
Metrics and visualisation for crime analysis and genomics
Laros, J.F.J.

Citation
Laros, J. F. J. (2009, December 21). Metrics and visualisation for crime analysis
and genomics. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/14533

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14533

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14533

Chapter 3

Visualisation on a

Closed Surface

In this chapter, we discuss a visualisation algorithm that, given a set of points
in high-dimensional space, will produce an image projected on a 2-dimensional
torus. The algorithm is a push and pull oriented technique which uses a sigmoid-
like function to correct the pairwise distances. We describe how to make use of
the torus property and show that using a torus is a generalization of employing
the standard closed unit square. Experiments show the merits of the method.

3.1 Introduction

In many situations one wants to cluster and/or visualise data [67]. In this chapter
we will describe a method to visualise a perhaps large set of data points on a 2-
dimensional surface. This surface is basically the unit square U in R

2, with sides
identified in such a way that it topologically is a torus: left and right boundary
are identified, and so are top and bottom boundary, see Figure 3.1 below. The
resulting surface has no boundaries. As distance between two points a and b in
U we just take the minimum of the ordinary Euclidean distance between a and
any point from {b + (k, �) | k, � ∈ {−1, 0, 1}}. This surface will be referred to as
“the” torus. Note that the distance is not the one that arises when a torus is
embedded in R

3 in the usual way (as a doughnut). In our case a visualisation as
a unit square is more appropriate, remembering that left-hand and right-hand
side are near to one another (and also top side and bottom side).

We start with a finite set of n data points {p1, p2, . . . , pn}. We use a given
metric d to compute the distance dij = d(pi, pj) between pi and pj (i, j ∈
{1, 2, . . . , n}), which yields a symmetric matrix D = (dij)

n
i,j=1. This matrix

D will be the basis for our further actions. Its entries will be referred to as
the desired distances. Our goal is to obtain points {p′1, p′2, . . . , p′n} (the so-called
current points) in U , in such a way that the distance between p′i and p′j in U (the
current distance) resembles dij , the desired distance between pi and pj , as much

25

26 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

�

�
�

�

(0, 0)

(0, 1)

(1, 0)

(1, 1)

U

Figure 3.1: Unit square with sides identified: the torus.

as possible for i, j ∈ {1, 2, . . . , n}. The difference between the current distances
and the desired distance is therefore minimised. Together, the current points
constitute the current configuration. Once this configuration is established, it
can be used for all sorts of clustering purposes.

Our algorithm repeatedly takes two current points, and pushes them to-
gether or pulls them apart with a correction factor, depending on the relation
between desired and current distance. We use an inflation factor and a correc-
tion multiplier to improve the current configuration. Note that the distances in
U do not change when one rotates, mirrors or translates all points. Since our
method makes use of random elements, visualisations might be the same under
rotation, mirroring or translation, but it is also possible that they are actually
different.

There are many methods that perform a dimension reduction. We mention
Multi Dimensional Scaling (MDS, see [5,28]) and Principal Component Analysis
(PCA, see [28]) as two well-known statistical methods. Other methods include
several types of (competitive) neural networks, such as Kohonen’s Self Organiz-
ing Maps (SOMs, see [28]) and vector quantization (again, see [28]). A compar-
ison of all these methods is beyond the scope of this chapter (e.g., see [22]), we
just mention two issues. First, our method is intuitive, very fast and requires no
complicated mathematical operations, such as matrix inversion. Second, the use
of the torus appears to be both natural and easy to describe; it also performs
better than the previously used closed unit square (with boundary, cf. [43]), but
still has all its merits. Notice that when using a 0.5× 0.5 sub-square of U , one
has this situation as a special case.

In Section 3.2 we sketch the background, and mention some alternative
topologies. The method is described in Section 3.3. Section 3.4 has experiments,
and we conclude in Section 3.5.

3.2 Background

In this section we mention some issues concerning our method. We will also
point out a few difficulties that might arise, and some other possibilities.

As specified above, the surface we use is not the standard 2-dimensional
unit square in the Euclidean space R

2, but a 2-dimensional torus. The main
advantage of using such a manifold is that there are more degrees of freedom in

3.3. ALGORITHM 27

such a space.
A disadvantage of using a torus is that it is impossible to contract every

circle to a point, and thus there are configurations possible where clusters are
wrapped around the torus and thus might get stuck in a “local minimum”. A
solution to this is to use a sphere (where each circle can be contracted to a
point), but the projection of a globe onto a flat 2-dimensional space gives a
distorted image (just like the map of the earth, the polar regions usually appear
much larger than they actually are).

Another way to prevent the potential wrapping around the torus is to use
a non-random initialization. If all points are initialized in one (small) area, the
process will most likely not result in a configuration where wrapping is an issue.
This can even be forced by placing a maximum distance (determined by the
circumference of the torus) on the correction part of the algorithm.

There are more possibilities for such surfaces, like the non-orientable Klein
bottle (obtained when identifying the dotted arrows from Figure 3.1 in opposite
direction) or the real projective plane, but from all these, the metric on a torus
(as specified above) is most like the standard Euclidean one, so it is natural to
choose this object.

3.3 Algorithm

The algorithm we use is a push and pull oriented one, where the correction
factor depends on the difference between the desired distance ddesired and the
current distance dcurrent. This current distance, or rather its square, between
two points a = (x1, y1) and b = (x2, y2) from U can be efficiently computed by:

dcurrent ((x1, y1), (x2, y2)) ::
var x3 ← x2;
var y3 ← y2;
if x1 − x2 > 0.5 then x3 ← x3 + 1.0;
if x1 − x2 < −0.5 then x3 ← x3 − 1.0;
if y1 − y2 > 0.5 then y3 ← y3 + 1.0;
if y1 − y2 < −0.5 then y3 ← y3 − 1.0;
return (x1 − x3)

2 + (y1 − y3)
2 ;

Quadratic distance between points in U

The point b′ = (x3, y3) is the (or more precisely, a) point from {b+(k, �) | k, � ∈
{−1, 0, 1}} that realizes the shortest distance to a. This point will also be used
later on. The maximal quadratic distance between any two points from U equals
0.5. (We will omit the word “quadratic” in the sequel.)

Instead of a linear or a constant function (of the current distance) to calculate
the amount of correction, we can and will use a sigmoid-like function, or rather
a family of functions. This function must adhere to some simple constraints,

28 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

enumerated below. So we want a function f = fddesired
which is defined on

[0, 0.5], where 0.5 is the maximum distance between two points (on the torus).
We must have, with 0 < ddesired < 0.5 fixed:

• f(0) = ρ

• f(0.5) = −ρ

• f(ddesired) = 0

Here ρ ∈ (0, 1] is the so-called correction multiplier. So when the current dis-
tance is as desired, f has value 0 — and so has the correction. The resulting
correction factor corrfac equals f(dcurrent). If ddesired = 0, we make it slightly
larger; similarly, if ddesired = 0.5, we make it slightly smaller.

We will use

fddesired
(x) =

{
ρ cos (π logt(2x(t− 1) + 1)) if ddesired �= 0.25
ρ cos (π2x) if ddesired = 0.25

where t = (1−1/(2ddesired))2; this function satisfies all the constraints. Figure 3.2
depicts f0.1 and f0.25, with ρ = 1.

The reason we choose a function like this, is because the correction of a point
will be large when the error of that point is large. Only when the error is close
to zero, the correction will be small. Other functions, like sigmoids will have the
same behaviour.

-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5

Figure 3.2: fddesired
with ddesired = 0.1 and ddesired = 0.25, ρ = 1.

Now suppose we want to “push and pull” two given points a = (x1, y1) and
b = (x2, y2) in U ; we first compute b′ = (x3, y3) as in the distance calculation of
dcurrent above. Then the coordinates x1 and y1 of a are updated through

x1 ← x1 + corrfac · |ddesired − dcurrent| · (x1 − x3) / 2 (3.1)

y1 ← y1 + corrfac · |ddesired − dcurrent| · (y1 − y3) / 2

A positive corrfac corresponds with pushing apart, a negative one with pulling
together. In a similar way, the coordinates x3 and y3 of b are updated in parallel.

3.3. ALGORITHM 29

If a coordinate becomes smaller than 0, we add 1, and if it becomes larger than
1, we subtract 1. Together we will refer to this as Equation (3.1).

The basic structure of the algorithm is as follows:

initialize all current points in a small region of U
while not Ready do

update all pairs (in arbitrary order) with Equation (3.1)

The push and pull algorithm

The algorithm terminates when the standard deviation and the mean error
(
∑

|pairs| |ddesired − dcurrent|/|pairs|) no longer change.
We now introduce the inflation factor σ, and secondly comment on the cor-

rection multiplier ρ.
The inflation factor σ > 0 can be used in the following way: Equation (3.1)

is changed to

x1 ← x1 + corrfac · |σ · ddesired − dcurrent| · (x1 − x3) / 2. (3.2)

This can be useful in several ways. If, for example, all distances are between 0
and 0.2, one might argue that it is useful to multiply these distances by 2.5 to get
a better spreading. This argument is especially valid if the resulting clustering
cannot be realized in the plane, but can be embedded on a torus. Inflation with
the right factor can make the overall error drop to zero in this case, while using
the original distances will always result in a non-zero overall error.

Even if all distances are between 0 and 0.5, inflation or deflation can still be
beneficial. For example, the input data can be such that inflation or deflation
will result in the correct clustering of a large part of the input, while not using
an inflation factor will result in a much higher overall error. An example of such
input data would be a torus that is scaled between 0 and 0.2, with a few points
outside this region. Normal clustering would result in a flat image where the
points outside the torus region would have correct distances to the torus region,
but with the correct inflation factor, the torus will be mapped on the entire
space, and the few points outside the region will be misclustered. This results
in a clustering where the overall error is small.

In practice we often take σ = 1.
The correction multiplier ρ is a parameter which controls the aggressiveness

of the correction function. Initially this factor is set to 1, but for data that can
not be embedded in the plane, lowering this factor can be beneficial.

If, for example, most of the distances are near the maximum, the correction
function will push them so far apart, that they are pushed towards other points
at he other side of the torus. This can result in the rapid fluctuation between
two or more stable states. These states are probably not the global minimum
for the clustering error, and therefore not the end result we desire. Increasing
the correction multiplier will counter this effect.

30 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

3.4 Experiments

In this section we describe several experiments, both on synthetic and real data.
The experiments are of an exploratory nature. We try to give a good impression
of the merits of the algorithm.

We start with a synthetic dataset. In the left-hand picture of Figure 3.3 we
see the original data points (on a “flat” 2D plane), from which a distance matrix
is derived to serve as test data for the visualisation algorithm. In this picture
we see seven spheres of which three are unique: the topmost two and the one in
the center. The other four spheres are copies of one another. The total number
of points is 700 and all distances are between 0.0 and 0.5.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.3: Original data (left) and visualisation (right).

After only a few iterations of our algorithm, the right-hand picture of Fig-
ure 3.3 appears. Notice how it resembles the input data, except for a mirroring
and a rotation. All distances are preserved almost perfectly. Remember that
only the pairwise distances were used by the algorithm. The mean error in this
picture is 0.00004 and the standard deviation is 0.00003. As a final remark, “flat
data” will always cluster within a sub-square of size 0.5× 0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.4: Visualisation of flat data with an invalid inflation factor.

In Figure 3.4 we see the same test data, except that the distances have been

3.4. EXPERIMENTS 31

multiplied by a factor 1.5 in the left-hand picture, and by 2.6 in the right-hand
one. This results in a non-correct embedding, since the maximum distance in
this space is 0.5. The effects can be seen in Figure 3.4, in particular in the
right-hand picture. In both pictures a translation has been applied in order to
center most points. Though the full 1.0×1.0 square has been used, most current
points reside in the smaller 0.5×0.5 square, as is clearly visible in the right-hand
picture.

The top-left sphere is forced closer to the bottom-left one than is possible.
This results in the flattening of the spheres at the outermost edges. This effect
can be explained by considering the overall error (which is minimized). By a
local deformation, the overall error is kept small. The effect can also be seen
(to a lesser extent) in the middle-left sphere. Notice that the effect is absent in
the top-central sphere because of the void at the bottom-center of the picture
(there is nothing to collide with at the other side of the torus).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.5: Visualisation of criminals, non flat case. Left: with categories; right:
without categories.

In Figure 3.5, left, we see a visualisation of real data. We have taken a
database of 1,000 criminal records supplied to us by the Dutch national police,
and divided the crimes into three categories (light, middle, heavy): each record
has three integers, describing the number of crimes in the respective categories.
The distance measure we use is one defined on multisets and is described in
Chapter 6. It basically averages the absolute differences between the numbers
of crimes.

The resulting matrix cannot be embedded in the plane, but it almost could,
since the mean error is relatively small 0.00494 and so is the standard deviation
0.00529. We refer to this type of situation as a “non flat case”. An indication
that the data is almost flat, is that the clustering stays within the 0.5 × 0.5
sub-square, and inflation increases the error. There are four main clusters in
this picture, where:

• The leftmost one consists of criminals that have committed relatively light
crimes. They all fall into the categories light and middle.

• The top one consists of all-rounders, they have all committed crimes in all

32 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

categories.

• The rightmost one consists of criminals that have only committed light
and heavy crimes, nothing in between.

• The bottom one consists of criminals that have only committed light
crimes, all of them fall into the category light.

Then there is a very small cluster in the top-right corner of the picture, this is
a cluster of people who have only committed heavy crimes. This is apparently
non-standard behaviour for a criminal. There are a few other isolated points in
this picture, they all are people with a strange criminal record.

In Figure 3.5, right, we see the clustering of 100 criminals based upon the
same distance measure as in Figure 3.5, but now we do not categorize the crimes;
here the records have 80 attributes. The result is a scattered image (largely due
to the lack of similarity), occupying a large part of the unit square, and only
a few local clusters. We make use of inflation factor σ = 2 and correction
multiplier ρ = 1/16 here, to produce the picture with a mean error of 0.02636
and a standard deviation of 0.01786. All visualisations are obtained within a
few seconds.

Finally, we show an example from chemistry. The dataset we use, the so-
called 4069.no aro dataset, contains 4,069 molecules (graphs); from this we
extracted a lattice containing the 2,149 most frequent subgraphs. These are
grouped into 298 structural related patterns occurring in the same molecules
using methods presented in [25], resulting in a 298 by 298 distance matrix; the
distance between graphs is based on the number of co-occurrences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.6: Two visualisation of a dataset with molecules.

Figure 3.6 shows two visualisations. The left-hand picture has mean 0.03488
and standard deviation 0.03117, with parameters ρ = 0.048 and σ = 1.1; the
right-hand picture has mean 0.05029 and standard deviation 0.03200, with pa-
rameters ρ = 0.031 and σ = 0.5. The latter picture is what we would have
gotten when we had used a bounded unit square. The first picture gives a bet-
ter embedding, with a lower error. The groups that pop up can be used by a
biologist to investigate biological activity.

3.5. CONCLUSIONS AND FURTHER RESEARCH 33

3.5 Conclusions and further research

We conclude that our algorithm is able of giving adequate visualisations on the
torus. Starting from a set of data points and their pairwise distances, it quickly
provides an embedding on this surface. The algorithm is fast, flexible and easy
to use, for instance for clustering purposes.

The method was originally developed for the analysis of criminal records
(see Section 3.4), and performs quite well in this case, but it also appears to be
applicable in other fields.

For further research, we would like to examine other topologies, such as a
sphere. Yet another possibility is to somehow fix current points, once they have
reached a good position with respect to many other points. And finally, the
online addition of new points.

