
electrostatic force F on two charged particles q1 and q2, is defined as:

F = ke
q1q2

r2

where r is the distance between the particles and ke is Coulomb’s constant.
Of course, we are not bound to the law of Coulomb to indicate the decline

of the field strength. The space that is the result of the dimension reduction
technique needs not to be flat, so using a different function to calculate the
error field is quite acceptable. Furthermore, we have no particular reason to
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use Coulomb’s law, except for the analogue with nature and therefore mans
familiarity with it.

In a model with n particles {p1, p2, . . . , pn}, we use the following formula to
calculate the field strength at position (x, y) in the error map:

field(x, y) =
1

n

n∑
i=1

error(pi)

(1 + d((x, y), pos(pi)))γ

Where γ is the speed at which the field drops off. Choosing γ = 1 will result
in a linear drop off, γ = 2 will result in a drop off similar to the one in the
law of Coulomb. In this paper, we shall use γ = 0.5. The function d calculates
the Euclidean distance between the point (x, y) and the location of the particle
pi, which is given by the pos(pi). The function error is a generalised function
returning an error value. In the following subsections we discuss a number of
possibilities for this function and their consequences for the error map.

A first and natural choice for the error function follows from the assumption
that each particle has an equal amount of influence over each other particle.
Thus we use the average of all pairwise errors to calculate the total error of a
particle. We refer to this average als the global error.

So in a model consisting of n particles, the global error of a particle q ∈
{p1, p2, . . . , pn} is calculated with the following formula:

errorglobal(q) =
1

n

n∑
i=1

|ddesired(pi, q)− drealised(pi, q)|

After applying this function to each particle in the model, we can make the
error map with the field function, as described above.

If one wants to gain more insight in the (possibly dense) clusters that can
arise, a natural approach is to use a decline function for the error itself. This
cancels the errors of remote particles (and possible overshadowing effects of
those remote particles) and focuses on the particles in the area. To calculate
this error, we use a weighed average of all pairwise errors, where the weight is
a (declining) function of the distance between the particles. We refer to this
weighted average as the local error.

Again, we have a model consisting of n particles. To calculate the local error
of a particle q ∈ {p1, p2, . . . , pn}, we use the following formula:

error local(q) =
1

n

n∑
i=1

|ddesired(pi, q)− drealised(pi, q)|
(1 + drealised(pi, q))δ

Here δ is the speed at which the error of a particle loses its influence over other
particles (comparable to the function of γ in the field function). In this chapter
we use δ = 0.5.

The local error field for each point in the error map can be calculated with
the field function again.
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4.2.1 Minimum correction

A technique that can be applied before we calculate either the local or the global
error field is to define a threshold for the error and subtracting this threshold
from the particles that have a higher error. Using such a threshold will filter out
small errors that might not be of interest.

A natural choice for the threshold is the minimum error that occurs. We
shall call this the minimum correction for the remainder of this chapter. To do
the minimum correction, we first calculate the minimum of the total errors of
all particles

errmin = min(error(p1), error(p2), . . . , error(pn))

and then subtract errmin from the error of each particle:

error ′(pi) = error(pi)− errmin (1 ≤ i ≤ n)

For pictures with a high number of particles, of which the errors have a
broad distribution, one can choose a higher threshold to see which points are
responsible for most of the error.

4.3 Experiments

To give a good impression of the effect of the different choices that can be made,
we have constructed a small, artificial dataset.
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Table 4.1: Sample input

In Table 4.1, we see the pairwise distances of six defining points from an object
that resembles the one shown in Figure 4.1 (leaving out one point). The points
a, b, c and d form a square, point f has a large distance to the corner points,
making it the top of a pyramid. Point e is only defined as being very close to
the corners of this square. So close in fact, that the triangle inequality does not
hold because of this point e. If we take out e, the remaining points would have
been embeddable in R

3 though, as can be seen in Figure 4.1.
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Figure 4.2: Global error map
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Figure 4.3: Global error map with
minimum correction
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Figure 4.1: Approximate sample input (apart from one point)

As mentioned before, apart from point e, the object is a pyramid; the submatrix
consisting of the first four rows and columns give the distances of the square
ground plane and the last row and column give the distances to the top. The total
figure can certainly not be embedded in a 2-dimensional plane (even a pyramid
would be a problem), so we must introduce a number of approximations to make
an embedding possible.

In Figure 4.2, we see the global error map of a dimension reduction done on
the data in Table 4.1, where, as mentioned before, we use γ = 0.5. The shape is
what we would expect. The ground plane of the pyramid, consisting of points
a, b, c and d are the four points in the centre of the image, now in the form of
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a trapezoid. Point e is in the centre of this trapezoid and point f can be found
in the upper left of the picture.

From this map, it is clear that the two points a and b, located on the broad
side of the trapezoid have the largest error.

If we apply the minimum correction on the global error map, we get a picture
as seen in Figure 4.3. Point e has vanished from this map and it is even more
clear which points have the largest error.

Figure 4.4: Local error map Figure 4.5: Local error map with
minimum correction

In Figure 4.4 we see the local error map of the dimension reduction done on
the data given in Table 4.1, where, as mentioned before, we use γ = 0.5 and
δ = 0.5. When compared to Figure 4.2, we see that the top of the pyramid, point
f , is relatively less prominent in the local error map. The difference between the
points in the ground plane, points a, b, c and d and the other points, e and f ,
however, has gotten larger. This can be explained by the disturbing influence
of point e, that apparently is responsible for most of the errors of the points in
the ground plane.

If we apply the minimum correction on the local error map, we get a picture
as seen in Figure 4.5. Again, point e has vanished and this time point f is almost
invisible as well. The only points that are still clearly visible are the ones that
have a significant error because of a local disturbance.

Because the error map is a “continuous” map, we can apply some standard
computer graphics techniques on it for further analysis. We can for example
compute the derivative of the error map,
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Figure 4.6: Gradient of the global error map

In Figure 4.6 we see such a derivative. We made this image by taking the max-
imum gradient in a 5× 5 square, iterated over all points in the original image.

What we can see from this picture is the “stability” of the error field. In the
dark areas, the error does not change very much, so they can be called stable.
The white areas are the ones that have large fluctuations in the error. For more
complicated input data, this can be of use to assess the quality of the error map.

4.4 Conclusions and further research

In this chapter, we have shown that the construction of an error map can be
useful for the analysis of the quality of (parts of) the output of a dimension
reduction technique. We have given several natural approaches to construct
different kinds of error maps, each emphasising different aspects of the error
under consideration.

The method described in this chapter can be applied to other dimension re-
duction techniques as well. For example, it can be applied for Principle Compo-
nent Analysis [35,57], Principle Curves [29] and Multidimensional Scaling [5,16]
and their (metric) variants without alteration. The non-metric variants of Mul-
tidimensional Scaling require a radically different error function, because these
techniques don’t use a metric distance in their visualisation.

On the other hand, Self Organising Maps [39] have their own way of con-
structing an error map: by calculating a gradient from the original map.

Apart from the examples we have given, other kinds of visualisations are
possible. We can, for example, use different values for γ to alter the speed at
which the error field drops off. This can be useful if we want to analyse the
visualisation of a large number of input points. In that case we could increase
the drop off speed to analyse the errors of particles that are very close together.
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Automatically determining the value of γ would be an interesting follow up for
this research.

We can also use different decline functions. This might be preferable if we
have some expert knowledge of the input data for example.


