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Sed fugit interea, fugit irreparabile
tempus.

Vergil, Georgica

CHAPTER 7

TRAPHIC - thermal coupling

Andreas H. Pawlik & Joop Schaye

In preparation.

T
HE temperature of the cosmic gas is a key astrophysical observable. The
detailed modelling of its evolution with cosmological hydrodynamical
simulations requires the use of radiative transfer methods to accurately

compute the effects of photo-ionisation and photo-heating on the relevant
cooling and heating rates. In Chapter 4 we presented TRAPHIC, a novel ra-
diative transfer scheme for use with large Smoothed Particle Hydrodynam-
ics (SPH) simulations. We described its implementation for the transport of
hydrogen-ionising radiation in the SPH code GADGET-2 in Chapter 5. Here
we extend our implementation to compute the non-equilibrium evolution of
the temperature of gas exposed to hydrogen-ionising radiation. We verify
this extension by comparing TRAPHIC’s performance in thermally coupled
radiative transfer test simulations with reference solutions obtained with
other radiative transfer codes.
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164 Simulating cosmic reionisation

7.1 INTRODUCTION

A thorough understanding of the thermal history of the cosmic gas is crucial for the interpre-
tation of many astrophysical observables that are employed to explore the physics of galaxy
formation and evolution. The thermal history is, moreover, itself a powerful observable. It de-
pends, for instance, strongly on the details of the reionisation of hydrogen (e.g. Miralda-Escudé
& Rees 1994; Theuns et al. 2002; Hui & Haiman 2003; Tittley & Meiksin 2007), a key epoch in
the history of the Universe (for a review see, e.g., Furlanetto, Oh, & Briggs 2006; Barkana &
Loeb 2001). Knowledge of the thermal history therefore provides an important probe of the
Universe during reionisation and beyond. In fact, constraints from the thermal evolution of the
intergalactic medium were among the first to indicate that the Universe underwent another
major transition after the reionisation of hydrogen: the reionisation of helium (e.g., Schaye et
al. 2000; Ricotti, Gnedin, & Shull 2000; Bernardi et al. 2003; McQuinn et al. 2009).

The study of the formation and evolution of galaxies using cosmological gas-dynamical
simulations therefore requires an accurate treatment of the evolution of the gas temperature.
The gas temperature is determined by a manifold of cooling and heating processes. The most
important (for cosmological applications) radiative cooling processes, i.e., collisional excitation,
collisional ionisation, recombination, bremsstrahlung and Compton scattering off the cosmic
microwave background, are nowadays included by default in almost all hydrodynamical cos-
mological simulations, although often under the assumption of primordial abundances and/or
collisional ionisation equilibrium. The effects of photo-ionisation on the cooling rates are, if at
all, only approximately accounted for (e.g., Wiersma, Schaye, & Smith 2009).

Photo-heating is one such, and, for the low densities that are of interest here, probably the
most important, effect. The accurate computation of photo-heating rates requires the evalua-
tion of complex radiative transfer effects (e.g., Abel & Haehnelt 1999; Bolton, Meiksin, & White
2004). Almost none of the cosmological simulations performed to date include, however, a
sufficiently detailed treatment of the ionising radiation. In fact, the standard procedure is to
compute photo-heating rates from an externally imposed, i.e. not self-consistently evolved, uni-
form UV background in the optically thin limit. We have performed simulations that employed
this procedure in Chapters 2 and 3, where we have also discussed the main short-comings of
this simplified approach, including its inability to account for the self-shielding of radiation in
mini-halos (e.g., Kitayama & Ikeuchi 2000; Susa & Umemura 2004; Dijkstra et al. 2004; Shapiro,
Iliev, & Raga 2004; Iliev, Shapiro, & Raga 2005).

In Chapter 4 we have presented a novel radiative transfer scheme, TRAPHIC, for use with
cosmological smoothed particle hydrodynamics (SPH) simulations. TRAPHIC is one of the first
of a new generation of radiative transfer schemes that have been specifically designed to over-
come the enormous computational challenges posed by the desire to incorporate the accurate
transport of radiation into simulations exhibiting a large dynamic range and containing many
ionising sources (e.g., Ritzerveld & Icke 2006; Trac & Cen 2007; Petkova & Springel 2008). We
have furthermore presented its numerical implementation for the transport of mono-chromatic
(or grey), hydrogen-ionising radiation in the state-of-the-art SPH code GADGET-2 (Chapter 5)
and one of its successors, P-GADGET3-BG (Chapter 6).

In this chapter we extend our implementation of TRAPHIC to compute, in addition to its
ionisation state, the temperature of gas exposed to hydrogen-ionising radiation. This will al-
low us to accurately compute photo-heating rates in cosmological simulations. Here we limit
ourselves to determining the thermal history of gas subject to photo-ionisation and will ignore
the hydro-dynamical feedback associated with photo-heating (Chapters 2 and 3). We leave
the radiation-hydrodynamical coupling of TRAPHIC for future work. For simplicity, we will
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furthermore ignore the contributions from metals and molecules to the gas cooling rates (e.g.,
Tegmark et al. 1997; Anninos et al. 1997; Bromm, Yoshida, & Hernquist 2003; Smith, Sigurds-
son, & Abel 2008; Wiersma, Schaye, & Smith 2009; Choi & Nagamine 2009).

The structure of this chapter is as follows. The main subject of the chapter, the thermal cou-
pling of TRAPHIC, will be presented in Sec. 7.6. The coupling requires some preparatory work,
which we will present in Secs. 7.2 - 7.5. In Sec. 7.2 we will discuss the physics of ionisation and
recombination. This section generalises the description of ionisation and recombination given
in Chapter 5 to include also the contribution from helium and to account for collisional ionisa-
tions. In Sec. 7.3 we will discuss the thermodynamical relations that describe the evolution of
the gas temperature and discuss (the physics of) the major cooling and heating processes rele-
vant for cosmological simulations. The main outcome of Secs. 7.2 and 7.3 will be a compilation
of references to (fits to) atomic data that we will employ to compute ionisation, recombination,
heating and cooling rates in the simulations presented later on in this chapter. This reference
set (Table 7.1) will be evaluated for the case of ionisation equilibrium and compared to the lit-
erature in Sec. 7.4. The final step before our presentation of the thermal coupling consists of
describing our numerical method for evolving the gas temperature in Sec. 7.5.

Readers familiar with the physics of ionisation, recombination, heating and cooling may
wish to skip Secs. 7.2-7.4 (and perhaps also Sec. 7.5) and directly start with Sec. 7.6, in which
we present the thermal coupling of our radiative transfer scheme TRAPHIC. The same ap-
plies to readers who are less interested in the precise expressions for the atomic data than in
their applications to thermally coupled radiative transfer problems. For those readers we have
summarised the physical processes that we include in the computations of the ionisation and
thermal state of gas in the radiative transfer simulations presented in this chapter - together
with the references to the (fits to) atomic data sets employed for their numerical evaluation - in
Table 7.1.

We end this introduction with some definitions that we will employ throughout the chap-
ter. We consider an atomic gas of total number density n = ne +

∑

ni, where ni is the num-
ber density of ion (or species) i and ne is the number density of free electrons. The num-
ber density ni is related to the total mass density ρ through ni = Xiρ/(µimH), where Xi

is the mass fraction of ion i and µi = mi/mH is its mass mi in units of the hydrogen mass
mH. We assume that the gas is of primordial composition, i.e. i ∈ {HI, HeI, HeII, HeIII} and
XH + XHe = 1. We will set XH = 0.25 and XHe = 1 − XH. We will make frequent use of the
ion number density fractions with respect to hydrogen, ηi ≡ ni/nH and the electron fraction
ηe = ne/nH. Where required, we will assume cosmological parameters [Ωm,Ωb,ΩΛ, σ8, ns, h]
given by [0.258, 0.0441, 0.742, 0.796, 0.963, 0.719], which is consistent with the WMAP 5-year
result (Komatsu et al. 2008).

7.2 IONISATION AND RECOMBINATION

The evolution of the ionisation state of primordial gas in the presence of a photo-ionising radi-
ation background is determined by the set of rate equations

dηHI

dt
= αHIIneηHII − ηHI(ΓγHI + ΓeHIne) (7.1)

dηHeI

dt
= αHeIIneηHeII − ηHeI(ΓγHeI + ΓeHeIne) (7.2)

dηHeIII

dt
= ηHeII(ΓγHeII + ΓeHeIIne) − αHeIIIneηHeIII, (7.3)
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Table 7.1: Reference set of (fits to the) atomic data used to calculate photo-ionisation rates, collisional ionisation rates, recombination rates and
cooling rates in the simulations presented in this chapter. We emphasise that our selection of physical processes is not intended to be exhaustive and
that this table is not meant to establish a canonical set of references. In fact, our choices in favour of certain (fits to) atomic data sets partly reflects
personal preferences.

Photo-ionisation HI, HeI, HeII photo-ionisation cross-sections (σHI, σHeI, σHeII) Verner et al. (1996)
Collisional ionisation HI, HeI, HeII collisional ionisation rate coefficients (ΓeHI, ΓeHeI, ΓeHeII) Theuns et al. (1998)
Recombination HII, HeIII recombination rate coefficients (αHII, αHeIII) Hui & Gnedin (1997)

HeII recombination rate coefficient (αHeII) Hummer & Storey (1998)
HeII dielectronic recombination rate coefficient (αdi,HeII) Aldrovandi & Pequignot (1973)

Collisional ionisation cooling HI, HeI, HeIII collisional ionisation cooling rate Shapiro & Kang (1987)
Collisional excitation cooling HI, HeI, HeIII collisional excitation cooling rate Cen (1992)
Recombination cooling HII, HeIII recombination cooling rate Hui & Gnedin (1997)

HeII recombination cooling rate Hummer & Storey (1998)
HeII dielectronic recombination cooling rate Black (1981)

Cooling by bremsstrahlung Bremsstrahlung cooling rate Theuns et al. (1998)
Compton cooling Compton cooling rate Theuns et al. (1998)
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supplemented with the closure relations

ηHI + ηHII = 1 (7.4)

ηHeI + ηHeII + ηHeIII = ηHe (7.5)

ηHII + ηHeII + 2ηHeIII = ηe, (7.6)

where Γγi is the photo-ionisation rate and Γei and αi are the collisional ionisation and recombi-
nation rate coefficients for species i (the collisional ionisation rates are neΓei and the recombina-
tion rates are neαi); ηHe = nHe/nH = XHe(mH/mHe)/(1 − XHe) denotes the helium abundance
(by number); mH and mHe the masses of the hydrogen and helium atoms, respectively.

Hence, we have six equations (Eqs. 7.1-7.6) for six unknown variables (ηHI, ηHII, ηHeI, ηHeII,
ηHeIII, ηe). In equilibrium (d/dt = 0) Eqs. 7.1 - 7.6 can be written as,

ηHI =

(

1 +
ΓγHI + neΓeHI

αHIIne

)

−1

, (7.7)

ηHII = 1 − ηHI, (7.8)

ηHeI = ηHe

[

1 +
ΓγHeI + neΓeHeI

αHeIIne
(7.9)

×

(

1 +
ΓγHeII + neΓeHeII

αHeIIIne

)]

−1

, (7.10)

ηHeII = ηHeI
ΓγHeI + neΓeHeI

αHeIIne
, (7.11)

ηHeIII = ηHeII
ΓγHeII + neΓeHeII

αHeIIIne
, (7.12)

ηe = ηHII + ηHeII + 2ηHeIII. (7.13)

It is worth noting the two important special cases of pure photo-ionisation equilibrium and
pure collisional ionisation equilibrium, obtained by setting Γei = 0 and Γγi = 0, respectively.
We will employ the corresponding equilibrium fractions in our computation of the equilibrium
heating and cooling rates in Sec. 7.4 below.

In the following we briefly discuss the physics of photo-ionisation, collisional ionisation and
recombination. Our description makes heavy use of the text books Osterbrock (1989), Spitzer
(1978), Rybicki & Lightman (2004) and other excellent reviews of the subject that are referred to
below. We will compare photo-ionisation cross-sections, collisional ionisation rates and recom-
bination rates that are commonly employed in the literature. Our comparison will result in a
reference set of photo-ionisation cross-sections, collisional ionisation rates and recombination
rates that we will employ in the rest of this chapter. It is summarised in Table 7.1.

7.2.1 Photo-ionisation

The number of photo-ionisations of species i per unit time per unit volume is given by ηinHΓγi,
where Γγi is the photo-ionisation rate,

Γγi =

∫

∞

νi

dν
4πJν(ν)

hpν
σγi(ν), (7.14)

where i ∈ {HI, HeI, HeII}, σγi(ν) is the photo-ionisation cross-section for species i and hpνi

is the ionisation potential of species i. Note that hpνHI = 13.6 eV , hpνHeI = 24.6 eV and
hpνHeII = 54.4 eV.
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The cross-sections for photo-ionisation by photons with energies at the HI, HeI and HeII
ionisation threshold are σHI = 6.3 × 10−18 cm2, σHeI = 7.83 × 10−18 cm2 and σHeII = 1.58 ×
10−18 cm2 (Table 2.7 in Osterbrock 1989). The cross-sections are a decreasing function of photon
energy. For hydrogenic ions, i.e. for HI and HeII, and not too far above the ionisation threshold,
the dependence on energy can be well approximated by a single power-law,

σi = 6.3 × 10−18 cm2 fi

Ai

(

ν

νi

)

−3

, (7.15)

where fHI = 1 and fHeII = 1.21 (Theuns et al. 1998) and Ai is the atomic number. The depen-
dence of the HeI photo-ionisation cross-section is more difficult to approximate and requires
the use of a combination of two power-laws (Osterbrock 1989). The (non-relativistic) high-
energy scaling (ν ≫ νi) is σγi ∝ ν−3.5 (e.g. Bethe & Salpeter 1957; Verner et al. 1996).

Fits to photo-ionisation cross-sections have, for example, been presented in Osterbrock (1989,
their Eq. 2.31) and Verner et al. (1996). We show the cross-sections for photo-ionisation of HI,
HeI and HeII using these fits in Fig. 7.1. In this work we employ the fits of Verner et al. (1996).

The photo-ionisation rates can be expressed in terms of the total number of ionising photons

Ṅγ =
∫

∞

νi
dν 4πJν(ν)

hpν ,

Γγi = 〈σγi〉Ṅγ , (7.16)

where 〈σγi〉 is the average (or grey, cp. Sec. 5.3.5 in Chapter 5) photo-ionisation cross-section,

〈σγi〉 ≡

∫

∞

νi

dν
4πJν(ν)

hpν
σγi(ν) ×

[
∫

∞

νi

dν
4πJν(ν)

hpν

]

−1

. (7.17)

The average photo-ionisation cross-section can only be calculated analytically for a few special
cases, for instance, when both the spectrum and the cross-section can be expressed as power-
laws of frequency. No analytic solution is available for the important case of a black-body
spectrum,

Jν(ν) ∝ 2hp(ν3/c2)/(exp[hpν/(kTbb)] − 1), (7.18)

and the Verner et al. (1996) form of the photo-ionisation cross-sections referred to in Table 7.1.
The numerically calculated average photo-ionisation cross-sections 〈σγi〉 are shown in the left-
hand panel of Fig. 7.1. The values for a black-body temperature Tbb = 105 K are 〈σγHI〉 =
1.63 × 10−18 cm2, 〈σγHeI〉 = 4.13 × 10−18 cm2 and 〈σγHeII〉 = 1.06 × 10−18 cm2.

7.2.2 Collisional ionisation

The number of collisional ionisations per unit volume and unit time of species i by particle
j, njniΓji, can be written as njni〈vσji〉, where 〈vσji〉 is the collisional ionisation cross-section
averaged over the velocity distribution of the ionising particles j. We note that the inverse
process, i.e. collisional recombination, is a three-body interaction (between the ion, the colliding
particle and the recombining electron). For the low density plasmas of interest here we can
therefore ignore this process. We only consider collisional ionisation of HI, HeI and HeII by
electron impact (i.e. i ∈ {HI, HeI, HeII} and j = e), but note that collisional ionisation by
other particles (e.g. cosmic rays) may also occur. The collisional ionisation rate coefficients we
employ are derived using the coronal approximation (e.g. Osterbrock 1989), i.e. assuming that
all ions are in their respective ground states. This is a valid assumption for the low densities of
interest, but may be subject to reconsideration in the presence of a strong radiation background.
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Figure 7.1: Left-hand panel: Cross-sections σγi for photo-ionisation of HI, HeI and HeII by photons of
energy hpν. For each species, the cross-sections from Osterbrock (1989) are larger than those of Verner
et al. (1996) for high photon energies, which obey the proper scaling for very high energies, σγi ∼ ν−3.5.
The cross-section reported in (Osterbrock 1989, their Eq. 2.31), on the other hand, are approximations
that are only good for photon energies within a few times the threshold energy. Right-hand panel: Aver-
age photo-ionisation cross-section 〈σγi〉 (Eq. 7.16) for a range of temperatures of the incident black-body
spectrum Jν . We used the Verner et al. (1996) fits to the photo-ionisation cross-sections.

In Fig. 7.2 we show fits to the coefficients of collisional ionisation rates that are commonly
employed in the literature. We briefly explain their origin and their range of validity below.

Lotz (1967) provided fits to experimental data on cross-sections for electron-impact colli-
sional ionisation from the ground state for a large number of ions and tabulated collisional ion-
isation rate coefficients over the temperature range 103 K . T . 107 K, assuming a Maxwellian
distribution for the electron velocities. These coefficients have been employed by Black (1981),
who provided fits to the tabulated coefficients valid over the temperature range 104 K .

T . 2 × 105 K. Cen (1992) extended these fits to higher temperatures, multiplying them by1

(1 + (T/105 K)1/2)−1. Theuns et al. (1998) multiplied the fits from Cen (1992) by a factor of
two to improve the high temperature corrections, such that they are in better agreement with
the Black (1981) fits in the low temperature regime. Hui & Gnedin (1997) used their own fits
to the Lotz (1967) tabulated collisional ionisation coefficients, valid over the temperature range
104 K . T . 109 K. They agree very well with the fits used by Abel et al. (1997) for T & 104 K.

In this work we employ the fits provided by Theuns et al. (1998). As can be seen from
Fig. 7.2, for T < 107 K these fits show the least deviation from the Hui & Gnedin (1997) fits,
which we consider to be the most accurate over this temperature interval (because they are
direct fits to experimental data). We prefer them over the Hui & Gnedin (1997) fits, because
they additionally obey the correct high temperature scaling (∝ T−1/2).

7.2.3 Recombination

The number of radiative recombinations of ion i (with i ∈ {HII, HeII, HeIII}) to energy level l
occurring per unit time per unit volume neniαil may be written as neni〈vσil〉, where 〈vσil〉 is the
recombination cross-section averaged over the velocity distribution of the recombining elec-
trons. Radiative recombination is the inverse process of photo-ionisation. The cross-sections

1At high kinetic energies, σji ∝ v
−2, and hence vσji ∝ T

−1/2 (e.g. p. 16f of Osterbrock 1989).
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Figure 7.2: Left-hand panels: Rate coefficients for collisional ionisation of HI (top), HeI (middle) and HeII
(bottom) by electron impact. Right-hand panels: Same as the left-hand panels, but all rates have been
divided by the Hui & Gnedin (1997) rates to facilitate their comparison.
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for radiative recombination and photo-ionisation are therefore closely connected, as expressed
by the Milne (or Einstein-Milne) relations (e.g. Rybicki & Lightman 2004). It is thus clear that
the accuracy of calculations of the radiative recombination coefficients depends on the accuracy
with which the photo-ionisation cross-sections have been obtained.

Two recombination coefficients are of special interest and are referred to as case A and
case B. The case A recombination coefficient αAi ≡

∑

l=1 αil is the sum over all the recombi-
nation coefficients αil. On the other hand, the case B recombination coefficient is defined as
αBi ≡

∑

l=2 αil and thus does not include the contribution from recombinations to the ground
state. The introduction of the case B recombination coefficient is motivated by the observation
that for pure hydrogen gas that is optically thick to ionising radiation, recombinations to the
ground state are cancelled by the immediate re-absorption of the recombination photon by a
neutral atom in the vicinity of the recombining ion. Radiative transfer simulations of ionising
radiation in an optically thick hydrogen-only gas may therefore work around the (often ex-
pensive) explicit transfer of recombination photons by simply employing the case B (instead of
the full, i.e. case A) recombination coefficient. Although this on-the-spot-approximation (e.g,
Osterbrock 1989) is only strictly valid when considering the transport of ionising radiation in
optically thick gas, it is for simplicity usually also employed in radiative transfer simulations
to model the transport of radiation in gas that is optically thin (but see, e.g., Ritzerveld 2005).

In Fig. 7.3 we show fits to the case A and case B radiative recombination coefficients that
are commonly employed in the astrophysical literature. Hummer (1994) provided tables for the
total radiative recombination coefficient (both case A and B) of hydrogen over the temperature
range 10 K < T < 107 K. Recombination coefficients for hydrogen were also obtained by
Ferland et al. (1992) over the temperature range 3 K . T < 1010 K. Accurate fits to these
coefficients are presented in Hui & Gnedin (1997). As can be seen from Fig. 7.3, the coefficients
from Hummer (1994) and Ferland et al. (1992) agree over the overlapping temperature interval.
We also show the HII recombination coefficients presented in Spitzer (1978), which are based
on calculations by Seaton (1959).

The recombination coefficients for hydrogenic ions (like HeIII) can be obtained by scaling
along the iso-electronic series2,

α(T,Z) = Zα(T/Z2, 1), (7.19)

where Z is the ion charge (e.g. Hummer 1994). Radiative recombination coefficients for non-
hydrogenic ions are more difficult to obtain, due to their more complex atomic structure. For
HeII, the only calculations of the total recombination coefficients we are aware of are the co-
efficients by Burgess & Seaton (1960) and Hummer & Storey (1998). The former tabulated the
case A and B coefficients for only three temperatures (0 K, 104 K and 2 × 104 K), whereas the
latter provided a dense grid of case A and B coefficients over the range 10 K < T < 104.4 K.
Black (1981) and Hui & Gnedin (1997) provide fits to the Burgess & Seaton (1960) coefficients.
Surprisingly, they state a range of validity of 5 × 103 K . T . 5 × 105 K. As can be seen in
Fig. 7.3, the fit employed by Hui & Gnedin (1997) results in coefficients that differ from the
coefficients tabulated by Hummer & Storey (1998) for T & 2 × 104 K, which is in agreement
with the fact that the Hui & Gnedin (1997) fit should perhaps be considered to be valid only for
T . 2 × 104 K.

We have not yet discussed the dielectronic contribution to the HeII recombination coeffi-
cient. Dielectronic HeII recombination (e.g. Savin 2000a; Badnell 2001 for a review), like radia-
tive HeII recombination, is the capture of a free electron along with the emission of a recombi-

2An iso-electronic series is a group of ions having the same number of bound electrons.
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nation photon. In contrast to HeII radiative recombination, dielectronic HeII recombination is a
two-step process that can only take place at certain free-electron energies: The free electron ex-
cites another electron in the recombining ion and in the process transfers sufficient energy that
it is captured into an auto-ionising state. If an electron (either the captured one or another of
the electrons in the ion) makes a spontaneous radiative transition to a non-auto-ionising state,
then the recombination can be viewed as complete. Dielectronic recombination is the dominant
recombination process for temperatures T & 105 K (see Fig. 7.3). Its significance arises because
it can take place via many intermediate auto-ionising states, increasing its effective statistical
weight (e.g, Badnell et al. 2003). We note that the values for the dielectronic recombination rate
coefficients are strongly sensitive to external electric and magnetic fields (Savin 2000b, Badnell
2001), impeding their determination. In the left-hand panel of Fig. 7.5 we show the dielectronic
recombination coefficient computed and fitted by Aldrovandi & Pequignot (1973).

In this work we use the following coefficients to describe radiative recombinations. For HII
and HeIII case A and case B radiative recombination, we employ the fits from Hui & Gnedin
(1997), which are as accurate as the Hummer (1994) coefficients but extend over a larger tem-
perature range. For the HeII case A and case B radiative recombination coefficient, we employ
the tabulated coefficients of Hummer & Storey (1998) using linear interpolation in log-log and
we add the dielectronic contribution from Aldrovandi & Pequignot (1973).

7.3 HEATING AND COOLING

Our main goal in this chapter is to thermally couple our radiative transfer code TRAPHIC, that
is, to compute, in addition to the evolution of the ionisation state, the evolution of the temper-
ature of gas parcels exposed to ionising radiation. For the discussion it is helpful to review the
relevant thermodynamical relations, which is the subject of this section.

The internal energy per unit mass for gas of monoatomic species that are at the same tem-
perature T is

u =
3

2

nkBT

ρ
=

3

2

kBT

µmH
, (7.20)

where kB is the Boltzmann constant and µ is the mean particle mass in units of the hydrogen
mass,

µ =
ρ

nmH
(7.21)

=
ρ

mH (ne +
∑

ni)
(7.22)

=
ρ

mH
∑

(1 + Zi)ni
(7.23)

=

(

∑ Xi(1 + Zi)

µi

)

−1

. (7.24)

In the last equation, Zi is the number of free electrons contributed by species i, where i = H,He.
For neutral gas µ = 1.230, for a singly ionised gas µ = 0.615 and for a fully ionised gas µ =
0.593.

From the first law of thermodynamics (which states that the energy of a closed system is
conserved),

d(uρV ) = −PdV + n2
H(H− C)V, (7.25)
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Figure 7.3: Left-hand panels: Case B recombination rate coefficients for HII (top), HeII (middle) and HeIII
(bottom). For HeII, dielectronic recombination dominates for temperatures T & 105 K. Right-hand panels:
Case A recombination rate coefficients for HII (top), HeII (middle) and HeIII (bottom).
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where H and C are the normalised heating and cooling rates, such that the rates of energy gain
and loss per unit volume are described by n2

HH and n2
HC, respectively. It follows that

du

dt
= −

P

ρV

dV

dt
+

n2
H

ρ
(H− C), (7.26)

where we have assumed that mass is conserved, d(ρV ) = 0. Using 7.20 and the ideal gas law,
we find that the gas temperature evolves according to

dT

dt
=

2µmHn2
H

3ρkB
(H − C) +

T

µ

dµ

dt
−

2T

3V

dV

dt
. (7.27)

For applications in cosmology it is useful to rewrite the last equation using −dV/V = dρ/ρ =
d(〈ρ〉∆)/ρ, where 〈ρ〉 is the average (gas) density of the Universe and ∆ ≡ ρ/〈ρ〉 is the (local)
overdensity. Then,

dT

dt
=

2µmHn2
H

3ρkB
(H− C) +

T

µ

dµ

dt
− 2HT +

2T

3∆

d∆

dt
. (7.28)

We have employed the Hubble constant H ≡ ȧ/a at redshift z = a−1 − 1. With these substitu-
tions the terms on the right-hand side of Eq. 7.28 can be interpreted as follows. The first term
accounts for radiative heating and cooling, the second term accounts for changes in the mean
particle mass (caused by changes in the electron number density), the third and fourth term
account for adiabatic cooling due to cosmological expansion and structure formation, respec-
tively.

In the following we briefly discuss the processes that contribute to the heating and cooling
rate, relying in large parts on the presentations in the text books by Osterbrock (1989), Spitzer
(1978) and Rybicki & Lightman (2004). As part of this discussion we compare cooling rates that
are commonly employed in the literature. Based on this comparison we build our reference set
of cooling rates that we will employ in this chapter and which is summarised in Tbl 7.1.

7.3.1 Cooling

The normalised cooling rate C is the sum over the contributions from the rates of the individual
cooling processes,

C =
∑

ci. (7.29)

The cooling processes i that we consider are collisional ionisation by electron impact (cic), ra-
diative + dielectronic recombination (rec), collisional excitation by electron impact (cec), brems-
strahlung (brems) and Compton scattering (compton).

Collisional ionisation cooling

We assume that for each collisional ionisation by electron impact the ionisation threshold en-
ergy hνi is removed from the thermal bath (e.g. Shapiro & Kang 1987). Hence, we write

ccic = ηe

∑

i

ηiξcic,i, (7.30)

where ξcic,i = hpνiΓei is the collisional ionisation cooling rate coefficient and i ∈ {HI, HeI, HeII}.
We employ the collisional ionisation rate coefficients Γei = 〈vσei〉 discussed in Sec. 7.2.2.
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Figure 7.4: Left-hand panels: Case B recombination cooling rate coefficients for HII (top), HeII (middle)
and HeIII (bottom). Right-hand panels: The same as left-hand panels, but for case A recombination
cooling.
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Figure 7.5: Left-hand panel: The dielectronic contribution to the HeII recombination coefficient. Right-
hand panel: The dielectronic contribution to the HeII recombination cooling coefficient.

Recombination cooling

The kinetic energy released per unit volume per unit time due to radiative recombination of
ion i is given by

n2
Hcrec = ηen

2
H

∑

i

ηiξrec,i, (7.31)

where
ξrec,i =

∑

l=l0

〈vσilmev
2/2〉 (7.32)

is the kinetic-energy-averaged recombination rate coefficient (e.g. Osterbrock 1989) and i ∈ {HII,
HeII, HeIII}. In Fig. 7.4 we show fits to the recombination cooling coefficients ξrec,i for case A
and B recombinations that are commonly employed in cosmological simulations.

Case A and B recombination cooling coefficients ξrec,i for hydrogenic ions have been pre-
sented in Hummer (1994) and Ferland et al. (1992). Accurate fits to the Ferland et al. (1992)
coefficients are given in Hui & Gnedin (1997). They agree very well with the Hummer (1994)
coefficients. The same is true for the case A coefficients used by Black (1981) over their range
of validity 5× 103 K . T . 5× 105 K. In contrast, the case A recombination cooling coefficients
used in Theuns et al. (1998) (which are identical to those used in Cen 1992) show a very different
behaviour. These coefficients are based on the Black (1981) coefficients, but were adapted to ex-
tend their range of validity to higher temperatures. This adaption seems to have degraded the
accuracy of the coefficients for temperatures T . 106 K, without bringing them in agreement
with the Hui & Gnedin (1997) or Hummer (1994) coefficients at higher temperatures.

For HeII recombination cooling, coefficients have been tabulated by Hummer & Storey
(1998) (not including cooling due to dielectronic recombination). Hui & Gnedin (1997) pre-
sented HeII (and HeII dielectronic) recombination cooling rates obtained by multiplying their
HeII (and HeII dielectronic) recombination rates by the ionisation threshold energy (for dielec-
tronic recombination cooling they employ an additional factor 0.75). The reasoning behind this
recipe remains somewhat unclear to us.

In this work we evaluate the recombination cooling rate using the following values for the
coefficients ξrec,i. For HII and HeIII recombination cooling we use the fits to ξrec,i by Hui &
Gnedin (1997). For HeII recombination cooling we use the tabulated coefficients of Hummer
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Figure 7.6: Rate coefficients for radia-
tive cooling by electron-impact colli-
sional excitation.

& Storey (1998), linearly interpolating in log-log. We add the dielectronic contribution to the
cooling coefficient from Black (1981).

Collisional excitation cooling

Electron-atom (electron-ion) collisions may excite the atoms (ions). The excitation energy may
then be radiated away in the subsequent de-excitation. We will see later, in Sec. 7.6.1, that de-
excitation cooling from collisionally excited atoms and ions, i.e. collisional excitation cooling,
constitutes one of the most important cooling processes that determine the evolution of the
temperature in a cosmological setting.

For illustration, we consider the collisional excitation of a two-level atom by electrons3,
following Osterbrock (1989). The cross-section σ12 for excitation from level 1 to level 2 is a
function of the electron kinetic energy. It is zero for kinetic energies below the excitation energy
χ12. For larger energies it approaches the asymptotic scaling σ12 ∝ v−2 (see Sec. 7.2.2). It is
therefore common to introduce the (dimensionless) collision strength Ω12 and write

σ12 =
π~

2

m2
ev

2

Ω12

ω1
, for mev

2/2 > χ12, (7.33)

where ω1 is the statistical weight of the lower level. Ω12 generally is a function of velocity, but
close to the excitation threshold χ12 can be well approximated by a constant.

With this definition, the collisional excitation rate per unit volume per unit time is nen1〈vσ12〉,
where n1 is the density of atoms in level 1 and the average is over the velocity distribution of
the electrons. In the limit of very low electron density (ne → 0) each collisional excitation is
followed by a spontaneous emission (at rate A12) of a photon with frequency ν21. In this case,
the cooling rate is given by n2

Hccec = nen1ξcec, where ξcec = 〈vσ12〉hPν21 is the collisional excita-
tion cooling rate coefficient. We note that for larger densities the cooling rate is reduced due to
collisional de-excitations (e.g. Osterbrock 1989). Asymptotically, for ne → ∞ it is given by the
thermodynamic-equilibrium rate n2

Hccec = n1(w2/w1) exp(−χ12/kBT )A12hPν21.

3We note that collisional excitation by neutral atoms may become important for low ionised fractions. Collisional
excitation by ions can generally be neglected because of the Coulomb repulsion between the colliding particles
(e.g. Dalgarno & McCray 1972)
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Figure 7.7: Normalised brems-
strahlung cooling rate. Different rates
only differ in the employed gaunt
factors.

In this work we employ collisional excitation cooling rates in the low-density limit ne → 0,
which is appropriate for the cosmological simulations of interest (e.g., Tegmark et al. 1997).
Values for the collisional excitation cooling rate coefficients are highly uncertain (e.g. Chang,
Avrett, & Loeser 1991). In this work we use the coefficients from Cen (1992), as shown in
Fig. 7.6, which are commonly employed in the literature. They are based on Black (1981) but
are corrected such as to obey the proper high-temperature scaling. It is, however, not clear
whether they should be modified to cancel a possible over-correction (as was done for the
collisional ionisation coefficients by Theuns et al. 1998, see Sec. 7.2.2).

Bremsstrahlung

Bremsstrahlung, or free-free emission, is radiation emitted due to the acceleration of a charge
in the electric field of another charge (e.g. Rybicki & Lightman 2004). The bremsstrahlung
emissivity is often computed using classical physics and quantum effects are taken into account
by multiplication of the classical result with a corrective term, the so-called gaunt factor gf . We
limit ourselves to non-relativistic thermal bremsstrahlung, which is valid for electrons obeying
a Maxwellian velocity distribution of temperature T < mec

2/kB . 109 K. As noted in Rybicki
& Lightman (2004), bremsstrahlung due to collisions of like particles (e.g. electron-electron)
is zero in the dipole approximation, because the dipole moment is simply proportional to the
centre of mass, a constant of the motion. One must therefore consider two different particles.

In Fig. 7.7 we show (normalised) bremsstrahlung cooling rates employed in the literature,

cbrems = 1.42 × 10−27gfT
1/2ηe(ηHII + ηHeII + 4ηHeIII). (7.34)

The quoted rates only differ in the gaunt factor employed, which is sometimes just taken to
be constant (Black 1981; Cen 1992) and sometimes depends on the temperature (Theuns et al.
1998). In this work we employ the Theuns et al. (1998) gaunt factor.
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Compton cooling

Electrons can loose energy by Compton scattering off photons. The associated Compton cool-
ing4 rate per unit volume is (Weymann 1965)

n2
Hccompton =

4aT 4
γ σTne

mec
(kBT − kBTγ), (7.35)

where a is the Stefan-Boltzmann constant, σT is the Thompson scattering cross-section, me is
the electron mass and kBTγ is the photon energy. The derivation of the last expression as-
sumes a low-energy, homogeneous, isotropic photon gas interacting with a low-density, non-
relativistic electron gas with a Maxwellian distribution.

In the cosmological context, Compton cooling occurs because hot electrons scatter off cos-
mic microwave background photons. The photon energy of the cosmic microwave background
at redshift z is Tγ = 2.73(1 + z) K (Fixsen et al. 1996). Thus, Compton cooling, which scales as
T 4

γ for T ≫ Tγ , becomes important at high redshifts. We therefore include Compton cooling
off the microwave background in our compilation of cooling rates, employing the numerical
expression provided in Theuns et al. (1998).

7.3.2 Heating

The normalised heating rate H is the sum over the contributions from the rates of the individual
heating processes,

H =
∑

hi. (7.36)

Spitzer (1948) provides a detailed discussion of the importance of various heating processes.
Here we only consider the contribution from photo-ionisation heating, which will be the main
contributor to the heating rate for the high-redshift radiative transfer simulations of interest.
We note, however, that Compton heating by X-rays may not be negligible (Madau & Efstathiou
1999).

Photo-ionisation heating

We write the heating rate due to photo-ionisation as

n2
Hhγ = (ηHIEγHI + ηHeIEγHeI + ηHeIIEγHeII)nH (7.37)

where

Eγi =

∫

∞

νi

dν
4πJν(ν)

hpν
σγi(ν)(hpν − hpνi). (7.38)

Using Eq. 7.14, we can write
Eγi = Γγi〈ǫi〉, (7.39)

where

〈ǫi〉 =

[
∫

∞

νi

dν
4πJν(ν)

hpν
σγi(ν)(hpν − hpνi)

] [
∫

∞

νi

dν
4πJν(ν)

hpν
σγi(ν)

]

−1

(7.40)

is the average excess energy of ionising photons. Note that, using Eq. 7.16, Eγi = 〈σγi〉〈ǫi〉Ṅγ .

4Note that for Tγ > T , Compton scattering provides a heating mechanism.
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Figure 7.8: Average excess energy injected per photo-ionisation of species i for a range of temperatures
of the incident black-body spectrum Jν . Left-hand panel: Optically thin case (Eq. 7.40), using the fits
to the photo-ionisation cross-sections reported in Verner et al. (1996). For comparison, we show the
average excess energy per photo-ionisation of a hydrogen atom presented in Spitzer (1978). Note that
〈ǫi〉 ∼ kBTbb for black-body temperatures Tbb . 105 K typical of stars. Right-hand panel: Optically thick
case (Eq. 7.41), i.e. assuming photo-ionisation cross-sections σγi = 1.

As for the average photo-ionisation cross-section, the average excess energy can be calcu-
lated analytically for only a few special cases. For the important case of a black-body spectrum
and the functional form of the Verner et al. (1996) photo-ionisation cross-section referred to in
Table 7.1, no analytic solution is available. The numerically calculated average excess energies
〈ǫi〉 are shown in the left-hand panel of Fig. 7.8. For example, the values for a black-body tem-
perature Tbb = 105 K are 〈ǫHI〉 = 6.32 eV, 〈ǫHeI〉 = 8.70 eV and 〈ǫHeII〉 = 7.88 eV. Note that
the average excess energy is about equal to kBTbb for black-body temperatures typical of stars
(Spitzer 1948).

Sometimes, e.g. when considering the energy balance of entire HII-regions, one is interested
in computing the total photo-heating rate integrated over a finite volume, assuming all photons
entering this volume are absorbed within it. The average excess energy injected at each photo-
ionisation in this optically thick limit is also obtained from Eq. 7.40, but after setting σγi(ν) = 1,
since all photons are absorbed (e.g., Spitzer 1978, p.135),

〈ǫthick
i 〉 =

[
∫

∞

νi

dν
4πJν(ν)

hpν
(hpν − hpνi)

] [
∫

∞

νi

dν
4πJν(ν)

hpν

]

−1

. (7.41)

We show the numerically calculated average excess energies for the optically thick case 〈ǫthick
i 〉

in the right-hand panel of Fig. 7.8, assuming a black-body spectrum. As example, the values
for a black-body temperature Tbb = 105 K are 〈ǫthick

HI 〉 = 16.01 eV, 〈ǫthick
HeI 〉 = 13.72 eV and

〈ǫthick
HeII 〉 = 11.24 eV.

In writing Eqs. 7.40 and 7.41 we assumed that all of the photon excess energy is used to
heat the gas, corresponding to a complete thermalization of the electron kinetic energy. In
reality, (very energetic) photo-electrons may loose some of their energy due to the generation
of secondary electrons (e.g. Shull & van Steenberg 1985).
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7.4 EQUILIBRIUM SOLUTION

Most state-of-the-art cosmological simulations do not include the transport of radiation, but
compute photo-ionisation rates from a uniform photo-ionising background in the optically thin
limit. The employed photo-ionisation rates imply typical photo-ionisation time scales much
smaller than the Hubble time. The gas in these simulations is therefore assumed to remain
in ionisation equilibrium. The internal energy of the gas is then evolved using cooling rates
computed based on the equilibrium ionised fractions.

For reference, and as a consistency check, we here evaluate the cooling rates discussed in
the previous section that we will employ in radiative transfer simulations with TRAPHIC for
ionisation equilibrium.

7.4.1 Collisional ionisation equilibrium

For the special case of Γγi = 0, that is, in the absence of ionising radiation (collisional ionisation
equilibrium), the equilibrium ionised fractions are given by (set Γγi = 0 in Eqs. 7.7 - 7.13)

ηHI =

(

1 +
ΓeHI

αHII

)

−1

, (7.42)

ηHII = 1 − ηHI, (7.43)

ηHeI = ηHe ×

[

1 +
ΓeHeI

αHeII

(

1 +
ΓeHeII

αHeIII

)]

−1

, (7.44)

ηHeII = ηHeI
ΓeHeI

αHeII
, (7.45)

ηHeIII = ηHeII
ΓeHeII

αHeIII
, (7.46)

ηe = ηHII + ηHeII + 2ηHeIII. (7.47)

They are shown in the left-hand panel of Fig. 7.9. Using the equilibrium fractions, we deter-
mine the normalised individual and total cooling rates ci and C (see Sec. 7.3). They are shown,
for the rates listed in Table 7.1, in the middle and right-hand panels of Fig. 7.9, respectively.
For reference, the total cooling rate is compared to cooling rates commonly employed in the
literature, as indicated in the legend. Note that the ionised fractions in collisional ionisation
equilibrium do not depend on the density of the gas, they only depend on its temperature. If
we exclude Compton cooling from our considerations, then the normalised cooling rate also
becomes independent of the density.

The dependence of the collisional equilibrium cooling rate on temperature, the collisional
equilibrium cooling curve, has been well-studied (e.g., Cox & Tucker 1969; Sutherland & Dopita
1993; Schmutzler & Tscharnuter 1993; Gnat & Sternberg 2007). The cooling curve of atomic pri-
mordial gas exhibits two prominent peaks around the temperatures T ∼ 104 K and T ∼ 105 K,
corresponding to cooling from collisionally excited hydrogen and singly ionised helium atoms,
respectively. Temperatures T < 104 K are too low for atoms to be collisionally excited and
the cooling curve shows a sharp cut-off. The cut-off is so steep because the distribution of the
excitation states is given by the Boltzmann distribution, which depends exponentially on the
temperature (Sec. 7.3.1). In reality, the gas would also contain molecular hydrogen (H2) and
deuterated hydrogen (HD), which would extend its ability to efficiently cool down to temper-
atures T . 300 K (e.g., Tegmark et al. 1997; Lipovka, Núñez-López, & Avila-Reese 2005). For
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Figure 7.9: Case A collisional ionisation equilibrium. Left-hand panel: Equilibrium fractions. Note the
small enhancement in ηHeI due to dielectronic recombination for T ≈ 105 K. Middle panel: Total and
individual normalised collisional equilibrium cooling rates employed in this work (Table 7.1). From top
to bottom in the legend: total cooling, collisional ionisation cooling, recombination cooling, collisional
excitation cooling, Bremsstrahlung. Right-hand panel: Comparison of the total normalised equilibrium
cooling rate employed in this work (Table 7.1) with those employed in other works, as indicated in the
legend. The contribution from Compton cooling to the total cooling rate has been excluded, such that
the total normalised cooling rate becomes independent of the gas density and redshift.

temperatures T & 105 K, on the other hand, both hydrogen and helium are too highly ionised
(cp. the left-hand panel Fig. 7.9) to cool via collisional excitation. At these temperatures the gas
cools mainly through the emission of bremsstrahlung due to the deceleration of the free elec-
trons in the Coloumb field of the collisionally ionised hydrogen and helium atoms. We will see
later (Fig. 7.10) that, for typical densities and redshifts, at these temperatures Compton cooling
also becomes important.

7.4.2 Photo-ionisation equilibrium

Before we move on to discuss the general equilibrium solution, we briefly comment on the
special case Γei = 0 (pure photo-ionisation equilibrium) to point out the following interesting
fact. In photo-ionisation equilibrium, each photo-ionisation of HI is offset by a recombina-
tion of HII. The hydrogen photo-ionisation rates are therefore simply related to the hydrogen
recombination rates (set Γei = 0 in Eqs. 7.7 and 7.8),

ηHIΓγHI = ηHIIαHIIne (7.48)

The corresponding photo-heating rate per unit volume can thus be written as (see Sec. 7.3.2)

n2
HhγHI = nHIIαHIIne〈ǫHI〉. (7.49)

Hence in photo-ionisation equilibrium the heating rates associated with photo-ionisations of
hydrogen are independent of the amplitude Ṅγ of the ionising spectrum. They only depend on
its spectral shape, through Eq. 7.40.

7.4.3 General ionisation equilibrium

In the general case, i.e. if both Γγi > 0 and Γei > 0, the equilibrium ionised fractions depend not
only on the temperature, but also on the density of the gas (and on the ionising radiation field).
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For illustration, we show these fractions, evaluated for three characteristic gas densities, in the
top panels of Fig. 7.10. The ionised fractions shown in these panel assume a gas density equal
to the cosmic mean density at redshifts z = 9, 6 and 3 (from left to right). We have assumed
photo-ionisation rates ΓγHI = ΓγHeI = 10−13 s−1 and ΓγHeII = 10−15 s−1 to be representative
for photo-ionisation rates expected at redshifts z = 9 and 6, and ΓγHI = ΓγHeI = 10−12 s−1 and
ΓγHeII = 10−14 s−1 for z = 3 (e.g., Haardt & Madau 2001, Faucher-Giguère et al. 2008). The
total (normalised) net (i.e. heating minus cooling) cooling rates computed using these equilib-
rium fractions are shown in the bottom panels of Fig. 7.10 (black solid curves). This time we
have included Compton cooling. We have also indicated the contributions from the individual
cooling processes and from photo-heating. For reference, the cooling rate computed using col-
lisional ionisation equilibrium fractions is also shown (grey solid curve, with Compton cooling
included).

The general ionisation equilibrium cooling curve exhibits several prominent differences
with respect to the collisional ionisation equilibrium cooling curve discussed above. The net
cooling curve shows a zero crossing at Teq ∼ 104 K, where cooling is balanced by photo-heating.
For temperatures T < Teq, the main contribution to the net cooling curve is from photo-heating
and for temperatures T > Teq, the shape of the net cooling function is mainly determined by
cooling.

The value for Teq depends on both the gas density and the ionising radiation (e.g., Thoul &
Weinberg 1996). A harder spectrum yields higher excess energies 〈ǫi〉, raising the equilibrium
temperature. Higher densities, on the other hand, increase the cooling and hence lower the
equilibrium temperatures. Fig. 7.10 shows that for reasonable choices of parameters the equi-
librium temperature of gas at the cosmic mean density increases from Teq ≈ 104 K at z = 9 and
z = 6 to Teq ≈ 2 × 104 K at z = 3. Note, however, that we have ignored the important contri-
bution from adiabatic cooling of the gas due to the expansion of the Universe (Hui & Gnedin
1997).

Another important consequence of the inclusion of ionising radiation is the decrease of the
amplitude of the cooling curve peaks at T ∼ 104 K and T ∼ 105 K. Here, the increased ioni-
sation rate reduces the HI and HeI fractions, which lowers the efficiency of the gas to cool by
emission of de-excitation radiation. Observe that the effect is stronger at z = 6 than at z = 9
and still stronger at z = 3, due to a decreased gas density. This reduction of the amplitude
of the hydrogen and helium cooling peaks (and their slight shifts in position along the tem-
perature axis) due to the inclusion of ionising radiation and its implications for the formation
of structures in the Universe has been pointed out and thoroughly discussed in the past (e.g.,
Efstathiou 1992; Thoul & Weinberg 1996; Wiersma, Schaye, & Smith 2009).

For temperatures T & 105 K, the inclusion of ionising radiation does not noticeably affect
the cooling curve, because the atoms are already highly ionised due to collisional ionisation.
Note that Compton scattering is the dominant cooling process for temperatures T & 107 K for
the densities and redshifts considered.

7.5 NON-EQUILIBRIUM SOLUTION

In the last section we presented cooling rates in ionisation equilibrium for known values of the
gas temperature. The ionisation state and the gas temperature are, however, tightly coupled. In
(cosmological) hydrodynamical simulations they are therefore not determined independently
of each other. The ionised fractions depend on the gas temperature through the collisional
ionisation and recombination rates. On the other hand, the temperature is determined by the
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Figure 7.10: Case A ionisation equilibrium. Top panels: Equilibrium ionised fractions at redshift z = 9, 6
and 3 (from left to right) for gas at the cosmic mean density. Bottom panels: Total normalised (photo-) ion-
isation equilibrium (PIE) net cooling rates (black solid curves) computed using the equilibrium ionised
fractions for gas at the cosmic mean density at redshifts z = 9, 6 and 3 shown in the top panels. We
have assumed values for the photo-ionisation rates of ΓγHI = ΓγHeI = 10−13 s−1 and ΓγHeII = 10−15 s−1

at both z = 9 and z = 6 and ΓγHI = ΓγHeI = 10−12 s−1 and ΓγHeII = 10−14 s−1 at z = 3. We have
indicated the contributions to the cooling rate from collisional excitation (green dot-dashed curve), colli-
sional ionisation (red dotted curve), recombination (blue dashed curve), bremsstrahlung (orange triple-
dot-dashed) and Compton scattering (brown long-dashed curve that converges towards the total net
cooling curve at high temperatures). We have also shown the contribution from photo-heating (brown
long-dashed curve that converges towards the total net cooling curve for low temperatures). For com-
parison, the total normalised cooling rate computed assuming collisional ionisation equilibrium (CIE)
is also shown (grey solid curve, cp. Fig. 7.9), with Compton cooling included.

cooling rates, which depend on the ionised fractions.

In this section we will therefore study the combined evolution of ionised fraction and tem-
perature. We will, moreover, drop the assumption of ionisation equilibrium and compute the
evolution of the temperature of a gas parcel exposed to ionising radiation based on its non-
equilibrium cooling rates. The cooling rates are determined using the non-equilibrium ionised
fractions computed self-consistently along with the thermal evolution of the parcel. Our in-
vestigations will pave the way for accomplishing the main goal of this chapter, the thermal
coupling of our radiative transfer code TRAPHIC.

We start by explaining our numerical method to follow the ionisation state and temperature
of gas exposed to ionising radiation. We will then apply this method to solve an idealised test
problem. For simplicity, we confine our considerations to gas consisting of hydrogen only, but
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expect that they are straight-forward to generalise.

7.5.1 Method and implementation

In Chapter 5 we presented a method to follow the ionisation state of a gas parcel exposed to
(hydrogen-)ionising radiation at a fixed temperature. The method solved the (photo-)ionisation
rate equation, Eq. 5.4, over radiative transfer time steps ∆tr, by integrating it using sub-cycle
steps δt ≡ f × τeq ≤ ∆tr, where

τeq ≡
τionτrec

τion + τrec
(7.50)

is the time scale to reach ionisation equilibrium (Eq. 5.7 in Chapter 5), τrec ≡ 1/(neαHII) is the
recombination time scale, τion = 1/(ΓγHI + neΓeHI) is the ionisation time scale (see footnote 1 in
Chapter 5) and f is a dimensionless factor that controls the integration accuracy (see App. 5.A
in Chapter 5).

The sub-cycling was introduced to allow radiative transfer time steps ∆tr to be chosen
independently of the values of the ionisation and recombination time scales, which determine
the local evolution of the ionised fraction of a gas parcel exposed to a constant ionising radiation
field. A radiative transfer time step ∆tr limited by the ionisation and recombination time scales
would prevent efficient radiative transfer simulations, since these time scales may become very
small. The only assumption employed in the sub-cycling is that the ionising flux is constant
over the radiative transfer time step ∆tr, consistent with the discretisation of the radiative
transfer equation. We demonstrated the accuracy of the sub-cycling by comparing its results in
test simulations with the corresponding exact analytical solution.

Here we are interested in the self-consistent computation of the non-equilibrium ionisation
state of gas with an evolving temperature. In this case we will employ the sub-cycling tech-
nique as follows. As for the case of a non-evolving temperature, the ionisation rate equation
is integrated over sub-cycle steps δt = f × τeq (see Eqs. 5.21 and 5.22). Recombination and
collisional ionisation rates are determined using the temperature at the beginning of each sub-
cycle step and the ionised fractions are advanced in a photon-conserving manner (assuming a
constant ionising flux).

In addition, the temperature is advanced by evolving the internal energy according to
Eq. 7.26 over the same sub-cycle step assuming iso-choric evolution5, dV = 0. We use the mean
particle mass µ derived from the current species fractions to convert between temperature and
internal energy using Eq. 7.20. We also employ this equation after each update of the internal
energy to compute the corresponding temperature required to determine the new cooling rates
(which are functions of temperature, not internal energy). Note that the species fractions and
the temperature are evolved independently of each other over a single sub-cycle step. Their
evolution is coupled at the beginning of the next sub-cycle step, where the new temperature
and species fractions determine new collisional ionisation, recombination and cooling rates.

We now describe our numerical implementation of the sub-cycling. Because we have al-
ready described the implementation of the sub-cycling of the ionised fraction in Chapter 5, we
can here limit ourselves to the description of our method to advance the internal energy over
a single sub-cycle step. The internal energy is advanced by solving a discretized version of
the energy equation (i.e. Eq. 7.26 with dV = 0). There are several possibilities to perform this

5In radiation-hydrodynamical simulations, the sub-cycling is to be considered in operator-split (e.g., Castor 2004)
with the hydrodynamical evolution of the gas (volume).
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discretisation, which we will only briefly mention here. We refer the reader to Chapter 5 for a
more detailed discussion.

In the explicit Euler discretisation scheme,

ut+δt = ut +
n2

H,t

ρt
(Ht − Ct)δt, (7.51)

the new value ut+δt for the internal energy at time t + δt is determined by its present value ut

at time t. The scheme is straightforward to implement, but requires the size of the time step to
be smaller than the characteristic time scales involved. For larger time steps, the scheme may
become numerically unstable. The internal energy evolves on the cooling time scale

τu ≡ u/(du/dt) (7.52)

which may be shorter than the time scale τeq on which the ionised fraction is evolving. Its
accurate computation may therefore require an integration time step smaller than the size of
the sub-cycle step employed to evolve the ionised fraction. The description given in the last
paragraph assumed, however, an integration step that is identical to this sub-cycle step.

To solve this problem, we can refer to the same arguments as in Chapter 5. We could either
sub-cycle the evolution of the temperature in turn (i.e. over the sub-cycle step used to advance
the ionised fraction), or consider using an implicit integration scheme. Our main motivation
for employing sub-cycling, rather than implicit integration, to determine the evolution of the
ionised fraction was to ensure the accurate conservation of photons. This argument does, how-
ever, not apply to the temperature evolution.

For the evolution of the temperature we will therefore make use of the implicit Euler inte-
gration, since it has the advantage that it is often (but not always) computationally less expen-
sive. That is, we advance the internal energy according to

ut+δt = ut +
n2

H,t

ρt
(Ht+δt − Ct+δt)δt, (7.53)

The last equation is solved iteratively, by finding the zero of the function

f(ut+δt) = ut+δt − ut −
n2

H,t

ρt
(Ht+δt − Ct+δt)δt. (7.54)

In fact, in our implementation6 we combine the advantages of the explicit scheme (its ac-
curacy) with that of the implicit scheme (its stability): if the cooling time τu is large compared
to the sub-cycle time step δt, the internal energy is evolved explicitly (using Eq. 7.51), and
otherwise it is evolved implicitly (using Eq. 7.54).

Recall from Sec. 5.3.2 that, for the case of a constant temperature, we sped up the sub-
cycling of the neutral fraction once ionisation equilibrium has been reached by keeping the
species fractions fixed. We employ a similar recipe here. Thermal equilibrium is reached on
the cooling time scale τu, which is often much larger than the time scale τeq to reach ionisa-
tion equilibrium. In this case the temperature continues to evolve after the species fractions
attained their equilibrium values. The evolution of the temperature implies an evolution of
the recombination and collisional ionisation rates, and hence an evolution of the equilibrium
species fractions. Our recipe for speeding up the sub-cycling should respect this evolution.

6This implementation is a straight copy of that used to compute the gas temperature in the SPH code P-
GADGET3-BG, an improved version of GADGET-2 (Springel 2005).
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We therefore proceed as follows. Once ionisation equilibrium has been reached, we stop the
sub-cycling of the species fractions. Over the remainder of the time step ∆tr only the internal
energy is sub-cycled, which can be done using time steps δut ≡ fu × τu, where fu < 1 is a
dimensionless parameter (we set fu = f ). This results in a speed-up since typically δut ≫ δt.
After each such sub-cycle step, we reset the species fractions to their current equilibrium value
(Eqs. 7.7, 7.8,7.13 )

ηHI =

(

1 +
ΓγHI + ηenHΓeHI

αHIIηenH

)

−1

, (7.55)

ηe = ηHII = 1 − ηHI. (7.56)

In summary, we solve the evolution of the neutral fraction and temperature using a hybrid
numerical method that makes use of both explicit and implicit Euler integration schemes. The
ionisation rate equation is solved explicitly using the sub-cycling procedure presented in Chap-
ter 5. This ensures the accurate conservation of photons and allows us to choose the size of the
radiative transfer time step independently of the (often very small) ionisation and recombina-
tion time scales, a pre-requisite for efficient radiative transfer simulations. The temperature is
evolved along with the ionised fraction by following the evolution of the internal energy of the
gas. We use an explicit discretisation scheme to advance the internal energy if the cooling time
is larger than the size of the sub-cycle step. For smaller cooling times, stability considerations
lead us to employ an implicit discretisation scheme to advance the internal energy. Once ionisa-
tion equilibrium has been reached, the sub-cycling computation is sped up by fixing the species
fractions to their (temperature-dependent) quasi-equilibrium values. From then on, only the
evolution of the internal energy needs to be sub-cycled.

7.5.2 Test 5: Sub-cycling

In this section we test the numerical approach for following the ionisation state and tempera-
ture of gas parcels exposed to ionising radiation that we have described in the last section.

The set-up of the test is as follows. We simulate the evolution of an optically thin hydrogen-
only gas parcel with number density nH = 1 cm−3. The simulation starts at time t = 0 with a
fully neutral particle with initial temperature T = 102 K. We then apply a photo-ionising flux
of F = 1012 s−1 cm−2 with a black-body spectrum of characteristic temperature Tbb = 105 K.
Consequently, the parcel becomes highly ionised and is heated to a temperature T ∼ 104 K.
After t = 50 Myr we switch off the ionising flux and the particle recombines and cools. The
simulation ends at tend = 1 Gyr.

The test described here is identical to Test 0 of Chapter 5, except that this time we self-
consistently follow the temperature evolution (instead of assuming it to be constant), and that
collisional ionisations are now also included. We have also chosen to switch off the flux some-
what later than we have done in Test 0, because now the gas parcel evolves on a somewhat
larger time scale, as we will see below. Except for the switch-off time, the test here is identical
to Test 0 presented in Iliev et al. (2006).

We employ a grey photo-ionisation cross-section 〈σHI〉 = 1.63 × 10−18 (Sec. 7.2.1), yielding
a photo-ionisation rate ΓγHI = 1.63 × 10−6 s−1 (see the description of Test 0 in Chapter 5 for
its computation). We assume that each photo-ionisation adds 〈ǫHI〉 = 6.32 eV to the internal
energy of the gas (Sec. 7.3.2), which corresponds to the optically thin limit. The dimensionless
parameter f that controls the size of the sub-cycling steps is set to f = 10−2. When computing
Compton cooling rates off the cosmic microwave background, we assume a redshift z = 0.
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Figure 7.11: Test 5. Optically thin hydrogen-only gas parcel ionising up and recombining. The parcel
has a hydrogen number density nH = 1 cm−3 and is initially fully neutral at temperature T = 200 K.
It is exposed to a constant ionising photon flux F = 1012 s−1 (with a black-body temperature Tbb =
105 K), which is turned off at t = 50 Myr. The test is similar to Test 0 in Chapter 5, but now we
also compute the gas temperature. Top panel: neutral (solid curve) and ionised (dashed curve) fraction.
Middle panel: temperature. Bottom panel: heating and cooling rates (energy losses or gains per unit
time per unit volume). Processes shown are collisional ionisation cooling (black solid curve), collisional
excitation cooling (blue dotted curve), recombination cooling (red dashed curve), bremsstrahlung (green
dot-dashed curve), Compton cooling off the z = 0 cosmic microwave background (orange triple-dot-
dashed curve) and photo-heating (brown long dashed curve).

Fig. 7.11 shows the evolution of the neutral fraction ηHI (solid curve in the top panel),
ionised fraction ηHII (dashed curve in the top panel) and gas temperature T (middle panel).
It contains results from a set of simulations with different time steps (shown in Fig. 7.12) such
as to economically cover the more than thirteen orders of magnitude in time. We also show the
corresponding cooling and heating rates (bottom panel). The parcel quickly approaches photo-
ionisation equilibrium, reaching its equilibrium neutral fraction after a few (photo-)ionisation
time scales τion ≡ Γ−1

γHI ≈ 0.02 yr. During this period, photo-heating raises its temperature to

T ∼ 104 K. Throughout most of its evolution, the cooling rate is dominated by Bremsstrahlung
and recombination radiation. Collisional excitation and collisional ionisation cooling become,
however, important when the temperature T ≈ 104 K and the neutral fraction is sufficiently
large. The contribution due to Compton cooling (off the z = 0 cosmic microwave background)
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Figure 7.12: Test 5. Evolution of neutral fraction (left-hand panel) and temperature (right-hand panel),
cp. Fig. 7.11. The top panels show the evolution of the neutral fraction and temperature for simulations
with different radiative transfer time steps ∆tr, as indicated in the legend. All simulations use f = 10−2.
The bottom panels show the relative error of the evolutions shown in the top panel with respect to the
evolutions obtained from the simulations with the next smaller time step.

is always negligible.
Around t ∼ 105 yr, the neutral fraction exhibits a slight decrease. This is caused by the

decrease in the recombination rate due to the rise in temperature that can be observed at this
time. The fact that the temperature still evolves after the neutral fraction reached its equilibrium
value means that thermal equilibrium is reached on a larger time scale than photo-ionisation
equilibrium. The observed behaviour can be understood as follows. When thermal equilib-
rium is approached from a temperature lower than the equilibrium temperature, the net cool-
ing rate is approximately given by the photo-heating rate (see the bottom panel of Fig. 7.11).
In photo-ionisation equilibrium, the photo-heating rate is proportional to the recombination
rate (Eq. 7.49). The time scale τu ≡ u/(du/dt) to reach thermal equilibrium can therefore be
expressed in terms of the recombination time τrec ≡ 1/(neαHII),

τu =
(3/2)nkBT

n2
Hhγ

(7.57)

=
(3/2)nkBT

nHIIneαHII〈ǫHI〉
(7.58)

=
(3/2)nkBT

〈ǫHI〉nHII
τrec (7.59)

∼ τrec, (7.60)

where in the last step we assumed that the gas is highly ionised, i.e. nHII ≈ nH ≈ n/2, and that
T ≈ 104 K. The recombination time (and hence the thermal time) is much larger than the time
τeq ≡ (τionτrec)/(τion + τrec) to reach ionisation equilibrium for τion ≪ τrec (see the discussion in
Sec. 5.2 in Chapter 5). Here, Γ−1

γHI ≈ 0.02 yr (as noted above) and τrec ≈ 105 yr. Accordingly,
thermal equilibrium is reached much later than photo-ionisation equilibrium.

After thermal equilibrium is reached, the ionising flux is switched off and the particle re-
combines and cools. Once it has cooled to a temperature T . 104 K, cooling by the processes
included here becomes inefficient (see, e.g, the right-hand panel of Fig. 7.9). The temperature
of the recombining particle therefore remains constant.
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In Fig. 7.12 we quantify the accuracy of our sub-cycling approach. The top left-hand panel
shows the evolution of the neutral fraction, while the top right-hand panel shows the evolution
of the temperature for simulations with radiative transfer time steps ∆tr = 5 × (10−5, 10−3,
10−1, 101, 103, 105) yr. Note that not all of the simulations have been evolved until the end of
the simulation time, but have been stopped once their simulation time overlapped with that
of simulations with the next larger radiative transfer time step. Clearly, the results of the sub-
cycling are insensitive to the size of the time step.

The bottom panels of Fig. 7.12 show the relative error with respect to the result of the sim-
ulation with the next smaller time step. For all time steps the relative error is small, . 10%.
It can be further reduced by lowering the numerical factor f , which determines the size of the
sub-cycle steps.

In summary, we have demonstrated that our sub-cycling recipe accurately predicts, inde-
pendently of the size of the radiative transfer time step, the combined evolution of the neutral
fraction and temperature of gas exposed to hydrogen-ionising radiation. In the following sec-
tion we will employ the sub-cycling to compute the species fractions and temperature of gas
parcels in radiative transfer simulations.

7.6 THERMAL COUPLING

In this section we extend the implementation of TRAPHIC that we presented in Chapters 5 and
6 to perform ionising radiative transfer simulations that additionally evolve the temperature of
the gas. We will limit our implementation to the transport of mono-chromatic (or grey) ionising
radiation on static density fields. The extension to multi-frequency transport and the thermal
coupling of the radiation to the hydrodynamical evolution of the gas are left for future work.

We start by briefly recalling the parameters that control the performance of TRAPHIC and
describing the changes made to incorporate the computation of the gas temperature. We then
test our thermally coupled implementation. First, in test 6, we compute the evolution of the
ionised fraction and the temperature around a single ionising source that is embedded in an
initially cold and neutral homogeneous hydrogen-only cloud. This test is thus similar to the
Test 1 that we have presented in Chapter 5. We compare our results to reference solutions ob-
tained with TT1D, a one-dimensional (multi-frequency) radiative transfer code that we have
developed for this purpose (see Chapter 5). We briefly comment on the importance of a de-
tailed multi-frequency treatment of this problem and compare the performance of TRAPHIC

with that of other radiative transfer codes whose performance in this test has been published
in Iliev et al. (2006). Second, similar to what we have done in Test 4 in Chapter 5, we apply our
implementation to solve the radiative transfer equation in a scaled-down version of a typical
reionisation simulation. Again, we compare the results obtained in this test to results obtained
with other radiative transfer codes for the same test problem (Iliev et al. 2006).

As mentioned in the introduction, TRAPHIC is a radiative transfer scheme for use with SPH
simulations. It solves the radiative transfer equation in a spatially adaptive way by tracing pho-
tons from radiation sources directly on the unstructured grid comprised by the SPH particles.
The linear scaling of the computation time with the number of light sources that is exhibited by
conventional radiative transfer schemes is avoided by employing a source merging procedure
that strictly respects the chosen angular resolution. Photons are traced by propagating photon
packets from particles to their Ñngb neighbours (residing in the surrounding sphere of radius
h̃) inside cones. The introduction of cones is necessary to accomplish the transport of radiation
in a directed manner on the generally highly irregular distribution of the SPH particles. The
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opening angle Ω of the cones determines the formal angular resolution of the radiative trans-
fer. It is conveniently expressed in terms of a cone number, Nc ≡ 4π/Ω. In practice the angular
resolution is, however, much higher than the formal one because the photon transport with
TRAPHIC is adaptive in angle.

The photon transport can be decomposed into two main parts. First, source particles emit
photon packets to their Ñngb neighbouring SPH particles (at a rate determined by their lu-
minosity), by means of a set of Nc tessellating emission cones. The number of neighbours
Ñngb is a parameter that is usually matched to the number of neighbours Nngb (residing in the
sphere of radius h) used in the computation of the particle’s SPH properties, Ñngb . Nngb.
Second, the photon packets received by the neighbouring SPH particles are propagated further
downstream. They are confined to the emission cones into which they were originally emitted
through the use of transmission cones of solid angle 4π/Nc. The transport is performed using
radiative transfer time steps of size ∆tr. After each such time step, the properties of the SPH
particles are updated according to their interactions (absorptions, scatterings) with the pho-
ton packets. We refer the reader to Chapter 4 for a more detailed and complete description of
TRAPHIC.

In Chapters 5 and 6 we have presented, respectively, implementations of TRAPHIC into the
SPH codes GADGET-2 and P-GADGET3-BG. These implementations aimed to solve the transfer
of ionising radiation and the evolution of the non-equilibrium ionisation state of gas in cos-
mological simulations for prescribed gas temperatures. Compared with the preparatory work
presented earlier in this chapter, the modifications to these implementations that are required
to compute the temperature in addition to the ionisation state of the gas are small. We only
need to replace the sub-cycling routine presented in Chapter 5 by that presented in Sec. 7.5. In
addition, we replace the expressions for the recombination rate and the photo-ionisation cross-
section used in Chapters 5 and 6 by those listed in Table 7.1 and we also include collisional
ionisations.

7.6.1 Test 6: HII region expansion in the grey approximation

Here we apply our thermally coupled implementation of TRAPHIC to compute the evolution
of the ionisation state and temperature around an ionising source surrounded by gas of con-
stant density. This is an idealised test problem designed to facilitate the verification of our
implementation through the direct comparison to results obtained with our one-dimensional
code TT1D as well as to published results obtained with other radiative transfer codes for the
same test problem (Iliev et al. 2006). It captures the main characteristics of a thermally coupled
radiative transfer simulation that we wish to verify: conservation of the number of ionising
photons, which ensures that the final ionised region attains the correct size, and conservation
of their associated energy, which, together with an accurate implementation of the relevant
cooling processes, ensures that the ionised region settles into the correct thermal structure.

Despite its simplicity, an analytical solution to the present problem cannot be obtained. This
is because the coupling between the ionisation and temperature state through the dependence
of the collisional ionisation, recombination and cooling rates on the temperature and species
fractions impedes the evaluation of the governing differential equations (Eq. 7.1 and 7.26). To
provide an approximate point of reference, the evolution of the ionised region in this problem
can be compared to the evolution of the ionised region in an equivalent problem that employs a
fixed gas temperature and for which an analytical solution is known (assuming that the ionised
region is fully ionised and ignoring collisional ionisations). We have reviewed this solution in
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Figure 7.13: Test 6. Evolution of the ionisation front radius. Top panel: Ionisation front radius divided
by the Strömgren radius rS. For comparison, the evolution of the ionisation front radius obtained from
the analytical approximation (which assumes a constant temperature) is indicated with the black dotted
curve. Bottom panel: Ionisation front radius divided by the analytical approximation rI. All simulations
show very good agreement with the exact solution (black solid curve). The predicted ionisation front
radius is larger than that found in Test 1, Chapter 5 (black long-dashed curve), which assumed a different
value for the photo-ionisation cross-section (and a constant temperature of T = 104 K throughout the
ionised region).

Chapter 5, where we showed that the radius of the ionised sphere around a source of ionising
luminosity Ṅγ that is located in a homogeneous hydrogen-only medium of density nH is given
by

rI(t) = rs(1 − e−t/τs)1/3, (7.61)

where rs = [3Ṅγ/(αB,HIIn
2
H)]1/3 is the Strömgren radius and τs = 1/(αB,HIInH) is the Strömgren

time scale, which equals the recombination time for fully ionised gas. In some of our compar-
isons we will employ this approximate point of reference, using a recombination coefficient
αB,HII = 2.59 × 10−13 cm3 s−1 appropriate for ionised gas of temperature T ≈ 104 K (see
Fig. 7.3). We will refer to it as an analytical approximation.

The parameters for the test are taken from Iliev et al. (2006). We consider an ionising
source embedded in a homogeneous hydrogen-only density field with number density nH =
10−3 cm−3. The source has a black-body spectrum with temperature 105 K and emits radiation
with an ionising luminosity Ṅγ = 5 × 1048 photons s−1. The test described here is identical to
Test 1 in Chapter 5, except that now the gas temperature is allowed to vary due to heating and
cooling processes as described in Sec. 7.3 (with Compton cooling off the redshift z = 0 cosmic
microwave background included) and that collisional ionisation is included.

The hydrogen is assumed to have an initial ionised fraction ηHII = 1.2×10−3 (approximately
corresponding to the ionised fraction implied by collisional ionisation equilibrium at tempera-
ture T = 104 K, Fig. 7.9). Its initial temperature is set to 100 K. For reference, the recombination
time is τS = 122.4 Myr and the Strömgren radius is rS = 5.4 kpc (assuming a temperature of
T = 104 K, appropriate for the ionised gas). Radiation is transported using a single frequency
bin in the grey approximation (see Sec. 5.3.5 in Chapter 5). For the assumed spectrum this im-
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plies a cross-section for absorption of ionising photons 〈σHI〉 = 1.63×10−18 cm2 (Sec. 7.2). Each
photo-ionisation results in a free electron with kinetic energy 〈ǫHI〉 = 6.32 eV (Sec. 7.3, optically
thin limit). Below, in Sec. 7.6.2, we will discuss the effects of this approximate treatment of the
present multi-frequency problem.

The numerical realization of the initial conditions is similar to that used for Test 1 in Chap-
ter 5. The ionising source is located at the centre of a simulation box with side length Lbox =
13.2 kpc. The box boundary is photon-transmissive. We assign each SPH particle a mass
m = nHmHL3

box/NSPH, where NSPH is the total number of SPH particles. The positions of
the SPH particles are chosen to be glass-like, which yields initial conditions that are more reg-
ular when compared to those obtained from a Monte Carlo sampling of the density field. The
SPH smoothing kernel is computed and the SPH densities are found using the SPH formalism
implemented in GADGET-2, with Nngb = 48.

The radiative transfer time step is set to ∆tr = 10−2 Myr to facilitate a comparison to Test 1
in Chapter 5. For the same reason, we limit ourselves to solving the time-independent radiative
transfer equation and propagate photons during each time step only from a given particle to
its direct neighbours (see the discussion in Sec. 5.3.3, Chapter 5). All simulations presented
in this section employ NSPH = 643 SPH particles, which are evolved for a total of 500 Myr.
Some of our simulations employ the resampling technique introduced in Chapter 5 to reduce
artefacts due to the particular setup of the initial conditions. Briefly, each SPH particle is, within
its spatial resolution element whose size is determined by the diameter of the SPH kernel 2h,
regularly (here: every 10th radiative transfer time step) offset randomly from its initial position.
For comparison, we repeat all simulations without employing this technique. We perform
simulations of increasing angular resolution, from Nc = 8 and Nc = 32 to Nc = 128, with fixed
Ñngb = 32. Figs. 7.13 - 7.16 show our results.

In Fig. 7.13 we show the evolution of the ionisation fronts for the simulations with resam-
pling. The black dotted curve indicates the analytical approximation, Eq. 7.61. The black solid
curve shows the ionisation front obtained with our one-dimensional radiative transfer code
TT1D. It is referred to as the exact solution. All simulations accurately predict the evolution
of the ionisation front. We also show the exact solution for the ionisation front evolution em-
ployed in Test 1 (Chapter 5), which assumed a fixed temperature T = 104 K (and a slightly dif-
ferent value for the photo-ionisation cross-section). The final ionisation front radius obtained
in the present test is slightly larger that that obtained in Test 1, which is mostly due to the dif-
ferences in the employed photo-ionisation cross-sections, as we demonstrate below (Fig. 7.17).
Some of the differences in the final radii may also be attributed to the fact that the typical tem-
peratures found here are slightly larger than the temperature T = 104 K that was assumed in
Test 1, implying a smaller recombination rate. Our results are in excellent agreement with those
shown in Fig. 15 of Iliev et al. (2006).

We now discuss the internal structure of the ionised and photo-heated sphere. In Fig. 7.14
we present slices through the centre of the simulation box showing the neutral fraction (top
two rows) and temperature (bottom two rows) at time7 t = 100 Myr. From left to right in
each row, the panels show simulations with angular resolution Nc = 8, 32 and 128. Counting
from the top, the second and fourth row show the results of the simulations which included
resampling, while the first and third row show the results of identical simulations but for which
the resampling was turned off. In each panel we indicate, as a point of reference, the analytical

7The reason why we do not show the slices at the end of the simulations, i.e. at time t = 500 Myr, as we did in
the corresponding Test 1 in Chapter 5, is that the simulation box is slightly too small to contain the whole ionised
sphere at this time (because of the smaller photo-ionisation cross-section that is employed here).
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Figure 7.14: Test 6. Neutral fraction (top two rows) and temperature (bottom two rows) at time t = 100 Myr
in a slice through the centre of the simulation box. From left to right: angular resolution Nc = 8, 32
and 128. First and third row: No resampling. Second and fourth row: Resampling of the particle po-
sitions after every 10th radiative transfer time step. The dot-dashed circle indicates the position of
the ionisation front, calculated using the analytical approximation discussed in the text. Contours
show neutral fractions of ηHI = 0.9, 0.5 , log10 ηHI = −1,−1.5,−2,−2.5,−3,−3.5 and temperatures
log10 T = (3, 4, 4.2) × 104 K (from the outside in). The colour scale employed for the neutral fraction
is identical to that used in the corresponding Fig. 5.4 of Test 1 (Chapter 5). The crosses in the top two

rows indicate the spatial resolution 〈2h̃〉.
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Figure 7.15: Test 6. Scatter plots and profiles of the neutral (ionised) fraction and temperature at time
t = 100 Myr for simulations with angular resolution Nc = 8 (left), 32 (middle) and 128 (right). Top
row: No resampling. Bottom row: Resampling of the particle positions after every 10th radiative transfer
time step. Each dot represents the neutral fraction (ionised fraction, temperature) of a single particle.
Solid curves show the median neutral fraction (ionised fraction, temperature) in spherical bins around
the ionising source. The vertical error bars show the 68.3% confidence interval in each bin. Dashed
curves indicate the reference solution obtained with our one-dimensional radiative transfer code TT1D.
The horizontal error bars in the upper left corners indicate the spatial resolution. The results of all
simulations in excellent agreement with the reference solution. Without the resampling, the results are

slightly noisier if Nc ≈ Ñngb (top middle panel).

approximation for the position of the ionisation front by a dash-dotted circle.

Interior to the ionisation front the gas is highly ionised and photo-heated to typical temper-
atures T ≈ 1.5 × 104 K (with maximum temperatures T ≈ 2 × 104 K). The results obtained
in the simulations that employed the resampling of the density field are independent of the
angular resolution, an observation that is in agreement with expectations based on the spher-
ical symmetry of the problem. The runs that did not employ the resampling, however, show
slight deviations from the expected spherical shape which depend on the angular resolution.
As discussed for Test 1 in Chapter 5, the deviations are caused by the particular arrangement
of the SPH particles. Reducing this particle noise, which is strongest when Nc ≈ Ñngb, was the
motivation for introducing the resampling technique.

In Fig. 7.15 we compare the median profiles of the neutral fraction and the temperature at
time t = 100 Myr obtained from the three-dimensional simulations with TRAPHIC (solid curves
with error bars, which indicate the 68.3 confidence interval in the corresponding bin) to the
reference simulation obtained with our one-dimensional radiative transfer code TT1D (dashed
curves). From left to right in each row, the panels show simulations with angular resolution
Nc = 8, 32 and 128, respectively. We show profiles obtained from both the simulations that
employed the resampling of the particle positions (bottom row) and from the simulations that
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Figure 7.16: Test 6. Radial dependence of individual cooling rates at 30 Myr (left-hand panel), 100 Myr
(middle panel) and 500 Myr (right-hand panel): From top to bottom in the legend: total cooling rate, colli-
sional ionisation cooling, recombination cooling, collisional excitation cooling, bremsstrahlung, Comp-
ton cooling (off the z = 0 cosmic microwave background).

did not employ it (top row).

The results of all simulations are in excellent agreement with the reference result. The small
deviations that are present very close to the ionising source and in regions where the pro-
file gradients are steep are due to the finite spatial resolution (indicated with horizontal error
bars). The effect of resampling in reducing noise can most clearly be seen when comparing the
simulations with angular resolution Nc = Ñngb = 32 with each other (middle panels). Note,
however, that for the simulation with the highest angular resolution that we have considered
here (Nc = 128), the resampling slightly reduces the agreement with the reference simulation
because it introduces additional scatter. This scatter is, however, consistent with the spatial
resolution employed.

Finally, it is interesting to take a closer look at the cooling rates that determine the evolution
of the gas temperature in the current problem. Fig. 7.16 shows the cooling rates (per unit
volume) employed in our reference simulation with TT1D at times t = 30, 100, and 500 Myr.
For most of the ionised region collisional excitation is the dominant cooling process. Outside
the ionised region recombination cooling and bremsstrahlung dominate. The latter two cooling
processes become, however, also important very close to the ionising source, where the neutral
fraction becomes too low for collisional excitation to contribute significantly to the cooling rate.

7.6.2 HII-region expansion: multi-frequency simulation

We now briefly comment on the grey treatment of the multi-frequency problem presented in
the last section by comparing it to a full multi-frequency simulation. Because the current imple-
mentation of TRAPHIC only uses a single frequency bin, we will employ our one-dimensional
mesh-code TT1D for the numerical investigations in this section.

We start by verifying our multi-frequency treatment in TT1D by comparing its performance
in a simple test problem, similar to the one presented in the previous section, to the correspond-
ing equilibrium solution that can be analytically derived (except for a numerical evaluation of
the integrals involved). The test consists of simulating the spherically symmetric growth of the
ionised region around a single ionising source in a homogeneous hydrogen-only medium. The
source emits Ṅγ = 5 × 1048 photons s−1 with a black-body spectrum of Tbb = 105 K. The gas
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Figure 7.17: Photo-ionisation equilib-
rium profiles of the neutral and ionised
fraction around a single black-body
source in a homogeneous hydrogen-
only medium. The numerical result
obtained with TT1D (diamonds) shows
excellent agreement with the analyti-
cally computed exact results (blue solid
curve). For comparison, we also show
the analytically computed exact solu-
tions assuming the grey approxima-
tion used in Sec. 7.6.1 (red dashed
curve) and the mono-chromatic treat-
ment used in Test 1 of Chapter 5 (black
dotted curve). The grey approxima-
tion agrees with the exact solution in
the optically thin limit (i.e. in the ab-
sence of spectral hardening), while the
monochromatic treatment always fails.

density is nH = 10−3 cm−3. In contrast to the test in the previous section, the initial ionised
fraction is ηHII = 0, the gas temperature is assumed to be constant and we use a recombination
coefficient αB,HII = 2.59 × 10−13 cm3 s−1, appropriate for photo-ionised gas with temperature
T ≈ 104 K. Collisional ionisation is not included. The test is therefore identical to Test 1 in
Chapter 5. The spatial resolution, the time step and the number of frequency bins used in the
simulation with TT1D are chosen such as to achieve numerical convergence.

In Fig. 7.17 we show the neutral (ionised) fraction profile in photo-ionisation equilibrium.
Diamonds show the result of the simulation with TT1D (at t = 2000 Myr). The blue solid curve
indicates the exact equilibrium solution that we have already employed in Chapter 5, obtained
by solving (e.g., Osterbrock 1989)

ηHI,eq(r)nH

4πr2

∫

dν Ṅγ(ν)e−τν σν = η2
HII,eq(r)n

2
HαB,HII, (7.62)

where the frequency-dependent optical depth τν(r) is given by

τν(r) = nHσν

∫ r

0
dr′ ηHI,eq(r

′). (7.63)

The simulation result is in excellent agreement with the exact equilibrium solution, verifying
our multi-frequency implementation of TT1D. For comparison, we also show the exact equilib-
rium solutions assuming that the radiation is monochromatic (dotted black curve), assuming a
photo-ionisation cross-section evaluated at the ionisation threshold, i.e. σHI = 6.3 × 10−18 cm2

, and grey, i.e. using the average cross-section 〈σHI〉 = 1.63 × 10−18 cm2 that we have already
employed in the last section (dashed red curve). Observe that the grey treatment provides an
excellent description of the multi-frequency problem at small distances. The monochromatic
solution, on the other hand, shows large deviations with respect to the multi-frequency solu-
tion at all distances from the source.
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The reason for the differences between the results of the multi-frequency computation and
the results of the grey and monochromatic computation can be readily understood. The ab-
sorption cross-section for ionising photons is a strongly decreasing function of the photon en-
ergy. The ionising photons with the lowest energy are therefore preferentially absorbed, which
leads to an increase in the typical photon energy with distance. This is referred to as spec-
tral hardening. Because the photon mean free path is inversely proportional to the absorption
cross-section, spectral hardening increases the width of the ionisation front with respect to that
obtained in the absence of spectral hardening. Note that spectral hardening only becomes im-
portant for large optical depths, which explains why the grey approximation reproduces the
multi-frequency solution at small distances where the neutral fraction is low. The monochro-
matic approximation, on the other hand, always fails to describe the multi-frequency problem,
since it implies an inappropriate value for the photo-ionisation rate8. For completeness we note
that the use of the photo-ionisation cross-section from Osterbrock (1989) instead of that from
Verner et al. (1996) leads to nearly indistinguishable results.

Having demonstrated the validity of our multi-frequency treatment with TT1D, we now use
it to repeat the test problem analysed in the previous section. The resulting neutral (ionised)
fraction and temperature profiles at times t = 30, 100 and 500 Myr are shown in Fig. 7.18 (black
solid curves). They are compared to the results of the grey treatment that we have discussed
in the previous section (red dotted curves). We recall that there we employed photo-heating
rates computed in the optically thin limit (Eq. 7.40), according to which each photo-ionisation
adds 〈ǫHI〉 = 6.32 eV (Sec. 7.3.2) to the internal energy of the gas. We henceforth employ the
label grey thin to distinguish this simulation from a simulation that was identical except for the
fact that we employed photo-heating rates computed in the optically thick limit (Eq. 7.41), i.e.
adding 〈ǫthick

HI 〉 = 16.01 eV (Sec. 7.3.2) per photo-ionisation to the internal energy of the gas.
This simulation is labelled grey thick in Fig. 7.18 (blue dashed curves). We also show the results
obtained with the other radiative transfer codes C2-RAY (Mellema et al. 2006), CRASH (Ciardi
et al. 2001; Maselli, Ferrara, & Ciardi 2003) and FTTE (Razoumov & Cardall 2005) for the same
test problem, as published in Iliev et al. (2006).

The differences in the neutral fractions between the grey and the multi-frequency simula-
tions that we have discussed above for Fig. 7.17 are again clearly visible (top panels of Fig. 7.18).
The grey simulation that employed photo-heating in the optically thin limit yields results that
asymptote to those obtained in the multi-frequency simulation at small distances from the ion-
ising source. At large distances, i.e. near the ionisation front and beyond, on the other hand,
the multi-frequency simulation predicts significantly larger ionised fractions than those pre-
dicted by this grey simulation. This is because the photon mean free path is larger in the
multi-frequency simulation than in the grey simulations due to spectral hardening, leading to
a smoother transition between the highly ionised gas interior to and the neutral gas far ahead
of the ionisation front.

The grey simulation that employed photo-heating rates computed in the optically thick
limit (grey thick) yields neutral fractions that are very similar to those found in the grey sim-
ulation that computed photo-heating in the optically thin limit (grey thin). The grey thick sim-
ulation predicts, however, slightly lower neutral fractions than the grey thin simulation, since
it yields slightly larger temperatures, and thus smaller recombination rates, throughout the
ionised region (bottom panels of Fig. 7.18). In contrast to the grey thin simulation, the neutral
fractions obtained in the grey thick simulation therefore do not asymptote to those obtained in

8As discussed in Sec. 5.3.5 of Chapter 5, the photo-ionisation rate implied by the grey approximation, on the other
hand, is by construction identical to the true photo-ionisation rate computed in the multi-frequency simulation.
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Figure 7.18: Comparison of the grey approximations with the full multi-frequency solution, both ob-
tained with TT1D. Panels show spherically averaged profiles of neutral (ionised) fraction (top) and tem-
perature (bottom) at times t = 30 (left), 100 (middle) and 500 Myr (right). The black solid curve shows
the multi-frequency solution. The red dotted (blue dashed) curve shows its grey approximation as-
suming photo-heating rates computed in the optically thin (thick) limit. The grey and multi-frequency
simulations show clear differences close to and beyond the ionisation front, where the large optical
depth causes a spectral hardening of the emitted black-body radiation spectrum. For reference, we also
show results obtained with other radiative transfer codes as published in Iliev et al. (2006). The large
differences between these results at large distances mainly reflect the large differences in the numerical
treatment of multi-frequency radiation in these codes. Most of the differences close to the ionising source
have their origin in the use of different assumptions for computing photo-heating rates, as a comparison
to the results obtained with TT1D reveals.

the multi-frequency simulation at small distances to the ionising source. Instead, they remain
systematically too small.

The differences between the grey and multi-frequency simulations (and between the grey
thin and grey thick simulations) become particularly apparent when inspecting the correspond-
ing temperature profiles. The multi-frequency simulation predicts substantially higher gas
temperatures ahead of the ionisation front. This pre-heating is a simple consequence of the
increase in the photon mean free path above the one predicted by the grey simulations. As
already noted, at fixed radii the grey thick simulation predicts systematically higher gas tem-
peratures than the grey thin simulation. The reason is that in the optically thin limit the contri-
bution of high-energy photons to the photo-heating rate is reduced due to the weighting by the
absorption cross-section σHI(ν), which is a strongly decreasing function of the photon energy.
Observe that the temperatures (like the neutral fractions) obtained in the grey thin simulation
asymptote to those obtained in the multi-frequency simulation at small distances to the ionis-
ing source, while the temperatures predicted by the grey thick simulation are too high even in
this limiting case.

We summarise our discussion of the differences between the grey and multi-frequency sim-
ulations for the present problem by noting that the use of the grey approximation leads to neu-
tral fractions and temperatures that generally are very different from those obtained in detailed
multi-frequency simulations. At large optical depths, i.e. generally close to and beyond the ion-
isation front, the neutral fractions are systematically too high and the temperatures are system-
atically too low, due to the lack of spectral hardening. The grey treatment yields neutral frac-
tions and temperatures that asymptote to those obtained in the corresponding multi-frequency
simulation at small distances to the ionising source when photo-heating rates are computed in
the optically thin limit, i.e. using Eq. 7.40. When computing photo-heating rates in the optically
thick limit, i.e. using Eq. 7.41, the neutral fractions and temperatures do not asymptote to the
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correct values at small distances to the ionising source , i.e. the values predicted by the multi-
frequency simulation. Consequently, when one invokes the grey approximation to compute
the thermal structure of ionised regions, one should compute photo-heating rates in the opti-
cally thin limit. Photo-heating rates in the optically thick limit should only be employed when
considering the thermal balance of an ionised region as a whole. Ideally, one would perform
detailed multi-frequency simulations and simply dispense with the grey approximation.

Finally, we compare the results of our simulations with TT1D to those obtained with C2-
RAY, CRASH and FTTE for the same test problem (Iliev et al. 2006). We note that the simulation
with CRASH employed multiple frequency bins, while the one with FTTE was done using a
single frequency bin and computing photo-ionisation and optically thick photo-heating in the
grey approximation (Alexei Razoumov, private communication). Finally, C2-RAY used a hybrid
method (Garrelt Mellema, private communication): the absorption of ionising radiation was
computed as a function of frequency, but each photo-ionisation injected the same amount of
energy, regardless of the frequency of the absorbed photon. This method thus accounts fully
for the spectral hardening of the radiation but ignores it when computing photo-heating rates.

There are large differences in the results obtained with these three codes. At large distances
from the ionising source, i.e. close to and beyond the ionisation front, most of these differences
may certainly be attributed to differences in the multi-frequency implementation, leading to
differences in the spectral hardening of the emitted black-body spectrum. At these distances,
the neutral fractions obtained in our grey simulations agree closely with those obtained with
FTTE, while the neutral fractions obtained in our multi-frequency simulations closely agree
with those obtained with C2-RAY, as expected from our discussion above.

The results exhibit, however, also large differences in the neutral fractions and tempera-
tures close to the ionising source, where the gas is optically thin and the emitted black-body
radiation spectrum is not deformed due to spectral hardening. Some of these differences can
be attributed to the fact that the different codes employ different expressions for cross-sections,
recombination and cooling rates. As demonstrated in Iliev et al. (2006) (their Fig. 4), different
recombination and cooling rates may, however, only account for differences in the neutral frac-
tion and temperature of at most . 10%. We have verified this observation by employing the
rates used with the different codes (Table 2 in Iliev et al. 2006) in simulations with TT1D.

Most of the differences close to the ionising source may instead be traced back to the use of
different assumptions underlying the computation of the photo-heating rates. In fact, the tem-
peratures predicted with CRASH are in excellent agreement with the temperatures predicted in
our multi-frequency and grey thin simulations, while the temperatures predicted by FTTE and
C2-RAY are in excellent agreement with the temperatures predicted in our grey thick simula-
tion. We note that the fact that the neutral fractions obtained with CRASH are systematically
too large may indicate that the radiation field was too poorly sampled (see Maselli, Ciardi, &
Kanekar 2009; Iliev et al. 2006 for discussions).

7.6.3 Test 7: Expansion of multiple HII regions in a cosmological density field

In this section we use our thermally coupled implementation of TRAPHIC to repeat the Test 4
that we have discussed in Chapter 5. Recall that this test involved the simulation of the evolu-
tion of ionised regions around multiple sources in a static cosmological density field at redshift
z ≈ 8.85 and that it was designed to resemble important aspects of state-of-the-art simulations
of the epoch of reionisation. In contrast to our Test 4 simulations in Chapter 5, where the gas
temperature was assumed to be constant at T = 104 K, here we will compute the evolution of
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Figure 7.19: Test 7. Neutral fraction in a slice through z = Lbox/2. From left to right: t = 0.05, 0.1, 0.2, 0.3
and 0.4 Myr. From top to bottom: TRAPHIC thin (assuming grey optically thin photo-heating rates),
TRAPHIC thick (assuming grey optically thick photo-heating rates), C2-RAY, CRASH, FTTE. Contours
show neutral fractions η = 0.9, 0.5, log η = −1,−3 and −5, from the outside in. The colour scale is loga-
rithmic and has a lower cut-off of η = 10−7 (and hence is identical to that used in the top row panels of
Fig. 5.15 in Chapter 5). The results obtained with TRAPHIC thick are in excellent agreement with those
obtained with FTTE. They are also in excellent agreement with the results obtained with C2-RAY in highly
ionised regions, where the neutral fraction is unaffected by spectral hardening. The small differences in
the neutral fractions obtained with TRAPHIC thick and TRAPHIC thin are mostly due to differences in the
recombination rate, caused by differences in the gas temperatures (see Fig. 7.21). See Fig. 4 in the appendix
at the end of this thesis for a coloured version.
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Figure 7.20: Test 7. Ionisation front evolution in a slice through z = Lbox/2. From left to right:
t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr. Blue contours show ionisation fronts (neutral fraction of ηHI = 0.5)
obtained with TRAPHIC thin, i.e. computing photo-heating rates in the optically thin limit (cp. the top
row panels in Fig. 7.19) and green contours show ionisation fronts obtained with TRAPHIC thick, i.e.
computing photo-heating rates in the optically thick limit (cp. the second to top row panels in Fig. 7.19).

For comparison, red contours show the ionisation front evolution in the fiducial (Nc = 32, Ñngb = 32)
simulation presented in Sec. 5.4.5 in Chapter 5, which assumed a fixed temperature T = 104 K. The
background grey-scale image shows the density field. Because all simulations employ similar photo-
ionisation cross-sections and because of the weak dependence of the ionisation front position on tem-
perature, the ionisation fronts are at nearly the same location.

the temperature along with that of the ionisation state of the gas.

The setup of this test is identical to that of Test 4 in Chapter 5, to which we refer the
reader for a detailed description. Briefly, the initial conditions are provided by a snapshot
(at redshift z ≈ 8.85) from a cosmological N-body and gas-dynamical uniform-mesh simula-
tion. The simulation box is Lbox = 0.5 h−1 comoving Mpc on a side, uniformly divided into
Ncell = 1283 cells. We Monte Carlo sample this input density field to replace the mesh cells
with NSPH = Ncell = 1283 SPH particles. The gas is assumed to be initially fully neutral and to
have an initial temperature T = 100 K. The ionising sources are chosen to correspond to the 16
most massive halos in the box. They are assumed to have black-body spectra Bν(ν, Tbb) with
temperature Tbb = 105 K. The ionising photon production rate is taken to be constant and all
sources are switched on at the same time. The boundary conditions are photon-transmissive,
i.e. photons leaving the box are lost from the computational domain.

In this section we will perform two radiative transfer simulations to solve the time-indepen-
dent radiative transfer equation, both with an angular resolution of Nc = 32 (and setting
Ñngb = 32). We have demonstrated in Test 4 (Chapter 5) that for the current problem this
angular resolution is sufficiently high to obtain converged results. To facilitate the direct com-
parison with the corresponding simulation performed in Test 4, we employ the same time step
∆tr = 10−4 Myr (and transport photons only over a single inter-particle distance per time
step). We note that the current simulations do not employ the resampling technique that we
have introduced in Chapter 4 to suppress noise in the neutral fraction caused by the particular
realisation of the SPH density field. As discussed in Test 4, in the present test this noise is small.

For both our simulations we transport radiation using a single frequency bin, employing
the grey photo-ionisation cross-section 〈σHI〉 = 1.63 × 10−18 cm2 (Sec. 7.2). The difference be-
tween the two simulations is in the computation of the photo-heating rates used to evolve the
gas temperatures. For one simulation we compute photo-heating in the optically thin limit (us-
ing Eq. 7.40), assuming that each photo-ionisation adds 〈ǫHI〉 = 6.32 eV to the thermal energy
of the gas (Sec. 7.3). In the other simulation we compute photo-heating in the optically thick
limit (using Eq. 7.40), assuming that each photo-ionisation on average adds 〈ǫthick

HI 〉 = 16.01 eV
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Figure 7.21: Test 7. Temperature in a slice through z = Lbox/2. From left to right: t = 0.05, 0.1, 0.2, 0.3 and
0.4 Myr. From top to bottom: TRAPHIC thin (assuming optically thin photo-heating rates), TRAPHIC thick
(assuming optically thick photo-heating rates), C2-RAY, CRASH and FTTE. Contours show temperatures
log10(T [K]) = 3, 4, 4.2, 4.4 and 4.6, from the outside in. Most of the morphological differences may be
attributed to differences in the spectral hardening of the ionising radiation (with the multi-frequency
codes C2-RAY and CRASH predicting a substantial amount of pre-heating and the monochromatic (grey)
codes TRAPHIC and FTTE predicting sharp transitions between the hot ionised and the cold neutral
phase), while the differences in the maximum gas temperatures are mainly due to photo-heating being
computed in the optically thick limit (TRAPHIC thick, C2-RAY, FTTE), the optically thin limit (TRAPHIC

thin) or using multiple frequency bins (CRASH). See Fig. 5 in the appendix at the end of this thesis for a
coloured version.
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Figure 7.22: Test 7. Histograms of the temperature at times t = 0.05, 0.2 and 0.4 Myr (from left to right).
At low temperatures the differences in the shape of the histograms are mainly due to differences in
spectral hardening. The differences exhibited at high temperatures are mainly due photo-heating being
computed in the optically thick limit (TRAPHIC thick, C2-RAY, FTTE), the optically thin limit (TRAPHIC

thin) or using multiple frequency bins (CRASH).

to the thermal energy of the gas (Sec. 7.3). For definiteness we mention that in both simulations
we include collisional ionisations and all relevant cooling processes (including Compton cool-
ing off the z = 8.85 cosmic microwave background), employing the rates listed in Table 7.1.
Figs. 7.19-7.22 show our results.

Fig. 7.19 shows images of the neutral fraction in slices through the centre of the simulation
box at times t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr (from left to right). The panels in the top two
rows show the results obtained with TRAPHIC, with photo-heating computed in the optically
thin (top row) and optically thick (second to top row) limit. They can be compared directly to
the panels in the top row of Fig. 5.15 (Chapter 5), which show images of the neutral fraction
in identical slices and at identical times obtained using identical (except for the temperature,
recombination rate and photo-ionisation-cross-section) parameters. Neutral fraction contours
are shown to facilitate this comparison. For reference, we also show the results obtained with
other radiative transfer codes for the same test problem as published in Iliev et al. (2006). We
have already employed the results obtained with C2-RAY (Mellema et al. 2006) and CRASH (Cia-
rdi et al. 2001; Maselli, Ferrara, & Ciardi 2003) in our comparisons of Test 4. For completeness,
here we additionally compare our results with those obtained with FTTE (Razoumov & Cardall
2005). We recall that while the simulation with CRASH treated the present problem by perform-
ing a multi-frequency computation, the simulation with FTTE, as our simulations, solved it in
the grey approximation, using optically thick photo-heating rates. Finally, C2-RAY employed
a hybrid method that treats the transport of radiation with multiple frequency bins but com-
putes photo-heating rates in the grey (optically thick) approximation (for more details see our
discussion in Sec. 7.6.2).

The differences in the neutral fractions between the results obtained in the thermally cou-
pled simulation shown in the top row of Fig. 7.19 and those obtained assuming a fixed (but
appropriately chosen) temperature shown in the top row of Fig. 5.15 (Chapter 5) are small. The
simulation that employs photo-heating rates in the optically thick limit produces a smaller min-
imum neutral fraction as a result of lower recombination rates due to the higher temperatures
it predicts (see Fig. 7.21). The ionisation fronts are, however, essentially at the same positions.
This is explicitly demonstrated in Fig. 7.20, where we compare the ionisation fronts in these
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two simulations on top of images of the density field in the same slices through the centre of
the simulation box and at the same times as we have used for the images of the neutral frac-
tion shown in Figs. 7.19 and 5.15. This close matching was expected, given the agreement in
the employed photo-ionisation cross-sections and the weak dependence of the ionisation front
position on the gas temperature (cp. our discussion of the evolution of the ionisation front in
Test 6, Fig. 7.13).

The panels in the top two rows of Fig. 7.21 show images of the gas temperature in slices
through the centre of the simulation box at times t = 0.05, 0.1, 0.2, 0.3 and 0.4 Myr (from left
to right) that correspond to the images of the neutral fraction shown in the top two rows of
Fig. 7.19. That is, the panels in the top row show the predicted temperatures using photo-
heating rates computed in the optically thin limit, while the panels in the second to top row
show the temperatures obtained by computing photo-heating rates in the optically thick limit.
We also show again the corresponding results obtained with C2-RAY, CRASHand FTTE, as pub-
lished in Iliev et al. (2006). To facilitate the comparison, we show contours of constant temper-
ature on top of each of the images.

The results obtained with different codes exhibit large differences both in the morphologies
of the photo-heated regions and the typical temperatures attained by the photo-ionised gas.
Outside the ionisation fronts, differences in morphologies and gas temperatures can mostly
be attributed to differences in the spectral hardening of the ionising radiation. Both C2-RAY

and CRASH predict a substantial pre-heating of the gas ahead of the ionisation fronts. This
pre-heating is not seen in the simulations with TRAPHIC and FTTE since both treat the current
problem in the grey approximation. In Sec. 7.6.2 we have already discussed, for the same set
of codes, the differences between a multi-frequency treatment and its grey approximations in
idealised simulations of the evolution of a single, spherically symmetric, ionised region. The
results here are in close qualitative agreement with that discussion.

The results obtained with the different codes also exhibit large variations in the gas tem-
perature in regions well inside the ionisation fronts. While CRASH and TRAPHIC thin predict
typical temperatures of T ≈ 2 × 104 K, the typical temperatures predicted by C2-RAY FTTE

and TRAPHIC thick are, with T ≈ 6 × 104 K, substantially higher. Note that there is also dis-
agreement between the results obtained with codes which incorporate the detailed treatment
of multi-frequency radiation (C2-RAY, CRASH) and between those obtained with codes in which
the radiation is treated in the grey approximation (FTTE, TRAPHIC thin, TRAPHIC thick). Differ-
ences in spectral hardening are therefore unlikely to explain the observed temperature differ-
ences. Effects due to spectral hardening would also be expected to be small in the low-density,
highly ionised and hence optically thin regions under consideration.

We recall that in Sec. 7.6.2, where we simulated the evolution of a single, spherically sym-
metric, photo-ionised region, we found qualitatively similar differences between the results ob-
tained with C2-RAY, CRASH and FTTE. In the optically thin region close to the ionising source,
the simulations that employed C2-RAY and FTTE predicted gas temperatures that were sub-
stantially larger than those predicted by the simulation that employed CRASH. By comparing
with results obtained with our one-dimensional radiative transfer code TT1D, we were able
to explain most of these temperature differences in terms of differences in the assumptions
underlying the computation of photo-heating rates. The results presented in Fig. 7.21 are an-
other manifestation of this explanation. We remind the reader that the temperatures obtained
from CRASH and TRAPHIC thin (near ionising sources, where the neutral fractions are low) will
be more accurate than those obtained from the codes that employ the optically thick limit for
computing photo-heating rates (see Fig. 7.18).
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In Fig. 7.22 we compare histograms of the temperature at times t = 0.05, 0.2 and 0.4 Myr
(from left to right). For the simulations with C2-RAY, CRASH and FTTE we have computed
these histograms directly from the Ncell = 1283 values of temperatures published in Iliev et
al. (2006). For the simulation with TRAPHIC we assigned the temperatures to a corresponding
uniform mesh with Ncell = 1283 cells using (mass-conserving) SPH interpolation (see Sec. 5.4
in Chapter 5) before we computed the histograms.

The histograms provide a quantitative confirmation of our qualitative discussion above.
The simulations with TRAPHIC thin predict, in close agreement with the simulations performed
with CRASH, typical temperatures of T ≈ 2 × 104 K. On the other hand, the simulations per-
formed with C2-RAY, FTTE and TRAPHIC thick closely agree on typical temperatures of T ≈
6× 104 K. The differences between the histograms at low values of the temperature are mostly
caused by the differences in spectral hardening. Due to the pre-heating of gas ahead of the ion-
isation fronts predicted by the multi-frequency codes C2-RAY and CRASH, the number of cells
that are still at their initial temperature T = 100 K is much smaller than found by FTTE and
TRAPHIC, which only employ a single frequency bin.

Note that TRAPHIC predicts transitions between the photo-ionised hot and the neutral cold
gas that are slightly more extended than those predicted by FTTE, as can be concluded from the
small enhancement in the fraction of cells with temperatures 102 K . T . 103 K. This may be
the result of the Monte Carlo sampling of the input density field that we employed to initialise
the particle densities. As noted in our description of Test 4 in Chapter 5, in low-density regions
Monte Carlo sampling may lead to a smaller effective resolution than that inherent to the input
density field. The reduced spatial resolution would then imply an effective smoothing. Such
a smoothing may also be caused by the interpolation of the particle properties to the uniform
mesh that we performed for the computation of the histograms.

In summary, in this section we have repeated the simulation of the expansion of multiple
ionised regions in a cosmological density field that we discussed in Test 4 (Chapter 5), but this
time we explicitly computed, in addition to the evolution of the ionised fraction, the evolution
of the temperature of the photo-ionised gas. We performed two simulations that were identical
except for the photo-heating rates employed: one simulation computed photo-heating in the
grey, optically thin limit (TRAPHIC thin), while the other computed photo-heating in the gry,
optically thick limit (TRAPHIC thick).

Both simulations showed only small differences in the neutral fractions when compared
with each other and with the corresponding simulation presented as part of Test 4 in Chapter 5
(which assumed a fixed temperature of T = 104 K), which was expected due to the similarity
in the photo-ionisation cross-sections employed. We also compared the results of our ther-
mally coupled simulations with results obtained with other radiative transfer codes for the
same test problem (Iliev et al. 2006). We found excellent agreement between these and our
results when comparing simulations that employed similar assumptions for computing photo-
ionisation and photo-heating rates.

7.7 CONCLUSION

The thermal evolution of the (intergalactic) gas in the Universe is an important observable.
It is determined by the (photo-) ionisation, heating and cooling rates that it experiences. For
the applications of interest, the most important radiative cooling and heating processes are
collisional excitation cooling, collisional ionisation cooling, recombination cooling, cooling by
Bremsstrahlung, Compton cooling of the cosmic microwave background and photo-heating by



TRAPHIC - thermal coupling 207

ultra-violet radiation. The accurate incorporation of the effects of photo-heating into cosmolog-
ical simulations poses a particularly difficult problem, because it requires the use of accurate
and efficient, thermally coupled radiative transfer schemes. The main aim of this chapter was to
provide an implementation of such a scheme, based on the radiative transfer scheme TRAPHIC

that we have described in Chapter 4.

This implementation required some preparatory work. We started by briefly discussing the
physics of the main ionisation, recombination, cooling and heating processes that determine
the gas temperature. Their numerical evaluation requires atomic data, i.e. cross-sections and
rate coefficients, which often are not very well constrained. This is partly due to the fact that
the dependence of these cross-sections and rate coefficients on temperature and density is dif-
ficult to probe experimentally for the extremely low densities and high temperatures that are
of interest in astrophysical applications.

Different works reported in the literature employ different extrapolations into these regimes
which causes, sometimes significant, differences in the employed heating and cooling rates. We
have illustrated and discussed these differences for each individual process and have also com-
pared total (equilibrium) cooling rates that are commonly employed. Heating and cooling are
amongst the main processes that determine the evolution of gas in hydrodynamical cosmolog-
ical simulations. The lack of strong efforts to establish an accurate standard of atomic data for
the evaluation of heating and cooling rates is therefore somewhat worrying.

From the set of atomic data and their fits that we have discussed we chose reference ex-
pressions for the photo-ionisation cross-sections, ionisation, recombination and cooling rates
for use with the simulations presented in this chapter. Based on these rates we discussed, for
reference, the properties of primordial gas subject to (photo-)ionisation, heating and cooling in
ionisation equilibrium. Amongst other things, we illustrated the well-known fact that cooling
in primordial atomic gas becomes highly inefficient for gas temperatures lower than T ≈ 104 K.
We also showed that ionising radiation reduces the cooling efficiency of primordial gas, which
is also well-known.

We then described a method to compute the non-equilibrium evolution of the ionised frac-
tion of gas exposed to (hydrogen-) ionising radiation together with its thermal evolution. A
self-consistent method is required, since the ionisation state and the gas temperature are cou-
pled through the dependence of the collisional ionisation, recombination and cooling rate coef-
ficients on the temperature and ionisation state of the gas. Our method extends the sub-cycling
technique that we have described in Chapter 5 to compute the evolution of the ionised fraction
of gas at a fixed temperature indepedently of the size of the radiative transfer time step. We
demonstrated in test simulations of the evolution of an optically thin gas particle subject to
photo-ionisation that the sub-cycling can be successfully employed, independently of the size
of the radiative transfer time step, also in the case of a self-consistently evolving temperature.

With these preparations in hand we were able to describe an extension of TRAPHIC, the
radiative transfer scheme for use with smoothed particle hydrodynamics simulations that we
described in Chapters 4 and 5, to include the computation of the gas temperature subject to
photo-heating by the UV field computed by the radiative transfer simulation itself. This ther-
mal coupling was the main aim of this chapter. We have applied TRAPHIC to compute the
evolution of the ionised fraction and the temperature around a single ionising source with a
black-body spectrum in a homogeneous, hydrogen-only medium. The set-up of this test cal-
culation was chosen to facilitate the comparison with both analytical and numerical reference
solutions. We performed such a comparison and found excellent agreement.

Since our implementation of TRAPHIC currently employs only a single frequency bin, we
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treated this multi-frequency problem in the grey approximation. We discussed this approxi-
mation by comparing our results to results obtained in a full multi-frequency simulation with
our one-dimensional radiative transfer code TT1D that we developed for this purpose. We per-
formed grey simulations, computing photo-heating both in the optically thin limit, which is
the relevant limit when considering the thermal structure of highly-ionised regions, and in the
optically thick limit, which is the relevant limit when considering the energy balance of the
ionised region as a whole.

We found significant differences in the results obtained from the grey and the multi-frequency
simulations. Close to and ahead of the ionisation front these differences were mostly due to the
spectral hardening of the radiation field caused by the dependence of the absorption cross-
section on the photon energy. We also found significant differences between the grey simula-
tions that employed the optically thin and the optically thick limits to compute photo-heating
rates. Close to the ionsing source, the simulation using optically thick photo-heating rates pre-
dicted temperatures that are substantially larger than those predicted by the simulation using
optically thin photo-heating rates. Only the latter asymptotes to the multi-frequency simula-
tion in the limit of small optical depths.

Finally, we simulated the evolution of ionised regions around multiple sources in a cosmo-
logical density field. The simulation was similar to those presented in Test 4 (Chapter 5), but
now we also followed the evolution of the gas temperature. A comparison to results obtained
with other codes showed excellent agreement in the predicted morphologies and gas temper-
atures of the photo-ionised and photo-heated regions, when comparing simulations that em-
ployed similar assumptions for computing photo-ionisation and photo-heating rates.

We have limited our consideration in this chapter to radiative transfer simulations on pre-
computed static density fields. Our goal for the future will be to drop this simplification and
perform hydrodynamically coupled radiative transfer simulations.
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